JP2019156655A - Method for manufacturing lithium tantalate substrate - Google Patents

Method for manufacturing lithium tantalate substrate Download PDF

Info

Publication number
JP2019156655A
JP2019156655A JP2018041128A JP2018041128A JP2019156655A JP 2019156655 A JP2019156655 A JP 2019156655A JP 2018041128 A JP2018041128 A JP 2018041128A JP 2018041128 A JP2018041128 A JP 2018041128A JP 2019156655 A JP2019156655 A JP 2019156655A
Authority
JP
Japan
Prior art keywords
powder
substrate
crystal
lithium tantalate
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018041128A
Other languages
Japanese (ja)
Other versions
JP6992607B2 (en
Inventor
克冬 青木
Katsutoshi Aoki
克冬 青木
杉山 正史
Masashi Sugiyama
正史 杉山
亮太 山木
Ryota Yamaki
亮太 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018041128A priority Critical patent/JP6992607B2/en
Publication of JP2019156655A publication Critical patent/JP2019156655A/en
Application granted granted Critical
Publication of JP6992607B2 publication Critical patent/JP6992607B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide a method for manufacturing a lithium tantalate (LT) substrate excellent in electrical properties, capable of suppressing the occurrence of color unevenness (reduction unevenness).SOLUTION: A method for manufacturing a LT substrate using a LT crystal grown by the Czochralski method comprises: burying a LT crystal 3 processed in a substrate shape into a mixed powder 2 of aluminum powder (Al powder) and aluminum oxide powder (AlOpowder) in a vessel 1; arranging the vessel 1 in a heating furnace; and heating the LT crystal at a temperature of less than the curie temperature of the LT crystal to manufacture the LT substrate. The ratio of the aluminum powder in the mixed powder 2 is set to 20 wt.% or less; inert gas is continuously supplied and exhausted into the heating furnace in the atmospheric pressure atmosphere; and when the average particle size of the aluminum powder is S (μm), the average particle size of the AlOpowder is set to a range of 0.9S-1.2S (μm).SELECTED DRAWING: Figure 1

Description

本発明は、チョクラルスキー法で育成したタンタル酸リチウム結晶を用いてタンタル酸リチウム基板を製造する方法に係り、特に、色むら(還元むら)の無い電気的特性に優れたタンタル酸リチウム基板の製造方法に関するものである。   The present invention relates to a method for producing a lithium tantalate substrate using a lithium tantalate crystal grown by the Czochralski method, and in particular, a lithium tantalate substrate excellent in electrical characteristics free from color unevenness (reduction unevenness). It relates to a manufacturing method.

タンタル酸リチウム(以下、LTと略称することがある)結晶は、融点が約1650℃、キュリー温度が約600℃の強誘電体であり、この結晶を用いて製造されたタンタル酸リチウム基板は、主に、携帯電話の送受信用デバイスに用いられる表面弾性波(SAW)フィルター材料として適用されている。   The lithium tantalate (hereinafter sometimes abbreviated as LT) crystal is a ferroelectric having a melting point of about 1650 ° C. and a Curie temperature of about 600 ° C., and a lithium tantalate substrate manufactured using this crystal is It is mainly applied as a surface acoustic wave (SAW) filter material used in a mobile phone transmission / reception device.

そして、携帯電話の高周波化、各種電子機器の無線LANであるBluetooth(登録商標)(2.45GHz)の普及等により、2GHz前後の周波数領域のSAWフィルターが今後急増すると予測されている。   And it is predicted that SAW filters in the frequency region around 2 GHz will rapidly increase in the future due to the high frequency of mobile phones, the spread of Bluetooth (registered trademark) (2.45 GHz), which is a wireless LAN for various electronic devices, and the like.

上記SAWフィルターは、LT等の圧電材料で構成された基板上に、Al、Cu等の金属薄膜で一対の櫛型電極が形成された構造となっており、この櫛型電極がデバイスの特性を左右する重要な役割を担っている。また、上記櫛型電極は、圧電材料上にスパッタリングにより金属薄膜を成膜した後、一対の櫛型パターンを残し、フォトリソグラフ技術により不要な部分をエッチングにより除去することで形成される。   The SAW filter has a structure in which a pair of comb electrodes are formed of a metal thin film such as Al or Cu on a substrate made of a piezoelectric material such as LT. It plays an important role. The comb electrode is formed by depositing a metal thin film on a piezoelectric material by sputtering, leaving a pair of comb patterns, and removing unnecessary portions by etching using a photolithographic technique.

また、上記LT単結晶は、産業的には、主にチョクラルスキー法によって、酸素濃度が数%〜20%程度の窒素−酸素混合ガス雰囲気の電気炉中で育成されており、通常、高融点のイリジウム坩堝が用いられ、育成されたLT単結晶は電気炉内で所定の冷却速度で冷却された後、電気炉から取り出して得られている。   The LT single crystal is industrially grown mainly in a Czochralski method in an electric furnace having a nitrogen-oxygen mixed gas atmosphere having an oxygen concentration of about several percent to 20%. An iridium crucible having a melting point is used, and the grown LT single crystal is cooled at a predetermined cooling rate in an electric furnace and then taken out from the electric furnace.

育成されたLT結晶は、無色透明若しくは透明度の高い淡黄色を呈している。育成後、結晶の熱応力による残留歪みを取り除くため、融点に近い均熱下で熱処理を行い、更に単一分極とするためのポーリング処理、すなわち、LT結晶を室温からキュリー温度以上の所定温度まで昇温し、結晶に電圧を印加し、電圧を印加したままキュリー温度以下の所定温度まで降温した後、電圧印加を停止して室温まで冷却する一連の処理を行う。ポーリング処理後、結晶の外径を整えるために外周研削されたLT結晶(インゴットと称する)は、スライス、ラップ、ポリッシュ工程等の機械加工を経て基板となる。最終的に得られた基板はほぼ無色透明で、その体積抵抗率はおよそ1014〜1015Ω・cm程度である。 The grown LT crystal is colorless and transparent or has a light yellow color with high transparency. After the growth, in order to remove the residual strain due to the thermal stress of the crystal, heat treatment is performed under a soaking temperature close to the melting point, and further, poling treatment for making a single polarization, that is, the LT crystal is heated from room temperature to a predetermined temperature above the Curie temperature. The temperature is raised, a voltage is applied to the crystal, a temperature is lowered to a predetermined temperature below the Curie temperature while the voltage is being applied, and then a series of processes of stopping the voltage application and cooling to room temperature is performed. After the poling process, the LT crystal (referred to as an ingot) that has been peripherally ground to adjust the outer diameter of the crystal becomes a substrate through mechanical processing such as slicing, lapping, and polishing. The finally obtained substrate is almost colorless and transparent, and its volume resistivity is about 10 14 to 10 15 Ω · cm.

ところで、このような従来の方法で得られた基板では、表面弾性波素子(SAWフィルター)製造プロセスにおいて、LT結晶の特性である焦電性のため、プロセスで受ける温度変化によって電荷が基板表面にチャージアップし、これにより生ずる放電が原因となって基板表面に形成した櫛型電極が破壊され、更には基板の割れ等を生じて素子製造プロセスでの歩留まり低下が起きている。   By the way, in the substrate obtained by such a conventional method, in the surface acoustic wave device (SAW filter) manufacturing process, electric charges are transferred to the surface of the substrate due to the temperature change received in the process because of the pyroelectric property which is a characteristic of the LT crystal. The comb-shaped electrode formed on the surface of the substrate is destroyed due to the charge-up caused by this, and further, the substrate is cracked and the yield in the element manufacturing process is reduced.

そこで、LT結晶の焦電性による不具合を解消するため、導電率を増大させる技術がいくつか提案されている。例えば、特許文献1では、アルゴン、水、水素、窒素、二酸化炭素、一酸化炭素、酸素およびこれ等の組合せから選択されたガスの還元雰囲気でLT基板を熱処理することによりその導電性を増大させる方法が提案され、特許文献2では、20Pa以下の減圧雰囲気でLT基板を熱処理することによりその導電性を増大させる方法が提案されている。また、特許文献3では、基板の状態に加工されたLT結晶をアルミニウム粉末(Al粉)と酸化アルミニウム粉末(Al23粉)との混合粉中に埋め込んで熱処理(還元処理)する方法が提案されている。尚、導電性を増大させたLT基板は、酸素空孔が導入されたことにより光吸収を起こすようになる。そして、観察されるLT基板の色調は、透過光では赤褐色系に、反射光では黒色に見えるため、導電性を増大させる還元処理は黒化処理とも呼ばれており、このような色調の変化現象を黒化と呼んでいる。 Therefore, several techniques for increasing the electrical conductivity have been proposed in order to eliminate defects due to pyroelectricity of the LT crystal. For example, in Patent Document 1, the conductivity is increased by heat treating the LT substrate in a reducing atmosphere of a gas selected from argon, water, hydrogen, nitrogen, carbon dioxide, carbon monoxide, oxygen and combinations thereof. A method is proposed, and Patent Document 2 proposes a method of increasing the conductivity by heat-treating the LT substrate in a reduced pressure atmosphere of 20 Pa or less. Patent Document 3 discloses a method in which LT crystals processed into a substrate state are embedded in a mixed powder of aluminum powder (Al powder) and aluminum oxide powder (Al 2 O 3 powder) and heat-treated (reduction treatment). Proposed. Note that the LT substrate with increased conductivity causes light absorption due to the introduction of oxygen vacancies. The observed color tone of the LT substrate appears reddish brown in the transmitted light and black in the reflected light. Therefore, the reduction process for increasing the conductivity is also called a blackening process, and such a color tone change phenomenon. Is called blackening.

特開平11−92147号公報(特許請求の範囲、段落0027参照)Japanese Patent Laid-Open No. 11-92147 (see Claims, paragraph 0027) 特開2004−152870号公報(請求項4、8、段落0014参照)JP 2004-152870 A (see claims 4 and 8, paragraph 0014) 特許第4063191号公報(実施例3、8参照)Japanese Patent No. 4063191 (see Examples 3 and 8)

ところで、1250℃程度と融点が比較的低いニオブ酸リチウム基板と異なり、融点が約1650℃と高いタンタル酸リチウム基板に対して特許文献1および特許文献2の方法を適用した場合、LT基板の導電性が十分に増大しないため、焦電性による不具合の改善効果は十分でないという問題があった。   When the methods of Patent Document 1 and Patent Document 2 are applied to a lithium tantalate substrate having a high melting point of about 1650 ° C., unlike the lithium niobate substrate having a relatively low melting point of about 1250 ° C., the conductivity of the LT substrate However, there is a problem that the effect of improving the defect due to pyroelectricity is not sufficient.

また、近年、表面弾性波素子(SAWフィルター)製造プロセスにおいての歩留まり向上のため、LT結晶の特性である体積抵抗率をより低くしたい要求があり、例えば、LT基板の体積抵抗率を1×109(Ω・cm)以下にしたい要求がある。 In recent years, in order to improve the yield in the surface acoustic wave device (SAW filter) manufacturing process, there is a demand for lowering the volume resistivity which is a characteristic of the LT crystal. For example, the volume resistivity of the LT substrate is reduced to 1 × 10. There is a demand to make it 9 (Ω · cm) or less.

そして、基板の状態に加工されたLT結晶をアルミニウム粉末(Al粉)と酸化アルミニウム粉末(Al23粉)との混合粉中に埋め込んで熱処理する特許文献3の方法では、Al粉の比率を高くすることで体積抵抗率1×109(Ω・cm)程度のLT基板が得られている(実施例3、8参照)。但し、混合粉中におけるAl粉比率が高くなるに従い、直径1〜5mm程度の黒い点(色むらすなわち還元むら)が発生し易くなり、Al粉比率の上昇に伴いその発生率が増加して生産性を悪化させてしまう問題が存在した。 And in the method of patent document 3 which embeds the LT crystal processed into the state of the substrate in a mixed powder of aluminum powder (Al powder) and aluminum oxide powder (Al 2 O 3 powder), the ratio of Al powder As a result, an LT substrate having a volume resistivity of about 1 × 10 9 (Ω · cm) is obtained (see Examples 3 and 8). However, as the Al powder ratio in the mixed powder increases, black spots (color unevenness, that is, reduction unevenness) with a diameter of about 1 to 5 mm are likely to occur, and the generation rate increases as the Al powder ratio increases. There was a problem that worsened the sex.

本発明はこのような問題点に着目してなされたもので、その課題とするところは、焦電性による不具合の改善効果が均一で、色むら不良の発生を抑えることができ、かつ、低コストで再現性と生産効率に優れたLT基板の製造方法を提供することにある。   The present invention has been made paying attention to such problems, and the problem is that the effect of improving defects due to pyroelectricity is uniform, the occurrence of uneven color defects can be suppressed, and low An object of the present invention is to provide an LT substrate manufacturing method that is excellent in reproducibility and production efficiency at a low cost.

そこで、上記課題を解決するため本発明者等は特許文献3に係る方法の改良を試みた。   Therefore, in order to solve the above problems, the present inventors tried to improve the method according to Patent Document 3.

まず、特許文献3の方法は、ステンレスで構成された図1に示す容器1内にアルミニウム粉末(Al粉)と酸化アルミニウム粉末(Al23粉)を充填し、これ等の混合粉2中に基板の状態に加工されたタンタル酸リチウム結晶3を埋め込むと共に、タンタル酸リチウム結晶3が埋め込まれた複数の容器1をアルミニウムで構成された大型容器4に収容し、かつ、この大型容器4を加熱炉(図示せず)内に配置した後、タンタル酸リチウム結晶のキュリー温度未満の温度で熱処理してタンタル酸リチウム基板を製造している。 First, in the method of Patent Document 3, an aluminum powder (Al powder) and an aluminum oxide powder (Al 2 O 3 powder) are filled in a container 1 shown in FIG. The lithium tantalate crystal 3 processed into the state of the substrate is embedded, and a plurality of containers 1 embedded with the lithium tantalate crystal 3 are accommodated in a large container 4 made of aluminum, and the large container 4 is After being placed in a heating furnace (not shown), a lithium tantalate substrate is manufactured by heat treatment at a temperature lower than the Curie temperature of the lithium tantalate crystal.

尚、上記容器1と大型容器4は蓋材で覆われているが密閉容器ではない。   Although the container 1 and the large container 4 are covered with a lid, they are not sealed containers.

そして、特許文献3の方法では、加熱炉内の雰囲気が真空条件(実施例8参照)あるいは不活性ガスの封止条件(実施例1、3参照)に設定されているため、加熱炉内の熱が一か所に溜まって上記色むら(還元むら)を起こし易い環境になっていることが予想され、特に、混合粉中におけるアルミニウム粉末の比率が20%重量を超えた場合に色むら発生率が顕著となることが確認された。更に、使用されるアルミニウム粉末と酸化アルミニウム粉末の平均粒径が揃っていないため、アルミニウム粉末と酸化アルミニウム粉末との間に隙間空間が形成され難いことから、通気性が悪いことも色むら(還元むら)発生の一因になっていることが考えられた。すなわち、アルミニウム粉末の平均粒径については、粒径が小さいほど還元力が強くなることは分かっている。しかし、粉塵爆発の危険性を回避する観点から一般的に使用されているアルミニウム粉末の平均粒径は100μm程度に設定されている。これに対し、従来使用されている酸化アルミニウム粉末の平均粒径は50μm程度であるため、アルミニウム粉末と酸化アルミニウム粉末間に隙間空間が形成され難いことも色むら(還元むら)発生の一因と考えられた。   In the method of Patent Document 3, since the atmosphere in the heating furnace is set to a vacuum condition (see Example 8) or an inert gas sealing condition (see Examples 1 and 3), It is expected that heat will accumulate in one place and the above color unevenness (reduction unevenness) is likely to occur, especially when the proportion of aluminum powder in the mixed powder exceeds 20% weight. It was confirmed that the rate became remarkable. Furthermore, since the average particle diameters of the aluminum powder and the aluminum oxide powder used are not uniform, it is difficult to form a gap between the aluminum powder and the aluminum oxide powder. It was thought that this was a cause of the occurrence. In other words, it has been found that the average particle size of the aluminum powder is such that the smaller the particle size, the stronger the reducing power. However, the average particle diameter of aluminum powder generally used from the viewpoint of avoiding the danger of dust explosion is set to about 100 μm. On the other hand, since the average particle diameter of conventionally used aluminum oxide powder is about 50 μm, it is difficult to form a gap space between the aluminum powder and the aluminum oxide powder. it was thought.

そこで、真空条件あるいは不活性ガスの封止条件に設定されていた加熱炉内の雰囲気を大気圧条件に変更し、かつ、加熱炉内に不活性ガスを連続的に給排する(加熱炉に設けられた給気口から不活性ガスを供給し、加熱炉の排気口から不活性ガスを放出する)と共に、混合粉中におけるアルミニウム粉末の比率を20重量%以下に設定し、更に、アルミニウム粉末の平均粒径(100μm程度)に合わせて平均粒径が90μm以上の酸化アルミニウム粉末を適用したところ、焦電性による不具合の改善効果が均一で、色むら不良の発生を抑えることができると共に、体積抵抗率が1×109Ω・cm以下のタンタル酸リチウム基板を低コストかつ再現性よく製造できることが確認された。本発明はこのような技術的な分析と技術的確認を経て完成されたものである。 Therefore, the atmosphere in the heating furnace set to the vacuum condition or the inert gas sealing condition is changed to the atmospheric pressure condition, and the inert gas is continuously supplied to and discharged from the heating furnace (to the heating furnace). The inert gas is supplied from the air supply port provided and the inert gas is discharged from the exhaust port of the heating furnace), and the ratio of the aluminum powder in the mixed powder is set to 20% by weight or less. When an aluminum oxide powder having an average particle size of 90 μm or more is applied in accordance with the average particle size (about 100 μm), the effect of improving defects due to pyroelectricity is uniform, and the occurrence of color unevenness defects can be suppressed. It was confirmed that a lithium tantalate substrate having a volume resistivity of 1 × 10 9 Ω · cm or less can be produced at low cost and with good reproducibility. The present invention has been completed through such technical analysis and technical confirmation.

すなわち、本発明に係る第1の発明は、
チョクラルスキー法で育成したタンタル酸リチウム結晶を用いてタンタル酸リチウム基板を製造する方法であって、容器内に充填されたアルミニウム粉末と酸化アルミニウム粉末との混合粉中に基板の状態に加工されたタンタル酸リチウム結晶を埋め込み、かつ、上記容器を加熱炉内に配置した後、タンタル酸リチウム結晶のキュリー温度未満の温度で熱処理してタンタル酸リチウム基板を製造する方法において、
上記混合粉中におけるアルミニウム粉末の比率を20重量%以下に設定し、大気圧雰囲気下の上記加熱炉内に不活性ガスを連続的に給排すると共に、上記アルミニウム粉末の平均粒径をS(μm)とした場合、酸化アルミニウム粉末の平均粒径が0.9S(μm)〜1.2S(μm)の範囲に設定されていることを特徴とするものである。
That is, the first invention according to the present invention is:
A method of manufacturing a lithium tantalate substrate using a lithium tantalate crystal grown by the Czochralski method, which is processed into a substrate state in a mixed powder of aluminum powder and aluminum oxide powder filled in a container. In the method of manufacturing the lithium tantalate substrate by embedding the lithium tantalate crystal and placing the container in a heating furnace, and then heat-treating the lithium tantalate crystal at a temperature lower than the Curie temperature of the lithium tantalate crystal,
The ratio of the aluminum powder in the mixed powder is set to 20% by weight or less, and the inert gas is continuously supplied and discharged into the heating furnace under an atmospheric pressure atmosphere, and the average particle size of the aluminum powder is set to S ( μm), the average particle diameter of the aluminum oxide powder is set in the range of 0.9 S (μm) to 1.2 S (μm).

次に、第2の発明は、
第1の発明に記載のタンタル酸リチウム基板を製造する方法において、
上記アルミニウム粉末の平均粒径Sが100μmであることを特徴とし、
第3の発明は、
第1の発明または第2の発明に記載のタンタル酸リチウム基板を製造する方法において、
上記混合粉中におけるアルミニウム粉末の比率が10重量%であることを特徴とし、
また、第4の発明は、
第1の発明〜第3の発明のいずれかに記載のタンタル酸リチウム基板を製造する方法において、
上記不活性ガスがアルゴンガスで、かつ、加熱炉内に連続的に給排されるアルゴンガスの流量が0.5〜5L/minであることを特徴とするものである。
Next, the second invention is:
In the method for producing a lithium tantalate substrate according to the first invention,
The average particle size S of the aluminum powder is 100 μm,
The third invention is
In the method for producing a lithium tantalate substrate according to the first invention or the second invention,
The ratio of aluminum powder in the mixed powder is 10% by weight,
In addition, the fourth invention is
In the method for producing a lithium tantalate substrate according to any one of the first to third inventions,
The inert gas is an argon gas, and the flow rate of the argon gas continuously supplied and discharged into the heating furnace is 0.5 to 5 L / min.

本発明方法によれば、混合粉中におけるアルミニウム粉末の比率が20重量%以下に設定され、大気圧雰囲気下の加熱炉内に不活性ガスが連続的に給排されると共に、アルミニウム粉末の平均粒径をS(μm)とした場合、酸化アルミニウム粉末の平均粒径が0.9S(μm)〜1.2S(μm)の範囲に設定されているためアルミニウム粉末と酸化アルミニウム粉末間に隙間空間が形成され易くなっている。   According to the method of the present invention, the ratio of the aluminum powder in the mixed powder is set to 20% by weight or less, the inert gas is continuously fed into and discharged from the heating furnace under the atmospheric pressure atmosphere, and the average of the aluminum powder When the particle size is S (μm), the average particle size of the aluminum oxide powder is set in the range of 0.9 S (μm) to 1.2 S (μm), so that there is a gap space between the aluminum powder and the aluminum oxide powder. Is easily formed.

そして、大気圧雰囲気下の加熱炉内に不活性ガスを連続的に給排することで加熱炉内の熱が一か所に溜まり難くなり、更に、アルミニウム粉末と酸化アルミニウム粉末間に形成された隙間空間により通気性も改善されるため、色むら(還元むら)の発生が抑制されて電気的特性に優れたタンタル酸リチウム基板を低コストで製造することが可能となる。   Then, by continuously supplying and discharging the inert gas into the heating furnace under the atmospheric pressure atmosphere, it becomes difficult for heat in the heating furnace to accumulate in one place, and further, formed between the aluminum powder and the aluminum oxide powder. Since the air permeability is also improved by the gap space, it is possible to manufacture a lithium tantalate substrate having excellent electrical characteristics by suppressing the occurrence of uneven color (uneven reduction).

特許文献3に係るアルミニウム粉末と酸化アルミニウム粉末との混合粉中に基板の状態に加工されたタンタル酸リチウム結晶を埋め込んだ複数のステンレス容器がアルミニウム製大型容器に収容された状態を示す説明図。Explanatory drawing which shows the state with which the several stainless steel container which embedded the lithium tantalate crystal processed into the state of the board | substrate in the mixed powder of the aluminum powder and aluminum oxide powder which concern on patent document 3 was accommodated in the aluminum large container.

以下、本発明の実施形態について具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described.

タンタル酸リチウム(LT)結晶は、結晶内に存在する酸素空孔濃度によって電気伝導度と色が変化する。LT結晶中に酸素空孔が導入されると、チャージバランスをとる必要から一部のTaイオンの価数が5+から4+に変わり、電気伝導性を生じると同時に光吸収を起こす。電気伝導は、キャリアである電子がTa5+イオンとTa4+イオンの間を移動するために生ずると考えられる。結晶の電気伝導度は、単位体積あたりのキャリア数とキャリアの移動度の積で決まる。移動度が同じであれば、電気伝導度は酸素空孔数に比例する。また、光吸収による色変化は、酸素空孔により導入された電子レベルによるものと考えられる。 A lithium tantalate (LT) crystal changes in electrical conductivity and color depending on the concentration of oxygen vacancies present in the crystal. When oxygen vacancies are introduced into the LT crystal, the valence of some Ta ions changes from 5+ to 4+ due to the need for charge balance, resulting in electrical conductivity and light absorption. Electric conduction is considered to occur because electrons as carriers move between Ta 5+ ions and Ta 4+ ions. The electrical conductivity of a crystal is determined by the product of the number of carriers per unit volume and the mobility of carriers. If the mobility is the same, the electrical conductivity is proportional to the number of oxygen vacancies. The color change due to light absorption is considered to be due to the level of electrons introduced by the oxygen vacancies.

ところで、LT基板の導電率を高くする場合、酸素分圧が充分に低い不活性ガス中において、LT基板をキュリー温度未満の温度で熱処理してLT基板中に酸素空孔を導入する特許文献1の方法が考えられる。しかし、一般的に市販されているアルゴンガス(通常、酸素分圧は1×10-6atm程度)は、不純物として数ppm以下の酸素が含まれるため、一般的に市販されている不活性ガスを用いた熱処理ではLT基板の導電率を充分に高くすることはできない。 By the way, when increasing the conductivity of the LT substrate, Patent Document 1 in which oxygen vacancies are introduced into the LT substrate by heat-treating the LT substrate at a temperature lower than the Curie temperature in an inert gas having a sufficiently low oxygen partial pressure. Can be considered. However, generally commercially available argon gas (usually oxygen partial pressure of about 1 × 10 −6 atm) contains oxygen of several ppm or less as an impurity. It is not possible to sufficiently increase the conductivity of the LT substrate by the heat treatment using.

これに対し、アルミニウム粉末(Al粉)と酸化アルミニウム粉末(Al23粉)の混合粉中に基板の状態に加工されたタンタル酸リチウム(LT)結晶を埋め込み、例えば、不活性ガスの封止条件(実施例1、3参照)下で熱処理する特許文献3に係る方法は、Alの酸化反応によってLT結晶の周辺に存在する不活性ガスの酸素分圧を低下させ、LT結晶に酸素空孔を導入できる条件が得られる。 In contrast, a lithium tantalate (LT) crystal processed into a substrate state is embedded in a mixed powder of aluminum powder (Al powder) and aluminum oxide powder (Al 2 O 3 powder), for example, sealing of inert gas. In the method according to Patent Document 3 in which the heat treatment is performed under the stop condition (see Examples 1 and 3), the oxygen partial pressure of the inert gas existing around the LT crystal is reduced by the oxidation reaction of Al, and the oxygen crystal is freed of oxygen in the LT crystal. The conditions under which holes can be introduced are obtained.

しかし、体積抵抗率が1×109(Ω・cm)程度のLT基板を特許文献3に係る方法で製造する場合、加熱炉内の雰囲気が真空条件(実施例8参照)あるいは上記不活性ガスの封止条件(実施例1、3参照)に設定されるため、加熱炉内の熱が一か所に溜まって色むら(還元むら)を起こし易くなり、特に、Al粉の比率が20重量%を超えた場合に、LT基板の表面に直径1〜5mm程度の黒い点(色むら、すなわち還元むら)が発生する問題が存在した。 However, when an LT substrate having a volume resistivity of about 1 × 10 9 (Ω · cm) is manufactured by the method according to Patent Document 3, the atmosphere in the heating furnace is in a vacuum condition (see Example 8) or the above inert gas. Therefore, the heat in the heating furnace accumulates in one place, and color unevenness (reduction unevenness) is likely to occur. In particular, the Al powder ratio is 20 weight. When the percentage exceeds 50%, there is a problem that black spots (color unevenness, that is, reduction unevenness) having a diameter of about 1 to 5 mm occur on the surface of the LT substrate.

この問題を解決するため、本発明者等は、Al粉の比率を増大させることなく、Alの酸化反応によってLT結晶の周辺に存在する不活性ガスの酸素分圧を低下させる方法について検討した。   In order to solve this problem, the present inventors examined a method of reducing the oxygen partial pressure of the inert gas existing around the LT crystal by an oxidation reaction of Al without increasing the ratio of Al powder.

まず、Alの酸化反応によってLT結晶の周辺に存在する不活性ガスの酸素分圧を低下させるには、Alの酸化反応によってLT結晶から脱離した酸素をAl粉表面に速やかに拡散させることが重要となる。脱離した酸素がLT結晶の周辺に留まった場合、LT結晶周辺の不活性ガスの酸素分圧が上がってLT結晶の還元反応が進み難くなるからである。そこで、脱離した酸素がLT結晶の周辺に留まらないようにするため、アルミニウム粉末と酸化アルミニウム粉末との間に通気用の隙間空間が形成される改良を試みた。隙間空間を形成することにより、Alの酸化反応によってLT結晶から脱離した酸素をAl粉表面に速やかに拡散できるからである。よって、一般的に使用されている酸化アルミニウム粉末の平均粒径(100μm程度)に合わせ、平均粒径が90μm〜120μmの酸化アルミニウム粉末の適用を試みたところ、平均粒径が50μm程度であった従来の酸化アルミニウム粉末を用いた場合に較べて嵩密度が8%程度低くなり、アルミニウム粉末と酸化アルミニウム粉末との間に隙間空間が形成されることが確認された。そして、上記隙間空間によりLT結晶周辺の通気性が向上するため、Alの酸化反応によってLT結晶から脱離した酸素がLT結晶の周辺に留まらないようになり、この結果、LT結晶の還元反応がより進み易くなる状態を形成することが可能となる。   First, in order to reduce the oxygen partial pressure of the inert gas existing around the LT crystal by the oxidation reaction of Al, oxygen desorbed from the LT crystal by the oxidation reaction of Al can be quickly diffused on the surface of the Al powder. It becomes important. This is because when the desorbed oxygen stays around the LT crystal, the oxygen partial pressure of the inert gas around the LT crystal increases and the reduction reaction of the LT crystal becomes difficult to proceed. Therefore, in order to prevent the desorbed oxygen from staying around the LT crystal, an attempt was made to improve the formation of a gap space for ventilation between the aluminum powder and the aluminum oxide powder. This is because by forming the gap space, oxygen desorbed from the LT crystal by the oxidation reaction of Al can be quickly diffused to the surface of the Al powder. Therefore, when an attempt was made to apply an aluminum oxide powder having an average particle size of 90 μm to 120 μm in accordance with the average particle size (about 100 μm) of the aluminum oxide powder that is generally used, the average particle size was about 50 μm. Compared with the case of using a conventional aluminum oxide powder, the bulk density was reduced by about 8%, and it was confirmed that a gap space was formed between the aluminum powder and the aluminum oxide powder. Since the air permeability around the LT crystal is improved by the gap space, oxygen desorbed from the LT crystal due to the oxidation reaction of Al does not stay around the LT crystal. As a result, the reduction reaction of the LT crystal is prevented. It becomes possible to form a state that makes it easier to proceed.

更に、下記改良も試みた。すなわち、加熱炉内の雰囲気が真空条件(実施例8参照)あるいは不活性ガスの封止条件(実施例1、3参照)とされる特許文献3のこれ等条件に代えて、加熱炉内の雰囲気を大気圧条件に変更し、かつ、不活性ガスを加熱炉内に連続的に給排する(加熱炉に設けられた給気口から不活性ガスを供給し、加熱炉の排気口から不活性ガスを放出する)改良を試みた。この結果、Al粉の比率を20重量%以下に設定しても体積抵抗率が1×109Ω・cm以下のタンタル酸リチウム基板を製造することができ、更に、タンタル酸リチウム基板の表面に生ずる直径1〜5mm程度の黒い点(色むら)も回避できることが確認されるに至った。 Furthermore, the following improvement was also tried. That is, instead of these conditions of Patent Document 3 in which the atmosphere in the heating furnace is a vacuum condition (see Example 8) or an inert gas sealing condition (see Examples 1 and 3), The atmosphere is changed to atmospheric pressure conditions, and the inert gas is continuously supplied to and discharged from the heating furnace (the inert gas is supplied from the air supply port provided in the heating furnace, and the inert gas is supplied from the exhaust port of the heating furnace. Attempt to improve (release active gas). As a result, it is possible to produce a lithium tantalate substrate having a volume resistivity of 1 × 10 9 Ω · cm or less even when the Al powder ratio is set to 20% by weight or less, and further to the surface of the lithium tantalate substrate. It has been confirmed that black spots (color unevenness) having a diameter of about 1 to 5 mm can be avoided.

すなわち、本発明は、チョクラルスキー法で育成したLT結晶を用いてLT基板を製造する方法であって、容器内に充填されたアルミニウム粉末と酸化アルミニウム粉末との混合粉中に基板の状態に加工されたLT結晶を埋め込み、かつ、上記容器を加熱炉内に配置した後、LT結晶のキュリー温度未満の温度で熱処理してLT基板を製造する方法において、混合粉中におけるアルミニウム粉末の比率を20重量%以下とし、大気圧雰囲気下の加熱炉内に不活性ガスを連続的に給排すると共に、アルミニウム粉末の平均粒径をS(μm)とした場合、酸化アルミニウム粉末の平均粒径が0.9S(μm)〜1.2S(μm)の範囲に設定されることを特徴とするものである。   That is, the present invention is a method of manufacturing an LT substrate using an LT crystal grown by the Czochralski method, wherein the substrate is in a mixed powder of aluminum powder and aluminum oxide powder filled in a container. In the method of manufacturing an LT substrate by embedding a processed LT crystal and placing the container in a heating furnace and then heat-treating it at a temperature lower than the Curie temperature of the LT crystal, the ratio of the aluminum powder in the mixed powder is determined. When the inert gas is continuously supplied and discharged into a heating furnace under an atmospheric pressure atmosphere and the average particle size of the aluminum powder is S (μm), the average particle size of the aluminum oxide powder is It is characterized by being set in the range of 0.9S (μm) to 1.2S (μm).

本発明に係るLT基板の製造方法において、基板の状態に加工されたLT結晶をアルミニウム粉末と酸化アルミニウム粉末の混合粉中に埋め込んで処理する温度は、350℃〜LT結晶のキュリー温度未満(約600℃未満)である。アルミニウム粉末と酸化アルミニウム粉末の混合粉は、処理後におけるLT基板の体積抵抗率に影響を与える。アルミニウム粉末の比率を高くすることで、Alの酸化反応が促進されて体積抵抗率を小さくすることができる。例えば、体積抵抗率を1×109(Ω・cm)以下にする場合、特許文献3に係る従前の方法では混合粉中におけるアルミニウム粉末比率が20重量%を超える量に設定する必要があった。しかし、混合粉中におけるアルミニウム粉末比率が20重量%を超えた場合、直径1〜5mm程度の上述した黒い点(色むら)の発生が顕著となり、この色むらは、アルミニウム粉末の比率に影響を受け、アルミニウム粉末の比率が上昇するに従い色むらの発生率は高くなる。本発明に係るLT基板の製造方法において、上記色むらの発生を確実に抑制するにはAl粉の比率を20重量%以下にし、好ましくは15%重量以下、より好ましくは10重量%以下にするとよい。 In the method for producing an LT substrate according to the present invention, the LT crystal processed into a substrate state is embedded in a mixed powder of aluminum powder and aluminum oxide powder and processed at a temperature of 350 ° C. to less than the Curie temperature of the LT crystal (about Less than 600 ° C.). The mixed powder of aluminum powder and aluminum oxide powder affects the volume resistivity of the LT substrate after processing. By increasing the ratio of the aluminum powder, the oxidation reaction of Al is promoted and the volume resistivity can be reduced. For example, when the volume resistivity is 1 × 10 9 (Ω · cm) or less, in the conventional method according to Patent Document 3, it is necessary to set the aluminum powder ratio in the mixed powder to an amount exceeding 20% by weight. . However, when the aluminum powder ratio in the mixed powder exceeds 20% by weight, the above-described black spots (color unevenness) having a diameter of about 1 to 5 mm become remarkable, and this color unevenness affects the ratio of the aluminum powder. As the ratio of the aluminum powder increases, the rate of occurrence of color unevenness increases. In the method for producing an LT substrate according to the present invention, in order to reliably suppress the occurrence of the color unevenness, the Al powder ratio is set to 20% by weight or less, preferably 15% by weight or less, more preferably 10% by weight or less. Good.

また、加熱炉内に給排する不活性ガスは、一般的に市販されているアルゴンガス(酸素分圧は1×10-6atm程度)や窒素ガス等を適用できる。 Moreover, generally available argon gas (oxygen partial pressure is about 1 * 10 < -6 > atm), nitrogen gas, etc. can be applied to the inert gas supplied and discharged into the heating furnace.

尚、加熱炉内に連続的に給排される不活性ガスの流量は、不活性ガスがアルゴンガスである場合、0.5〜5L/minであることが好ましい。   In addition, when the inert gas is argon gas, it is preferable that the flow volume of the inert gas continuously supplied / exhausted in a heating furnace is 0.5-5 L / min.

そして、本発明に係る製造方法は、加熱炉内を減圧あるいは真空にすることが無く、密閉容器や減圧処理装置を必要としないため、設備コストの削減も図れる。   And since the manufacturing method which concerns on this invention does not make the inside of a heating furnace pressure reduction or vacuum, and does not require an airtight container and a pressure reduction processing apparatus, reduction of installation cost can also be aimed at.

以下、本発明の実施例について比較例も挙げて具体的に説明するが、本発明の技術範囲は下記実施例によって何ら限定されるものではない。   Examples of the present invention will be specifically described below with reference to comparative examples. However, the technical scope of the present invention is not limited by the following examples.

[加熱炉の構成]
実施例と比較例で用いられる加熱炉には給気口と排気口が設けられている。また、加熱炉内に配置されるステンレス製容器にはアルミニウム粉末(Al粉)と酸化アルミニウム粉末(Al23粉)との混合粉が充填され、かつ、一般的に市販されているアルゴンガス(酸素分圧は1×10-6atm程度)が給気口を介し加熱炉内に連続的に供給されると共に、排気口を介してアルゴンガス(不活性ガス)が加熱炉外へ連続的に排気されて、加熱炉内は大気圧雰囲気下(アルゴンガスの封止条件下にはなっていない)に調整されている。尚、加熱炉内に給排されるアルゴンガスの流量は2L/minに設定されている。
[Configuration of heating furnace]
The heating furnace used in the examples and comparative examples is provided with an air supply port and an exhaust port. Also, a stainless steel container placed in the heating furnace is filled with a mixed powder of aluminum powder (Al powder) and aluminum oxide powder (Al 2 O 3 powder), and is generally commercially available argon gas. (The oxygen partial pressure is about 1 × 10 −6 atm) is continuously supplied into the heating furnace through the air supply port, and argon gas (inert gas) is continuously supplied to the outside of the heating furnace through the exhaust port. The inside of the heating furnace is adjusted to an atmospheric pressure atmosphere (not under argon gas sealing conditions). Note that the flow rate of the argon gas supplied and discharged into the heating furnace is set to 2 L / min.

[LT結晶の育成とインゴットの加工等]
コングルエント組成の原料を用い、チョクラルスキー法により、直径4インチであるLT単結晶の育成を行った。育成雰囲気は、酸素濃度約3%の窒素−酸素混合ガスである。得られたLT結晶のインゴットは、透明な淡黄色であった。
[Growth of LT crystal and processing of ingot]
An LT single crystal having a diameter of 4 inches was grown by a Czochralski method using a material having a congruent composition. The growing atmosphere is a nitrogen-oxygen mixed gas having an oxygen concentration of about 3%. The obtained LT crystal ingot was transparent and pale yellow.

LT結晶のインゴットに対し、熱歪み除去のための熱処理と単一分極とするためのポーリング処理を行った後、外周研削、スライス、および研磨を行って42゜RY(Rotated Y axis)の基板の状態に加工されたLT結晶とした。   An LT crystal ingot is subjected to heat treatment for removing thermal strain and poling treatment for single polarization, and then peripheral grinding, slicing and polishing are performed to form a 42 ° RY (Rotated Y axis) substrate. The LT crystal was processed into a state.

得られた42゜RYのLT結晶は、無色透明で、体積抵抗率は1×1015Ω・cm、キュリー温度は603℃であった。 The obtained 42 ° RY LT crystal was colorless and transparent, had a volume resistivity of 1 × 10 15 Ω · cm, and a Curie temperature of 603 ° C.

[実施例1]
ステンレス製容器に充填された10重量%のアルミニウム粉末(Al粉)と90重量%の酸化アルミニウム粉末(Al23粉)との混合粉中に、基板の状態に加工されたLT結晶を埋め込み、かつ、LT結晶が埋め込まれたステンレス製容器を上記加熱炉内に配置した後、給気口を介し上記アルゴンガスを加熱炉内に供給した。
[Example 1]
An LT crystal processed into a substrate state is embedded in a mixed powder of 10 wt% aluminum powder (Al powder) and 90 wt% aluminum oxide powder (Al 2 O 3 powder) filled in a stainless steel container. And after arrange | positioning the stainless steel container in which the LT crystal was embedded in the said heating furnace, the said argon gas was supplied in the heating furnace via the air supply port.

尚、上記Al粉の平均粒径は100μm、Al23粉の平均粒径は95μmであった。また、上記平均粒径は各粉末をレーザー回折式粒度分布計で測定した値とした。 The average particle size of the Al powder was 100 μm, and the average particle size of the Al 2 O 3 powder was 95 μm. The average particle size was a value obtained by measuring each powder with a laser diffraction particle size distribution meter.

そして、上記2L/minの流量でアルゴンガスを大気圧雰囲気下の加熱炉内に連続的に給排し、580℃、20時間の熱処理(黒化処理)を行った。   Then, argon gas was continuously supplied and discharged at a flow rate of 2 L / min into a heating furnace in an atmospheric pressure atmosphere, and heat treatment (blackening treatment) was performed at 580 ° C. for 20 hours.

基板の状態に加工された合計200枚のLT結晶について同様の熱処理を行い、処理後のLT基板の体積抵抗率を測定し、かつ、色むらの発生率を調査した。尚、体積抵抗率は、JIS K−6911に準拠した3端子法により測定している。   A similar heat treatment was performed on a total of 200 LT crystals processed into the substrate state, the volume resistivity of the LT substrate after the treatment was measured, and the occurrence rate of color unevenness was investigated. The volume resistivity is measured by a three-terminal method based on JIS K-6911.

熱処理(黒化処理)後におけるLT基板の体積抵抗率は4.0×108Ω・cm程度で(200枚の基板の平均値)、かつ、基板表面の色むらの発生率は2%であった。 The volume resistivity of the LT substrate after heat treatment (blackening treatment) is about 4.0 × 10 8 Ω · cm (average value of 200 substrates), and the occurrence rate of color unevenness on the substrate surface is 2%. there were.

これらの結果を以下の表1に示す。   These results are shown in Table 1 below.

[比較例1]
平均粒径が52μmのAl23粉を用いた以外は実施例1と同様の条件で熱処理(黒化処理)を行った。
[Comparative Example 1]
Heat treatment (blackening treatment) was performed under the same conditions as in Example 1 except that Al 2 O 3 powder having an average particle size of 52 μm was used.

熱処理(黒化処理)後におけるLT基板の体積抵抗率は1.5×109Ω・cm程度で(200枚の基板の平均値)、かつ、基板表面の色むらの発生率は2.5%であった。 The volume resistivity of the LT substrate after heat treatment (blackening treatment) is about 1.5 × 10 9 Ω · cm (average value of 200 substrates), and the color unevenness occurrence rate on the substrate surface is 2.5. %Met.

これらの結果も表1に示す。   These results are also shown in Table 1.

[比較例2]
平均粒径が52μmのAl23粉を用い、かつ、混合粉中のAl粉とAl23粉の比率をAl粉:20重量%、Al23粉:80重量%とした以外は実施例1と同様の条件で熱処理(黒化処理)を行った。
[Comparative Example 2]
Other than using Al 2 O 3 powder having an average particle diameter of 52 μm and the ratio of Al powder to Al 2 O 3 powder in the mixed powder being Al powder: 20 wt%, Al 2 O 3 powder: 80 wt% Were subjected to heat treatment (blackening treatment) under the same conditions as in Example 1.

熱処理(黒化処理)後におけるLT基板の体積抵抗率は7.0×108Ω・cm程度で(200枚の基板の平均値)、かつ、基板表面の色むらの発生率は17.0%であった。 The volume resistivity of the LT substrate after the heat treatment (blackening treatment) is about 7.0 × 10 8 Ω · cm (average value of 200 substrates), and the occurrence rate of color unevenness on the substrate surface is 17.0. %Met.

これらの結果も表1に示す。   These results are also shown in Table 1.

[実施例2]
平均粒径が110μmのAl23粉を用いた以外は実施例1と同様の条件で熱処理(黒化処理)を行った。
[Example 2]
Heat treatment (blackening treatment) was performed under the same conditions as in Example 1 except that Al 2 O 3 powder having an average particle size of 110 μm was used.

熱処理(黒化処理)後におけるLT基板の体積抵抗率は4.5×108Ω・cm程度で(200枚の基板の平均値)、かつ、基板表面の色むらの発生率は1.5%であった。 The volume resistivity of the LT substrate after the heat treatment (blackening treatment) is about 4.5 × 10 8 Ω · cm (average value of 200 substrates), and the occurrence rate of color unevenness on the substrate surface is 1.5. %Met.

[比較例3]
平均粒径が8μmのAl23粉を用いた以外は実施例1と同様の条件で熱処理(黒化処理)を行った。
[Comparative Example 3]
Heat treatment (blackening treatment) was performed under the same conditions as in Example 1 except that Al 2 O 3 powder having an average particle size of 8 μm was used.

熱処理(黒化処理)後における基板表面の色むらの発生率は2.0%であったが、LT基板の体積抵抗率は7.0×109Ω・cm程度で(200枚の基板の平均値)あった。 The occurrence rate of color unevenness on the substrate surface after the heat treatment (blackening treatment) was 2.0%, but the volume resistivity of the LT substrate was about 7.0 × 10 9 Ω · cm (200 substrates) Average value).

[実施例3]
平均粒径が95μmのAl23粉を用い、かつ、混合粉中のAl粉とAl23粉の比率をAl粉:15重量%、Al23粉:85重量%とした以外は実施例1と同様の条件で熱処理(黒化処理)を行った。
[Example 3]
Other than using Al 2 O 3 powder having an average particle size of 95 μm and the ratio of Al powder to Al 2 O 3 powder in the mixed powder being Al powder: 15 wt%, Al 2 O 3 powder: 85 wt% Were subjected to heat treatment (blackening treatment) under the same conditions as in Example 1.

熱処理(黒化処理)後におけるLT基板の体積抵抗率は3.5×108Ω・cm程度で(200枚の基板の平均値)、かつ、基板表面の色むらの発生率は4.0%であった。 The volume resistivity of the LT substrate after the heat treatment (blackening treatment) is about 3.5 × 10 8 Ω · cm (average value of 200 substrates), and the occurrence rate of color unevenness on the substrate surface is 4.0. %Met.

[実施例4]
平均粒径が95μmのAl23粉を用い、かつ、混合粉中のAl粉、Al23粉の比率をAl粉:20重量%、Al23粉:80重量%とした以外は実施例1と同様の条件で熱処理(黒化処理)を行った。
[Example 4]
Other than using Al 2 O 3 powder with an average particle size of 95 μm and the ratio of Al powder and Al 2 O 3 powder in the mixed powder to Al powder: 20 wt%, Al 2 O 3 powder: 80 wt% Were subjected to heat treatment (blackening treatment) under the same conditions as in Example 1.

熱処理(黒化処理)後におけるLT基板の体積抵抗率は3.0×108Ω・cm程度で(200枚の基板の平均値)、かつ、基板表面の色むらの発生率は12.0%であった。 The volume resistivity of the LT substrate after the heat treatment (blackening treatment) is about 3.0 × 10 8 Ω · cm (average value of 200 substrates), and the occurrence rate of color unevenness on the substrate surface is 12.0. %Met.

Figure 2019156655
Figure 2019156655

[結 果]
(1)平均粒径100μmのアルミニウム粉末(Al粉)に対して、平均粒径95μm〜110μmの酸化アルミニウム粉末(Al23粉)が適用され、かつ、混合粉中におけるAl粉の比率が20重量%以下に設定されると共に、大気圧雰囲気下の加熱炉内にアルゴンガスを連続的に給排する実施例1〜4では、色むらの発生率が1.5%〜12.0%に抑制され、かつ、LT基板の体積抵抗率が1.0×109(Ω・cm)以下であることが確認される。
[Result]
(1) Aluminum oxide powder (Al 2 O 3 powder) having an average particle diameter of 95 μm to 110 μm is applied to aluminum powder (Al powder) having an average particle diameter of 100 μm, and the ratio of Al powder in the mixed powder is In Examples 1 to 4, in which argon gas is continuously supplied and discharged into a heating furnace under an atmospheric pressure atmosphere, the color unevenness generation rate is 1.5% to 12.0%. It is confirmed that the volume resistivity of the LT substrate is 1.0 × 10 9 (Ω · cm) or less.

(2)他方、平均粒径100μmのAl粉に対し、平均粒径8μmと52μmのAl23粉が適用され、かつ、混合粉中におけるAl粉の比率が10重量%に設定されると共に、大気圧雰囲気下の加熱炉内にアルゴンガスを連続的に給排する比較例1と比較例3では、色むらの発生率が2.0%〜2.5%に抑制されている反面、LT基板の体積抵抗率は1.0×109(Ω・cm)を超えており導電性が十分に向上していないことが確認される。 (2) On the other hand, for Al powder having an average particle diameter of 100 μm, Al 2 O 3 powder having an average particle diameter of 8 μm and 52 μm is applied, and the ratio of Al powder in the mixed powder is set to 10% by weight. In Comparative Example 1 and Comparative Example 3 in which argon gas is continuously supplied to and discharged from a heating furnace under an atmospheric pressure atmosphere, the occurrence rate of color unevenness is suppressed to 2.0% to 2.5%, The volume resistivity of the LT substrate exceeds 1.0 × 10 9 (Ω · cm), confirming that the conductivity is not sufficiently improved.

(3)また、平均粒径100μmのAl粉に対し、平均粒径52μmのAl23粉が適用され、かつ、混合粉中におけるAl粉の比率が20重量%に設定されると共に、大気圧雰囲気下の加熱炉内にアルゴンガスを連続的に給排する比較例2においては、LT基板の体積抵抗率が1.0×109(Ω・cm)以下と導電性に優れている反面、色むらの発生率は17.0%と高く、生産性を悪化させていることが確認される。 (3) In addition, an Al 2 O 3 powder having an average particle diameter of 52 μm is applied to an Al powder having an average particle diameter of 100 μm, and the ratio of the Al powder in the mixed powder is set to 20% by weight. In Comparative Example 2 in which argon gas is continuously supplied to and discharged from a heating furnace under atmospheric pressure, the volume resistivity of the LT substrate is 1.0 × 10 9 (Ω · cm) or less, but the conductivity is excellent. The occurrence rate of color unevenness is as high as 17.0%, confirming that the productivity is deteriorated.

本発明によれば、色むら(還元むら)の発生が抑制され、かつ、電気的特性に優れたタンタル酸リチウム基板を製造できるため、表面弾性波素子(SAWフィルター)用の基板材料に用いられる産業上の利用可能性を有している。   According to the present invention, it is possible to produce a lithium tantalate substrate that suppresses the occurrence of color unevenness (reduction unevenness) and has excellent electrical characteristics, and is therefore used as a substrate material for a surface acoustic wave device (SAW filter). Has industrial applicability.

1 容器
2 混合粉
3 基板の状態に加工されたタンタル酸リチウム結晶
4 大型容器
DESCRIPTION OF SYMBOLS 1 Container 2 Mixed powder 3 Lithium tantalate crystal processed into the state of a board | substrate 4 Large container

Claims (4)

チョクラルスキー法で育成したタンタル酸リチウム結晶を用いてタンタル酸リチウム基板を製造する方法であって、容器内に充填されたアルミニウム粉末と酸化アルミニウム粉末との混合粉中に基板の状態に加工されたタンタル酸リチウム結晶を埋め込み、かつ、上記容器を加熱炉内に配置した後、タンタル酸リチウム結晶のキュリー温度未満の温度で熱処理してタンタル酸リチウム基板を製造する方法において、
上記混合粉中におけるアルミニウム粉末の比率を20重量%以下に設定し、大気圧雰囲気下の上記加熱炉内に不活性ガスを連続的に給排すると共に、上記アルミニウム粉末の平均粒径をS(μm)とした場合、酸化アルミニウム粉末の平均粒径が0.9S(μm)〜1.2S(μm)の範囲に設定されていることを特徴とするタンタル酸リチウム基板の製造方法。
A method of manufacturing a lithium tantalate substrate using a lithium tantalate crystal grown by the Czochralski method, which is processed into a substrate state in a mixed powder of aluminum powder and aluminum oxide powder filled in a container. In the method of manufacturing the lithium tantalate substrate by embedding the lithium tantalate crystal and placing the container in a heating furnace, and then heat-treating the lithium tantalate crystal at a temperature lower than the Curie temperature of the lithium tantalate crystal,
The ratio of the aluminum powder in the mixed powder is set to 20% by weight or less, and the inert gas is continuously supplied and discharged into the heating furnace under an atmospheric pressure atmosphere, and the average particle size of the aluminum powder is set to S ( μm), the average particle size of the aluminum oxide powder is set in the range of 0.9 S (μm) to 1.2 S (μm).
上記アルミニウム粉末の平均粒径Sが100μmであることを特徴とする請求項1に記載のタンタル酸リチウム基板の製造方法。   The method for producing a lithium tantalate substrate according to claim 1, wherein the aluminum powder has an average particle size S of 100 μm. 上記混合粉中におけるアルミニウム粉末の比率が10重量%であることを特徴とする請求項1または2に記載のタンタル酸リチウム基板の製造方法。   The method for producing a lithium tantalate substrate according to claim 1 or 2, wherein a ratio of the aluminum powder in the mixed powder is 10% by weight. 上記不活性ガスがアルゴンガスで、かつ、加熱炉内に連続的に給排されるアルゴンガスの流量が0.5〜5L/minであることを特徴とする請求項1〜3のいずれかに記載のタンタル酸リチウム基板の製造方法。   The inert gas is argon gas, and the flow rate of argon gas continuously supplied and discharged into the heating furnace is 0.5 to 5 L / min. The manufacturing method of the lithium tantalate board | substrate of description.
JP2018041128A 2018-03-07 2018-03-07 Manufacturing method of lithium tantalate substrate Active JP6992607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018041128A JP6992607B2 (en) 2018-03-07 2018-03-07 Manufacturing method of lithium tantalate substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018041128A JP6992607B2 (en) 2018-03-07 2018-03-07 Manufacturing method of lithium tantalate substrate

Publications (2)

Publication Number Publication Date
JP2019156655A true JP2019156655A (en) 2019-09-19
JP6992607B2 JP6992607B2 (en) 2022-01-13

Family

ID=67992332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018041128A Active JP6992607B2 (en) 2018-03-07 2018-03-07 Manufacturing method of lithium tantalate substrate

Country Status (1)

Country Link
JP (1) JP6992607B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019163174A (en) * 2018-03-19 2019-09-26 京セラ株式会社 Method for producing crystal
JP2019202919A (en) * 2018-05-25 2019-11-28 住友金属鉱山株式会社 Production method of lithium tantalate substrate
CN110760934A (en) * 2019-11-27 2020-02-07 成都泰美克晶体技术有限公司 Lithium tantalate wafer blackening device and using method thereof
JP2021046348A (en) * 2019-09-20 2021-03-25 住友金属鉱山株式会社 Method for manufacturing lithium tantalate substrate
JP2021116194A (en) * 2020-01-22 2021-08-10 住友金属鉱山株式会社 Method for manufacturing lithium tantalate substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005119908A (en) * 2003-10-16 2005-05-12 Sumitomo Metal Mining Co Ltd Lithium tantalate substrate and its producing method
JP2005206444A (en) * 2003-04-08 2005-08-04 Sumitomo Metal Mining Co Ltd Lithium tantalate substrate and its producing method
JP2008201641A (en) * 2007-02-22 2008-09-04 Sumitomo Metal Mining Co Ltd Lithium tantalate substrate and its producing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206444A (en) * 2003-04-08 2005-08-04 Sumitomo Metal Mining Co Ltd Lithium tantalate substrate and its producing method
JP2005119908A (en) * 2003-10-16 2005-05-12 Sumitomo Metal Mining Co Ltd Lithium tantalate substrate and its producing method
JP2008201641A (en) * 2007-02-22 2008-09-04 Sumitomo Metal Mining Co Ltd Lithium tantalate substrate and its producing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019163174A (en) * 2018-03-19 2019-09-26 京セラ株式会社 Method for producing crystal
JP2019202919A (en) * 2018-05-25 2019-11-28 住友金属鉱山株式会社 Production method of lithium tantalate substrate
JP7037120B2 (en) 2018-05-25 2022-03-16 住友金属鉱山株式会社 Manufacturing method of lithium tantalate substrate
JP2021046348A (en) * 2019-09-20 2021-03-25 住友金属鉱山株式会社 Method for manufacturing lithium tantalate substrate
JP7271844B2 (en) 2019-09-20 2023-05-12 住友金属鉱山株式会社 Manufacturing method of lithium tantalate substrate
CN110760934A (en) * 2019-11-27 2020-02-07 成都泰美克晶体技术有限公司 Lithium tantalate wafer blackening device and using method thereof
CN110760934B (en) * 2019-11-27 2023-12-29 成都泰美克晶体技术有限公司 Lithium tantalate wafer blackening device and use method thereof
JP2021116194A (en) * 2020-01-22 2021-08-10 住友金属鉱山株式会社 Method for manufacturing lithium tantalate substrate
JP7319592B2 (en) 2020-01-22 2023-08-02 住友金属鉱山株式会社 Manufacturing method of lithium tantalate substrate

Also Published As

Publication number Publication date
JP6992607B2 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP6992607B2 (en) Manufacturing method of lithium tantalate substrate
JP3938147B2 (en) Lithium tantalate substrate and manufacturing method thereof
JP4063191B2 (en) Method for producing lithium tantalate substrate
JP7024389B2 (en) Manufacturing method of lithium tantalate substrate
JP2005119907A (en) Lithium tantalate substrate and its producing method
JP7037120B2 (en) Manufacturing method of lithium tantalate substrate
JP7087765B2 (en) Manufacturing method of lithium tantalate substrate
JP7099203B2 (en) Manufacturing method of lithium tantalate substrate
JP4063190B2 (en) Method for producing lithium tantalate substrate
JP7205694B2 (en) Manufacturing method of lithium niobate substrate
JP2022150691A (en) Method for manufacturing lithium tantalate substrate
JP7319592B2 (en) Manufacturing method of lithium tantalate substrate
JP7271845B2 (en) Manufacturing method of lithium tantalate substrate
JP7087867B2 (en) Manufacturing method of lithium tantalate substrate
JP7447537B2 (en) Lithium tantalate substrate manufacturing method and lithium tantalate substrate
JP7082317B2 (en) Manufacturing method of lithium tantalate substrate
JP7279395B2 (en) Manufacturing method of lithium niobate substrate
JP2023031568A (en) Method for manufacturing piezoelectric single crystal substrate
JP7271844B2 (en) Manufacturing method of lithium tantalate substrate
EP3312313A1 (en) Lithium niobate single crystal substrate and method for producing same
KR20180019540A (en) Lithium niobate single crystal substrate and manufacturing method thereof
EP3312315A1 (en) Lithium niobate single crystal substrate and method for producing same
JP2007176715A (en) Method for producing lithium tantalate substrate
JP2023122021A (en) Lithium tantalate substrate and method of manufacturing single crystal substrate
JP2021028283A (en) Manufacturing method of lithium niobate substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211122

R150 Certificate of patent or registration of utility model

Ref document number: 6992607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150