JP2017065951A - Lithium tantalate single crystal and manufacturing method of same - Google Patents

Lithium tantalate single crystal and manufacturing method of same Download PDF

Info

Publication number
JP2017065951A
JP2017065951A JP2015190896A JP2015190896A JP2017065951A JP 2017065951 A JP2017065951 A JP 2017065951A JP 2015190896 A JP2015190896 A JP 2015190896A JP 2015190896 A JP2015190896 A JP 2015190896A JP 2017065951 A JP2017065951 A JP 2017065951A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
lithium tantalate
thermal conductivity
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015190896A
Other languages
Japanese (ja)
Other versions
JP2017065951A5 (en
JP6485307B2 (en
Inventor
杉山 正史
Masashi Sugiyama
正史 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015190896A priority Critical patent/JP6485307B2/en
Publication of JP2017065951A publication Critical patent/JP2017065951A/en
Publication of JP2017065951A5 publication Critical patent/JP2017065951A5/ja
Application granted granted Critical
Publication of JP6485307B2 publication Critical patent/JP6485307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium tantalate single crystal used for a substrate of a surface acoustic wave (SAW) device and capable of improving a thermal property, and a manufacturing method of the same.SOLUTION: A lithium tantalate single crystal is provided, the Li site or Ta site of which is partly substituted by a Ga element, and Ga content in the single crystal is 0.01 wt% or more and 0.3 wt% or less. A saw filter using the lithium tantalate single crystal is provided.SELECTED DRAWING: Figure 3

Description

本発明は、タンタル酸リチウム単結晶及びその製造方法に関し、より詳しくは、表面弾性波(SAW:Surface Acounstic Wave)デバイス用基板等に用いられ、温度特性を改善しうるタンタル酸リチウム単結晶及びその製造方法に関する。   The present invention relates to a lithium tantalate single crystal and a method for manufacturing the same, and more particularly, to a lithium tantalate single crystal that can be used for a surface acoustic wave (SAW) device substrate and the like and can improve temperature characteristics. It relates to a manufacturing method.

タンタル酸リチウム単結晶は、SAWフィルターをはじめ振動子、発信器の基板材料として知られている。近年、携帯電話の高性能化に伴い、特に送受信用のデバイスに用いられるSAWフィルターに対する高性能化の要求も厳しくなっている。例えば、アンテナデュプレクサなど、デバイスに高電力が印加される用途では、SAWフィルターに対する高性能化に対して、低損失・高抑圧化に加え、温度特性の改善が求められている。   Lithium tantalate single crystals are known as substrate materials for SAW filters, vibrators, and transmitters. In recent years, with the enhancement of the performance of mobile phones, the demand for higher performance of SAW filters used in transmission / reception devices has become stricter. For example, in applications where high power is applied to a device such as an antenna duplexer, improvement in temperature characteristics is required in addition to low loss and high suppression in order to improve the performance of SAW filters.

タンタル酸リチウム(以下、LTと略称することがある)基板は、SAWの振動エネルギーと電気的エネルギーの変換効率を示す電気機械結合係数が大きく、デバイス設計上有利であるが、SAWの伝搬速度の温度依存性が大きく、デバイスの周波数特性が温度により変化しやすいという問題があるためである。   A lithium tantalate (hereinafter, abbreviated as LT) substrate has a large electromechanical coupling coefficient indicating the conversion efficiency between vibration energy and electrical energy of SAW, which is advantageous in device design. This is because the temperature dependency is large and the frequency characteristics of the device are likely to change with temperature.

SAWフィルターの中心周波数fは、表面弾性波の音速(伝搬速度)をv、IDT(Inter Digital Transducer)電極の周期をλとすると、f=v/λで表されるが、温度変化があるとLT基板の熱膨張のため電極周期が変化し中心周波数fのシフトが起る。この温度による周波数シフトのため、例えば、送信波用フィルターの透過周波数帯が受信波の波長域にかかってしまう等、S/Nを大きく低下させる問題が発生することが指摘され、LT基板の温度特性の改善が必要とされている。   The center frequency f of the SAW filter is expressed by f = v / λ where the sound velocity (propagation velocity) of the surface acoustic wave is v and the period of the IDT (Inter Digital Transducer) electrode is λ. Due to the thermal expansion of the LT substrate, the electrode period changes and the center frequency f shifts. Due to the frequency shift due to this temperature, it has been pointed out that a problem of greatly reducing the S / N occurs, for example, the transmission frequency band of the transmission wave filter is in the wavelength range of the reception wave. There is a need for improved properties.

そこで、LT単結晶の温度特性を改善するため、LT単結晶よりも熱膨張係数の小さい材料をLT単結晶に貼り合せ、単結晶の熱膨張を押さえ込む方法が提案されている(特許文献1〜3参照)。
例えば、特許文献1では、線熱膨張係数の差が特定値以内にある2枚の基板を用い、いずれかの基板に応力を緩和する切り込みを設けること、特許文献2では、LT基板とサファイア基板を接合し、その界面にアモルファスの接合領域を設けること、また、特許文献3では、圧電基板と特定の厚みで表面が酸化されたSi支持基板とを接着層を介して貼り合わせることが提案されている。
Therefore, in order to improve the temperature characteristics of the LT single crystal, a method has been proposed in which a material having a smaller thermal expansion coefficient than that of the LT single crystal is bonded to the LT single crystal to suppress the thermal expansion of the single crystal (Patent Documents 1 to 3). 3).
For example, in Patent Document 1, two substrates having a difference in linear thermal expansion coefficient within a specific value are used, and a cut is formed on either substrate to relieve stress. In Patent Document 2, an LT substrate and a sapphire substrate are provided. Are bonded to each other, and an amorphous bonding region is provided at the interface, and in Patent Document 3, it is proposed that the piezoelectric substrate and the Si support substrate whose surface is oxidized with a specific thickness are bonded together via an adhesive layer. ing.

しかし、これらの方法で作製された基板は、熱膨張係数が異なる材料を貼り合せているため、一般に300℃程度の熱履歴を経るSAWデバイス製造プロセスでは割れが発生し、収率を悪化させるだけでなく、基板が厚くなり、デバイスの低背化が達成されにくい。更に、LT基板に貼り合わされる低熱膨張材料や貼り合せ工程のコスト、および貼り合せ工程で収率が低下するという問題もある。   However, since the substrates manufactured by these methods are bonded with materials having different thermal expansion coefficients, cracks are generally generated in the SAW device manufacturing process that undergoes a thermal history of about 300 ° C., which only deteriorates the yield. In addition, the substrate becomes thick and it is difficult to achieve a low device height. Furthermore, there is a problem that the low thermal expansion material to be bonded to the LT substrate, the cost of the bonding process, and the yield are reduced in the bonding process.

そのため、本出願人は、LT基板に特定量のNiを添加することを提案し(特許文献4参照)、低コストで結晶の音速温度依存性を改善することができた。しかし、鉄系金属であるニッケルが添加されることで、熱伝導率が下がりLT基板の放熱性が悪化するという問題があった。   Therefore, the present applicant has proposed to add a specific amount of Ni to the LT substrate (see Patent Document 4), and was able to improve the sonic temperature dependency of the crystal at low cost. However, the addition of nickel, which is an iron-based metal, has a problem that the thermal conductivity is lowered and the heat dissipation of the LT substrate is deteriorated.

このような状況にあって、結晶の音速温度依存性を改善することができるだけでなく、鉄やニッケルのように熱伝導率を下げることのないLT基板用のタンタル酸リチウム単結晶が必要とされている。   Under such circumstances, there is a need for a lithium tantalate single crystal for an LT substrate that not only can improve the sonic temperature dependency of the crystal but also does not lower the thermal conductivity like iron or nickel. ing.

特開2003−124767号公報JP 2003-124767 A 特開2005−252550号公報JP 2005-252550 A 特開2005−347295号公報JP 2005-347295 A 特開2010−280525号公報JP 2010-280525 A

本発明の目的は、上記した問題点に鑑み、表面弾性波(SAW)デバイス用基板等に用いられ、温度特性を改善しうるタンタル酸リチウム単結晶及びその製造方法を提供することにある。   In view of the above-described problems, an object of the present invention is to provide a lithium tantalate single crystal that can be used for a surface acoustic wave (SAW) device substrate and the like and can improve temperature characteristics, and a method for manufacturing the same.

本発明者は、上記した問題を解決するため鋭意検討を重ねた結果、LT単結晶の結晶構造を変えることなしにLiサイト若しくはTaサイトを置換する元素を模索し、LT単結晶の温度特性改善効果を調べたところ、LT単結晶を育成する際の原料融液にLiサイトを置換するガリウム(Ga)を特定量添加することにより、育成した結晶の熱伝導率が大きくなることを見出し、このGaドープ結晶をSAWデバイスの基板として用いることにより、デバイスのIDT電極で発生したジュール熱が効率よく排熱され、SAWデバイスの温度特性が改善されることを確認して本発明を完成させるに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventor searched for an element that replaces the Li site or Ta site without changing the crystal structure of the LT single crystal, and improved the temperature characteristics of the LT single crystal. When the effect was investigated, it was found that the thermal conductivity of the grown crystal is increased by adding a specific amount of gallium (Ga) for substituting the Li site to the raw material melt for growing the LT single crystal. By using Ga-doped crystal as the substrate of the SAW device, Joule heat generated in the IDT electrode of the device is efficiently exhausted and the temperature characteristics of the SAW device are improved, thereby completing the present invention. It was.

すなわち、本発明の第1の発明によれば、タンタル酸リチウム単結晶のLiサイト若しくはTaサイトの一部が、ガリウム(Ga)元素で置換されており、単結晶中のガリウム(Ga)含有量が0.01重量%以上、0.3重量%以下の範囲であることを特徴とするタンタル酸リチウム単結晶が提供される。   That is, according to the first invention of the present invention, a part of the Li site or Ta site of the lithium tantalate single crystal is substituted with the gallium (Ga) element, and the gallium (Ga) content in the single crystal Is in the range of 0.01 wt% or more and 0.3 wt% or less. A lithium tantalate single crystal is provided.

また、本発明の第2の発明によれば、本発明の第1の発明において、単結晶の熱伝導率が、4.0〜4.5W/m・Kであることを特徴とするタンタル酸リチウム単結晶が提供される。   According to the second invention of the present invention, the tantalum acid according to the first invention of the present invention is characterized in that the thermal conductivity of the single crystal is 4.0 to 4.5 W / m · K. A lithium single crystal is provided.

また、本発明の第3の発明によれば、本発明の第1又は2の発明において、タンタル酸リチウム単結晶の原料粉末に、ドーパントとなるガリウム原料粉末を添加して、チョクラルスキー法により結晶を育成するタンタル酸リチウム単結晶の製造方法であって、ガリウム原料粉末は、原料融液中のGa濃度が0.05重量%以上、1.5重量%以下になるように添加することを特徴とするタンタル酸リチウム単結晶の製造方法が提供される。   According to the third invention of the present invention, in the first or second invention of the present invention, a gallium raw material powder as a dopant is added to a raw material powder of a lithium tantalate single crystal, and the Czochralski method is used. A method for producing a lithium tantalate single crystal for growing crystals, wherein the gallium raw material powder is added so that the Ga concentration in the raw material melt is 0.05 wt% or more and 1.5 wt% or less. A method for producing a featured lithium tantalate single crystal is provided.

また、本発明の第4の発明によれば、本発明の第3の発明において、前記ガリウム原料粉末が、Ga粉末であることを特徴とするタンタル酸リチウム単結晶の製造方法が提供される。 According to a fourth aspect of the present invention, there is provided the method for producing a lithium tantalate single crystal according to the third aspect of the present invention, wherein the gallium raw material powder is a Ga 2 O 3 powder. Is done.

また、本発明の第5の発明によれば、本発明の第1又は2の発明のタンタル酸リチウム単結晶を基板として用いたSAWフィルターが提供される。   The fifth aspect of the present invention provides a SAW filter using the lithium tantalate single crystal of the first or second aspect of the present invention as a substrate.

本発明によれば、比較的容易に熱伝導率の大きいタンタル酸リチウム単結晶を製造することができる。また、従来のタンタル酸リチウム基板と比較して温度特性を改善させることが可能となり、SAWデバイスを低コスト化できる。   According to the present invention, a lithium tantalate single crystal having a high thermal conductivity can be produced relatively easily. In addition, the temperature characteristics can be improved as compared with the conventional lithium tantalate substrate, and the cost of the SAW device can be reduced.

音速測定のために基板上に作製したSAWデバイスの概略図である。It is the schematic of the SAW device produced on the board | substrate for the sound speed measurement. LT単結晶へのGa添加量と、熱伝導率の関係を示したグラフである。It is the graph which showed the relationship between Ga addition amount to a LT single crystal, and thermal conductivity. SAWフィルターを模式的に示した概略図である。It is the schematic which showed the SAW filter typically.

以下、本発明のタンタル酸リチウム単結晶とその製造方法、SAWフィルターに関する具体的な実施の形態を説明する。   Hereinafter, specific embodiments of the lithium tantalate single crystal of the present invention, a manufacturing method thereof, and a SAW filter will be described.

1、タンタル酸リチウム単結晶
すなわち、本発明のタンタル酸リチウム単結晶は、ドーパントとしてガリウム(Ga)を0.01重量%以上0.3重量%以下の範囲で含有する。
1. Lithium tantalate single crystal That is, the lithium tantalate single crystal of the present invention contains gallium (Ga) as a dopant in the range of 0.01 wt% to 0.3 wt%.

本発明は、LT結晶の結晶構造を変えることなしにLiサイト若しくはTaサイトを置換する元素として、ガリウム(Ga)を添加して、LT基板における電気機械結合係数、音速等のSAW特性を維持しながら、結晶の熱伝導率が大きくなって、結晶の温度特性を改善させることができる。   In the present invention, gallium (Ga) is added as an element to replace the Li site or Ta site without changing the crystal structure of the LT crystal, and the SAW characteristics such as the electromechanical coupling coefficient and the sound speed in the LT substrate are maintained. However, the thermal conductivity of the crystal is increased, and the temperature characteristics of the crystal can be improved.

LT結晶の結晶構造は、変形イルメナイト構造を有しており、置換元素であるGaは、Li、Taの中間のイオン半径を持つために置換による結晶構造の歪みを小さくすることができる。そして、Gaは、LT原料へのドープ材料として、結晶育成が容易であり、音速温度係数の改善効果にとっても有効である。また、Gaのほかに同様な効果が期待できる周期表で同族のAl、Inを本発明の目的を損なわない範囲で含有させることができる。   The crystal structure of the LT crystal has a deformed ilmenite structure, and Ga, which is a substitution element, has an intermediate ionic radius between Li and Ta, so that distortion of the crystal structure due to substitution can be reduced. Further, Ga is easy to grow as a doping material for the LT raw material, and is effective for improving the sonic temperature coefficient. In addition to Ga, in the periodic table where similar effects can be expected, Al and In of the same group can be contained within a range that does not impair the object of the present invention.

育成結晶中のGa濃度と熱伝導率との関係は、図2のグラフに示すように、Ga濃度が0.01重量%未満であると、結晶の温度係数がアンドープ結晶と大きな違いは見られず、十分な改善効果は現れない。また、結晶中Ga濃度が0.1重量%付近まで熱伝導率が上昇し、さらに0.3重量%付近まで高レベルに維持されるが、それ以上になると徐々に低下していき、0.4重量%を超えると熱伝導率は従来よりも高水準に維持されてもクラック発生の問題が懸念される。従って、上記熱伝導率改善のためには、結晶中のGa濃度を0.01重量%以上0.4重量%以下とする必要がある。好ましいGa濃度は0.04〜0.3重量%であり、より好ましいGa濃度は0.1〜0.3重量%である。   As shown in the graph of FIG. 2, the relationship between the Ga concentration in the grown crystal and the thermal conductivity shows that the temperature coefficient of the crystal is significantly different from that of the undoped crystal when the Ga concentration is less than 0.01% by weight. Therefore, a sufficient improvement effect does not appear. Further, the thermal conductivity increases until the Ga concentration in the crystal is near 0.1% by weight, and is maintained at a high level near 0.3% by weight. If it exceeds 4% by weight, there is a concern that cracking may occur even if the thermal conductivity is maintained at a higher level than before. Therefore, in order to improve the thermal conductivity, the Ga concentration in the crystal needs to be 0.01 wt% or more and 0.4 wt% or less. A preferable Ga concentration is 0.04 to 0.3% by weight, and a more preferable Ga concentration is 0.1 to 0.3% by weight.

本発明のLT単結晶は、熱伝導率が、4.0〜4.5W/m・Kであることが好ましい。熱伝導率は、単結晶から500μm程度に薄く切り出し、レーザーフラッシュ法により測定される。
熱伝導率が、4.0W/m・K未満であると、放熱性が悪く、特性の良いSAWデバイスが得られない。一方、熱伝導率が、4.5W/m・Kを超えるようなLT単結晶の製造は難しくコストがかかる。
The LT single crystal of the present invention preferably has a thermal conductivity of 4.0 to 4.5 W / m · K. The thermal conductivity is thinly cut out from a single crystal to about 500 μm and measured by a laser flash method.
If the thermal conductivity is less than 4.0 W / m · K, the heat dissipation is poor and a SAW device with good characteristics cannot be obtained. On the other hand, it is difficult and expensive to produce an LT single crystal having a thermal conductivity exceeding 4.5 W / m · K.

2、タンタル酸リチウム単結晶の製造方法
本発明は、タンタル酸リチウム単結晶の原料粉末に、ドーパントとなるガリウム原料粉末を添加して、チョクラルスキー法により結晶を育成するタンタル酸リチウム単結晶の製造方法であって、ガリウム原料粉末は、原料融液中のGa濃度が0.05重量%以上、1.5重量%以下になるように添加することを特徴とする。
2. Manufacturing method of lithium tantalate single crystal The present invention relates to a lithium tantalate single crystal in which a gallium raw material powder as a dopant is added to a raw material powder of a lithium tantalate single crystal and a crystal is grown by the Czochralski method. In the production method, the gallium raw material powder is added so that the Ga concentration in the raw material melt is 0.05 wt% or more and 1.5 wt% or less.

ここで、単結晶の育成は、特に制限されないが、チョクラルスキー法により行うことが好ましい。チョクラルスキー法とは、原材粉末を溶融して得られた融液に、種結晶を浸けて引き上げることにより単結晶を成長させる育成方法であり、例えば高周波誘導加熱装置等を用いて行うことができる。このチョクラルスキー法によれば、大型の結晶を安定的に製造することができる。   Here, the growth of the single crystal is not particularly limited, but is preferably performed by the Czochralski method. The Czochralski method is a growth method in which a single crystal is grown by immersing a seed crystal in a melt obtained by melting raw material powder and pulling it up. For example, the method is performed using a high-frequency induction heating device or the like. Can do. According to the Czochralski method, a large crystal can be stably produced.

具体的には、先ず、所定の融液組成となるように秤量した単結晶用原料を育成装置の坩堝に投入する。
使用する坩堝としては、特に限定されるものではなく、例えば白金、モリブデン、タングステン、イリジウム、ロジウム、レニウム、又はこれらの合金等からなるもの等を使用することができる。その中でも特に、タンタル酸リチウムは、比較的融点が高いため、イリジウムのような耐熱性に優れた素材からなるものを用いることが好ましい。
Specifically, first, the single crystal raw material weighed so as to have a predetermined melt composition is put into a crucible of a growth apparatus.
The crucible to be used is not particularly limited, and for example, a crucible made of platinum, molybdenum, tungsten, iridium, rhodium, rhenium, or an alloy thereof can be used. Among these, since lithium tantalate has a relatively high melting point, it is preferable to use a material made of a material having excellent heat resistance such as iridium.

具体的に、本発明の製造方法においては、Ta、LiOの酸化物粉末を使用し、加熱して得られる融液が所定の組成となるように、各原料を秤量する。なお、使用する原料酸化物粉末は、特に限定されないが、その純度が4N以上のものであることが好ましい。 Specifically, in the production method of the present invention, Ta 2 O 5 and Li 2 O oxide powders are used, and each raw material is weighed so that the melt obtained by heating has a predetermined composition. In addition, although the raw material oxide powder to be used is not specifically limited, It is preferable that the purity is 4N or more.

また、添加するドーパントの形態としては、金属Ga、酸化物であるGaが考えられるが、酸化物であるLT融液へ溶解させることから原料としてGaを選択するのが望ましい。Gaは、溶解したとき適度な蒸気圧なので系外へ逸散しにくいので使用しやすい。 In addition, as a form of the dopant to be added, metal Ga and Ga 2 O 3 which is an oxide are conceivable. However, it is desirable to select Ga 2 O 3 as a raw material because it is dissolved in the LT melt which is an oxide. . Ga 2 O 3 is easy to use because it is difficult to escape to the moderate vapor pressure of since the outside of the system when dissolved.

Ga原料粉末は、最初からタンタル酸リチウムの各原料粉末と混合してもよく、あらかじめタンタル酸リチウムのLT仮焼粉を調製し、これにGa元素化合物を添加してもよい。Gaのほかに周期表で同族のAl、Inを含有させるときは、本発明の目的を損なわないように、蒸気圧が小さくなりすぎない物質として、少量含有させるようにする。   The Ga raw material powder may be mixed with each raw material powder of lithium tantalate from the beginning, or an LT calcined powder of lithium tantalate may be prepared in advance, and a Ga elemental compound may be added thereto. In addition to Ga, when the same group of Al and In are included in the periodic table, a small amount is added as a substance whose vapor pressure does not become too small so as not to impair the object of the present invention.

また、本発明のタンタル酸リチウム単結晶の製造方法において、結晶育成に用いる原料融液は、Ga濃度が0.05重量%以上2.0重量%以下の組成となるように調整することが好ましい。
ここで、原料融液中のGa濃度が0.05重量%以上2.0重量%以下となるように添加するのは、結晶育成に用いる原料融液へ添加するのがGaである場合、LT単結晶育成におけるGaの偏析係数(すなわち、結晶中のGa濃度/融液中のGa濃度)が概ね0.2であるためであり、これにより育成した結晶中のGa濃度を0.01重量%以上0.4重量%以下とすることができる。
Further, in the method for producing a lithium tantalate single crystal of the present invention, the raw material melt used for crystal growth is preferably adjusted so that the Ga concentration is 0.05 wt% or more and 2.0 wt% or less. .
Here, Ga 2 O 3 is added to the raw material melt used for crystal growth so that the Ga concentration in the raw material melt is 0.05 wt% or more and 2.0 wt% or less. This is because the segregation coefficient of Ga in LT single crystal growth (that is, Ga concentration in the crystal / Ga concentration in the melt) is approximately 0.2. The content may be from 01% by weight to 0.4% by weight.

なお、結晶中のGa濃度は、LT原料中のGa濃度が所定量となるようにGa粉を坩堝に秤量して混合し、高周波誘導加熱により融解させ、冷却後、坩堝内原料をサンプリングし、ICP−AES法によりGa濃度分析を行って測定する。 Note that the Ga concentration in the crystal is measured by mixing Ga 2 O 3 powder in a crucible so that the Ga concentration in the LT raw material becomes a predetermined amount, mixing by high frequency induction heating, cooling, and then cooling the raw material in the crucible. Sampling is performed, and Ga concentration analysis is performed by the ICP-AES method.

育成した結晶中のGa濃度は、0.01重量%未満の結晶では熱伝導率がアンドープ結晶と大きな違いは見られない。また、種結晶と育成結晶のGa濃度の差が大きすぎると種結晶と育成結晶の界面でクラックが発生してしまい単結晶成長が困難となる。そのためにも、原料融液中のGa濃度が2.0重量%以下となるようにするのが好ましい。   As for the Ga concentration in the grown crystal, the crystal whose thermal conductivity is less than 0.01% by weight shows no significant difference in thermal conductivity from that of the undoped crystal. Further, if the difference in Ga concentration between the seed crystal and the grown crystal is too large, a crack is generated at the interface between the seed crystal and the grown crystal, making it difficult to grow a single crystal. Therefore, it is preferable that the Ga concentration in the raw material melt is 2.0% by weight or less.

続いて、坩堝内に投入した原料粉末を加熱融解させる。その際、炉内の雰囲気としては、酸素と窒素やアルゴン等の不活性ガスとの混合ガス雰囲気とすることが好ましい。   Subsequently, the raw material powder charged in the crucible is heated and melted. At that time, the atmosphere in the furnace is preferably a mixed gas atmosphere of oxygen and an inert gas such as nitrogen or argon.

次に、原料粉末を溶融して得られた融液から、単結晶を育成する。チョクラルスキー法(引き上げ法)による単結晶の育成に際しては、チャンバ内を上述した混合ガス雰囲気に保ち、所望の組成とした融液内に種結晶を浸して、その回転数や引き上げ速度を調整しながら、ネック部や肩部を形成し、引き続き直胴部を形成する。
結晶形状の調節は、例えば、育成中の結晶重量を測定して直径や育成速度等を計算によって導き出し、回転速度や引き上げ速度を調整して行うことができる。また、結晶重量の変化をヒータへの投入電力にフィードバックして融液温度をコントロールしてもよい。
Next, a single crystal is grown from the melt obtained by melting the raw material powder. When growing a single crystal by the Czochralski method (pull-up method), keep the inside of the chamber in the above-mentioned mixed gas atmosphere, immerse the seed crystal in the melt with the desired composition, and adjust the rotation speed and pull-up speed. While forming the neck and shoulder, continue to form the straight body.
The crystal shape can be adjusted, for example, by measuring the crystal weight during growth, deriving the diameter, growth speed, and the like by calculation, and adjusting the rotation speed and pulling speed. Alternatively, the melt temperature may be controlled by feeding back the change in crystal weight to the input power to the heater.

また、タンタル酸リチウム単結晶は、比較的融点が高いため、育成過程におけるLiの蒸発を考慮して、蒸発に見合う過剰のLiO成分を融液中に添加してもよい。 In addition, since the lithium tantalate single crystal has a relatively high melting point, an excessive Li 2 O component suitable for evaporation may be added to the melt in consideration of evaporation of Li during the growth process.

この製造方法では、上述した所定の組成からなる融液を用いて結晶を育成させることのみの極めて容易な方法で、組成が均一で、特性に優れたタンタル酸リチウム単結晶を製造することができる。必要によりアニールを行うことができる。
得られた単結晶(インゴット)は、所定の厚さにスライス、研磨して下記のSAWフィルターなどの基板とすることができる。
In this production method, a lithium tantalate single crystal having a uniform composition and excellent characteristics can be produced by an extremely easy method of growing crystals using a melt having a predetermined composition as described above. . If necessary, annealing can be performed.
The obtained single crystal (ingot) can be sliced and polished to a predetermined thickness to form a substrate such as the following SAW filter.

3、SAWフィルター
本発明のSAWフィルターは、上記タンタル酸リチウム単結晶を用いた素子であり、圧電体基板上に形成された櫛形電極に高周波電力を入力して圧電体基板表面に弾性表面波を発生させ、この弾性表面波を別の櫛形電極により再び高周波電気信号に戻すデバイスである。
3. SAW filter The SAW filter of the present invention is an element using the above-mentioned lithium tantalate single crystal. A high frequency power is input to a comb-shaped electrode formed on the piezoelectric substrate to generate a surface acoustic wave on the surface of the piezoelectric substrate. This is a device that generates and returns this surface acoustic wave to a high frequency electric signal again by another comb electrode.

このSAWフィルター10は、図3のように、タンタル酸リチウム(LT)単結晶1からなる圧電基板10を用いて作製されており、圧電基板10の主面上にはSAWの伝搬方向がX方向となるようにSAW共振器11が設けられている。   As shown in FIG. 3, the SAW filter 10 is manufactured using a piezoelectric substrate 10 made of a lithium tantalate (LT) single crystal 1, and the SAW propagation direction is in the X direction on the main surface of the piezoelectric substrate 10. The SAW resonator 11 is provided so that

SAWフィルターは、弾性表面波の波長が電磁波と比較して10−5程度小さいために小型化が可能であること、伝搬損失が小さいために効率が高いこと、その作製に半導体プロセス技術が応用できるために量産性に優れ低価格化が可能なデバイスであり、携帯電話機など通信機器におけるバンドパスフィルタとして幅広く用いられる。 SAW filters can be downsized because the surface acoustic wave wavelength is about 10 −5 smaller than electromagnetic waves, have high efficiency because of low propagation loss, and semiconductor process technology can be applied to their production. Therefore, the device is excellent in mass productivity and can be reduced in price, and is widely used as a band-pass filter in communication equipment such as a mobile phone.

近年の携帯電話などの高性能化に伴い、SAWフィルターにも更なる高性能化が求められるが、本発明では、タンタル酸リチウム(LT)が、ガリウム(Ga)を含有し、広帯域のフィルター特性を実現するのに有利な大きな電気機械結合係数をもつ圧電材料であり、熱伝導率が高く温度安定性が改善されているので、従来のように支持基板とアモルファス状態の接合界面を介して接合する必要がなく、低コストで製造できる。   With the recent improvement in performance of mobile phones and the like, SAW filters are also required to have higher performance. However, in the present invention, lithium tantalate (LT) contains gallium (Ga) and has broadband filter characteristics. It is a piezoelectric material with a large electromechanical coupling coefficient that is advantageous for realizing high thermal conductivity, and has improved thermal stability and improved temperature stability. It can be manufactured at low cost.

以下、実施例を用い比較例と対比して本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated using an Example and contrasting with a comparative example, this invention is not limited to these Examples.

なお、得られた単結晶は、500μmの厚さに切り出し、試料の熱伝導率をレーザーフラッシュ法により測定した。また、音速は、図1に示したようなLT単結晶1の基板上に、電極周期が4μm、すなわち電極幅が1μm、かつ間隔が1μmの櫛形電極2を形成した1ポートSAWデバイスを作製し(電極材質:Cu)、両側に反射器3を配置したネットワークアナライザーにより共振周波数を測定した。   In addition, the obtained single crystal was cut out to a thickness of 500 μm, and the thermal conductivity of the sample was measured by a laser flash method. In addition, the sound velocity was obtained by fabricating a 1-port SAW device in which a comb electrode 2 having an electrode period of 4 μm, that is, an electrode width of 1 μm and an interval of 1 μm, was formed on a substrate of the LT single crystal 1 as shown in FIG. The resonance frequency was measured with a network analyzer (electrode material: Cu) and reflectors 3 arranged on both sides.

[実施例1]
チョクラルスキー法により、高周波誘導加熱炉を用いてGaを含有するLT単結晶の育成を行った。
まず、炉内にφ170mmのイリジウム(Ir)製坩堝を設置し、坩堝内にコングルエント組成、すなわち組成ずれ(組成揺らぎ)がなく均一な組成の結晶を容易に得ることができる調和溶融(一致溶融)で調合したLT仮焼粉とGa粉を充填して、約1750℃で融解させた。
Ga粉の添加量は、原料融液中のGa濃度(以下、仕込みGa濃度と称す)が0.05重量%となるように秤量した。
[Example 1]
An LT single crystal containing Ga was grown by a Czochralski method using a high frequency induction heating furnace.
First, an iridium (Ir) crucible having a diameter of 170 mm is installed in the furnace, and a congruent composition in the crucible, that is, harmonic melting (coincidence melting) in which a crystal having a uniform composition can be easily obtained without composition deviation (composition fluctuation) The LT calcined powder and Ga 2 O 3 powder prepared in the above were filled and melted at about 1750 ° C.
The amount of Ga 2 O 3 powder added was weighed so that the Ga concentration in the raw material melt (hereinafter referred to as the charged Ga concentration) was 0.05% by weight.

その後、融液温度をLTの融点(1650℃)付近に調整し、種結晶を10rpmで回転させながら融液表面に接触させ、十分に馴染ませた後、引上げを開始した。
育成後、炉内を室温付近まで冷却して結晶を取り出し、φ4インチのクラック・フリーのGaドープLT単結晶を得た。
そして、得られた単結晶をアニール、ポーリングした後に熱伝導率測定用試料を結晶から切り出し、また、結晶のスライス、研磨を行って音速測定用試料(基板)を作製した。
Thereafter, the melt temperature was adjusted to the vicinity of the melting point (1650 ° C.) of LT, and the seed crystal was brought into contact with the melt surface while rotating at 10 rpm.
After the growth, the inside of the furnace was cooled to near room temperature and the crystal was taken out to obtain a φ4 inch crack-free Ga-doped LT single crystal.
Then, after annealing and poling the obtained single crystal, the sample for thermal conductivity measurement was cut out from the crystal, and the crystal was sliced and polished to prepare a sound speed measurement sample (substrate).

LT単結晶中のGa濃度分析をICP−AES法で行ったところ、0.01重量%であった。また、得られた熱伝導率測定用試料の熱伝導率をレーザーフラッシュ法により測定したところ、4.29W/m・Kであった。アンドープ結晶の熱伝導率と比較して約11%の改善がみられた。
また、音速測定用に作製したLT基板上に、図1に示したような電極周期が4μmの1ポートSAWデバイスを作製し(電極材質:Cu)、ネットワークアナライザーにより共振周波数を測定し、音速を求めたところ3850m/secであった。更に、得られたLT単結晶中のGa濃度分析をICP−AES法で行ったところ、0.01重量%であった。結果を表1に示した。
When Ga concentration analysis in the LT single crystal was conducted by ICP-AES method, it was 0.01% by weight. Further, the thermal conductivity of the obtained sample for measuring thermal conductivity was measured by a laser flash method and found to be 4.29 W / m · K. An improvement of about 11% was seen compared to the thermal conductivity of the undoped crystal.
Also, a 1-port SAW device with an electrode period of 4 μm as shown in FIG. 1 is fabricated on the LT substrate fabricated for sound velocity measurement (electrode material: Cu), and the resonance frequency is measured with a network analyzer to obtain the sound velocity. The calculated value was 3850 m / sec. Furthermore, when the Ga concentration analysis in the obtained LT single crystal was conducted by ICP-AES method, it was 0.01% by weight. The results are shown in Table 1.

[実施例2]
実施例2では、仕込みGa濃度を1.5重量%となるようにGa粉を坩堝にチャージした以外は、実施例1と同様にして結晶育成を行い、クラック・フリーのGaドープLT単結晶を得た。
得られた結晶の熱伝導率を測定したところ、4.40W/m・Kであり、アンドープ結晶の熱伝導率と比較して約14%の改善が見られた。また、音速は3840m/secでアンドープと比較して変化は見られなかった。更に、得られたLT単結晶中のGa濃度分析をICP−AES法で行ったところ、0.29重量%であった。
[Example 2]
In Example 2, crystal growth was performed in the same manner as in Example 1 except that Ga 2 O 3 powder was charged in the crucible so that the charged Ga concentration was 1.5 wt%, and crack-free Ga-doped LT was obtained. A single crystal was obtained.
When the thermal conductivity of the obtained crystal was measured, it was 4.40 W / m · K, which was an improvement of about 14% compared to the thermal conductivity of the undoped crystal. Also, the sound velocity was 3840 m / sec, and no change was seen compared to undoped. Furthermore, when the Ga concentration analysis in the obtained LT single crystal was conducted by ICP-AES method, it was 0.29% by weight.

[実施例3]
実施例3では、仕込みGa濃度を0.5重量%となるようにGa粉を坩堝にチャージした以外は、実施例1と同様にして結晶育成を行い、クラック・フリーのGaドープLT単結晶を得た。
得られた結晶の熱伝導率を測定したところ、4.45W/m・Kであり、アンドープ結晶の熱伝導率と比較して約14%の改善が見られた。また、音速は3840m/secでアンドープと比較して変化は見られなかった。更に、得られたLT単結晶中のGa濃度分析をICP−AES法で行ったところ、0.11重量%であった。
[Example 3]
In Example 3, crystal growth was performed in the same manner as in Example 1 except that Ga 2 O 3 powder was charged in the crucible so that the charged Ga concentration was 0.5 wt%, and crack-free Ga-doped LT was obtained. A single crystal was obtained.
When the thermal conductivity of the obtained crystal was measured, it was 4.45 W / m · K, which was an improvement of about 14% compared to the thermal conductivity of the undoped crystal. Also, the sound velocity was 3840 m / sec, and no change was seen compared to undoped. Furthermore, when Ga concentration analysis in the obtained LT single crystal was performed by ICP-AES method, it was 0.11% by weight.

[実施例4]
実施例4では、仕込みGa濃度を0.9重量%となるようにGa粉を坩堝にチャージした以外は、実施例1と同様にして結晶育成を行い、クラック・フリーのGaドープLT単結晶を得た。
得られた結晶の熱伝導率を測定したところ、4.43W/m・Kであり、アンドープ結晶の熱伝導率と比較して約14%の改善が見られた。また、音速は3840m/secでアンドープと比較して変化は見られなかった。更に、得られたLT単結晶中のGa濃度分析をICP−AES法で行ったところ、0.18重量%であった。
[Example 4]
In Example 4, crystal growth was performed in the same manner as in Example 1 except that the Ga 2 O 3 powder was charged in the crucible so that the charged Ga concentration was 0.9 wt%, and crack-free Ga-doped LT was performed. A single crystal was obtained.
When the thermal conductivity of the obtained crystal was measured, it was 4.43 W / m · K, which was an improvement of about 14% compared to the thermal conductivity of the undoped crystal. Also, the sound velocity was 3840 m / sec, and no change was seen compared to undoped. Furthermore, Ga concentration analysis in the obtained LT single crystal was performed by ICP-AES method, and it was 0.18% by weight.

[実施例5]
実施例5では、仕込みGa濃度を0.2重量%となるようにGa粉を坩堝にチャージした以外は、実施例1と同様にして結晶育成を行い、クラック・フリーのGaドープLT単結晶を得た。
得られた結晶の熱伝導率を測定したところ、4.32W/m・Kであり、アンドープ結晶の熱伝導率と比較して約12%の改善が見られた。また、音速は3840m/secでアンドープと比較して変化は見られなかった。更に、得られたLT単結晶中のGa濃度分析をICP−AES法で行ったところ、0.04重量%であった。
[Example 5]
In Example 5, crystal growth was performed in the same manner as in Example 1 except that Ga 2 O 3 powder was charged in the crucible so that the charged Ga concentration was 0.2 wt%, and crack-free Ga-doped LT was obtained. A single crystal was obtained.
When the thermal conductivity of the obtained crystal was measured, it was 4.32 W / m · K, which was an improvement of about 12% compared to the thermal conductivity of the undoped crystal. Also, the sound velocity was 3840 m / sec, and no change was seen compared to undoped. Furthermore, when the Ga concentration analysis in the obtained LT single crystal was conducted by ICP-AES method, it was 0.04% by weight.

[実施例6]
実施例6では、仕込みGa濃度を0.4重量%となるようにGa粉を坩堝にチャージした以外は、実施例1と同様にして結晶育成を行い、クラック・フリーのGaドープLT単結晶を得た。
得られた結晶の熱伝導率を測定したところ、4.35W/m・Kであり、アンドープ結晶の熱伝導率と比較して約13%の改善が見られた。また、音速を求めたところ3850m/secであった。更に、得られたLT単結晶中のGa濃度分析をICP−AES法で行ったところ、0.08重量%であった。
[Example 6]
In Example 6, crystal growth was performed in the same manner as in Example 1 except that the Ga 2 O 3 powder was charged in the crucible so that the charged Ga concentration was 0.4 wt%, and crack-free Ga-doped LT was obtained. A single crystal was obtained.
When the thermal conductivity of the obtained crystal was measured, it was 4.35 W / m · K, an improvement of about 13% compared to the thermal conductivity of the undoped crystal. The speed of sound was determined to be 3850 m / sec. Furthermore, when the Ga concentration analysis in the obtained LT single crystal was conducted by ICP-AES method, it was 0.08% by weight.

[実施例7]
実施例7では、仕込みGa濃度を1.7重量%となるようにGa粉を坩堝にチャージした以外は、実施例1と同様にして結晶育成を行い、クラック・フリーのGaドープLT単結晶を得た。
得られた結晶の熱伝導率を測定したところ、4.16W/m・Kであり、アンドープ結晶の熱伝導率と比較して約8%の改善が見られた。また、音速は3840m/secでアンドープと比較して変化は見られなかった。更に、得られたLT単結晶中のGa濃度分析をICP−AES法で行ったところ、0.34重量%であった。
[Example 7]
In Example 7, crystal growth was performed in the same manner as in Example 1 except that Ga 2 O 3 powder was charged in the crucible so that the charged Ga concentration was 1.7% by weight, and crack-free Ga-doped LT was obtained. A single crystal was obtained.
When the thermal conductivity of the obtained crystal was measured, it was 4.16 W / m · K, which was an improvement of about 8% compared to the thermal conductivity of the undoped crystal. Also, the sound velocity was 3840 m / sec, and no change was seen compared to undoped. Furthermore, Ga concentration analysis in the obtained LT single crystal was performed by ICP-AES method, and it was 0.34% by weight.

[実施例8]
実施例8では、仕込みGa濃度を1.9重量%となるようにGa粉を坩堝にチャージした以外は、実施例1と同様にして結晶育成を行い、クラック・フリーのGaドープLT単結晶を得た。
得られた結晶の熱伝導率を測定したところ、4.08W/m・Kであり、アンドープ結晶の熱伝導率と比較して約6%の改善が見られた。また、音速を求めたところ3850m/secであった。更に、得られたLT単結晶中のGa濃度分析をICP−AES法で行ったところ、0.38重量%であった。
[Example 8]
In Example 8, crystal growth was performed in the same manner as in Example 1 except that the crucible was charged with Ga 2 O 3 powder so that the charged Ga concentration was 1.9 wt%, and crack-free Ga-doped LT was performed. A single crystal was obtained.
When the thermal conductivity of the obtained crystal was measured, it was 4.08 W / m · K, which was an improvement of about 6% compared to the thermal conductivity of the undoped crystal. The speed of sound was determined to be 3850 m / sec. Furthermore, Ga concentration analysis in the obtained LT single crystal was performed by ICP-AES method, and it was 0.38% by weight.

[従来例]
チョクラルスキー法を用いてアンドープLT単結晶の育成を行った。育成には、実施例1と同様に高周波誘導加熱炉を用いた。炉内にφ170mmのイリジウム(Ir)製坩堝を設置し、坩堝内にコングルエント組成で調合したLT仮焼粉を充填して、約1700℃で融解させた。
その後、融液温度をLTの融点(1650℃)付近に調整し、種結晶を10rpmで回転させながら融液表面に接触させ、十分に馴染ませた後、引上げを開始した。
[Conventional example]
An undoped LT single crystal was grown using the Czochralski method. For the growth, a high-frequency induction heating furnace was used as in Example 1. An iridium (Ir) crucible having a diameter of 170 mm was placed in the furnace, and the LT calcined powder prepared with a congruent composition was filled in the crucible and melted at about 1700 ° C.
Thereafter, the melt temperature was adjusted to the vicinity of the melting point (1650 ° C.) of LT, and the seed crystal was brought into contact with the melt surface while rotating at 10 rpm.

育成後、炉内を室温付近まで冷却して結晶を取り出し、φ4インチのアンドープLT単結晶を得た。そして、得られた単結晶をアニール、ポーリングした後に熱伝導率測定用試料を結晶から切り出し、また、結晶のスライス、研磨を行って音速測定用試料(基板)を作製した。   After the growth, the inside of the furnace was cooled to near room temperature and the crystal was taken out to obtain a φ4 inch undoped LT single crystal. Then, after annealing and poling the obtained single crystal, the sample for thermal conductivity measurement was cut out from the crystal, and the crystal was sliced and polished to prepare a sound speed measurement sample (substrate).

得られた熱伝導率測定用試料の熱伝導率をレーザーフラッシュ法により測定したところ、3.85W/m・Kであった。
また、音速測定用に作製したLT基板上に、図1に示したような電極周期が4μmの1ポートSAWデバイスを作製し(電極材質:Cu)、ネットワークアナライザーにより共振周波数を測定し、音速を求めたところ3840m/secであった。
It was 3.85 W / m * K when the heat conductivity of the obtained sample for thermal conductivity measurement was measured by the laser flash method.
Also, a 1-port SAW device with an electrode period of 4 μm as shown in FIG. 1 is fabricated on the LT substrate fabricated for sound velocity measurement (electrode material: Cu), and the resonance frequency is measured with a network analyzer to obtain the sound velocity. The calculated value was 3840 m / sec.

[比較例1]
比較例1では、仕込みGa濃度を0.03重量%となるようにGa粉を坩堝にチャージした以外は、実施例1と同様にして結晶育成を行い、クラック・フリーのGaドープLT単結晶を得た。
得られた結晶の熱伝導率を測定したところ、3.89W/m・Kであり、アンドープ結晶の熱伝導率に対してほとんど変化は見られなかった。音速は3840m/secでアンドープと比較して変化は見られなかった。更に、得られたLT単結晶中のGa濃度分析をICP−AES法で行ったところ、0.006重量%であった。
[Comparative Example 1]
In Comparative Example 1, crystal growth was performed in the same manner as in Example 1 except that the crucible was charged with Ga 2 O 3 powder so that the charged Ga concentration was 0.03% by weight, and crack-free Ga-doped LT was performed. A single crystal was obtained.
When the thermal conductivity of the obtained crystal was measured, it was 3.89 W / m · K, and almost no change was observed with respect to the thermal conductivity of the undoped crystal. The speed of sound was 3840 m / sec and no change was seen compared to undoped. Furthermore, Ga concentration analysis in the obtained LT single crystal was performed by ICP-AES method, and it was 0.006% by weight.

[比較例2]
比較例2では、仕込みGa濃度を2.0重量%となるようにGa粉を坩堝にチャージした以外は、実施例1と同様にして結晶育成を行った。冷却後に炉から取り出した結晶はクラックが発生しており、単結晶を得ることができなかった。なお、この時に得られた結晶中のGa濃度は0.42重量%であった。
[Comparative Example 2]
In Comparative Example 2, crystals were grown in the same manner as in Example 1 except that the crucible was charged with Ga 2 O 3 powder so that the charged Ga concentration was 2.0 wt%. The crystal taken out from the furnace after cooling had cracks, and a single crystal could not be obtained. The Ga concentration in the crystal obtained at this time was 0.42% by weight.

Figure 2017065951
Figure 2017065951

「評価」
実験結果を示す表1から明らかなように、実施例1〜8で得られたLT単結晶中のGa濃度は、0.01〜0.38重量%、また、熱伝導率は、4.08〜4.43W/m・Kであり、従来例のアンドープ結晶の熱伝導率と比較して約6〜15%の改善が見られた。また、得られた結晶を用いて基板上に作製したSAWデバイスで求めた音速は、3840〜3850m/secで音速の変化はほとんど見られなかった。
これに対して、比較例1では、得られたLT単結晶中のGa濃度が0.006重量%と低かったため、熱伝導率が、3.89W/m・Kとなり、従来例のアンドープ結晶の熱伝導率と比べ、さほど改善が見られなかった。また、比較例2では得られたLT単結晶中のGa濃度が0.42重量%と高かったため、クラックが発生した。
"Evaluation"
As is apparent from Table 1 showing the experimental results, the Ga concentration in the LT single crystals obtained in Examples 1 to 8 was 0.01 to 0.38% by weight, and the thermal conductivity was 4.08. It was ˜4.43 W / m · K, and an improvement of about 6 to 15% was seen compared to the thermal conductivity of the undoped crystal of the conventional example. In addition, the speed of sound obtained with a SAW device produced on a substrate using the obtained crystal was 3840 to 3850 m / sec, and almost no change in the speed of sound was observed.
On the other hand, in Comparative Example 1, since the Ga concentration in the obtained LT single crystal was as low as 0.006% by weight, the thermal conductivity was 3.89 W / m · K. Not much improvement was seen compared to the thermal conductivity. In Comparative Example 2, since the Ga concentration in the obtained LT single crystal was as high as 0.42% by weight, cracks occurred.

以上の実施例および比較例の結果から、本発明によれば、熱伝導率が高いタンタル酸リチウム結晶を製造することができ、温度特性が改善された低コストの基板を提供しうることが分かる。   From the results of the above Examples and Comparative Examples, it can be seen that according to the present invention, a lithium tantalate crystal having a high thermal conductivity can be produced, and a low-cost substrate with improved temperature characteristics can be provided. .

本発明のタンタル酸リチウム単結晶は、SAWフィルターをはじめ振動子、発信器の基板材料として利用可能である。   The lithium tantalate single crystal of the present invention can be used as a substrate material for SAW filters, vibrators and transmitters.

Claims (5)

タンタル酸リチウム単結晶のLiサイト若しくはTaサイトの一部が、ガリウム(Ga)元素で置換されており、単結晶中のガリウム(Ga)含有量が0.01重量%以上、0.3重量%以下の範囲であることを特徴とするタンタル酸リチウム単結晶。   A part of the Li site or Ta site of the lithium tantalate single crystal is substituted with a gallium (Ga) element, and the gallium (Ga) content in the single crystal is 0.01% by weight or more and 0.3% by weight. A lithium tantalate single crystal having the following range. 単結晶の熱伝導率が、4.0〜4.5W/m・Kであることを特徴とする請求項1に記載のタンタル酸リチウム単結晶。   2. The lithium tantalate single crystal according to claim 1, wherein the single crystal has a thermal conductivity of 4.0 to 4.5 W / m · K. タンタル酸リチウム単結晶の原料粉末に、ドーパントとなるガリウム原料粉末を添加して、チョクラルスキー法により結晶を育成するタンタル酸リチウム単結晶の製造方法であって、
ガリウム原料粉末は、原料融液中のGa濃度が0.05重量%以上、1.5重量%以下になるように添加することを特徴とする請求項1又は2に記載のタンタル酸リチウム単結晶の製造方法。
A method for producing a lithium tantalate single crystal in which a gallium raw material powder as a dopant is added to a raw material powder of a lithium tantalate single crystal and a crystal is grown by the Czochralski method,
The lithium tantalate single crystal according to claim 1 or 2, wherein the gallium raw material powder is added so that a Ga concentration in the raw material melt is 0.05 wt% or more and 1.5 wt% or less. Manufacturing method.
前記ガリウム原料粉末が、Ga粉末であることを特徴とする請求項3に記載のタンタル酸リチウム単結晶の製造方法。 The gallium raw material powder, the manufacturing method of the lithium tantalate single crystal according to claim 3, characterized in that the Ga 2 O 3 powder. 上記請求項1又は2に記載のタンタル酸リチウム単結晶を基板として用いたSAWフィルター。
A SAW filter using the lithium tantalate single crystal according to claim 1 or 2 as a substrate.
JP2015190896A 2015-09-29 2015-09-29 Lithium tantalate single crystal and method for producing the same Active JP6485307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015190896A JP6485307B2 (en) 2015-09-29 2015-09-29 Lithium tantalate single crystal and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015190896A JP6485307B2 (en) 2015-09-29 2015-09-29 Lithium tantalate single crystal and method for producing the same

Publications (3)

Publication Number Publication Date
JP2017065951A true JP2017065951A (en) 2017-04-06
JP2017065951A5 JP2017065951A5 (en) 2018-07-05
JP6485307B2 JP6485307B2 (en) 2019-03-20

Family

ID=58493760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015190896A Active JP6485307B2 (en) 2015-09-29 2015-09-29 Lithium tantalate single crystal and method for producing the same

Country Status (1)

Country Link
JP (1) JP6485307B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022050890A (en) * 2020-09-18 2022-03-31 信越化学工業株式会社 Manufacturing method of oxide single crystal wafer

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196407A (en) * 1998-12-28 2000-07-14 Tdk Corp Surface acoustic wave device
JP2000219599A (en) * 1999-01-27 2000-08-08 Victor Co Of Japan Ltd Piezoelectric single crystal and piezoelectric element
JP2001039791A (en) * 1999-05-22 2001-02-13 Japan Science & Technology Corp Method and device for growing high quality single crystal
JP2004254114A (en) * 2003-02-20 2004-09-09 Yamajiyu Ceramics:Kk Single crystal for piezoelectric substrate, surface acoustic wave filter using the same and its manufacturing method
JP2005314137A (en) * 2004-04-27 2005-11-10 Yamajiyu Ceramics:Kk Treatment method and apparatus for suppressing electrification of piezoelectric oxide single crystal
WO2007046176A1 (en) * 2005-10-19 2007-04-26 Yamaju Ceramics Co., Ltd. Ferroelectric single crystal, surface acoustic filter making use of the same and process for producing the filter
JP2007261910A (en) * 2006-03-29 2007-10-11 Sony Corp Method for producing lithium tantalate single crystal
JP2008301066A (en) * 2007-05-30 2008-12-11 Yamajiyu Ceramics:Kk Lithium tantalate (lt) or lithium niobate (ln) single crystal compound substrate
JP2009007203A (en) * 2007-06-28 2009-01-15 Sumitomo Metal Mining Co Ltd Oxide single crystal growth device and method for manufacturing oxide single crystal using the same
JP2010280525A (en) * 2009-06-03 2010-12-16 Sumitomo Metal Mining Co Ltd Lithium tantalate substrate and method for producing lithium tantalate single crystal
JP2013236276A (en) * 2012-05-09 2013-11-21 Shin Etsu Chem Co Ltd Lithium tantalate single crystal of stoichiometric composition for surface acoustic wave element, method for manufacturing the same and composite piezoelectric substrate for surface acoustic wave element
JP2014069994A (en) * 2012-09-28 2014-04-21 Sumitomo Metal Mining Co Ltd Method for producing lithium tantalate single crystal, and lithium tantalate single crystal

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196407A (en) * 1998-12-28 2000-07-14 Tdk Corp Surface acoustic wave device
JP2000219599A (en) * 1999-01-27 2000-08-08 Victor Co Of Japan Ltd Piezoelectric single crystal and piezoelectric element
JP2001039791A (en) * 1999-05-22 2001-02-13 Japan Science & Technology Corp Method and device for growing high quality single crystal
JP2004254114A (en) * 2003-02-20 2004-09-09 Yamajiyu Ceramics:Kk Single crystal for piezoelectric substrate, surface acoustic wave filter using the same and its manufacturing method
JP2005314137A (en) * 2004-04-27 2005-11-10 Yamajiyu Ceramics:Kk Treatment method and apparatus for suppressing electrification of piezoelectric oxide single crystal
WO2007046176A1 (en) * 2005-10-19 2007-04-26 Yamaju Ceramics Co., Ltd. Ferroelectric single crystal, surface acoustic filter making use of the same and process for producing the filter
JP2007261910A (en) * 2006-03-29 2007-10-11 Sony Corp Method for producing lithium tantalate single crystal
JP2008301066A (en) * 2007-05-30 2008-12-11 Yamajiyu Ceramics:Kk Lithium tantalate (lt) or lithium niobate (ln) single crystal compound substrate
JP2009007203A (en) * 2007-06-28 2009-01-15 Sumitomo Metal Mining Co Ltd Oxide single crystal growth device and method for manufacturing oxide single crystal using the same
JP2010280525A (en) * 2009-06-03 2010-12-16 Sumitomo Metal Mining Co Ltd Lithium tantalate substrate and method for producing lithium tantalate single crystal
JP2013236276A (en) * 2012-05-09 2013-11-21 Shin Etsu Chem Co Ltd Lithium tantalate single crystal of stoichiometric composition for surface acoustic wave element, method for manufacturing the same and composite piezoelectric substrate for surface acoustic wave element
JP2014069994A (en) * 2012-09-28 2014-04-21 Sumitomo Metal Mining Co Ltd Method for producing lithium tantalate single crystal, and lithium tantalate single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022050890A (en) * 2020-09-18 2022-03-31 信越化学工業株式会社 Manufacturing method of oxide single crystal wafer
JP7417501B2 (en) 2020-09-18 2024-01-18 信越化学工業株式会社 Method for manufacturing oxide single crystal wafers

Also Published As

Publication number Publication date
JP6485307B2 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
WO2007046176A1 (en) Ferroelectric single crystal, surface acoustic filter making use of the same and process for producing the filter
JPWO2017051747A1 (en) Bonded substrate, manufacturing method thereof, and surface acoustic wave device using the bonded substrate
JP2019156655A (en) Method for manufacturing lithium tantalate substrate
CN101275279B (en) Piezo crystal having four-lattice structure
JP6485307B2 (en) Lithium tantalate single crystal and method for producing the same
JP5839577B2 (en) Method for producing stoichiometric lithium tantalate single crystal for surface acoustic wave device
US7090724B2 (en) Langasite single crystal ingot, substrate for piezoelectric device and method for manufacture thereof, and surface acoustic wave device
JP2010280525A (en) Lithium tantalate substrate and method for producing lithium tantalate single crystal
JP4270232B2 (en) Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same
JP5792115B2 (en) Method for producing stoichiometric lithium tantalate single crystal for surface acoustic wave device
JP3911967B2 (en) Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same
JP6169759B1 (en) Surface acoustic wave device substrate and method of manufacturing the same
JP4353262B2 (en) Surface acoustic wave device and substrate for piezoelectric device
JP6822109B2 (en) Bismuth-substituted rare earth iron garnet crystal film, its manufacturing method, and optical isolator
JP5507870B2 (en) Method for manufacturing substrate for surface acoustic wave device
JP5967830B2 (en) Substrate for acoustic wave device
JP3968934B2 (en) Method for manufacturing substrate for piezoelectric device
JP2000247793A (en) Preparation of langacite type crystal
JP3911992B2 (en) Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same
JP3835286B2 (en) Piezoelectric material, substrate for piezoelectric device, and surface acoustic wave device
JP2018056866A (en) Piezoelectric composite substrate for surface acoustic wave element and method for manufacturing the same
JP4239506B2 (en) Method for manufacturing substrate for piezoelectric device
JP6969091B2 (en) Non-magnetic garnet single crystal, non-magnetic garnet single crystal substrate, non-magnetic garnet single crystal manufacturing method, and non-magnetic garnet single crystal substrate manufacturing method
JP4300889B2 (en) Surface acoustic wave device and substrate for surface acoustic wave device
JP4221111B2 (en) LANGASITE SINGLE CRYSTAL, ITS WAFER AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180517

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R150 Certificate of patent or registration of utility model

Ref document number: 6485307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150