JP7279395B2 - Manufacturing method of lithium niobate substrate - Google Patents

Manufacturing method of lithium niobate substrate Download PDF

Info

Publication number
JP7279395B2
JP7279395B2 JP2019026572A JP2019026572A JP7279395B2 JP 7279395 B2 JP7279395 B2 JP 7279395B2 JP 2019026572 A JP2019026572 A JP 2019026572A JP 2019026572 A JP2019026572 A JP 2019026572A JP 7279395 B2 JP7279395 B2 JP 7279395B2
Authority
JP
Japan
Prior art keywords
lithium niobate
crystal
substrate
treatment
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019026572A
Other languages
Japanese (ja)
Other versions
JP2020132463A (en
Inventor
克冬 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019026572A priority Critical patent/JP7279395B2/en
Publication of JP2020132463A publication Critical patent/JP2020132463A/en
Application granted granted Critical
Publication of JP7279395B2 publication Critical patent/JP7279395B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、チョクラルスキー法で育成されたニオブ酸リチウム結晶を用いてニオブ酸リチウム基板を製造する方法に係り、特に、色むら(還元むら)の無い電気的特性に優れたニオブ酸リチウム基板の製造方法に関するものである。 The present invention relates to a method for producing a lithium niobate substrate using lithium niobate crystals grown by the Czochralski method, and in particular, a lithium niobate substrate free from color unevenness (reduction unevenness) and having excellent electrical characteristics. It relates to the manufacturing method of

ニオブ酸リチウム(以下、LNと略称することがある)結晶は、融点が約1250℃、キュリー温度が約1140℃の強誘電体であり、この結晶を用いて製造されるニオブ酸リチウム基板は、主に、携帯電話の送受信デバイスに用いられる表面弾性波(SAW)フィルター材料として適用されている。 A lithium niobate (hereinafter sometimes abbreviated as LN) crystal is a ferroelectric substance with a melting point of about 1250°C and a Curie temperature of about 1140°C. It is mainly applied as a surface acoustic wave (SAW) filter material used in transmitting and receiving devices of mobile phones.

そして、携帯電話の高周波化、各種電子機器の無線LANによるBluetooth(登録商標)(2.45GHz)の普及等により、2GHz前後の周波数領域のSAWフィルターが今後急増すると予測されている。 It is predicted that the number of SAW filters in the frequency range around 2 GHz will increase rapidly in the future due to the increasing frequency of mobile phones and the spread of Bluetooth (registered trademark) (2.45 GHz) through wireless LAN in various electronic devices.

上記SAWフィルターは、LN等の圧電材料で構成された基板上に、Al、Cu等の金属薄膜で一対の櫛型電極が形成された構造となっており、この櫛型電極がデバイスの特性を左右する重要な役割を担っている。また、上記櫛型電極は、圧電材料上にスパッタリングにより金属薄膜を成膜した後、一対の櫛型パターンを残し、フォトリソグラフ技術により不要な部分をエッチングにより除去することで形成される。 The SAW filter has a structure in which a pair of comb-shaped electrodes are formed of a metal thin film such as Al or Cu on a substrate made of a piezoelectric material such as LN. plays an important role in influencing The comb-shaped electrodes are formed by forming a metal thin film on the piezoelectric material by sputtering, leaving a pair of comb-shaped patterns, and removing unnecessary portions by etching using photolithography.

また、上記LN単結晶は、産業的には、主にチョクラルスキー法によって、酸素濃度が20%程度の窒素-酸素混合ガス雰囲気や大気雰囲気の電気炉中で育成されており、通常、高融点の白金坩堝が用いられ、育成されたLN単結晶は電気炉内で所定の冷却速度で冷却された後、電気炉から取り出して得られている。 Industrially, the LN single crystal is mainly grown by the Czochralski method in a nitrogen-oxygen mixed gas atmosphere with an oxygen concentration of about 20% or in an electric furnace in an air atmosphere. A platinum crucible having a melting point is used, and the grown LN single crystal is cooled in an electric furnace at a predetermined cooling rate and then removed from the electric furnace.

育成されたLN結晶は、無色透明若しくは透明感の高い淡黄色を呈している。育成後、結晶の熱応力による残留歪みを取り除くため、融点に近い均熱下で熱処理を行い、更に単一分極とするためのポーリング処理、すなわち、LN結晶を室温からキュリー温度以上の所定温度まで昇温し、結晶に電圧を印加し、電圧を印加したままキュリー温度以下の所定温度まで降温した後、電圧印加を停止して室温まで冷却する一連の処理を行う。ポーリング処理後、結晶の外形を整えるために外周研削されたLN結晶(以下、インゴットと称する)はスライス、ラップ、ポリッシュ工程等の機械加工を経て基板となる。最終的に得られた基板はほぼ無色透明で、体積抵抗率はおよそ1014~1015Ω・cm程度である。 The grown LN crystal is colorless and transparent or pale yellow with high transparency. After growth, in order to remove residual strain due to thermal stress of the crystal, heat treatment is performed under soaking near the melting point, and further poling treatment for single polarization, that is, the LN crystal is heated from room temperature to a predetermined temperature above the Curie temperature. A series of processes are performed in which the temperature is raised, a voltage is applied to the crystal, the temperature is lowered to a predetermined temperature below the Curie temperature while the voltage is applied, the voltage application is stopped, and the crystal is cooled to room temperature. After the poling treatment, the LN crystal (hereinafter referred to as an ingot) whose outer circumference is ground to adjust the crystal shape becomes a substrate after undergoing machining such as slicing, lapping and polishing. The finally obtained substrate is almost colorless and transparent, and has a volume resistivity of about 10 14 to 10 15 Ω·cm.

ところで、このような従来の方法で製造された基板では、表面弾性波素子(SAWフィルター)製造プロセスにおいて、LN結晶の特性である焦電性のため、プロセスで受ける温度変化によって電荷が基板表面にチャージアップし、これにより生じる放電が原因となって基板表面に形成した櫛型電極が破壊され、更には基板の割れ等を生じて素子製造プロセスでの歩留まり低下が起きている。 By the way, in the substrate manufactured by such a conventional method, in the surface acoustic wave device (SAW filter) manufacturing process, due to the pyroelectricity that is a characteristic of the LN crystal, charges are generated on the substrate surface due to the temperature change received in the process. The comb-shaped electrodes formed on the surface of the substrate are broken due to the electric discharge caused by charge-up, and cracks of the substrate occur, resulting in a decrease in the yield in the device manufacturing process.

そこで、LN結晶の焦電性による不具合を解消するため、導電率を増大させる技術がいくつか提案されている。 Therefore, in order to solve the problems caused by the pyroelectricity of LN crystals, several techniques have been proposed for increasing the electrical conductivity.

例えば、特許文献1においては、基板形状に加工されたLN結晶(以下、「基板形状のLN結晶」とし、熱処理後のLN基板と区別する)を、窒素ガス85%と水素ガス15%の混合ガス雰囲気(還元雰囲気)下で熱処理することにより導電性を増大させる方法が実施例に開示され、また、特許文献2においては、アルミニウム粉末(Al粉)と酸化アルミニウム粉末(Al23粉)との混合粉中に、基板形状のLN結晶を埋め込んで熱処理(還元処理)する方法が提案されている。尚、導電性を増大させたLN基板は、酸素空孔が導入されたことにより光吸収を起こすようになる。そして、観察されるLN基板の色調は、透過光では赤褐色系に、反射光では黒色に見えるため、導電性を増大させる還元処理は黒化処理とも呼ばれており、このような色調の変化現象を黒化と呼んでいる。 For example, in Patent Document 1, an LN crystal processed into a substrate shape (hereinafter referred to as “substrate-shaped LN crystal” and distinguished from the LN substrate after heat treatment) is mixed with 85% nitrogen gas and 15% hydrogen gas. A method of increasing conductivity by heat treatment in a gas atmosphere (reducing atmosphere) is disclosed in Examples, and in Patent Document 2, aluminum powder (Al powder) and aluminum oxide powder (Al 2 O 3 powder) are disclosed. A method has been proposed in which substrate-shaped LN crystals are embedded in a mixed powder of and heat-treated (reduction treatment). The LN substrate with increased conductivity absorbs light due to the introduction of oxygen vacancies. And the color tone of the observed LN substrate is reddish brown in transmitted light and black in reflected light, so the reduction treatment that increases conductivity is also called blackening treatment, and such a color tone change phenomenon is called blackening.

特開平11-92147号公報(段落0028参照)JP-A-11-92147 (see paragraph 0028) 特許第4492291号公報(段落0025参照)Japanese Patent No. 4492291 (see paragraph 0025)

しかし、窒素ガスと水素ガスの混合ガス雰囲気(還元雰囲気)下でLN結晶を熱処理する特許文献1の上記方法は、可燃性の水素ガスを使用するため作業性に問題があった。 However, the method of Patent Document 1, in which the LN crystal is heat-treated in a mixed gas atmosphere (reducing atmosphere) of nitrogen gas and hydrogen gas, has a problem in workability because it uses combustible hydrogen gas.

また、特許文献1の請求項5に列挙された一酸化炭素、二酸化炭素、水、アルゴン(但し、窒素ガスと水素ガスの混合ガス以外の上記ガスが具体的に使用された実施例等について特許文献1に記載はない)等を組み合わせた還元雰囲気下で、複数枚のLN結晶を重ね合わせて熱処理(還元処理)した場合、最上段および最下段に配置されたLN結晶と中央に配置されたLN結晶の還元度合(体積抵抗率)に差異を生ずることが確認され、特許文献1の方法は量産に不向きである問題も有していた。 In addition, carbon monoxide, carbon dioxide, water, and argon listed in claim 5 of Patent Document 1 (however, examples in which the above gases other than the mixed gas of nitrogen gas and hydrogen gas were specifically used) Not described in Document 1), etc.), when a plurality of LN crystals are superimposed and heat treated (reduction treatment), the LN crystals arranged in the uppermost and lowermost stages and the LN crystals arranged in the center It was confirmed that there was a difference in the degree of reduction (volume resistivity) of the LN crystal, and the method of Patent Document 1 also had the problem of being unsuitable for mass production.

一方、Al粉とAl23粉との混合粉中に基板形状のLN結晶を埋め込んで熱処理(還元処理)する特許文献2の方法は、Al粉の混合比にもよるが、点状の還元むら(黒い点状の色むら)を生ずることがあった。尚、点状の還元むらを生じさせる原因として、Al粉とAl23粉との混合粉中に不可避的に混入する繊維等の浮遊ごみが考えられている。 On the other hand, the method of Patent Document 2, in which a substrate-shaped LN crystal is embedded in a mixed powder of Al powder and Al 2 O 3 powder and heat-treated (reduction treatment), depends on the mixing ratio of Al powder, but it produces a dot-like shape. Reduction unevenness (black dot-like color unevenness) sometimes occurred. Floating dust such as fibers that are inevitably mixed in the mixed powder of the Al powder and the Al 2 O 3 powder is considered to be the cause of the dot-like reduction unevenness.

すなわち、繊維の主成分はセルロース[分子式(C6105)n]であるが、還元処理中の高温下においてセルロースが自己分解し、下記反応式に示すようにカーボンガス(C)、水蒸気(H2O)等が生成される。
6105 → 6C + 5H2
That is, the main component of the fiber is cellulose [molecular formula (C 6 H 10 O 5 ) n ], but cellulose self-decomposes at high temperature during the reduction treatment, and as shown in the following reaction formula, carbon gas (C), Water vapor (H 2 O) and the like are generated.
C6H10O5 6C + 5H2O

そして、生成した水蒸気と混合粉中に含まれるAl粉が反応し、Al粉が急激に酸化することで局所的な発熱が起こり、この反応が基板形状のLN結晶近傍で起きることによりその部分が局所的に還元され、上記点状の還元むら(黒い点状の色むら)が発生していると考えられる。 Then, the generated water vapor reacts with the Al powder contained in the mixed powder, and the Al powder is rapidly oxidized, causing local heat generation. It is considered that the dots are locally reduced and the dot-like reduction unevenness (black dot-like color unevenness) is generated.

また、特許文献2の方法は、基板形状のLN結晶をAl粉とAl23粉との混合粉中に埋め込んで熱処理するため、Al粉を混合粉中に均一に分散させかつ混合粉を平らに均しながらLN結晶を埋め込む必要があることから作業性に難があり、かつ、均しむらに起因した模様状の還元むら(模様状の色むら)を発生させる問題があった。 Further, in the method of Patent Document 2, since the substrate-shaped LN crystal is embedded in the mixed powder of Al powder and Al 2 O 3 powder and heat-treated, the Al powder is uniformly dispersed in the mixed powder and the mixed powder is Since it is necessary to bury the LN crystal while leveling it, workability is difficult, and there is a problem that pattern-like reduction unevenness (pattern-like color unevenness) is generated due to the leveling unevenness.

更に、Al粉とAl23粉との混合粉が使用されるため粉塵対策用の排気設備や保護具を必要とし、かつ、使用済みのAl粉とAl23粉を産業廃棄物として処理する必要があるため、作業者の健康面および地球環境面への問題も存在した。 Furthermore, since a mixed powder of Al powder and Al 2 O 3 powder is used, exhaust equipment and protective equipment for dust countermeasures are required, and used Al powder and Al 2 O 3 powder are treated as industrial waste. Worker health and global environmental concerns also existed due to the need to dispose.

本発明はこのような問題点に着目してなされたもので、その課題とするところは、焦電性による不具合の改善効果が均一で、色むら不良の発生も抑制でき、作業者の健康面や安全面のリスクが小さく、地球環境の問題もなく、再現性と生産効率に優れたニオブ酸リチウム基板の製造方法を提供することにある。 The present invention has been made with a focus on such problems, and its object is to uniformly improve the effect of improving defects due to pyroelectricity, suppress the occurrence of color unevenness, and improve the health of workers. To provide a method for producing a lithium niobate substrate which has a small safety risk, is free from global environmental problems, and is excellent in reproducibility and production efficiency.

上記課題を解決するため、本発明者は、Al粉とAl23粉の混合粉を使用しない特許文献1の方法に着目し、特許文献1に開示された可燃性の水素ガス等を使用することなく、複数枚のLN結晶を同時に還元処理できる新規な方法について鋭意検討を行った。 In order to solve the above problems, the present inventors focused on the method of Patent Document 1 that does not use the mixed powder of Al powder and Al 2 O 3 powder, and used the combustible hydrogen gas etc. disclosed in Patent Document 1. Intensive studies have been made on a novel method that can simultaneously reduce multiple LN crystals without having to do so.

まず、可燃性の水素ガス等と比較し取り扱いが容易なアルゴン(Ar)、窒素(N2)等の不活性ガスについて検討を行った。一般的な工業用液化ArガスやN2ガス中には1ppm程度の酸素不純物が含まれており、酸素分圧で表すと1×10-6atmである。 First, inert gases such as argon (Ar) and nitrogen (N 2 ), which are easier to handle than combustible hydrogen gas, were examined. General industrial liquefied Ar gas and N 2 gas contain about 1 ppm of oxygen impurity, which is 1×10 −6 atm in terms of oxygen partial pressure.

一方、金属、非金属、セラミックスを問わず、物質は、一般的に温度が上がるほど平衡酸素分圧が上昇して還元され易くなり、LN結晶の場合も同様である。 On the other hand, regardless of whether it is a metal, a non-metal, or a ceramic, the higher the temperature, the higher the equilibrium oxygen partial pressure and the easier the reduction of the substance, and the same is true for LN crystals.

すなわち、高温条件下では、LN結晶の平衡酸素分圧が上記1×10-6atmを上回ることになるため、Ar等の不活性ガス雰囲気中であっても化学的還元雰囲気となり、LN結晶の還元処理が可能となる。最終的に到達する還元の度合いは、LN結晶の平衡酸素分圧と不活性ガス雰囲気の酸素分圧の差によって決定される。 That is, under high temperature conditions, the equilibrium oxygen partial pressure of the LN crystal exceeds the above 1 × 10 -6 atm, so even in an inert gas atmosphere such as Ar, it becomes a chemically reducing atmosphere, and the LN crystal Reducing treatment becomes possible. The final degree of reduction is determined by the difference between the equilibrium oxygen partial pressure of the LN crystal and the oxygen partial pressure of the inert gas atmosphere.

そして、LN結晶の平衡酸素分圧は処理温度を上げるほど上昇するのに対し、市販されているAr等不活性ガスの酸素分圧は1×10-6atmで略一定であるため、処理温度によってLN結晶における還元の度合いを制御できることが理解される。 Then, the equilibrium oxygen partial pressure of the LN crystal increases as the treatment temperature increases, whereas the oxygen partial pressure of the commercially available inert gas such as Ar is approximately constant at 1 × 10 -6 atm. can control the degree of reduction in the LN crystal.

更に、複数枚のLN結晶を重ね合わせて同時に還元処理する場合、重ね合わせたLN結晶(LN結晶の積層構造体)を多孔質容器内に収容して還元処理することで、最上段および最下段に配置されたLN結晶と中央に配置されたLN結晶の還元度合(体積抵抗率)を揃えることが可能になることも見出すに至った。本発明はこのような技術的検討を経て完成されたものである。 Furthermore, when a plurality of LN crystals are superimposed and reduced at the same time, the superimposed LN crystals (laminated structure of LN crystals) are housed in a porous container and subjected to reduction treatment. It has also been found that the degree of reduction (volume resistivity) of the LN crystals arranged in the middle and the LN crystal arranged in the center can be made the same. The present invention has been completed through such technical studies.

すなわち、本発明に係る第1の発明は、
チョクラルスキー法で育成されたニオブ酸リチウム結晶を用いてニオブ酸リチウム基板を製造する方法において、
基板形状に加工された複数枚のニオブ酸リチウム結晶を積層してニオブ酸リチウム結晶の積層構造体を構成し、かつ、通気性を有する多孔質容器に上記積層構造体を収容すると共に、積層構造体が収容された上記多孔質容器を加熱炉内に配置した後、ニオブ酸リチウム結晶の平衡酸素分圧より低い酸素分圧を有する不活性ガス雰囲気下、350℃以上、ニオブ酸リチウム結晶のキュリー温度未満の温度で熱処理してニオブ酸リチウム基板を製造することを特徴とする。
That is, the first invention according to the present invention is
In a method for producing a lithium niobate substrate using lithium niobate crystals grown by the Czochralski method,
A laminated structure of lithium niobate crystals is formed by laminating a plurality of lithium niobate crystals processed into a substrate shape, and the laminated structure is housed in an air-permeable porous container. After the porous container containing the body is placed in a heating furnace, the curie of the lithium niobate crystal is heated at 350° C. or higher in an inert gas atmosphere having an oxygen partial pressure lower than the equilibrium oxygen partial pressure of the lithium niobate crystal. The lithium niobate substrate is manufactured by heat-treating at a temperature below the temperature.

第2の発明は、
第1の発明に記載のニオブ酸リチウム基板の製造方法において、
上記多孔質容器が、黒鉛またはアルミナで構成されていることを特徴とする。
The second invention is
In the method for producing a lithium niobate substrate according to the first invention,
The porous container is made of graphite or alumina.

また、第3の発明は、
第1の発明または第2の発明に記載のニオブ酸リチウム基板の製造方法において、
上記不活性ガスがアルゴンガスで構成され、上記加熱炉が給気口と排気口を有すると共に、加熱炉内に連続的に給排されるアルゴンガスの流量が0.5~5.0L/minであることを特徴とする。
Moreover, the third invention is
In the method for producing a lithium niobate substrate according to the first invention or the second invention,
The inert gas is composed of argon gas, the heating furnace has an air supply port and an exhaust port, and the flow rate of argon gas continuously supplied to and discharged from the heating furnace is 0.5 to 5.0 L / min. It is characterized by

本発明に係るニオブ酸リチウム基板の製造方法は、基板形状に加工された複数枚のニオブ酸リチウム結晶を積層して積層構造体とし、かつ、通気性を有する多孔質容器に上記積層構造体を収容すると共に、積層構造体が収容された多孔質容器を加熱炉内に配置した後、ニオブ酸リチウム結晶の平衡酸素分圧より低い酸素分圧を有する不活性ガス雰囲気下、350℃以上、ニオブ酸リチウム結晶のキュリー温度未満の温度で熱処理してニオブ酸リチウム基板を製造することを特徴としている。 A method for producing a lithium niobate substrate according to the present invention comprises laminating a plurality of lithium niobate crystals processed into a substrate shape to form a laminated structure, and placing the laminated structure in a porous container having air permeability. After placing the porous container containing the laminated structure in a heating furnace, the niobium is heated at 350° C. or higher in an inert gas atmosphere having an oxygen partial pressure lower than the equilibrium oxygen partial pressure of the lithium niobate crystal. The lithium niobate substrate is manufactured by heat-treating at a temperature lower than the Curie temperature of the lithium oxide crystal.

そして、本発明に係るニオブ酸リチウム基板の製造方法によれば、特許文献2で用いられるAl粉とAl23粉との混合粉を使用しないため、上記混合粉に不可避的に混入してしまう浮遊ごみに起因した点状の還元むら(黒い点状の色むら)および均しむらに起因した模様状の還元むら(模様状の色むら)の発生を抑制することができ、かつ、混合粉中に基板形状のLN結晶を埋め込む作業および粉塵対策用の排気設備や保護具を必要とせず、作業者の健康面および地球環境面への問題も引き起こすことが無い。 In addition, according to the method for producing a lithium niobate substrate according to the present invention, the mixed powder of Al powder and Al 2 O 3 powder used in Patent Document 2 is not used. It is possible to suppress the occurrence of dot-like reduction unevenness (black dot-like color unevenness) caused by accumulated floating dust and pattern-like reduction unevenness (pattern-like color unevenness) caused by leveling unevenness. It does not require the work of embedding substrate-shaped LN crystals in powder, exhaust equipment or protective equipment for dust countermeasures, and does not cause problems in terms of worker's health and global environment.

また、特許文献1で用いられる可燃性の水素ガス等を使用しないためニオブ酸リチウム基板の製造作業を安全に行うことが可能となり、かつ、複数枚のニオブ酸リチウム結晶を積層した積層構造体を多孔質容器に収容して還元処理がなされるため、最上段および最下段に配置されたニオブ酸リチウム結晶と中央に配置されたニオブ酸リチウム結晶の還元度合(体積抵抗率)を揃えることも可能となり、この結果、焦電性による不具合の改善効果が均一であるニオブ酸リチウム基板を効率よく製造することが可能となる。 In addition, since the combustible hydrogen gas used in Patent Document 1 is not used, the lithium niobate substrate can be manufactured safely, and a laminated structure in which a plurality of lithium niobate crystals are laminated can be obtained. Since reduction treatment is performed in a porous container, it is possible to match the reduction degree (volume resistivity) of the lithium niobate crystals arranged in the top and bottom rows and the lithium niobate crystal arranged in the center. As a result, it becomes possible to efficiently manufacture a lithium niobate substrate which is uniformly improved in defects caused by pyroelectricity.

基板形状に加工された複数枚のニオブ酸リチウム結晶1を積層した積層構造体10が通気性を有する多孔質容器2に収容された状態を示す説明図。FIG. 2 is an explanatory diagram showing a state in which a laminated structure 10 in which a plurality of lithium niobate crystals 1 processed into a substrate shape are laminated is accommodated in a porous container 2 having air permeability.

以下、本発明の実施形態について詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail.

まず、LN結晶は、結晶内に存在する酸素空孔濃度によって電気伝導度と色が変化する。LN結晶中に酸素空孔が導入されると、チャージバランスをとる必要から一部のNbイオンの価数が5+から4+に変わり、電気伝導性を生じると同時に光吸収を起こす。電気伝導は、キャリアである電子がNb5+イオンとNb4+イオンの間を移動するために生ずると考えられる。結晶の電気伝導度は、単位体積あたりのキャリア数とキャリアの移動度の積で決まる。移動度が同じであれば、電気伝導度は酸素空孔数に比例する。光吸収による色変化は、酸素空孔により導入された電子レベルによるものと考えられる。 First, the LN crystal changes its electrical conductivity and color depending on the concentration of oxygen vacancies present in the crystal. When oxygen vacancies are introduced into the LN crystal, the valence of some Nb ions changes from 5+ to 4+ due to the need to maintain charge balance, resulting in electrical conductivity and light absorption. Electric conduction is considered to occur because electrons, which are carriers, move between Nb 5+ ions and Nb 4+ ions. The electrical conductivity of a crystal is determined by the product of the number of carriers per unit volume and the carrier mobility. If the mobility is the same, the electrical conductivity is proportional to the number of oxygen vacancies. Color change due to light absorption is believed to be due to electron levels introduced by oxygen vacancies.

ところで、LN結晶の導電率を増大させる従来の手法として、上述したように窒素ガスと水素ガスの混合ガス雰囲気(還元雰囲気)下においてLN結晶を熱処理する方法(特許文献1)、および、Al粉とAl23粉との混合粉中にLN結晶を埋め込んで熱処理(還元処理)する方法(特許文献2)が知られているが、特許文献1と特許文献2の各方法には上記課題が存在した。 By the way, as a conventional method for increasing the conductivity of the LN crystal, as described above, the method of heat-treating the LN crystal in a mixed gas atmosphere (reducing atmosphere) of nitrogen gas and hydrogen gas (Patent Document 1), and Al powder A method (Patent Document 2) is known in which LN crystals are embedded in a mixed powder of Al 2 O 3 and Al 2 O 3 powder and heat treatment (reduction treatment) is performed. existed.

そこで、本発明方法は、特許文献1と特許文献2の各課題を解決するため、基板形状に加工された複数枚のLN結晶を積層して積層構造体とし、該積層構造体を多孔質容器に収容すると共に、LN結晶の積層構造体が収容された上記多孔質容器を加熱炉内に配置した後、LN結晶の平衡酸素分圧より低い酸素分圧を有する不活性ガス雰囲気下、350℃以上、LN結晶のキュリー温度未満の温度で熱処理してLN基板を製造することを特徴としている。 Therefore, in order to solve each problem of Patent Document 1 and Patent Document 2, the method of the present invention is to laminate a plurality of LN crystals processed into a substrate shape to form a laminated structure, and the laminated structure is formed into a porous container. and placing the porous container containing the laminated structure of the LN crystal in a heating furnace, in an inert gas atmosphere having an oxygen partial pressure lower than the equilibrium oxygen partial pressure of the LN crystal , 350 ° C. As described above, the LN substrate is manufactured by heat-treating at a temperature lower than the Curie temperature of the LN crystal.

以下、図面を用いて本発明方法を説明する。 The method of the present invention will be described below with reference to the drawings.

図1に示すように基板形状に加工された複数枚のLN結晶1を積層して積層構造体10とし、該積層構造体10を多孔質容器2に収容した後、該積層構造体10が収容された多孔質容器2を加熱炉(図示せず)内に配置する。尚、図1に示す多孔質容器2の開放部は通気性を有する蓋材20で覆われている。 As shown in FIG. 1, a plurality of LN crystals 1 processed into a substrate shape are laminated to form a laminated structure 10, and after the laminated structure 10 is accommodated in a porous container 2, the laminated structure 10 is accommodated. The porous container 2 thus prepared is placed in a heating furnace (not shown). The open portion of the porous container 2 shown in FIG. 1 is covered with a lid member 20 having air permeability.

そして、アルゴン(Ar)、窒素(N2)等の不活性ガス雰囲気下において、350℃以上、LN結晶のキュリー温度未満の温度で多孔質容器2に収容された上記積層構造体10を熱処理し、複数枚のLN結晶1を同時に還元処理する。LN結晶の還元度合(体積抵抗率)は、上述したように、加熱されるLN結晶1の「平衡酸素分圧」と不活性ガス雰囲気の「酸素分圧」の差によって決定される。 Then, in an inert gas atmosphere such as argon (Ar) or nitrogen (N 2 ), heat treatment is performed on the laminated structure 10 housed in the porous container 2 at a temperature of 350° C. or more and less than the Curie temperature of the LN crystal. , a plurality of LN crystals 1 are reduced at the same time. The degree of reduction (volume resistivity) of the LN crystal is determined by the difference between the "equilibrium oxygen partial pressure" of the heated LN crystal 1 and the "oxygen partial pressure" of the inert gas atmosphere, as described above.

尚、加熱炉内に積層構造体10を直接配置して還元処理(すなわち、LN結晶1の積層構造体10を多孔質容器2に収容しない状態で還元処理)した場合、積層構造体10の最上段および最下段(加熱炉の載置面と積層構造体との間に隙間が形成され易いため)に位置するLN結晶1は、還元処理中、不活性ガスに直接曝されるのに対し、積層構造体10の中央および中央付近に位置するLN結晶1は不活性ガスに曝され難いため、積層構造体10の最上段および最下段に配置されたLN結晶1と比較して積層構造体10の中央および中央付近に配置されたLN結晶1は還元不足になっていることが確認されている。 In addition, when the laminated structure 10 is directly placed in the heating furnace and the reduction treatment is performed (that is, the reduction treatment is performed without the laminated structure 10 of the LN crystal 1 being accommodated in the porous container 2), the laminated structure 10 The LN crystals 1 located in the upper and lowermost stages (because a gap is likely to be formed between the mounting surface of the heating furnace and the laminated structure) are directly exposed to the inert gas during the reduction treatment, Since the LN crystals 1 located at and near the center of the laminated structure 10 are less likely to be exposed to the inert gas, the laminated structure 10 is less likely to be exposed to the inert gas than the LN crystals 1 arranged at the top and bottom of the laminated structure 10. It has been confirmed that the LN crystals 1 arranged at and near the center of the are under-reduced.

そこで、本発明方法では、通気性を有する多孔質容器2内に積層構造体10を収容し、積層構造体10の最上段および最下段と積層構造体10の中央および中央付近の還元条件が略均一となるよう調整している。すなわち、蓋材20で覆われた多孔質容器2内への不活性ガス供給量を抑制することで、その分、還元条件が緩和(還元速度が遅くなる等)されるため、積層構造体10の最上段および最下段に配置されたLN結晶1と中央および中央付近に配置されたLN結晶1の還元度合(体積抵抗率)を揃えることが可能となる。 Therefore, in the method of the present invention, the laminate structure 10 is housed in the porous container 2 having air permeability, and the reduction conditions at the top and bottom stages of the laminate structure 10 and at the center and near the center of the laminate structure 10 are approximately adjusted to be uniform. That is, by suppressing the amount of inert gas supplied into the porous container 2 covered with the lid member 20, the reduction conditions are accordingly relaxed (reduction rate is slowed down, etc.), so the laminated structure 10 It is possible to match the degree of reduction (volume resistivity) of the LN crystals 1 arranged in the uppermost and lowermost stages and the LN crystals 1 arranged in the center and near the center.

以下、本発明方法の構成について詳細に説明する。 The configuration of the method of the present invention will be described in detail below.

(1)通気性を有する多孔質容器
本発明方法においては通気性を有する多孔質容器を使用する。すなわち、蓋材で覆われた多孔質容器を使用することにより該多孔質容器内への不活性ガス供給量が抑制され、その分、還元条件が緩和されるため、多孔質容器内に収容された積層構造体の最上段および最下段に配置されたLN結晶と中央および中央付近に配置されたLN結晶の還元度合(体積抵抗率)を揃えることが可能となる。
(1) Air permeable porous container In the method of the present invention, a permeable porous container is used. That is, by using a porous container covered with a lid material, the amount of inert gas supplied into the porous container is suppressed, and the reduction conditions are relaxed accordingly, so that the The degree of reduction (volume resistivity) of the LN crystals arranged in the uppermost and lowermost stages of the laminated structure and the LN crystals arranged in the center and near the center can be made uniform.

多孔質容器の材質としては、耐熱性を有し、不活性ガス中で安定な物質であることを条件に任意であり、その気孔率は10%以上であることが好ましい。例えば、多孔質黒鉛容器(気孔率20%)および多孔質アルミナ容器(気孔率30%)等が挙げられる。 Any material can be used for the porous container provided that it has heat resistance and is stable in an inert gas, and its porosity is preferably 10% or more. For example, a porous graphite container (20% porosity) and a porous alumina container (30% porosity) can be used.

多孔質容器の気孔率については、気孔率が高い程、不活性ガスの通気性がよくなる分、還元条件が緩和され難くなる。このため、加熱炉内に積層構造体を直接配置して還元処理する場合と同様、積層構造体の最上段および最下段に配置されたLN結晶と中央および中央付近に配置されたLN結晶の還元度合(体積抵抗率)のばらつきが大きくなる。そして、LN結晶の直径、積層構造体の積層数等にもよるが、LN結晶の直径が4インチ~6インチの場合で、かつ、積層構造体の積層数が20枚~50枚の場合、多孔質容器の気孔率として10%~30%が例示される。 As for the porosity of the porous container, the higher the porosity, the more difficult it is to relax the reducing conditions because the permeability of the inert gas is improved. For this reason, as in the case where the laminated structure is directly arranged in the heating furnace and subjected to reduction treatment, the LN crystals arranged in the uppermost and lowermost stages of the laminated structure and the LN crystals arranged in the center and near the center are reduced. Variation in degree (volume resistivity) increases. Then, depending on the diameter of the LN crystal, the number of layers of the laminated structure, etc., when the diameter of the LN crystal is 4 inches to 6 inches and the number of layers of the laminated structure is 20 to 50, A porosity of 10% to 30% is exemplified as the porosity of the porous container.

多孔質容器の大きさは、収容される基板形状のLN結晶より大きく設定し、好ましくは、上記LN結晶の直径より5mm程度大きく設定する。基板形状のLN結晶より大きく設定することで、多孔質容器内にLN結晶全体が収納されるため、同一条件で均質に還元処理することが可能となる。 The size of the porous container is set larger than the substrate-shaped LN crystal to be accommodated, preferably about 5 mm larger than the diameter of the LN crystal. By setting the size larger than the substrate-shaped LN crystal, the entire LN crystal can be accommodated in the porous container, so that the reduction treatment can be performed uniformly under the same conditions.

また、多孔質容器を構成する板厚に関しては特に限定されず、取扱い時における割れ等を起こさないことを条件に薄く設定することが好ましく、1mm~5mmが例示される。 Further, the thickness of the plate constituting the porous container is not particularly limited, and it is preferably set to be thin provided that it does not crack during handling, and is exemplified by 1 mm to 5 mm.

(2)熱処理条件
基板形状に加工された複数枚のLN結晶を積層して積層構造体を構成し、該積層構造体を多孔質容器に収容した状態で加熱炉内に配置し、LN結晶の平衡酸素分圧より低い酸素分圧を有する不活性ガス雰囲気下、350℃以上、LN結晶のキュリー温度未満の温度で熱処理してLN結晶を還元処理する。
(2) Heat treatment conditions A laminated structure is formed by laminating a plurality of LN crystals processed into a substrate shape, and the laminated structure is placed in a heating furnace while being housed in a porous container . In an inert gas atmosphere having an oxygen partial pressure lower than the equilibrium oxygen partial pressure , heat treatment is performed at a temperature of 350° C. or higher and lower than the Curie temperature of the LN crystal to reduce the LN crystal.

上記不活性ガスについては、一般的に市販されているアルゴンガス(酸素分圧は1×10-6atm程度)や窒素ガス等を適用することができる。特許文献1の実施例で使用されている可燃性の水素ガス(還元性の高いガス)が適用されないことで、還元性は低くなるもののLN結晶における還元度合(体積抵抗率)のばらつきを抑制できる。 As the inert gas, commercially available argon gas (oxygen partial pressure is about 1×10 −6 atm), nitrogen gas, or the like can be applied. By not applying the combustible hydrogen gas (highly reducing gas) used in the examples of Patent Document 1, although the reducing ability is low, variations in the degree of reduction (volume resistivity) in the LN crystal can be suppressed. .

また、上記加熱炉内の雰囲気は、給気口と排気口を有し、不活性ガスが加熱炉内に連続的に給排されて加熱炉内の圧力が大気圧雰囲気に設定される条件が例示される。 In addition, the atmosphere in the heating furnace has an air supply port and an exhaust port, and the inert gas is continuously supplied to and discharged from the heating furnace, and the pressure in the heating furnace is set to an atmospheric pressure atmosphere. exemplified.

上記加熱炉内に連続的に給排される不活性ガスの流量については、不活性ガスがアルゴンガスである場合、0.5~5L/minであることが好ましい。尚、不活性ガスを連続的に給排する加熱炉が適用されることから、加熱炉内を減圧あるいは真空に設定する必要が無いため、密閉容器や減圧処理装置を要しない分、設備コストの削減が図れる。 When the inert gas is argon gas, the flow rate of the inert gas continuously supplied to and discharged from the heating furnace is preferably 0.5 to 5 L/min. In addition, since a heating furnace that continuously supplies and discharges inert gas is applied, there is no need to reduce the pressure or set the inside of the heating furnace to a vacuum, so a closed container or a decompression processing device is not required, which reduces the equipment cost. can be reduced.

そして、本発明方法により、LN基板の体積抵抗率を2.0×109~1.5×1011(Ω・cm)程度に設定することができる。 By the method of the present invention, the volume resistivity of the LN substrate can be set to about 2.0×10 9 to 1.5×10 11 (Ω·cm).

以下、本発明の実施例について比較例も挙げて具体的に説明するが、本発明の技術範囲は下記実施例によって何ら限定されるものではない。 EXAMPLES Hereinafter, examples of the present invention will be specifically described with reference to comparative examples, but the technical scope of the present invention is not limited by the following examples.

[加熱炉の構成]
実施例1~4と比較例1~2、4で用いられる加熱炉には給気口と排気口が設けられ、一般的に市販されているアルゴンガス(酸素分圧は1×10-6atm程度)が給気口を介し加熱炉内に連続的に供給されると共に、排気口を介してアルゴンガス(不活性ガス)が加熱炉外へ連続的に排気されて、加熱炉内は大気圧雰囲気下に調整されている。尚、加熱炉内に給排されるアルゴンガスの流量は2L/minに設定されている。
[Configuration of heating furnace]
The heating furnaces used in Examples 1 to 4 and Comparative Examples 1 to 2 and 4 were provided with an air supply port and an exhaust port. degree) is continuously supplied into the heating furnace through the air supply port, and argon gas (inert gas) is continuously exhausted out of the heating furnace through the exhaust port, and the inside of the heating furnace is at atmospheric pressure. Adjusted to the atmosphere. The flow rate of argon gas supplied to and exhausted from the heating furnace is set at 2 L/min.

[LN結晶の育成とインゴットの加工等]
コングルエント組成の原料を用い、チョクラルスキー法により、直径4インチであるLN単結晶の育成を行った。育成雰囲気は、酸素濃度約20%の窒素-酸素混合ガスである。得られたLN結晶のインゴットは無色透明であった。
[LN crystal growth and ingot processing, etc.]
An LN single crystal with a diameter of 4 inches was grown by the Czochralski method using a raw material with a congruent composition. The growth atmosphere is a nitrogen-oxygen mixed gas with an oxygen concentration of about 20%. The obtained LN crystal ingot was colorless and transparent.

LN結晶のインゴットに対し、熱歪み除去のための熱処理と単一分極とするためのポーリング処理を行った後、外周研削、スライス、および研磨を行って42゜RY(Rotated Y axis)の基板形状に加工されたLN結晶とした。 The LN crystal ingot is subjected to heat treatment to remove thermal strain and poling treatment to achieve single polarization, followed by peripheral grinding, slicing, and polishing to obtain a substrate shape of 42 ° RY (Rotated Y axis). It was an LN crystal processed to.

得られた42゜RYのLN結晶は、無色透明で、体積抵抗率は1×1015Ω・cm、キュリー温度は1140℃であった。 The obtained 42° RY LN crystal was colorless and transparent, and had a volume resistivity of 1×10 15 Ω·cm and a Curie temperature of 1140°C.

[実施例1]
基板形状に加工された20枚のLN結晶1を積層して積層構造体10とし、該積層構造体10を多孔質黒鉛(気孔率20%)で構成された多孔質容器2に収納した。
[Example 1]
Twenty LN crystals 1 processed into a substrate shape were laminated to form a laminated structure 10, and the laminated structure 10 was placed in a porous container 2 made of porous graphite (porosity of 20%).

そして、LN結晶1の積層構造体10が収容された上記多孔質容器2を加熱炉(図示せず)内に配置した後、吸気口を介し市販されているアルゴンガスを加熱炉内に供給した。尚、加熱炉内におけるアルゴンガスの酸素分圧は5.0×10-7atmであった。 Then, after placing the porous container 2 containing the laminated structure 10 of the LN crystal 1 in a heating furnace (not shown), commercially available argon gas was supplied into the heating furnace through the inlet. . The oxygen partial pressure of argon gas in the heating furnace was 5.0×10 −7 atm.

次いで、2L/minの流量で上記アルゴンガスを大気圧雰囲気下の加熱炉内に連続的に吸排し、500℃、20時間の熱処理(還元処理、黒化処理)を行った。また、同様の処理を10回繰り返し実施した。 Next, the argon gas was continuously drawn into and discharged from the heating furnace under atmospheric pressure at a flow rate of 2 L/min, and heat treatment (reduction treatment, blackening treatment) was performed at 500° C. for 20 hours. Moreover, the same treatment was repeated 10 times.

熱処理を行った合計200枚のLN結晶について、処理後のLN基板の体積抵抗率を測定し、かつ、目視により「点状の色むら」と「模様状の色むら」の各発生率を調査した。尚、体積抵抗率は、JIS K-6911に準拠した3端子法により測定している。 For a total of 200 heat-treated LN crystals, the volume resistivity of the LN substrate after treatment was measured, and the incidence of "dot-like color unevenness" and "pattern-like color unevenness" was visually investigated. bottom. The volume resistivity is measured by the three-probe method according to JIS K-6911.

熱処理(還元処理、黒化処理)後におけるLN基板の体積抵抗率は1.5×1011Ω・cm程度(基板200枚の平均値)で、かつ、LN基板表面における「点状の色むら」と「模様状の色むら」の発生率はいずれも0.0%であった。 The volume resistivity of the LN substrate after heat treatment (reduction treatment, blackening treatment) is about 1.5 × 10 11 Ω cm (average value of 200 substrates), and "dotted color unevenness" on the LN substrate surface ” and “patterned color unevenness” were both 0.0%.

これ等結果を表1に示す。 These results are shown in Table 1.

[実施例2]
処理温度を550℃に変更した以外は実施例1と同一条件によりLN結晶の熱処理(還元処理、黒化処理)を行った。
[Example 2]
Heat treatment (reduction treatment, blackening treatment) of the LN crystal was performed under the same conditions as in Example 1, except that the treatment temperature was changed to 550°C.

熱処理(還元処理、黒化処理)後におけるLN基板の体積抵抗率は1.5×1010Ω・cm程度(基板200枚の平均値)で、かつ、LN基板表面における「点状の色むら」と「模様状の色むら」の発生率はいずれも0.0%であった。 The volume resistivity of the LN substrate after heat treatment (reduction treatment, blackening treatment) is about 1.5 × 10 10 Ω cm (average value of 200 substrates), and "dotted color unevenness" on the LN substrate surface ” and “patterned color unevenness” were both 0.0%.

これ等結果を表1に示す。 These results are shown in Table 1.

[実施例3]
処理温度を600℃に変更した以外は実施例1と同一条件によりLN結晶の熱処理(還元処理、黒化処理)を行った。
[Example 3]
Heat treatment (reduction treatment, blackening treatment) of the LN crystal was performed under the same conditions as in Example 1, except that the treatment temperature was changed to 600°C.

熱処理(還元処理、黒化処理)後におけるLN基板の体積抵抗率は2.0×109Ω・cm程度(基板200枚の平均値)で、かつ、LN基板表面における「点状の色むら」と「模様状の色むら」の発生率はいずれも0.0%であった。 The volume resistivity of the LN substrate after heat treatment (reduction treatment, blackening treatment) is about 2.0 × 10 9 Ω cm (average value of 200 substrates), and "dotted color unevenness" on the LN substrate surface ” and “patterned color unevenness” were both 0.0%.

これ等結果を表1に示す。 These results are shown in Table 1.

[実施例4]
多孔質黒鉛(気孔率20%)で構成された多孔質容器2に代えて、多孔質アルミナ(気孔率30%)で構成された多孔質容器2を適用した以外は実施例1と同一条件によりLN結晶の熱処理(還元処理、黒化処理)を行った。
[Example 4]
Under the same conditions as in Example 1, except that the porous container 2 made of porous alumina (30% porosity) was used instead of the porous container 2 made of porous graphite (20% porosity). A heat treatment (reduction treatment, blackening treatment) was performed on the LN crystal.

熱処理(還元処理、黒化処理)後におけるLN基板の体積抵抗率は1.5×1011Ω・cm程度(基板200枚の平均値)で、かつ、LN基板表面における「点状の色むら」と「模様状の色むら」の発生率はいずれも0.0%であった。 The volume resistivity of the LN substrate after heat treatment (reduction treatment, blackening treatment) is about 1.5 × 10 11 Ω cm (average value of 200 substrates), and "dotted color unevenness" on the LN substrate surface ” and “patterned color unevenness” were both 0.0%.

これ等結果を表1に示す。 These results are shown in Table 1.

[比較例1]
Al粉とAl23粉との混合粉中にLN結晶を埋め込んで熱処理する特許文献2の方法で還元処理を行った。尚、Al粉の混合比は0.5%とし、熱処理中、2L/minの流量でアルゴンガスを大気圧雰囲気下の加熱炉内に連続的に吸排した。また、同様の処理を10回繰り返し実施した。
[Comparative Example 1]
Reduction treatment was performed by the method of Patent Document 2, in which LN crystals are embedded in a mixed powder of Al powder and Al 2 O 3 powder and heat treated. The mixing ratio of Al powder was 0.5%, and argon gas was continuously sucked into and exhausted from the heating furnace under atmospheric pressure at a flow rate of 2 L/min during the heat treatment. Moreover, the same treatment was repeated 10 times.

熱処理(還元処理、黒化処理)後、実施例1と同一の方法により体積抵抗率を測定し、かつ、LN基板表面における「点状の色むら」と「模様状の色むら」の発生率を調査した。 After heat treatment (reduction treatment, blackening treatment), the volume resistivity was measured by the same method as in Example 1, and the occurrence rate of "dot-like color unevenness" and "pattern-like color unevenness" on the LN substrate surface investigated.

熱処理(還元処理、黒化処理)後におけるLN基板の体積抵抗率は1.0×1010Ω・cm程度(基板200枚の平均値)で、かつ、LN基板表面における「点状の色むら」と「模様状の色むら」の各発生率は5.0%で、実施例1~4より高かった。 The volume resistivity of the LN substrate after heat treatment (reduction treatment, blackening treatment) is about 1.0 × 10 10 Ω cm (average value of 200 substrates), and "dotted color unevenness" on the LN substrate surface and "pattern-like color unevenness" were 5.0%, which were higher than those of Examples 1-4.

[比較例2]
処理温度を300℃に変更した以外は実施例1と同一条件によりLN結晶の熱処理(還元処理、黒化処理)を行った。また、同様の処理を10回繰り返し実施した。
[Comparative Example 2]
Heat treatment (reduction treatment, blackening treatment) of the LN crystal was performed under the same conditions as in Example 1, except that the treatment temperature was changed to 300°C. Moreover, the same treatment was repeated 10 times.

熱処理(還元処理、黒化処理)後におけるLN基板の体積抵抗率は1.0×1012Ω・cm程度(基板200枚の平均値)で、還元は多少なされたものの、所望とする体積抵抗率を得ることはできなかった。 The volume resistivity of the LN substrate after heat treatment (reduction treatment, blackening treatment) was about 1.0 × 10 12 Ω cm (average value of 200 substrates). Couldn't get rate.

尚、LN基板表面における「点状の色むら」と「模様状の色むら」の発生率はいずれも0.0%であった。 The occurrence rate of "dot-like color unevenness" and "pattern-like color unevenness" on the LN substrate surface was both 0.0%.

[比較例3]
加熱炉の製品投入口を開放し、かつ、加熱炉内にアルゴンガスの吸排を行わない以外は実施例1と同一条件によりLN結晶の熱処理(還元処理、黒化処理)を行った。尚、熱処理時の加熱炉内における大気の酸素分圧は「2.0×10-1atm」であった。また、同様の処理を10回繰り返し実施した。
[Comparative Example 3]
The LN crystal was heat treated (reduction treatment, blackening treatment) under the same conditions as in Example 1 except that the product inlet of the heating furnace was opened and argon gas was not sucked into and discharged from the heating furnace. The atmospheric oxygen partial pressure in the heating furnace during the heat treatment was 2.0×10 −1 atm. Moreover, the same treatment was repeated 10 times.

熱処理(還元処理、黒化処理)後におけるLN基板の体積抵抗率は1.0×1015Ω・cm程度(基板200枚の平均値)で、還元はされていなかった。 The volume resistivity of the LN substrate after heat treatment (reduction treatment, blackening treatment) was about 1.0×10 15 Ω·cm (average value of 200 substrates), and was not reduced.

尚、LN基板表面における「点状の色むら」と「模様状の色むら」の発生率については、LN結晶が黒化していないため判別不能であった。 It should be noted that the rate of occurrence of "dot-like color unevenness" and "pattern-like color unevenness" on the surface of the LN substrate could not be determined because the LN crystal was not blackened.

[比較例4]
基板形状に加工された20枚のLN結晶1を積層して積層構造体10とし、多孔質容器2に収納せずに上記積層構造体10を加熱炉(図示せず)内に直接配置した以外は実施例1と同一条件によりLN結晶の熱処理(還元処理、黒化処理)を行った。また、同様の処理を10回繰り返し実施した。
[Comparative Example 4]
Twenty LN crystals 1 processed into a substrate shape are laminated to form a laminated structure 10, and the laminated structure 10 is directly placed in a heating furnace (not shown) without being housed in a porous container 2. was subjected to heat treatment (reduction treatment, blackening treatment) of the LN crystal under the same conditions as in Example 1. Moreover, the same treatment was repeated 10 times.

熱処理(還元処理、黒化処理)後におけるLN基板の体積抵抗率は、積層構造体10の最上段と最下段は1.0×1010Ω・cm程度(処理10回の平均値)であったが、積層構造体10の中央に配置されたLN基板の体積抵抗率は1.0×1012Ω・cm程度(処理10回の平均値)とばらつきがあった。 The volume resistivity of the LN substrate after heat treatment (reduction treatment, blackening treatment) was about 1.0×10 10 Ω·cm (average value of 10 treatments) at the top and bottom of the laminated structure 10 . However, the volume resistivity of the LN substrate arranged in the center of the laminated structure 10 was about 1.0×10 12 Ω·cm (average value of 10 treatments) and varied.

尚、LN基板表面における「点状の色むら」と「模様状の色むら」の発生率はいずれも0.0%であった。 The occurrence rate of "dot-like color unevenness" and "pattern-like color unevenness" on the LN substrate surface was both 0.0%.

Figure 0007279395000001
Figure 0007279395000001

本発明方法によれば、点状の還元むら(黒い点状の色むら)等が抑制され、かつ、電気的特性に優れたニオブ酸リチウム基板を効率よく製造できるため、表面弾性波素子(SAWフィルター)用の基板材料に用いられる産業上の利用可能性を有している。 According to the method of the present invention, dot-like reduction unevenness (black dot-like color unevenness) and the like can be suppressed, and a lithium niobate substrate having excellent electrical characteristics can be efficiently manufactured. It has industrial applicability as a substrate material for filters).

1 基板形状のLN結晶
2 多孔質容器
10 積層構造体
20 蓋材
1 substrate-shaped LN crystal 2 porous container 10 laminated structure 20 lid material

Claims (3)

チョクラルスキー法で育成されたニオブ酸リチウム結晶を用いてニオブ酸リチウム基板を製造する方法において、
基板形状に加工された複数枚のニオブ酸リチウム結晶を積層してニオブ酸リチウム結晶の積層構造体を構成し、かつ、通気性を有する多孔質容器に上記積層構造体を収容すると共に、積層構造体が収容された上記多孔質容器を加熱炉内に配置した後、ニオブ酸リチウム結晶の平衡酸素分圧より低い酸素分圧を有する不活性ガス雰囲気下、350℃以上、ニオブ酸リチウム結晶のキュリー温度未満の温度で熱処理してニオブ酸リチウム基板を製造することを特徴とするニオブ酸リチウム基板の製造方法。
In a method for producing a lithium niobate substrate using lithium niobate crystals grown by the Czochralski method,
A laminated structure of lithium niobate crystals is formed by laminating a plurality of lithium niobate crystals processed into a substrate shape, and the laminated structure is housed in an air-permeable porous container. After the porous container containing the body is placed in a heating furnace, the curie of the lithium niobate crystal is heated at 350° C. or higher in an inert gas atmosphere having an oxygen partial pressure lower than the equilibrium oxygen partial pressure of the lithium niobate crystal. A method for producing a lithium niobate substrate, characterized in that the lithium niobate substrate is produced by heat-treating at a temperature lower than a temperature.
上記多孔質容器が、黒鉛またはアルミナで構成されていることを特徴とする請求項1に記載のニオブ酸リチウム基板の製造方法。 2. The method for producing a lithium niobate substrate according to claim 1, wherein the porous container is made of graphite or alumina. 上記不活性ガスがアルゴンガスで構成され、上記加熱炉が給気口と排気口を有すると共に、加熱炉内に連続的に給排されるアルゴンガスの流量が0.5~5.0L/minであることを特徴とする請求項1または2に記載のニオブ酸リチウム基板の製造方法。 The inert gas is composed of argon gas, the heating furnace has an air supply port and an exhaust port, and the flow rate of argon gas continuously supplied to and discharged from the heating furnace is 0.5 to 5.0 L / min. The method for producing a lithium niobate substrate according to claim 1 or 2, characterized in that:
JP2019026572A 2019-02-18 2019-02-18 Manufacturing method of lithium niobate substrate Active JP7279395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019026572A JP7279395B2 (en) 2019-02-18 2019-02-18 Manufacturing method of lithium niobate substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019026572A JP7279395B2 (en) 2019-02-18 2019-02-18 Manufacturing method of lithium niobate substrate

Publications (2)

Publication Number Publication Date
JP2020132463A JP2020132463A (en) 2020-08-31
JP7279395B2 true JP7279395B2 (en) 2023-05-23

Family

ID=72262180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019026572A Active JP7279395B2 (en) 2019-02-18 2019-02-18 Manufacturing method of lithium niobate substrate

Country Status (1)

Country Link
JP (1) JP7279395B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008500731A (en) 2004-05-25 2008-01-10 クリスタル テクノロジー インコーポレイテッド Use of condensed chemicals to precondition lithium niobate and lithium tantalate crystals

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69819971T2 (en) * 1997-07-25 2004-09-02 Crystal Technology, Inc., Palo Alto Pretreated crystals of lithium niobate and lithium tantalate and the process for their preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008500731A (en) 2004-05-25 2008-01-10 クリスタル テクノロジー インコーポレイテッド Use of condensed chemicals to precondition lithium niobate and lithium tantalate crystals

Also Published As

Publication number Publication date
JP2020132463A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
JP3938147B2 (en) Lithium tantalate substrate and manufacturing method thereof
JP6992607B2 (en) Manufacturing method of lithium tantalate substrate
JP4063191B2 (en) Method for producing lithium tantalate substrate
JP7205694B2 (en) Manufacturing method of lithium niobate substrate
JP2005119907A (en) Lithium tantalate substrate and its producing method
JP7087765B2 (en) Manufacturing method of lithium tantalate substrate
JP7024389B2 (en) Manufacturing method of lithium tantalate substrate
JP7099203B2 (en) Manufacturing method of lithium tantalate substrate
JP4063190B2 (en) Method for producing lithium tantalate substrate
JP7279395B2 (en) Manufacturing method of lithium niobate substrate
JP7037120B2 (en) Manufacturing method of lithium tantalate substrate
JP7319592B2 (en) Manufacturing method of lithium tantalate substrate
JP7082317B2 (en) Manufacturing method of lithium tantalate substrate
JP2022150691A (en) Method for manufacturing lithium tantalate substrate
JP2004328712A (en) Lithium-tantalate substrate and its manufacturing method
JP7271845B2 (en) Manufacturing method of lithium tantalate substrate
EP3366816A1 (en) Method for producing lithium niobate single crystal substrate
JP7447537B2 (en) Lithium tantalate substrate manufacturing method and lithium tantalate substrate
JP7087867B2 (en) Manufacturing method of lithium tantalate substrate
KR102581209B1 (en) Lithium niobate single crystal substrate and manufacturing method thereof
JP7443808B2 (en) Method for manufacturing piezoelectric oxide single crystal substrate
JP7435146B2 (en) Method for manufacturing lithium tantalate substrate
JP2023031568A (en) Method for manufacturing piezoelectric single crystal substrate
EP3312313A1 (en) Lithium niobate single crystal substrate and method for producing same
KR20180019550A (en) Lithium niobate single crystal substrate and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R150 Certificate of patent or registration of utility model

Ref document number: 7279395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150