JP5967830B2 - Substrate for acoustic wave device - Google Patents

Substrate for acoustic wave device Download PDF

Info

Publication number
JP5967830B2
JP5967830B2 JP2013021915A JP2013021915A JP5967830B2 JP 5967830 B2 JP5967830 B2 JP 5967830B2 JP 2013021915 A JP2013021915 A JP 2013021915A JP 2013021915 A JP2013021915 A JP 2013021915A JP 5967830 B2 JP5967830 B2 JP 5967830B2
Authority
JP
Japan
Prior art keywords
substrate
lithium tantalate
acoustic wave
crystal
wave device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013021915A
Other languages
Japanese (ja)
Other versions
JP2014152061A (en
Inventor
俊彦 流王
俊彦 流王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2013021915A priority Critical patent/JP5967830B2/en
Publication of JP2014152061A publication Critical patent/JP2014152061A/en
Application granted granted Critical
Publication of JP5967830B2 publication Critical patent/JP5967830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本発明は、周波数の温度特性が改善された弾性波素子用のタンタル酸リチウム基板に関する。   The present invention relates to a lithium tantalate substrate for an acoustic wave device with improved frequency temperature characteristics.

携帯電話等の高周波通信において、周波数選択用の部品として、例えば圧電性の基板上に弾性波を励起するための櫛形電極が形成された表面弾性波(Surface Acoustic Wave、SAW)素子が用いられている。そして、これに用いられる圧電性の基板材料としては、電気信号から機械的振動への変換効率(以下、「電気機械結合係数」と記す)が大きいこと、また櫛形電極の電極間隔と弾性波の音速により決まるフィルタ等の中心周波数が温度により変動しないこと等の条件が求められる(以下、「温度係数」と記す)。すなわち、大きな電気機械結合係数と小さな温度係数を兼ね備えた材料の弾性波素子用基板が好ましいとされている。   In high-frequency communication such as a cellular phone, a surface acoustic wave (SAW) element in which a comb-shaped electrode for exciting an elastic wave is formed on a piezoelectric substrate is used as a frequency selection component. Yes. As a piezoelectric substrate material used for this, the conversion efficiency from an electric signal to mechanical vibration (hereinafter referred to as “electromechanical coupling coefficient”) is large, and the inter-electrode spacing of the comb electrodes and the acoustic wave Conditions such as the fact that the center frequency of a filter or the like determined by the speed of sound does not vary with temperature are required (hereinafter referred to as “temperature coefficient”). That is, an elastic wave element substrate having a material having a large electromechanical coupling coefficient and a small temperature coefficient is preferred.

ところで、この弾性波素子用基板に使われる一般的な材料としては、例えば、タンタル酸リチウム結晶が挙げられるが、この結晶から弾性波素子の基板材料を作製すると、周囲の温度変化によりこの基板結晶中を伝播する弾性波の音速が変化して、弾性波素子の動作周波数のシフトが生じる。具体的には、36°Yカットのタンタル酸リチウム結晶では、この温度係数の絶対値は35ppm/℃であるが、一方、最近では、この弾性波素子の周波数の温度シフトを抑える要求が高まる中で、温度係数の絶対値が20ppm/℃以下のものが要求されている状況である。   By the way, as a general material used for the substrate for the acoustic wave device, for example, lithium tantalate crystal can be mentioned. The sound velocity of the elastic wave propagating through the inside changes, and the operating frequency of the elastic wave element shifts. Specifically, in the 36 ° Y-cut lithium tantalate crystal, the absolute value of this temperature coefficient is 35 ppm / ° C. On the other hand, recently, there is an increasing demand for suppressing the temperature shift of the frequency of this acoustic wave device. In this situation, the absolute value of the temperature coefficient is 20 ppm / ° C or less.

そこで、このような要求に応える材料として、特許文献1には、タンタル酸リチウム基板とサファイア基板とをアモルファス層を介して接合した複合基板が記載されている。また、特許文献2には、タンタル酸リチウム結晶にニッケルを含有させた結晶や、非特許文献1には、タンタル酸リチウムにNaを含有させた結晶が記載されている。   Therefore, as a material that meets such a requirement, Patent Document 1 describes a composite substrate in which a lithium tantalate substrate and a sapphire substrate are bonded via an amorphous layer. Patent Document 2 describes a crystal in which nickel is contained in a lithium tantalate crystal, and Non-Patent Document 1 describes a crystal in which Na is contained in lithium tantalate.

しかしながら、特許文献1の複合基板では、タンタル酸基板とサファイア基板といった2種類の基板が必要であり、しかも2種類の基板を直接接合するといった複雑な接合プロセスを必要とするために、どうしても高コストになるという欠点がある。
また、特許文献2の結晶材料は、温度係数の改善用要求比率(−20ppm/℃÷−35ppm/℃)が0.57以下に対して、この特許文献2に記載されている最良の例でも、(−45ppm÷アンドープの値−74ppm/℃)が0.61であり、要求に応えられるものではない。
さらに、非特許文献1の結晶材料も、Fig.2に記載されているように、その温度係数の絶対値が28ppm/℃であり、まだまだ改善レベルとしては不十分な材料であるという問題がある。
However, the composite substrate of Patent Document 1 requires two types of substrates, a tantalate substrate and a sapphire substrate, and requires a complicated bonding process in which two types of substrates are directly bonded. There is a drawback of becoming.
Further, the crystal material of Patent Document 2 has the required ratio for improvement of temperature coefficient (−20 ppm / ° C. ÷ −35 ppm / ° C.) of 0.57 or less, even in the best example described in Patent Document 2, (−45 ppm ÷ undoped value −74 ppm / ° C.) is 0.61, which does not meet the requirements.
Furthermore, as shown in Fig. 2, the crystal material of Non-Patent Document 1 also has a problem that the absolute value of its temperature coefficient is 28 ppm / ° C and is still an insufficient improvement level. .

このように、弾性波素子用基板として既に知られている結晶材料では、コストと温度係数の両方を同時に満たすことは困難であるのが実情である。   As described above, it is difficult to satisfy both the cost and the temperature coefficient at the same time with a crystal material already known as an elastic wave device substrate.

特開2005―252550号公報JP 2005-252550 A 特開2010−280525号公報JP 2010-280525 A

R.R.Neurgaonkarら「J.Cryst.Growth」84(1987)409-412R.R.Neurgaonkar et al. `` J.Cryst.Growth '' 84 (1987) 409-412

そこで、本発明は、上記実情に鑑み、弾性波素子として常用されているタンタル酸リチウム結晶を改質することで温度特性が改善された弾性波素子用基板を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a substrate for an acoustic wave device having improved temperature characteristics by modifying a lithium tantalate crystal that is commonly used as an acoustic wave device.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、タンタル酸リチウム結晶にランタノイド金属から選択される1種または2種以上の3価の陽イオンを含有させることで、その温度特性が改善されることを知見し、本発明に至ったものである。 As a result of intensive studies to achieve the above object, the present inventors have made lithium tantalate crystals contain one or more trivalent cations selected from lanthanoid metals. The present inventors have found that temperature characteristics are improved and have arrived at the present invention.

すなわち、本発明は、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムのランタノイド金属から選択される1種または2種以上の3価の陽イオンを全陽イオン量の1モル%以上4モル%以下含むことを特徴とするものである。 That is, the present invention provides all or one or more trivalent cations selected from one or more trivalent cations selected from praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. The cation content is 1 mol% or more and 4 mol% or less.

また、本発明の弾性波素子用基板は、36°Yカットであって、温度係数の絶対値が20ppm/℃以下であるタンタル酸リチウム結晶からなることを特徴とする。 The acoustic wave device substrate of the present invention is characterized by being made of a lithium tantalate crystal having a 36 ° Y cut and an absolute value of a temperature coefficient of 20 ppm / ° C. or less.

本発明によれば、タンタル酸リチウム結晶に、ランタノイド金属から選択される1種または2種以上の3価の陽イオンを含有させることで、温度係数を従来のコングルーエント組成のタンタル酸リチウム結晶に比べて半分以下まで小さくして、温度特性を大幅に改善させることができるので、高品質で安価な弾性波素子用基板を提供することができる。 According to the present invention, the lithium tantalate crystal contains one or more trivalent cations selected from lanthanoid metals , so that the temperature coefficient of the conventional lithium tantalate crystal with a congruent composition is increased. Since the temperature characteristic can be greatly improved by reducing it to half or less compared to the above, a high-quality and inexpensive substrate for an acoustic wave device can be provided.

以下、本発明の一実施形態について具体的に説明するが、この実施形態は、あくまで例示であり、本発明は、これに限定されるものではない。   Hereinafter, although one embodiment of the present invention is described concretely, this embodiment is an illustration to the last, and the present invention is not limited to this.

一般的に、Mg2+、Zn2+、Fe3+などは、タンタル酸リチウム結晶に含有可能ではあるが、温度特性の改善に効果はなく、本発明では、ランタノイド金属からなる陽イオンが温度特性の改善に顕著な効果を発揮する。その理由としては、ランタノイド金属からなる陽イオンは、タンタル酸リチウム結晶を構成するLi+及びTa5+の両方の陽イオンの位置に入り、本発明の陽イオンのイオン半径がLi+やTa5+より大きいために結晶格子の特定方向に歪を加える効果があり、この歪が温度特性の改善効果に影響するのではないかと考えられる。 In general, Mg2 +, Zn2 +, Fe3 +, etc. can be contained in lithium tantalate crystals, but there is no effect in improving the temperature characteristics, and in the present invention, a cation made of a lanthanoid metal is prominent in improving the temperature characteristics. Demonstrate the effect. The reason is that the cation composed of the lanthanoid metal enters the position of both the Li + and Ta5 + cations constituting the lithium tantalate crystal, and the cation radius of the present invention is larger than that of Li + or Ta5 +. There is an effect of applying strain in a specific direction of the lattice, and it is considered that this strain may affect the effect of improving temperature characteristics.

また、本発明の3価の陽イオンは、タンタル酸リチウム結晶を構成するLi+やTa5+の陽イオンの位置にほぼ均等に入ると考えられ、しかも、Li+とTa5+の平均価数が3価であることから、3価の陽イオンを含有させることは、電気的中性を保持することができるという利点がある。   Further, the trivalent cation of the present invention is considered to be almost evenly located at the position of the cation of Li + or Ta5 + constituting the lithium tantalate crystal, and the average valence of Li + and Ta5 + is trivalent. Therefore, the inclusion of a trivalent cation has the advantage that the electrical neutrality can be maintained.

そして、本発明の弾性波素子用基板は、ランタノイド金属から選択される1種または2種以上の3価の陽イオンを含むことで、絶対値が20ppm/℃以下という小さな温度係数とすることができると共に、結晶性良く成長させることが容易で、歩留まりも良いことから、高品質でかつ安価な弾性波素子用基板を提供することができる。 The substrate for an acoustic wave device of the present invention may have a small temperature coefficient of 20 ppm / ° C. or less by including one or more trivalent cations selected from lanthanoid metals. In addition, since it is easy to grow with good crystallinity and the yield is good, a high-quality and inexpensive substrate for an acoustic wave device can be provided.

ここで、ランタノイド金属とは、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウムガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムの総称であるが、本発明では、放射性同位元素であるプロメチウムやイオン半径が大きすぎてタンタル酸リチウムの結晶育成が困難となるランタン、セリウムは除外される。
したがって、本発明のランタノイド金属とは、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムのことである。
Here, the lanthanoid metal is a generic name for lanthanum, cerium , praseodymium, neodymium, promethium, samarium, europium , gadolinium , terbium, dysprosium, holmium , erbium, thulium, ytterbium, and lutetium. Promethium, lanthanum, and cerium , which are difficult to grow lithium tantalate crystals due to too large ionic radius, are excluded.
Accordingly, the lanthanoid metal of the present invention is praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium.

本発明の3価の陽イオンの含有量は、全陽イオン量の1モル%以上であり、この含有量であれば、温度特性を十分に改善させることができると共に、結晶欠陥の発生を防止しながら、より確実に結晶育成させることができる。また、3価の陽イオンの含有量の上限は、タンタル酸リチウム結晶の変形イルメナイト構造が維持される範囲が限度とされているために、結晶育成の難易度で自ずと決まってくるが、陽イオンのイオン半径に拠るが、4モル%程度が上限となる。   The content of the trivalent cation of the present invention is 1 mol% or more of the total cation amount. With this content, the temperature characteristics can be sufficiently improved and the occurrence of crystal defects can be prevented. However, the crystal can be grown more reliably. In addition, the upper limit of the content of trivalent cations is limited by the extent to which the deformed ilmenite structure of the lithium tantalate crystal is maintained, so it is naturally determined by the difficulty of crystal growth. The upper limit is about 4 mol%.

本発明では、3価の陽イオンの含有量を全陽イオン量の1モル%以上4モル%以下とすることで、その温度係数の絶対値がコングルーエント組成のタンタル酸リチウム結晶の35ppm/℃の値と比べて、20ppm/℃以下まで小さくすることができるから、温度特性を大幅に改善させることができる。 In the present invention, the trivalent cation content is set to 1 mol% or more and 4 mol% or less of the total cation content, so that the absolute value of the temperature coefficient is 35 ppm / % of the lithium tantalate crystal having a congruent composition. Since the temperature can be reduced to 20 ppm / ° C. or less compared to the value of ° C., the temperature characteristics can be greatly improved.

次に、本発明の弾性波素子用基板の製造方法を具体的に説明する。先ず、例えば、炭酸リチウム(LiCO)及び五酸化タンタル(Ta)とランタノイド金属の酸化物(Re:Reはランタノイドを示す)とを秤量して混合し、その後に電気炉で1000℃以上に加熱することで、3価の陽イオンを含有するタンタル酸リチウムの多結晶を得る。そして、このときに、ランタノイド金属の酸化物(Re)の添加量を育成したタンタル酸リチウム結晶中での含有量が1モル%以上になるように調合する。
なお、3価の陽イオンの添加量を予め多様な比率で混合し、焼成して複数のサンプルを用意し、これらサンプルについて、タンタル酸リチウム結晶の変形イルメナイト構造が維持される範囲をX線回折で調べておくことで、各々の陽イオンの含有量の上限値を事前に把握しておくことが好ましい。
Next, the manufacturing method of the elastic wave device substrate of the present invention will be specifically described. First, for example, lithium carbonate (Li 2 CO 3 ) and tantalum pentoxide (Ta 2 O 5 ) and a lanthanoid metal oxide (Re 2 O 3 : Re indicates a lanthanoid) are weighed and mixed. By heating to 1000 ° C. or higher in an electric furnace, a polycrystal of lithium tantalate containing trivalent cations is obtained. At this time, the lanthanoid metal oxide (Re 2 O 3 ) is added so that the content in the grown lithium tantalate crystal is 1 mol% or more.
In addition, the amount of trivalent cation added in advance at various ratios and calcined to prepare multiple samples, and the range in which the deformed ilmenite structure of lithium tantalate crystals is maintained for these samples is X-ray diffraction It is preferable to know in advance the upper limit of the content of each cation.

次いで、得られたタンタル酸リチウムの多結晶をイリジウム等の貴金属製のルツボに入れ、加熱し、溶融して組成を調整する。組成を調整したこの融液から、36°Y軸の種結晶を用いて回転引上げ法(チョクラルスキー法)で結晶を育成して、例えば、直径が2インチの3価の陽イオンを含有するタンタル酸リチウム結晶を作製する。そして、この作製された3価の陽イオンを含有するタンタル酸リチウム結晶に貴金属製電極を設置し、キュリー温度以上の例えば700℃で電圧を印加して単一分域化処理を施す。その後、この単一分域化処理を施した結晶を例えばワイヤーソーでスライスして、直径4インチ、厚さ0.5mmのウェーハを作製し、このウェーハをラップ機で処理し、このラップウェーハの片面を研磨機で鏡面加工して、3価の陽イオンを含有するタンタル酸リチウム結晶からなる36°Yカットの弾性波素子用基板を作製する。
なお、この作製の過程において、スライス処理後又はラップ処理後に、ウェーハに公知の技術に基づいて還元処理することで導電率を向上させることもできる。
Next, the obtained polycrystal of lithium tantalate is put into a crucible made of noble metal such as iridium, heated and melted to adjust the composition. From this melt whose composition has been adjusted, a crystal is grown by a rotary pulling method (Czochralski method) using a 36 ° Y-axis seed crystal, and contains, for example, a trivalent cation having a diameter of 2 inches. A lithium tantalate crystal is prepared. Then, a noble metal electrode is placed on the prepared lithium tantalate crystal containing a trivalent cation, and a single domain treatment is performed by applying a voltage at, for example, 700 ° C. above the Curie temperature. Thereafter, the single-domained crystal is sliced with, for example, a wire saw to produce a wafer having a diameter of 4 inches and a thickness of 0.5 mm, and the wafer is processed by a lapping machine. One side is mirror-finished with a polishing machine to produce a 36 ° Y cut acoustic wave element substrate made of lithium tantalate crystals containing trivalent cations.
Note that in this manufacturing process, after the slicing process or the lapping process, the conductivity can be improved by reducing the wafer based on a known technique.

チョクラルスキー法で結晶を育成する上記方法の外に、市販されているコングルーエント組成の36°Yカットタンタル酸リチウム基板を、非特許文献1に倣って、LiVO−LiTaO−M(Mは、ランタノイド金属である)からなる融液に浸漬して、その基板上に液相エピタキシャル法で3価の陽イオンを含むタンタル酸リチウム結晶膜を成長させることもできる。もっとも、この製法の場合では、液相エピタキシャル成長の後で単分域化処理をする必要がある。 In addition to the above-described method for growing crystals by the Czochralski method, a commercially available 36 ° Y-cut lithium tantalate substrate having a congruent composition is prepared in accordance with Non-Patent Document 1, and LiVO 3 —LiTaO 3 —M 2. A lithium tantalate crystal film containing a trivalent cation can be grown on the substrate by liquid phase epitaxy by immersing in a melt composed of O 3 (M is a lanthanoid metal ). However, in the case of this manufacturing method, it is necessary to perform a single domain treatment after the liquid phase epitaxial growth.

このようにして製造された弾性波素子用基板の温度係数を測定する場合は、弾性波素子用基板の鏡面側に、主としてアルミニウムからなる膜を取付け、続いてフォトリソグラフィー技術により所望の微細形状、例えば櫛形の電極を基板表面に形成して弾性波フィルタを作製し、このフィルタの温度を変化させて周波数に対する減衰量という通過特性を低周波数端と高周波数端の両端で測定し、その平均値を温度係数とする。
そして、本発明によれば、その温度係数は、下記表1に示すように、従来のコングルーエント組成のタンタル酸リチウム結晶基板の温度係数の絶対値が35ppm/℃の値と比べて、20ppm/℃以下のかなり小さい値を示す。
When measuring the temperature coefficient of the acoustic wave device substrate thus manufactured, a film mainly made of aluminum is attached to the mirror surface side of the acoustic wave device substrate, and then a desired fine shape by photolithography technology, For example, an acoustic wave filter is produced by forming comb-shaped electrodes on the substrate surface, and the pass characteristic of attenuation with respect to frequency is measured at both ends of the low frequency end and the high frequency end by changing the temperature of the filter. Is the temperature coefficient.
According to the present invention, as shown in Table 1 below, the temperature coefficient is 20 ppm as compared with the value of 35 ppm / ° C. in which the absolute value of the temperature coefficient of the conventional lithium tantalate crystal substrate of the congruent composition is 35 ppm / ° C. It shows a fairly small value below / ° C.

以下、実施例及び比較例を示して本発明をより具体的に説明する。先ず、五酸化タンタル(Ta)と炭酸リチウム(LiCO)とをコングルーエント組成で秤量し、これに下記表1に示す結晶濃度となるように金属酸化物を秤量して混合し、電気炉で1000℃以上に加熱して、金属酸化物を含有するタンタル酸リチウムの多結晶を作製した。次いで、この結晶をイリジウムの貴金属製のルツボに入れ、加熱し、溶融した後に36°Y軸の種結晶を用いて回転引上げ法(チョクラルスキー法)で8種類の結晶を育成し、これらを実施例及び参考例とした。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. First, tantalum pentoxide (Ta 2 O 5 ) and lithium carbonate (Li 2 CO 3 ) are weighed in a congruent composition, and the metal oxide is weighed so that the crystal concentration shown in Table 1 below is obtained. The mixture was mixed and heated to 1000 ° C. or higher in an electric furnace to produce a lithium tantalate polycrystal containing a metal oxide. Next, this crystal was put into a crucible made of iridium precious metal, heated, melted, and then grown using a 36 ° Y-axis seed crystal by a rotary pulling method (Czochralski method). It was set as the Example and the reference example .

一方、同様の方法で、金属酸化物を添加しないコングルーエント組成のタンタル酸リチウムとMgOやFeをそれぞれ添加したタンタル酸リチウム結晶の3種類の結晶をも育成し、これらを比較例とした。
なお、表1の添加した金属元素の分析は、結晶育成後にICP-AES法で行なった。
On the other hand, the same method was used to grow three types of crystals: lithium tantalate with a congruent composition without addition of metal oxide and lithium tantalate crystals with MgO and Fe 2 O 3 added thereto, respectively. It was.
The analysis of the metal elements added in Table 1 was performed by ICP-AES after crystal growth.

以上のようにして作製した6種類の実施例、2種類の参考例と3種類の比較例のタンタル酸リチウム結晶に、貴金属製電極を設置し、キュリー温度以上の温度(700℃)で電圧を印加して単一分域化処理を施した。その後この単一分域化処理を施した結晶をワイヤーソーでスライスして、直径2インチ、厚さ0.5mmのウェーハを作製し、このウェーハをラップ機で処理し、公知の技術で還元処理すると共に、さらにこのウェーハの片面を鏡面加工して弾性波素子用基板を試作した。 Precious metal electrodes were placed on the lithium tantalate crystals of the six types of examples, the two types of reference examples, and the three types of comparative examples produced as described above, and the voltage was applied at a temperature (700 ° C.) higher than the Curie temperature. A single domain treatment was applied. After that, the single-domained crystal is sliced with a wire saw to produce a wafer with a diameter of 2 inches and a thickness of 0.5 mm. The wafer is processed with a lapping machine and reduced by a known technique. At the same time, one surface of the wafer was further mirror-finished to produce a substrate for an acoustic wave device.

次に、試作した弾性波素子用基板の鏡面側に、主としてアルミニウムからなる膜を取付け、続いてフォトリソグラフィー技術により微細形状(櫛形)の電極を基板表面に形成して弾性波フィルタを作製し、このフィルタの温度を変化させて、フィルタ構造での周波数に対する減衰量という通過特性を低周波数端と高周波数端の両端で測定して、その平均値を測定基板の温度係数とした。表1に、実施例1〜6、参考例1、2及び比較例1〜3のそれぞれの測定値を示す。 Next, a film made mainly of aluminum is attached to the mirror surface of the prototype substrate for acoustic wave elements, and then an acoustic wave filter is produced by forming fine (comb-shaped) electrodes on the substrate surface by photolithography. By changing the temperature of this filter, the pass characteristic of attenuation with respect to the frequency in the filter structure was measured at both ends of the low frequency end and the high frequency end, and the average value was taken as the temperature coefficient of the measurement substrate. Table 1 shows the measured values of Examples 1 to 6, Reference Examples 1 and 2, and Comparative Examples 1 to 3.

Figure 0005967830
Figure 0005967830

上記表1に示すように、本発明の実施例1〜6では、無添加のタンタル酸リチウム結晶の比較例1やMg及びFeの金属元素をそれぞれ添加した比較例2及び3に比べて、その温度係数の絶対値がかなり小さい値であることが確認された。また、陽イオンを1.0モル%から3.4モル%の範囲で含有した実施例1〜6では、すべての温度係数の絶対値が20ppm/℃以下の値であるから、温度特性が大幅に改善されたことが確認された。
一方、比較例1〜3では、温度係数の絶対値がいずれも30ppm/℃以上の大きい値であり、従来のものと差がないことが確認された。
なお、温度係数を測定した弾性波素子の試料について、その電気機械結合係数を測定したところ、無添加の比較例1と差がないことも確認された。
As shown in Table 1 above, in Examples 1 to 6 of the present invention, compared to Comparative Example 1 of an additive-free lithium tantalate crystal and Comparative Examples 2 and 3 to which Mg and Fe metal elements were added, respectively, It was confirmed that the absolute value of the temperature coefficient was quite small. Further, in Examples 1 to 6 containing a cation in the range of 1.0 mol% to 3.4 mol%, the absolute values of all the temperature coefficients are values of 20 ppm / ° C. or less, so the temperature characteristics are greatly improved. It was confirmed that it was improved.
On the other hand, in Comparative Examples 1 to 3, the absolute value of the temperature coefficient was a large value of 30 ppm / ° C. or more, and it was confirmed that there was no difference from the conventional one.
In addition, when the electromechanical coupling coefficient was measured about the sample of the elastic wave element which measured the temperature coefficient, it was also confirmed that there is no difference with the additive-free comparative example 1. FIG.

実施例については、以上のとおりであるが、本発明は、上記実施例に限定されるものではなく、本発明の技術的思想と実質的に同一で、かつ同様な作用効果を奏する場合は、本発明の技術的範囲に包含されることは云うまでもない。

The embodiment is as described above, but the present invention is not limited to the above embodiment, and is substantially the same as the technical idea of the present invention and has the same effects. Needless to say, it is included in the technical scope of the present invention.

Claims (2)

プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムのランタノイド金属から選択される1種または2種以上の3価の陽イオンを全陽イオン量の1モル%以上4モル%以下含むことを特徴とするタンタル酸リチウム結晶からなる弾性波素子用基板。 One mole of one or more trivalent cations selected from praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium lanthanoid metals with a total cation amount of 1 mole The substrate for an acoustic wave device comprising a lithium tantalate crystal, characterized by containing from 4% to 4% by mole. 36°Yカットであって、温度係数の絶対値が20ppm/℃以下であることを特徴とする請求項1に記載のタンタル酸リチウム結晶からなる弾性波素子用基板。   The substrate for an acoustic wave device comprising a lithium tantalate crystal according to claim 1, wherein the substrate is a 36 ° Y-cut and the absolute value of the temperature coefficient is 20 ppm / ° C. or less.
JP2013021915A 2013-02-07 2013-02-07 Substrate for acoustic wave device Active JP5967830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013021915A JP5967830B2 (en) 2013-02-07 2013-02-07 Substrate for acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013021915A JP5967830B2 (en) 2013-02-07 2013-02-07 Substrate for acoustic wave device

Publications (2)

Publication Number Publication Date
JP2014152061A JP2014152061A (en) 2014-08-25
JP5967830B2 true JP5967830B2 (en) 2016-08-10

Family

ID=51574297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013021915A Active JP5967830B2 (en) 2013-02-07 2013-02-07 Substrate for acoustic wave device

Country Status (1)

Country Link
JP (1) JP5967830B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340497A (en) * 1993-05-28 1994-12-13 Toshiba Corp Single crystal
JP4113004B2 (en) * 2003-02-20 2008-07-02 株式会社山寿セラミックス Single crystal for piezoelectric substrate, surface acoustic wave filter using the same, and manufacturing method thereof
JP4301564B2 (en) * 2004-04-27 2009-07-22 株式会社山寿セラミックス Method for suppressing charge of piezoelectric oxide single crystal, and apparatus for suppressing charge
KR20080059391A (en) * 2005-10-19 2008-06-27 가부시키가이샤 야마즈 세라믹스 Ferroelectric single crystal,surface acoustic filter making use of the same and process for producing the filter

Also Published As

Publication number Publication date
JP2014152061A (en) 2014-08-25

Similar Documents

Publication Publication Date Title
JP5156065B2 (en) Piezoelectric single crystal element
KR100852536B1 (en) Piezoelectric single crystal, piezoelectric single crystal element and method for preparation thereof
WO2007046176A1 (en) Ferroelectric single crystal, surface acoustic filter making use of the same and process for producing the filter
WO2005109537A1 (en) Piezoelectric single crystal element and method for fabricating the same
JP4268111B2 (en) Piezoelectric single crystal, piezoelectric single crystal element, manufacturing method thereof, and 1-3 composite piezoelectric element
JP4568529B2 (en) Piezoelectric single crystal element
JP5416041B2 (en) Single crystal substrate and method for manufacturing single crystal substrate
JP5967830B2 (en) Substrate for acoustic wave device
JP4658773B2 (en) Piezoelectric single crystal element
JP2004269305A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
Takeda et al. Growth and piezoelectric properties of R3Ga5SiO14 and RCa4O (BO3) 3 (R: rare-earth elements) single crystals
KR101285936B1 (en) Piezoelectric single crystal element
JP5462105B2 (en) Garnet-type single crystal for Faraday rotator and optical isolator using the same
JP6485307B2 (en) Lithium tantalate single crystal and method for producing the same
JP5507870B2 (en) Method for manufacturing substrate for surface acoustic wave device
JP4878607B2 (en) Manufacturing method of full-rate solid solution type piezoelectric single crystal ingot, full-rate solid solution type piezoelectric single crystal ingot, and piezoelectric single crystal element
CN107925399B (en) Substrate for surface acoustic wave element and method for manufacturing the same
WO2002042527A1 (en) Diamond substrate having piezoelectric thin film, and method for manufacturing it
JP6186099B1 (en) Surface acoustic wave device substrate and method of manufacturing the same
JP2017019681A (en) Piezo-electric material, method for manufacturing the same, piezo-electric element and combustion pressure sensor
JP3562947B2 (en) Piezoelectric material
JP2818344B2 (en) Method and apparatus for producing oxide single crystal
JP3835286B2 (en) Piezoelectric material, substrate for piezoelectric device, and surface acoustic wave device
JP6390392B2 (en) Laminated structure
JP2010280525A (en) Lithium tantalate substrate and method for producing lithium tantalate single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160704

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5967830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150