JP4239506B2 - Method for manufacturing substrate for piezoelectric device - Google Patents

Method for manufacturing substrate for piezoelectric device Download PDF

Info

Publication number
JP4239506B2
JP4239506B2 JP2002223418A JP2002223418A JP4239506B2 JP 4239506 B2 JP4239506 B2 JP 4239506B2 JP 2002223418 A JP2002223418 A JP 2002223418A JP 2002223418 A JP2002223418 A JP 2002223418A JP 4239506 B2 JP4239506 B2 JP 4239506B2
Authority
JP
Japan
Prior art keywords
sio
crucible
piezoelectric device
substrate
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002223418A
Other languages
Japanese (ja)
Other versions
JP2004059404A (en
Inventor
守▲奇▼ 王
聡 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002223418A priority Critical patent/JP4239506B2/en
Publication of JP2004059404A publication Critical patent/JP2004059404A/en
Application granted granted Critical
Publication of JP4239506B2 publication Critical patent/JP4239506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、SAWフィルタ等に好適な圧電デバイス用基板の製造方法と圧電デバイス用基板、及びこれを用いた表面弾性波デバイスに関する。
【0002】
【従来の技術】
近年、LaGaSiO14(Langasite:ランガサイト)単結晶は、温度による弾性波伝搬速度、周波数の変化率が小さく、圧電性の大小を表す電気機械結合係数(電気エネルギーと機械エネルギーの相互変換効率を示す係数)が大きいことから、表面弾性波(Surface Acoustic Wave:SAW)フィルタ等の圧電デバイス用の基板材料として研究が行われている(例えば、H.Takeda,K.Shimamura,V.I.Chani,T.Fukuda,Effect of starting melt composition on crystal growth of LaGaSiO14,J.Crystal Growth 197(1999)204.等)。すなわち、このランガサイト単結晶は、水晶と同等の温度特性を持ち、しかも電気機械結合係数が水晶の約3倍あり、携帯電話等に多用されているSAWフィルタの広帯域化と小型化を図ることが可能になる。例えば、特開平10−126209号公報等にランガサイト単結晶を用いた表面弾性波デバイスが記載されている。
従来、このランガサイト単結晶を育成するには、化学量論比及びその近辺の組成に基づいた原料ペレットを融解して単結晶を育成していた。
【0003】
【発明が解決しようとする課題】
しかしながら、本発明者らの研究結果により、図7に示すように、ランガサイトは包晶系であり、化学量論比及びその近辺の組成を持つ融液が、高温から温度が低下して凝固するときに、Ga(ガリウム)を含有し、またLa14Si39の結晶構造を持つ三成分結晶(以下、LS(G)と称す)が先に析出してしまう。従来の化学量論比及びその近辺の組成での育成では、種結晶付近の融液は、過冷却によりランガサイトが成長するが、ルツボ付近の融液、特にルツボ表面に付着した少量の融液は、ルツボの高温にさらされ、LS(G)が析出する。このLS(G)は融点が高いので、ルツボ内部の温度では融解せず、融液と共存して対流する。そして、結晶に付着すれば、異相或いはツイン成長が始まってしまう。このような結晶はクラックが入りやすく、切り出したウェーハは表面弾性波の伝搬特性におけるバラツキが非常に大きく、精度良くSAWフィルタを作製することができない。生産効率の面では、結晶育成の成功率が低く、生産効率が悪いという不都合があった。
また、化学量論比及びその近辺の組成では、原料及び結晶の融点が高いため、貴金属のイリジウム製ルツボがよく使用される。しかし、ガリウムの蒸発を押さえるために酸素雰囲気で育成するので、イリジウム製ルツボは酸化されて一部が蒸発する。このため、毎回の育成でイリジウム製ルツボの減量で生産コストが上昇するだけでなく、ルツボの寿命も大幅に短くなってしまう。
したがって、化学量論比及びその近辺の組成に基づいた原料ペレットを使用した従来の技術では、均一なランガサイト単結晶を得ることが難しく、結晶育成の成功率が低いと共に、生産コストも高いという不都合があった。
【0004】
本発明は、前述の課題に鑑みてなされたもので、均一な単結晶で結晶育成の成功率が高いと共に、生産コストも高くすることができる圧電デバイス用基板の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明の圧電デバイス用基板の製造方法は、LaGaSiO14単結晶を育成して圧電デバイス用基板に加工する圧電デバイス用基板の製造方法であって、
添付図面1に示す点A(Laが44重量%、Gaが46重量%、SiOが10重量%)、
点B(Laが45重量%、Gaが52重量%、SiOが3重量%)、
点C(Laが32重量%、Gaが65重量%、SiOが3重量%)、
点D(Laが37重量%、Gaが53重量%、SiOが10重量%)で囲まれる組成範囲内で秤量してルツボ内で融解させ、該ルツボ内から前記LaGaSiO14単結晶を引き上げ育成することを特徴とする。
【0006】
この圧電デバイス用基板の製造方法では、LaGaSiO14の原料であるLa、Ga及びSiOを上記範囲内で秤量し、ルツボ内で融解させ、該ルツボ内からLaGaSiO14の単結晶を引き上げ育成するので、後述する実験結果に示すように、ランガサイト以外の相の析出を防ぎ、異相及びツイン成長を防ぐことができる。なお、このような良好な結晶が得られるのは、上記組成範囲がランガサイトの初晶領域若しくはその近傍領域であるためと考えられる。そして、ランガサイトの初晶領域若しくはその近傍領域では融点が低いので、長寿命の白金製ルツボを使用することが可能になり、低コストの生産を実現することが可能になる。
【0007】
また、本発明の圧電デバイス用基板の製造方法は、前記秤量を、LaGaSiO14の初晶領域が存在する組成範囲内で行うことが好ましい。すなわち、この圧電デバイス用基板の製造方法は、原料の秤量をLaGaSiO14の初晶領域が存在する組成範囲内で行うことにより、より異相及びツイン成長を防ぐことができる。
【0008】
また、本発明の圧電デバイス用基板の製造方法は、前記引き上げ育成時に、前記ルツボ内にGa及びSiOの少なくとも一方を連続的に補充する技術が採用される。すなわち、この圧電デバイス用基板の製造方法では、引き上げ育成時に、ルツボ内にGa及びSiOの少なくとも一方を連続的に補充するので、育成中の融液組成のずれを修正することができる。
なお、上記「連続的」の意味には、育成中において断続的にでも複数回補充を行う場合も含むものとする。
【0009】
また、本発明の圧電デバイス用基板の製造方法は、前記ルツボが、白金で形成されている技術が採用される。すなわち、この圧電デバイス用基板の製造方法では、ルツボが白金で形成されているので、従来のイリジウム製ルツボの場合にあった酸素雰囲気中におけるルツボの酸化がほとんどなく、酸化によるルツボの減量が極めて少なくなる。したがって、ルツボの寿命が長くなり、生産コストを低減させることができる。
【0012】
【発明の実施の形態】
以下、本発明に係る圧電デバイス用基板の製造方法と圧電デバイス用基板、及びこれを用いた表面弾性波デバイスの一実施形態を、図1から図3を参照しながら説明する。
【0013】
本実施形態の圧電デバイス基板及び表面弾性波デバイスを製造するには、まず、図1及び表1に示す組成範囲、すなわち、
図1及び表1に示す点A(Laが44重量%、Gaが46重量%、SiOが10重量%)、
点B(Laが45重量%、Gaが52重量%、SiOが3重量%)、
点C(Laが32重量%、Gaが65重量%、SiOが3重量%)、
点D(Laが37重量%、Gaが53重量%、SiOが10重量%)
で囲まれる組成範囲内で原料(La、Ga、SiO)を秤量する。
【0014】
【表1】

Figure 0004239506
【0015】
次に、これらの原料を振動攪拌機で1時間混合させ、外径100mm×60mmの寸法をもったペレットに成形する。次に、ペレットを電気炉で1200℃の温度で、1時間空気中で焼成する。
結晶の育成は、高周波加熱育成炉において、図2に示すように、白金製のルツボ1を用いて行い、該ルツボ1の外側と上方にアルミナ及びジルコニアの断熱材2を設け、ホットゾーンを形成する。断熱材2の外側には、加熱用の高周波ワークコイル3を設置する。
【0016】
なお、ルツボ1底部には、熱電対4が設置されている。また、引き上げ軸5には、結晶の重量を測定する重量センサ6が接続されている。さらに、この高周波加熱育成炉は、重量センサ6により計測された結晶の重量から融液組成のずれを推測し、適切な量のGa及びSiOの少なくとも一方を連続的かつ自動的にルツボ1内に供給、補充する補充機構10を備えている。該補充機構10は、適量に調整された粉状又は粒状のGa及びSiOの少なくとも一方をルツボ1内に投入する機構や、棒状に形成されたGa及びSiOの少なくとも一方の下部を長さ調整して融液L内に浸ける機構等が採用される。
【0017】
育成の際に、ルツボ1の中に焼成されたペレットをチャージし、加熱、融解させて所定温度の融液Lとする。そして、ランガサイト(LaGaSiO14)の種結晶Sを引き上げ軸5に固定し、所定の回転数と引上速度で融液Lからランガサイト単結晶Cを育成する。自動直径制御は、引き上げ軸5につながる重量センサ6で検出した結晶の重量変化信号により行う。また、同時に、補充機構10により、結晶の重量から融液組成のずれを推測し、適切な量でGa及びSiOの少なくとも一方を自動的に補充する。
【0018】
このようにして育成したランガサイト単結晶C(直径105mmで直胴部の長さが200mm)は、秤量時の組成範囲と同様の組成範囲内の単結晶となることに限らず、この組成範囲よりLaを多く含み、またはGaを少なく含む組成を持つ単結晶となる。この結晶の融点は1300〜1450℃と従来技術で育成されたランガサイト単結晶より低い。
【0019】
次に、このランガサイト単結晶Cは、スライスされて圧電デバイス用基板に加工される。さらに、この圧電デバイス用基板には、図3に示すように、その表面に励振電極(すだれ電極(櫛歯電極))7が形成されてSAWフィルタ(表面弾性波デバイス)8が作製される。
【0020】
本実施形態では、La、Ga及びSiOのそれぞれ組成範囲を上述した範囲内で秤量し、ルツボ1内で融解させ、該ルツボ1内からLaGaSiO14単結晶Cを引き上げ育成するので、原料組成がランガサイトの初晶領域若しくはその近傍領域で混合されていると考えられ、後述する実施例の結果から、ランガサイト以外の相の析出を防ぎ、異相及びツイン成長を防ぐことができる。特に、原料の組成範囲がランガサイトの初晶領域の組成範囲内であれば、より良好な結晶性を得ることができる。
【0021】
また、引き上げ育成時に、補充機構10によってルツボ1内にGa及びSiOの少なくとも一方を連続的に補充するので、育成中の融液組成のずれを修正することができる。
さらに、ランガサイトの初晶領域及びその近傍領域では融点が低いので、長寿命の白金製ルツボを使用することが可能になり、低コストの生産を実現することができる。
また、ルツボ1が白金で形成されているので、従来のイリジウム製ルツボの場合にあった酸素雰囲気中におけるルツボの酸化がほとんどなく、酸化によるルツボ1の減量が極めて少なくなる。したがって、ルツボ1の寿命が長くなり、より生産コストを低減させることができる。
【0022】
【実施例】
次に、本発明に係る圧電デバイス基板及びその製造方法を、実施例により図1を参照して具体的に説明する。
【0023】
上記本実施形態の製造方法において、実際に上記点A、B、C、Dのそれぞれの組成で原料を混合し、4回に分けて単結晶を育成した結果、育成された単結晶は、いずれも異相成長もツイン成長もなく、良好な結晶であった。また、育成過程は順調であり、4回の育成は全部成功し、成功率は100%であった。
【0024】
また、上記本実施形態の製造方法において、La、Ga及びSiOの原料を、図1及び表2に示すように、上述した組成範囲内である点Eの組成で秤量し、結晶を育成した。この点Eの組成は、Laが41重量%、Gaが53重量%、SiOが6重量%である。
また、比較例として、La、Ga及びSiOの原料を、図1及び表2に示すように、上述した組成範囲外であり化学量論比組成に基づいた点Fの組成で秤量したもので、上記実施例と同様に、結晶を育成した。この点Fの組成は、Laが48重量%、Gaが46重量%、SiOが6重量%である。なお、ランガサイトの化学量論比では融点が高いため、ルツボにはイリジウム製を使用した。
【0025】
【表2】
Figure 0004239506
【0026】
この実施例で得られた結晶は、ツイン成長もクラックも生じず、良質なものであり、育成中LS(G)の析出はなかったものと考えられる。また、原料の融点それから結晶を育成する温度は約1300〜1450℃と低く、白金製ルツボを使用したので、ルツボ酸化による減量は無視できる程度であった。また、図4に示すように、ランガサイト単結晶の上部から下部までの長さ方向において、複数の測定点でSAW音速を測定した。この結果、表3及び図5に示すように、結晶上部から下部に亘ってSAW音速のバラツキは66ppmと小さかった。
【0027】
【表3】
Figure 0004239506
【0028】
これに対して、上記比較例で得られた結晶は、肩部の形成段階において二次相が発生した。この結晶は、弾性波素子の基板材料として使用できないものであった。また、イリジウム製ルツボを使用したため、ルツボは酸化され、酸化イリジウムの黒い粉になって飛散し、育成炉の内部に付着した。そして、一回の育成当たり、ルツボの重量は約200g減少し、20回の育成後、ルツボに液漏れが起こり、使用不能になった。また、上記実施例と同様に、ランガサイト単結晶の上部から下部までの長さ方向において、複数の測定点でSAW音速を測定した。この結果、表4及び図5に示すように、結晶上部から下部に亘ってSAW音速のバラツキは278ppmと大きかった。
【0029】
【表4】
Figure 0004239506
【0030】
なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
【0031】
【発明の効果】
本発明の圧電デバイス基板の製造方法及びこれによる圧電デバイス基板によれば、LaGaSiO14の原料であるLa、Ga及びSiOを上記範囲内で秤量し、ルツボ内で融解させ、該ルツボ内からLaGaSiO14の単結晶を引き上げ育成するので、異相及びツイン成長を防ぎ、育成の成功率を向上させることができる。また、上記組成範囲内では融点が低いので、長寿命の白金製ルツボを使用することが可能になり、生産の低コスト化が可能になる。したがって、良質でSAWフィルタに好適な基板を低コストで得ることができる。
【図面の簡単な説明】
【図1】 本発明に係る一実施形態における圧電デバイス基板及びその製造方法において、ランガサイト単結晶の組成範囲を示す状態図である。
【図2】 本発明に係る一実施形態における圧電デバイス基板の製造方法において、CZ法による引き上げ育成を示す概略的な断面図である。
【図3】 本発明に係る一実施形態の表面弾性波デバイスを示す斜視図である。
【図4】 本発明に係る実施例及び比較例において、ランガサイト単結晶の長さ方向におけるSAW音速の測定点を示す説明図である。
【図5】 本発明に係る実施例において、ランガサイト単結晶の長さ方向におけるSAW音速を示すグラフである。
【図6】 本発明に係る比較例において、ランガサイト単結晶の長さ方向におけるSAW音速を示すグラフである。
【図7】 ランガサイトの包晶系において原料の出発組成(初晶領域内の組成)範囲を示す状態図である。
【符号の説明】
1 ルツボ
7 励振電極
8 SAW(表面弾性波)デバイス
10 補充機構
C ランガサイト単結晶
L 融液
S 種結晶[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric device substrate manufacturing method suitable for a SAW filter or the like, a piezoelectric device substrate, and a surface acoustic wave device using the same.
[0002]
[Prior art]
In recent years, La 3 Ga 5 SiO 14 (Langasite) single crystals have a small elastic wave propagation velocity and frequency change rate due to temperature, and an electromechanical coupling coefficient representing the magnitude of piezoelectricity (the mutual relationship between electrical energy and mechanical energy). Since the coefficient indicating the conversion efficiency is large, research has been conducted on substrate materials for piezoelectric devices such as surface acoustic wave (SAW) filters (for example, H. Takeda, K. Shimamura, VIChani, T. Fukuda, Effect of starting melt composition on crystal growth of La 3 Ga 5 SiO 14 , J. Crystal Growth 197 (1999) 204.). In other words, this Langasite single crystal has the same temperature characteristics as quartz, and has an electromechanical coupling coefficient of about three times that of quartz, so that the bandwidth and size of SAW filters widely used in mobile phones and the like can be reduced. Is possible. For example, JP-A-10-126209 describes a surface acoustic wave device using a langasite single crystal.
Conventionally, in order to grow this langasite single crystal, a single crystal was grown by melting raw material pellets based on the stoichiometric ratio and the composition in the vicinity thereof.
[0003]
[Problems to be solved by the invention]
However, according to the research results of the present inventors, as shown in FIG. 7, the langasite is a peritectic system, and the melt having the stoichiometric ratio and the composition in the vicinity thereof is solidified as the temperature decreases from a high temperature. In this case, a ternary crystal (hereinafter referred to as LS (G)) containing Ga (gallium) and having a crystal structure of La 14 Si 9 O 39 is precipitated first. In the conventional stoichiometric ratio and the growth of the composition in the vicinity, Langasite grows due to supercooling in the melt near the seed crystal, but a small amount of melt adhering to the crucible surface, particularly the crucible surface. Is exposed to the high temperature of the crucible, and LS (G) precipitates. Since LS (G) has a high melting point, it does not melt at the temperature inside the crucible, and convects together with the melt. And if it adheres to a crystal | crystallization, a different phase or a twin growth will start. Such a crystal is easily cracked, and the cut wafer has a very large variation in the propagation characteristics of the surface acoustic wave, making it impossible to produce a SAW filter with high accuracy. In terms of production efficiency, there was a disadvantage that the success rate of crystal growth was low and production efficiency was poor.
Moreover, since the melting point of the raw material and the crystal is high at the stoichiometric ratio and the composition in the vicinity thereof, a iridium crucible made of a noble metal is often used. However, since the growth is performed in an oxygen atmosphere in order to suppress evaporation of gallium, the iridium crucible is oxidized and partly evaporated. For this reason, not only does the production cost increase due to the reduction of the iridium crucible with each growth, but the life of the crucible is significantly shortened.
Therefore, with the conventional technology using the raw material pellet based on the stoichiometric ratio and the composition in the vicinity thereof, it is difficult to obtain a uniform langasite single crystal, the success rate of crystal growth is low, and the production cost is also high. There was an inconvenience.
[0004]
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for manufacturing a substrate for a piezoelectric device that can achieve a high success rate of crystal growth with a uniform single crystal and a high production cost. And
[0005]
[Means for Solving the Problems]
The present invention employs the following configuration in order to solve the above problems. That is, the method for manufacturing a piezoelectric device substrate according to the present invention is a method for manufacturing a piezoelectric device substrate in which a La 3 Ga 5 SiO 14 single crystal is grown and processed into a piezoelectric device substrate,
Point A shown in the attached drawing 1 (La 2 O 3 is 44 wt%, Ga 2 O 3 is 46 wt%, SiO 2 is 10 wt%),
Point B (La 2 O 3 is 45 wt%, Ga 2 O 3 is 52 wt%, SiO 2 is 3 wt%),
Point C (La 2 O 3 is 32 wt%, Ga 2 O 3 is 65 wt%, SiO 2 is 3 wt%),
Weigh in a composition range surrounded by point D (37% by weight of La 2 O 3 , 53% by weight of Ga 2 O 3, 10% by weight of SiO 2 ) and melt in the crucible, and from within the crucible, the La It is characterized by pulling and growing a 3 Ga 5 SiO 14 single crystal.
[0006]
In this method for manufacturing a piezoelectric device substrate, La 2 O 3 , Ga 2 O 3 and SiO 2 which are raw materials of La 3 Ga 5 SiO 14 are weighed within the above range, melted in the crucible, and from within the crucible. Since a single crystal of La 3 Ga 5 SiO 14 is pulled and grown, precipitation of phases other than langasite can be prevented, and heterogeneous and twin growth can be prevented, as shown in the experimental results described later. The reason why such a good crystal can be obtained is considered that the composition range is the primary crystal region of langasite or a region near it. And since melting | fusing point is low in the primary crystal area | region or its vicinity area | region of a langasite, it becomes possible to use a long life platinum crucible, and it becomes possible to implement | achieve low-cost production.
[0007]
The manufacturing method of a substrate for the piezoelectric device of the present invention, the weighing is preferably carried out in the composition range primary phase area of La 3 Ga 5 SiO 14 is present. That is, this piezoelectric device substrate manufacturing method can further prevent heterogeneous phase and twin growth by weighing the raw materials within the composition range in which the primary crystal region of La 3 Ga 5 SiO 14 exists.
[0008]
In addition, the method for manufacturing a piezoelectric device substrate according to the present invention employs a technique in which at least one of Ga 2 O 3 and SiO 2 is continuously replenished in the crucible during the pulling and growing. That is, in this method for manufacturing a piezoelectric device substrate, at the time of pulling and growing, at least one of Ga 2 O 3 and SiO 2 is continuously replenished in the crucible, so that the deviation of the melt composition during growth can be corrected. it can.
Note that the meaning of “continuous” includes a case where replenishment is performed a plurality of times even during the growth.
[0009]
Moreover, the manufacturing method of the board | substrate for piezoelectric devices of this invention employ | adopts the technique in which the said crucible is formed with platinum. That is, in this method for manufacturing a substrate for piezoelectric devices, the crucible is formed of platinum, so that there is almost no oxidation of the crucible in an oxygen atmosphere as in the case of a conventional iridium crucible, and the weight loss of the crucible due to oxidation is extremely low. Less. Therefore, the life of the crucible can be extended and the production cost can be reduced.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, a piezoelectric device substrate manufacturing method, a piezoelectric device substrate, and a surface acoustic wave device using the same according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3.
[0013]
To manufacture the piezoelectric device substrate and the surface acoustic wave device of the present embodiment, first, the composition range shown in FIG. 1 and Table 1, that is,
Point A shown in FIG. 1 and Table 1 (La 2 O 3 is 44 wt%, Ga 2 O 3 is 46 wt%, SiO 2 is 10 wt%),
Point B (La 2 O 3 is 45 wt%, Ga 2 O 3 is 52 wt%, SiO 2 is 3 wt%),
Point C (La 2 O 3 is 32 wt%, Ga 2 O 3 is 65 wt%, SiO 2 is 3 wt%),
Point D (La 2 O 3 is 37 wt%, Ga 2 O 3 is 53 wt%, SiO 2 is 10 wt%)
The raw materials (La 2 O 3 , Ga 2 O 3 , SiO 2 ) are weighed within the composition range surrounded by.
[0014]
[Table 1]
Figure 0004239506
[0015]
Next, these raw materials are mixed with a vibration stirrer for 1 hour and formed into pellets having a size of an outer diameter of 100 mm × 60 mm. Next, the pellet is fired in air at a temperature of 1200 ° C. for 1 hour in an electric furnace.
Crystal growth is performed in a high-frequency heating growth furnace using a platinum crucible 1 as shown in FIG. 2, and an insulating material 2 of alumina and zirconia is provided outside and above the crucible 1 to form a hot zone. To do. A high-frequency work coil 3 for heating is installed outside the heat insulating material 2.
[0016]
A thermocouple 4 is installed at the bottom of the crucible 1. A weight sensor 6 for measuring the weight of the crystal is connected to the pulling shaft 5. Further, the high-frequency heating growth furnace estimates the deviation of the melt composition from the weight of the crystal measured by the weight sensor 6, and continuously and automatically adds an appropriate amount of at least one of Ga 2 O 3 and SiO 2. A replenishing mechanism 10 for supplying and replenishing the crucible 1 is provided. The replenishing mechanism 10, at least one of the adjusted powder or granular in the Ga 2 O 3 and the SiO 2 in an appropriate amount and mechanisms to be introduced into the crucible 1, at least in the Ga 2 O 3 and the SiO 2 formed into a rod A mechanism or the like in which the length of one lower part is adjusted and immersed in the melt L is adopted.
[0017]
During the growth, the baked pellets are charged in the crucible 1 and heated and melted to obtain a melt L at a predetermined temperature. Then, the seed crystal S of langasite (La 3 Ga 5 SiO 14 ) is fixed to the pulling shaft 5, and the langasite single crystal C is grown from the melt L at a predetermined rotational speed and pulling speed. The automatic diameter control is performed based on a crystal weight change signal detected by a weight sensor 6 connected to the pulling shaft 5. At the same time, the replenishment mechanism 10 estimates the deviation of the melt composition from the crystal weight and automatically replenishes at least one of Ga 2 O 3 and SiO 2 with an appropriate amount.
[0018]
The Langasite single crystal C (diameter 105 mm and straight body length 200 mm) grown in this way is not limited to a single crystal within the composition range similar to the composition range at the time of weighing, but this composition range. A single crystal having a composition containing more La 2 O 3 or less Ga 2 O 3 is obtained. The melting point of this crystal is 1300 to 1450 ° C., which is lower than the langasite single crystal grown by the prior art.
[0019]
Next, the langasite single crystal C is sliced and processed into a piezoelectric device substrate. Further, as shown in FIG. 3, the substrate for piezoelectric device has an excitation electrode (interdigital electrode (comb electrode)) 7 formed on the surface thereof, and a SAW filter (surface acoustic wave device) 8 is manufactured.
[0020]
In this embodiment, each composition range of La 2 O 3 , Ga 2 O 3 and SiO 2 is weighed within the above-described range, melted in the crucible 1, and La 3 Ga 5 SiO 14 single crystal from the crucible 1. Since C is pulled up and grown, it is considered that the raw material composition is mixed in the primary crystal region of langasite or in the vicinity thereof. From the results of the examples described later, precipitation of phases other than langasite is prevented, Growth can be prevented. In particular, if the composition range of the raw material is within the composition range of the primary crystal region of langasite, better crystallinity can be obtained.
[0021]
In addition, since at least one of Ga 2 O 3 and SiO 2 is continuously replenished into the crucible 1 by the replenishment mechanism 10 during the pulling and growing, the deviation of the melt composition during the growth can be corrected.
Further, since the melting point is low in the primary crystal region of the langasite and the vicinity thereof, a long-life platinum crucible can be used, and low-cost production can be realized.
Further, since the crucible 1 is made of platinum, there is almost no oxidation of the crucible in an oxygen atmosphere, which is the case with conventional iridium crucibles, and the weight loss of the crucible 1 due to oxidation becomes extremely small. Therefore, the life of the crucible 1 is extended, and the production cost can be further reduced.
[0022]
【Example】
Next, the piezoelectric device substrate and the manufacturing method thereof according to the present invention will be specifically described with reference to FIG.
[0023]
In the manufacturing method of the present embodiment, as a result of actually mixing the raw materials with the respective compositions of the points A, B, C, and D and growing the single crystal in four times, the grown single crystal is There was no heterophasic growth or twin growth, and the crystals were good. Also, the training process was smooth, and all four trainings were successful, with a success rate of 100%.
[0024]
In the manufacturing method of the present embodiment, the raw materials of La 2 O 3 , Ga 2 O 3 and SiO 2 are weighed with the composition of point E within the above-described composition range as shown in FIG. 1 and Table 2. The crystal was grown. The composition of this point E is La 2 O 3 41% by weight, Ga 2 O 3 53% by weight, and SiO 2 6% by weight.
Moreover, as a comparative example, the raw materials of La 2 O 3 , Ga 2 O 3 and SiO 2 are outside the above-described composition range as shown in FIG. 1 and Table 2, and are based on the stoichiometric composition. The crystals were weighed according to the composition, and the crystals were grown in the same manner as in the above examples. The composition of this point F is 48% by weight of La 2 O 3 , 46% by weight of Ga 2 O 3 and 6% by weight of SiO 2 . Since the melting point is high in the stoichiometric ratio of langasite, iridium made crucible was used.
[0025]
[Table 2]
Figure 0004239506
[0026]
The crystals obtained in this example are of high quality without twin growth or cracks, and it is considered that LS (G) did not precipitate during growth. Further, the melting point of the raw material and the temperature for growing crystals were as low as about 1300 to 1450 ° C. Since a platinum crucible was used, the weight loss due to crucible oxidation was negligible. In addition, as shown in FIG. 4, SAW sound velocity was measured at a plurality of measurement points in the length direction from the top to the bottom of the langasite single crystal. As a result, as shown in Table 3 and FIG. 5, the dispersion of the SAW sound velocity from the upper part of the crystal to the lower part was as small as 66 ppm.
[0027]
[Table 3]
Figure 0004239506
[0028]
On the other hand, in the crystal obtained in the comparative example, a secondary phase was generated in the shoulder formation stage. This crystal cannot be used as a substrate material for an acoustic wave device. In addition, since an iridium crucible was used, the crucible was oxidized and scattered as black powder of iridium oxide and adhered to the inside of the growth furnace. Then, the weight of the crucible decreased by about 200 g per one growth, and after the 20th growth, liquid leakage occurred in the crucible, making it unusable. Similarly to the above example, the SAW sound velocity was measured at a plurality of measurement points in the length direction from the top to the bottom of the langasite single crystal. As a result, as shown in Table 4 and FIG. 5, the dispersion of the SAW sound velocity was as large as 278 ppm from the top to the bottom of the crystal.
[0029]
[Table 4]
Figure 0004239506
[0030]
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
[0031]
【The invention's effect】
According to the method for manufacturing a piezoelectric device substrate and the piezoelectric device substrate according to the present invention, La 2 O 3 , Ga 2 O 3 and SiO 2 which are raw materials of La 3 Ga 5 SiO 14 are weighed within the above range, and the crucible is measured. Since the single crystal of La 3 Ga 5 SiO 14 is pulled up and grown from the inside of the crucible, heterophase and twin growth can be prevented and the success rate of the growth can be improved. In addition, since the melting point is low within the above composition range, it is possible to use a platinum crucible having a long life, and the production cost can be reduced. Therefore, a high-quality substrate suitable for a SAW filter can be obtained at low cost.
[Brief description of the drawings]
FIG. 1 is a state diagram showing a composition range of a langasite single crystal in a piezoelectric device substrate and a manufacturing method thereof according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing pulling growth by a CZ method in a method for manufacturing a piezoelectric device substrate according to an embodiment of the present invention.
FIG. 3 is a perspective view showing a surface acoustic wave device according to an embodiment of the present invention.
FIG. 4 is an explanatory diagram showing measurement points of SAW sound velocity in the length direction of a langasite single crystal in Examples and Comparative Examples according to the present invention.
FIG. 5 is a graph showing SAW sound velocity in the length direction of a langasite single crystal in an example according to the present invention.
FIG. 6 is a graph showing SAW sound velocity in the length direction of a langasite single crystal in a comparative example according to the present invention.
FIG. 7 is a state diagram showing the starting composition range (composition in the primary crystal region) of the raw material in the peritectic system of langasite.
[Explanation of symbols]
1 Crucible 7 Excitation electrode 8 SAW (surface acoustic wave) device 10 Replenishment mechanism C Langasite single crystal L Melt S Seed crystal

Claims (4)

LaGaSiO14単結晶を育成して圧電デバイス用基板に加工する圧電デバイス用基板の製造方法であって、
添付図面1に示す点A(Laが44重量%、Gaが46重量%、SiOが10重量%)、
点B(Laが45重量%、Gaが52重量%、SiOが3重量%)、
点C(Laが32重量%、Gaが65重量%、SiOが3重量%)、
点D(Laが37重量%、Gaが53重量%、SiOが10重量%)で囲まれる組成範囲内で秤量してルツボ内で融解させ、該ルツボ内から前記LaGaSiO14単結晶を引き上げ育成することを特徴とする圧電デバイス用基板の製造方法。
A method for manufacturing a piezoelectric device substrate in which a La 3 Ga 5 SiO 14 single crystal is grown and processed into a piezoelectric device substrate,
Point A shown in the attached drawing 1 (La 2 O 3 is 44 wt%, Ga 2 O 3 is 46 wt%, SiO 2 is 10 wt%),
Point B (La 2 O 3 is 45 wt%, Ga 2 O 3 is 52 wt%, SiO 2 is 3 wt%),
Point C (La 2 O 3 is 32 wt%, Ga 2 O 3 is 65 wt%, SiO 2 is 3 wt%),
Weigh in a composition range surrounded by point D (37% by weight of La 2 O 3 , 53% by weight of Ga 2 O 3, 10% by weight of SiO 2 ) and melt in the crucible, and from within the crucible, the La A method for producing a substrate for a piezoelectric device, comprising raising and growing a 3 Ga 5 SiO 14 single crystal.
請求項1に記載の圧電デバイス用基板の製造方法において、
前記秤量を、LaGaSiO14の初晶領域が存在する組成範囲内で行うことを特徴とする圧電デバイス用基板の製造方法。
In the manufacturing method of the board | substrate for piezoelectric devices of Claim 1,
The method for producing a substrate for a piezoelectric device, wherein the weighing is performed within a composition range in which a primary crystal region of La 3 Ga 5 SiO 14 is present.
請求項1又は2に記載の圧電デバイス用基板の製造方法において、
前記引き上げ育成時に、前記ルツボ内にGa及びSiOの少なくとも一方を連続的に補充することを特徴とする圧電デバイス用基板の製造方法。
In the manufacturing method of the board | substrate for piezoelectric devices of Claim 1 or 2,
A method for manufacturing a substrate for a piezoelectric device, wherein at least one of Ga 2 O 3 and SiO 2 is continuously replenished into the crucible during the pulling and growing.
請求項1から3のいずれかに記載の圧電デバイス用基板の製造方法において、
前記ルツボは、白金で形成されていることを特徴とする圧電デバイス用基板の製造方法。
In the manufacturing method of the board | substrate for piezoelectric devices in any one of Claim 1 to 3,
The method of manufacturing a substrate for a piezoelectric device, wherein the crucible is made of platinum.
JP2002223418A 2002-07-31 2002-07-31 Method for manufacturing substrate for piezoelectric device Expired - Fee Related JP4239506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002223418A JP4239506B2 (en) 2002-07-31 2002-07-31 Method for manufacturing substrate for piezoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002223418A JP4239506B2 (en) 2002-07-31 2002-07-31 Method for manufacturing substrate for piezoelectric device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008241028A Division JP5098922B2 (en) 2008-09-19 2008-09-19 Piezoelectric device substrate and surface acoustic wave device using the same

Publications (2)

Publication Number Publication Date
JP2004059404A JP2004059404A (en) 2004-02-26
JP4239506B2 true JP4239506B2 (en) 2009-03-18

Family

ID=31943175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002223418A Expired - Fee Related JP4239506B2 (en) 2002-07-31 2002-07-31 Method for manufacturing substrate for piezoelectric device

Country Status (1)

Country Link
JP (1) JP4239506B2 (en)

Also Published As

Publication number Publication date
JP2004059404A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
CN102251281B (en) Process for producing Zno single crystal according to method of liquid phase growth
JP5629296B2 (en) Galate single crystal and high-temperature piezoelectric element and high-temperature piezoelectric sensor
JP5341415B2 (en) Piezoelectric single crystal and manufacturing method thereof
CN103173861B (en) For the doping type tantalic acid gallium lanthanum crystal and preparation method thereof of high temperature piezoelectric device
JP4930166B2 (en) Method for producing aluminum oxide single crystal
JP4239506B2 (en) Method for manufacturing substrate for piezoelectric device
JP5098922B2 (en) Piezoelectric device substrate and surface acoustic wave device using the same
JP6485307B2 (en) Lithium tantalate single crystal and method for producing the same
JP4270232B2 (en) Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same
WO2001048276A1 (en) Langasite single crystal ingot, substrate for piezoelectric device and method for manufacture thereof, and surface acoustic wave device
JP4524527B2 (en) Method for producing Langasite single crystal
JP2000247793A (en) Preparation of langacite type crystal
JP4403679B2 (en) Method for producing langasite type single crystal
JP4132846B2 (en) Single crystal manufacturing method
JP2002356396A (en) Method of preparation of langasite type single crystal
JP3826393B2 (en) Method for producing a langasite single crystal ingot with excellent uniformity of constituent content
JP2001348299A (en) Method of producing substrate for piezoelectric device, substrate for piezoelectric device and surface acoustic wave device using the same
JP2006089355A (en) Substrate for piezoelectric device and its manufacturing method
JP3835286B2 (en) Piezoelectric material, substrate for piezoelectric device, and surface acoustic wave device
JP2006232633A (en) METHOD FOR PRODUCING La3Ga5SiO14 SINGLE CRYSTAL BY BRIDGMAN METHOD
JP3968934B2 (en) Method for manufacturing substrate for piezoelectric device
JP4930165B2 (en) Method for producing aluminum oxide single crystal
JP2809363B2 (en) Method for producing lithium tetraborate single crystal
JP4403720B2 (en) Method and apparatus for producing langasite single crystal and langasite single crystal
JP2003313096A (en) Method for producing langasite single crystal and langasite single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees