JP3911967B2 - Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same - Google Patents

Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same Download PDF

Info

Publication number
JP3911967B2
JP3911967B2 JP2000165114A JP2000165114A JP3911967B2 JP 3911967 B2 JP3911967 B2 JP 3911967B2 JP 2000165114 A JP2000165114 A JP 2000165114A JP 2000165114 A JP2000165114 A JP 2000165114A JP 3911967 B2 JP3911967 B2 JP 3911967B2
Authority
JP
Japan
Prior art keywords
sio
piezoelectric device
single crystal
device substrate
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000165114A
Other languages
Japanese (ja)
Other versions
JP2001348299A (en
Inventor
守▲奇▼ 王
聡 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000165114A priority Critical patent/JP3911967B2/en
Priority to EP00987694A priority patent/EP1302570A4/en
Priority to PCT/JP2000/009115 priority patent/WO2001048276A1/en
Priority to AU24003/01A priority patent/AU2400301A/en
Priority to US10/297,491 priority patent/US7090724B2/en
Priority to TW90108950A priority patent/TW512588B/en
Publication of JP2001348299A publication Critical patent/JP2001348299A/en
Application granted granted Critical
Publication of JP3911967B2 publication Critical patent/JP3911967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、SAWフィルタ等に好適な圧電デバイス用基板の製造方法と圧電デバイス用基板、及びこれを用いた表面弾性波デバイスに関する。
【0002】
【従来の技術】
近年、La3Ga5SiO14(Langasite:ランガサイト)単結晶は、温度による弾性波伝搬速度、周波数の変化率が小さく、圧電性の大小を表す電気機械結合係数(電気エネルギーと機械エネルギーの相互変換効率を示す係数)が大きいことから、表面弾性波(Surface Acoustic Wave:SAW)フィルタ等の圧電デバイス用の基板材料として研究が行われている(例えば、H.Takeda,K.Shimamura,V.I.Chani,T.Fukuda,Effect of starting melt composition on crystal growth of La3Ga5SiO14,J.Crystal Growth 197(1999)204.等)。すなわち、このランガサイト単結晶は、水晶と同等の温度特性を持ち、しかも電気機械結合係数が水晶の約3倍あり、携帯電話等に多用されているSAWフィルタの広帯域化と小型化を図ることが可能になる。例えば、特開平10−126209号公報等にランガサイト単結晶を用いた表面弾性波デバイスが記載されている。
従来、このランガサイト単結晶を育成するには、化学量論比の組成に基づいた原料ペレットを融解して単結晶を育成していた。
【0003】
【発明が解決しようとする課題】
しかしながら、化学量論的組成等の従来用いられている組成でランガサイト単結晶を育成すると、結晶には二次相が出やすく、結晶が割れやすくなるという不都合がある。また、二次相の発生を抑制するために成長速度をかなり低い値にしなければならなく、生産効率が悪くなってしまう問題があった。さらに、ランガサイト単結晶を構成する原子のうち、Gaは揮発し易い性質を有するため、組成によっては高い揮発性のために安定した引上成長が難しいという不都合があった。
【0004】
本発明は、前述の課題に鑑みてなされたもので、二次相が発生し難く、さらにGaの揮発性の影響が少ない圧電デバイス用基板の製造方法と圧電デバイス用基板、及びこれを用いた表面弾性波デバイスを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、ランガサイト単結晶の製造技術について研究を行ってきた結果、二次相がほとんど存在しない組成条件を見出すことができた。さらには、Gaの揮発性の影響が少なく、安定した成長が可能な組成条件を見出すことができた。したがって、本発明は、この知見に基づいた技術であり、前記課題を解決するために以下の構成を採用した。
【0006】
すなわち、本発明の圧電デバイス用基板の製造方法は、ランガサイト単結晶を育成して圧電デバイス用基板に加工する圧電デバイス用基板の製造方法であって、添付図面1に示すB(Laが48.50重量%、Gaが46.32重量%、SiOが5.18重量%)、点C(Laが48.50重量%、Gaが47.50重量%、SiOが4.00重量%)、点D(Laが47.50重量%、Gaが47.50重量%、SiOが5.00重量%)で囲まれる組成範囲内で秤量してルツボ内で融解させ、該ルツボ内からランガサイトの単結晶を引き上げ育成することを特徴とする。
【0007】
また、本発明の圧電デバイス用基板は、ランガサイトの単結晶で形成された圧電デバイス用基板であって、添付図面1に示すB(Laが48.50重量%、Gaが46.32重量%、SiOが5.18重量%)、点C(Laが48.50重量%、Gaが47.50重量%、SiOが4.00重量%)、点D(Laが47.50重量%、Gaが47.50重量%、SiOが5.00重量%)で囲まれる組成範囲内で秤量してルツボ内で融解させ、該ルツボ内から引き上げ育成された単結晶であることを特徴とする。
【0008】
また、本発明の表面弾性波デバイスは、引き上げにより育成されたランガサイトの単結晶で形成された圧電デバイス用基板であって、前記ランガサイトは、添付図面1に示す点b(Laが48.48重量%、Gaが46.32重量%、SiOが5.20重量%)、点c(Laが48.49重量%、Gaが47.49重量%、SiOが4.02重量%)、点d(Laが47.52重量%、Gaが47.49重量%、SiOが4.99重量%)で囲まれる組成範囲内の単結晶であることを特徴とする。
【0009】
これらの圧電デバイス用基板の製造方法及び圧電デバイス用基板では、後述する実験結果に基づいて、La3Ga5SiO14の原料であるLa23、Ga23及びSiO2のそれぞれ組成範囲を上記範囲内で秤量してルツボ内で融解させ、該ルツボ内からLa3Ga5SiO14の単結晶を引き上げ育成し、またLa3Ga5SiO14が、La23、Ga23及びSiO2が上記組成範囲内の単結晶であるので、二次相の発生が極めて少ない高品質なLa3Ga5SiO14単結晶が得られるとともに、バラツキの少ない表面弾性波伝搬速度及び均一な中心周波数を有する基板が得られる。
【0013】
これらの圧電デバイス用基板の製造方法及び圧電デバイス用基板では、La3Ga5SiO14の原料であるLa23、Ga23及びSiO2のそれぞれ組成範囲をさらに上記範囲内に限定秤量してルツボ内で融解させ、該ルツボ内からLa3Ga5SiO14の単結晶を引き上げ育成し、またLa3Ga5SiO14が、La23、Ga23及びSiO2が上記組成範囲内に限定した単結晶であるので、二次相の発生を抑制するだけでなく、Ga23の高い組成比により、Gaの揮発性による成長への影響を極力低減することができる。
【0014】
また、本発明の圧電デバイス用基板は、伝搬速度のバラツキが100ppm以下にあるので、SAWフィルタ特性の均一性を向上させることができる。
【0015】
本発明の表面弾性波デバイスは、上記本発明の圧電デバイス基板の表面上に表面弾性波を送受信する電極を形成したことを特徴とする。
この表面弾性波デバイスでは、上記本発明の圧電デバイス基板を用いることで、高品質で特性のバラツキが少ないとともに高い信頼性を得ることができる。
【0016】
【発明の実施の形態】
以下、本発明に係る圧電デバイス用基板の製造方法と圧電デバイス用基板、及びこれを用いた表面弾性波デバイスの一実施形態を、図1から図3を参照しながら説明する。
【0017】
本実施形態の圧電デバイス基板及び表面弾性波デバイスを製造するには、まず、図1に示す第1の組成範囲、すなわち、
図1に示す点A(La23が47.98重量%、Ga23が46.32重量%、SiO2が5.70重量%)、
点B(La23が48.50重量%、Ga23が46.32重量%、SiO2が5.18重量%)、
点C(La23が48.50重量%、Ga23が47.50重量%、SiO2が4.00重量%)、
点D(La23が47.50重量%、Ga23が47.50重量%、SiO2が5.00重量%)、
点E(La23が47.50重量%、Ga23が46.32重量%、SiO2が6.18重量%)、
点F(La23が47.50重量%、Ga23が46.00重量%、SiO2が6.50重量%)、
点G(La23が47.98重量%、Ga23が46.00重量%、SiO2が6.02重量%)で囲まれる組成範囲内で原料を秤量する。
【0018】
なお、この組成範囲は、La23が47.50重量%から48.50重量%までとし、Ga23が46.00重量%から47.50重量%までとし、SiO2が4.00重量%から6.50重量%までとした組成範囲内から、La23が47.98重量%を越えていると共にGa23が46.32重量%未満の組成範囲を除いた組成範囲である。
次に、これらの原料を振動攪拌機で1時間混合させ、外径100mm×60mmの寸法をもったペレットに成形する。次に、ペレットを電気炉で1200℃の温度で、1時間空気中で焼成する。
【0019】
結晶の育成は、高周波加熱育成炉において、図2に示すように、イリジウム製のルツボ1を用いて行い。該ルツボ1の外側と上方にアルミナ及びジルコニアの断熱材2を設け、ホットゾーンを形成する。断熱材2の外側には、加熱用の高周波ワークコイル3を設置する。なお、ルツボ1底部には、熱電対4が設置されている。
【0020】
育成の際に、ルツボ1の中に焼成されたペレットをチャージし、加熱、融解させて所定温度の融液Lとする。そして、ランガサイト(La3Ga5SiO14)の種結晶Sを引き上げ軸5に固定し、所定の回転数と引上速度で融液Lからランガサイト単結晶Cを育成する。自動直径制御は、引き上げ軸5につながる重量センサ6で検出した結晶の重量変化信号により行う。
【0021】
このようにして育成したランガサイト単結晶C(直径85cmで直胴部の長さが190cm)は、秤量時の組成範囲と同様の組成範囲内の単結晶となる。すなわち、上記組成範囲の秤量で育成した単結晶は、図1に示す点Aの組成では点a(La23が47.98重量%、Ga23が46.32重量%、SiO2が5.70重量%)の組成となり、点Bの組成では点b(La23が48.48重量%、Ga23が46.32重量%、SiO2が5.20重量%)となり、点Cの組成では点c(La23が48.49重量%、Ga23が47.49重量%、SiO2が4.02重量%)となり、点Dの組成では点d(La23が47.52重量%、Ga23が47.49重量%、SiO2が4.99重量%)となり、点Eの組成では点eLa23が47.52重量%、Ga23が46.32重量%、SiO2が6.16重量%)となり、点Fの組成では点f(La23が47.51重量%、Ga23が46.01重量%、SiO2が6.48重量%)となり、点Gの組成では点g(La23が47.98重量%、Ga23が46.02重量%、SiO2が6.00重量%)の組成となった。したがって、この単結晶は、図1に示す点a〜gで囲まれる組成範囲内の単結晶である。これらの組成範囲内におけるランガサイト単結晶には、二次相がほとんど発生していない。
【0022】
次に、このランガサイト単結晶Cは、スライスされて圧電デバイス用基板に加工される。さらに、この圧電デバイス用基板には、図3に示すように、その表面に励振電極(すだれ電極(櫛歯電極))7が形成されてSAWフィルタ(表面弾性波デバイス)8が作製される。
なお、上記圧電デバイス用基板は、表面弾性波音速(表面上を表面弾性波が伝搬したとき、すなわちデバイスが利用する一定方向(励振電極3の対向方向)に伝搬したときの伝搬速度)のバラツキが100ppm以下となっている。
【0023】
【実施例】
次に、本発明に係る圧電デバイス用基板の製造方法と圧電デバイス用基板、及びこれを用いた表面弾性波デバイスを、実施例により図1、図4から図7を参照して具体的に説明する。
【0024】
上記製造方法において、La23、Ga23及びSiO2の組成を変えて圧電デバイス基板を製造し、これらの基板における二次相の発生の有無を調べた実験データを、以下の表1及び図1に示す。なお、図1中のマークは、二次相が発生した場合は■、発生しない場合は□としている。また、図1中のX点は、従来の化学量論的組成(La23が48.04重量%、Ga23が46.06重量%、SiO2が5.91重量%)に基づいて育成した単結晶の場合であり、Y点は、上述したJ.Crystal Growth掲載の論文で記載されている組成(La23が47.99重量%、Ga23が46.30重量%、SiO2が5.71重量%)に基づいて育成した単結晶の場合である。
【0025】
【表1】

Figure 0003911967
【0026】
表1及び図1に示すように、上述した組成範囲内の組成で製造した試料番号AからGまでは、二次相が発生しておらず良質な結晶が得られているのに対し、上記組成範囲外の試料(試料番号HからM)については、二次相が発生してしまっていることがわかる。
【0027】
また、上記組成範囲のうち、La23が47.93重量%、Ga23が46.66重量%、SiO2が5.41重量%の組成で原料を秤量し、ペレットを作製してルツボ1中にチャージし、直径85cm直胴部の長さ190cmのランガサイト単結晶Cを育成した。そして、このランガサイト単結晶の結晶長さ方向における組成をICP分析(Inductive Coupled Plasma:誘導結合プラズマ)で分析した。その結果、表2及び図4、5に示すように、各成分の含有量は、投入組成の±0.02%以内の誤差で一致した。したがって、上部、中部、下部を通して均一性の良い結晶が得られたことが判明した。さらに、このランガサイト単結晶は、二次相も発生しなかった。
【0028】
【表2】
Figure 0003911967
【0029】
なお、比較例として、表3及び図6に示すように、原料を従来の化学量論比組成に基づいて秤量し、上記実施例と同様に、結晶を育成した。なお、この結晶の上部(肩部)の形成段階において二次相が発生した。そして、結晶上部から下部にかけて組成の変動が目標含有量の±0.5%であった。この結晶の下部は、弾性波素子として使用できないものであった。
【0030】
【表3】
Figure 0003911967
【0031】
次に、上記実施例のランガサイト単結晶から50度回転Y軸のウェハを作製した。このウェハ面内の表面弾性波音速(伝搬速度)のバラツキを調べるために、スパッタによってアルミ電極の励振電極7を形成し、上記実施形態のSAWフィルタ8を作製した。そして、ネットアナライザを用いてSAWフィルタ8の中心周波数fcを測定した。この測定では、SAWフィルタの入力端子に交流信号をかけ、出力端子から出力信号を測定し、周波数走査によってフィルタの出力信号と入力信号の相対振幅の周波数特性を得た。
【0032】
なお、中心周波数fcは、この周波数特性のピーク値から通過損失が−10dBになる通過帯域中心点の周波数である。ここで、表面弾性波音速vは、v=fc・2dという関係式によって求めることができる。なお、2dはSAWフィルタ8の励振電極(すだれ電極)7の周期であり、その寸法の精度は電子顕微鏡で確認されている。こうすることによって、SAWフィルタの中心周波数から表面弾性波音速を求め、表面弾性波音速の基板面内バラツキを調べることができる。さらに、結晶の上部、中部、下部からの基板の総合的なバラツキも調べた。その結果、図7に示すように、表面弾性波音速のバラツキが100ppm以下であり、結晶の組成の均一性によるSAWフィルタの特性均一性の向上が判明された。
【0033】
なお、結晶の組成変化が表面弾性波音速のバラツキに与える影響を調べるために、比較例として化学量論比組成に基づいて育成した従来例の結晶を実施例と同様に、圧電デバイス用基板に加工し、SAWフィルタを作製した。なお、この実験では、結晶上部の透明部しか使わなかった。このSAWフィルタの中心周波数を測定すると、結晶の育成方向の表面弾性波音速バラツキは400ppmであり、弾性波素子としてバラツキが大きすぎる結果となった。
【0034】
すなわち、本発明では、ランガサイトの原料であるLa23、Ga23及びSiO2のそれぞれ組成範囲を上記範囲内で秤量してルツボ1内で融解させ、該ルツボ内からランガサイト単結晶Cを引き上げ育成するので、二次相の発生が極めて少なく長さ方向及び横方向(ウェハ面内)の組成の均一な高品質ランガサイト単結晶が得られるとともに、均一な伝搬速度を有する基板が得られる。そして、表面弾性波音速バラツキが100ppm以下の圧電デバイス用基板が得られることから、該基板を用いることにより、SAWフィルタ特性の均一性が向上して、高品質なデバイスを高歩留まりで得ることができる。
【0035】
なお、Gaの揮発性を考慮した場合において、圧電デバイス基板及び表面弾性波デバイスを製造するには、図1に示す第2の組成範囲、すなわち、
図1に示す点A(La23が47.98重量%、Ga23が46.32重量%、SiO2が5.70重量%)、
点B(La23が48.50重量%、Ga23が46.32重量%、SiO2が5.18重量%)、
点C(La23が48.50重量%、Ga23が47.50重量%、SiO2が4.00重量%)、
点D(La23が47.50重量%、Ga23が47.50重量%、SiO2が5.00重量%)、
点E(La23が47.50重量%、Ga23が46.32重量%、SiO2が6.18重量%)で囲まれる組成範囲内で原料を秤量する。
【0036】
このように、さらに組成範囲を限定した秤量によって上記と同様に引上成長を行うと共に、引き上げたランガサイト単結晶を圧電デバイス用基板に加工し、該圧電デバイス用基板に上記と同様にSAWデバイスを作製する。
すなわち、Ga23の組成比が46.32重量%よりも低いと、Gaの揮発による組成比の変化が無視できなくなり、引上成長に影響を与えるが、上記第2の組成範囲にさらに限定してGa23の組成比を高くすることにより、二次相の発生を抑制するだけでなく、Gaの揮発性による成長への影響がほとんど無くなり、安定した成長を行うことができる。このような圧電デバイス用基板では、より組成比のバラツキが少なくなり、この基板を用いたSAWデバイスでは、さらに安定した特性を得ることができる。
【0037】
【発明の効果】
本発明によれば、La3Ga5SiO14の原料であるLa23、Ga23及びSiO2のそれぞれ組成範囲を上述した範囲内で秤量してルツボ内で融解させ、該ルツボ内からLa3Ga5SiO14の単結晶を引き上げ育成し、またLa3Ga5SiO14が、La23、Ga23及びSiO2の組成範囲が上述した範囲内の単結晶であるので、二次相の発生が極めて少ない高品質なLa3Ga5SiO14単結晶が得られ、結晶が割れ難くなると共に、成長速度を低くする必要が無く、生産効率を維持することができる。また、均一な中心周波数及び伝搬速度を有する基板を得ることができる。すなわち、長さ方向及び横方向の組成の均一なランガサイト単結晶を育成でき、この結晶から切り出された圧電デバイス用基板は、その表面弾性波伝搬速度のバラツキが大幅に減少し、弾性波素子性能のバラツキも十分に小さくすることができる。
【図面の簡単な説明】
【図1】 本発明に係る一実施形態における圧電デバイス基板及びその製造方法において、組成を変えて育成した各ランガサイト単結晶の組成表示及び二次相の発生の有無を示す状態図である。
【図2】 本発明に係る一実施形態における圧電デバイス基板の製造方法において、CZ法による引き上げ育成を示す概略的な断面図である。
【図3】 本発明に係る一実施形態の表面弾性波デバイスを示す斜視図である。
【図4】 本発明に係る一実施形態における圧電デバイス基板及びその製造方法において、結晶の長さ方向における測定個所を示す単結晶の概略的な正面図である。
【図5】 本発明に係る一実施形態における圧電デバイス基板及びその製造方法において、結晶の長さ方向における測定個所に対する各原料の含有量を示すグラフである。
【図6】 本発明に係る従来例における圧電デバイス基板及びその製造方法において、結晶の長さ方向における測定個所に対する各原料の含有量を示すグラフである。
【図7】 本発明に係る一実施形態における表面弾性波デバイスにおいて、SAWフィルタのSAW音速の基板面内バラツキを示すグラフである。
【符号の説明】
1 ルツボ
7 励振電極
8 SAW(表面弾性波)デバイス
C ランガサイト単結晶
L 融液
S 種結晶[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric device substrate manufacturing method suitable for a SAW filter or the like, a piezoelectric device substrate, and a surface acoustic wave device using the same.
[0002]
[Prior art]
In recent years, La 3 Ga 5 SiO 14 (Langasite) single crystal has a small elastic wave propagation velocity and frequency change rate due to temperature, and an electromechanical coupling coefficient (a mutual relationship between electric energy and mechanical energy) representing the magnitude of piezoelectricity. Since the coefficient indicating the conversion efficiency is large, research has been conducted on substrate materials for piezoelectric devices such as surface acoustic wave (SAW) filters (for example, H. Takeda, K. Shimamura, VIChani, T. Fukuda, Effect of starting melt composition on crystal growth of La 3 Ga 5 SiO 14 , J. Crystal Growth 197 (1999) 204.). In other words, this Langasite single crystal has the same temperature characteristics as quartz, and has an electromechanical coupling coefficient of about three times that of quartz, so that the bandwidth and size of SAW filters widely used in mobile phones and the like can be reduced. Is possible. For example, JP-A-10-126209 describes a surface acoustic wave device using a langasite single crystal.
Conventionally, in order to grow this langasite single crystal, the single crystal was grown by melting the raw material pellets based on the composition of the stoichiometric ratio.
[0003]
[Problems to be solved by the invention]
However, when a Langasite single crystal is grown with a conventionally used composition such as a stoichiometric composition, there is a disadvantage that a secondary phase is likely to appear in the crystal and the crystal is likely to break. Further, in order to suppress the generation of the secondary phase, the growth rate has to be set to a considerably low value, which causes a problem that the production efficiency is deteriorated. Furthermore, among the atoms constituting the langasite single crystal, Ga has the property of being easily volatilized. Therefore, depending on the composition, there is a disadvantage that stable pulling growth is difficult due to high volatility.
[0004]
The present invention has been made in view of the above-described problems, and a piezoelectric device substrate manufacturing method, a piezoelectric device substrate, and a method for producing a piezoelectric device substrate, which are less likely to generate a secondary phase and are less affected by Ga volatility, and the same. An object of the present invention is to provide a surface acoustic wave device.
[0005]
[Means for Solving the Problems]
As a result of studying the manufacturing technology of a langasite single crystal, the present inventors have found a composition condition in which almost no secondary phase exists. Furthermore, it was possible to find a composition condition that is less affected by the volatility of Ga and enables stable growth. Therefore, the present invention is a technique based on this finding, and the following configuration is adopted in order to solve the above problems.
[0006]
That is, the manufacturing method of the substrate for the piezoelectric device of the present invention is a method for manufacturing a substrate for a piezoelectric device for processing a substrate for the piezoelectric device by growing a langasite single crystal, B shown in the accompanying drawings 1 (La 2 O 3 48.50 wt%, Ga 2 O 3 46.32 wt%, SiO 2 is 5.18 wt%), point C (La 2 O 3 48.50 wt%, Ga 2 O 3 is 47. 50 wt%, SiO 2 is 4.00 wt%), surrounded by point D (La 2 O 3 is 47.50 wt%, Ga 2 O 3 is 47.50 wt%, SiO 2 is 5.00 wt%) is melted in a crucible and weighed in the composition range, characterized by pulling a single crystal is grown in the langasite from the crucible.
[0007]
The piezoelectric device substrate of the present invention is a piezoelectric device substrate formed of a single crystal of langasite, B shown in the accompanying drawings 1 (La 2 O 3 is 48.50 wt%, Ga 2 O 3 46.32 wt%, SiO 2 5.18 wt%), point C (La 2 O 3 48.50 wt%, Ga 2 O 3 47.50 wt%, SiO 2 4.00 wt%) ), Weighed within a composition range surrounded by point D (La 2 O 3 is 47.50 wt%, Ga 2 O 3 is 47.50 wt%, SiO 2 is 5.00 wt%) and melted in the crucible And a single crystal grown from the inside of the crucible.
[0008]
The surface acoustic wave device of the present invention, there is provided a piezoelectric device substrate formed of a single crystal of the grown langasite by pulling, the langasite are that shown in the accompanying drawings 1 b (La 2 O 3 There 48.48 wt%, Ga 2 O 3 is 46.32 wt%, SiO 2 is 5.20 wt%), point c (La 2 O 3 is 48.49 wt%, Ga 2 O 3 is 47.49 Wt.%, SiO 2 is 4.02 wt.%), Point d (La 2 O 3 is 47.52 wt.%, Ga 2 O 3 is 47.49 wt.%, SiO 2 is 4.99 wt.%) It is a single crystal within the composition range.
[0009]
In these piezoelectric device substrate manufacturing methods and piezoelectric device substrates, the composition ranges of La 2 O 3 , Ga 2 O 3 and SiO 2 , which are raw materials of La 3 Ga 5 SiO 14 , are based on the experimental results described later. Are weighed within the above range and melted in the crucible, and a single crystal of La 3 Ga 5 SiO 14 is pulled up and grown from the crucible, and La 3 Ga 5 SiO 14 is grown into La 2 O 3 and Ga 2 O 3. And SiO 2 is a single crystal within the above composition range, so that a high-quality La 3 Ga 5 SiO 14 single crystal with very little generation of secondary phase can be obtained, and the surface acoustic wave propagation velocity and uniform variation can be reduced. A substrate having a center frequency is obtained.
[0013]
In these piezoelectric device substrate manufacturing methods and piezoelectric device substrates, the composition ranges of La 2 O 3 , Ga 2 O 3 and SiO 2 which are raw materials of La 3 Ga 5 SiO 14 are further limited to the above ranges. melted in a crucible and by pulling a single crystal is grown of La 3 Ga 5 SiO 14 from the crucible, also La 3 Ga 5 SiO 14 is, La 2 O 3, Ga 2 O 3 and SiO 2 is above composition Since the single crystal is limited within the range, not only the generation of the secondary phase is suppressed, but also the influence on the growth due to the volatility of Ga can be reduced as much as possible by the high composition ratio of Ga 2 O 3 .
[0014]
The piezoelectric device substrate of the present invention, since the variation in heat transfer搬速degree in 100ppm or less, it is possible to improve the uniformity of the SAW filter characteristic.
[0015]
The surface acoustic wave device of the present invention is characterized in that an electrode for transmitting and receiving surface acoustic waves is formed on the surface of the piezoelectric device substrate of the present invention.
In this surface acoustic wave device, by using the piezoelectric device substrate of the present invention, high quality and less variation in characteristics and high reliability can be obtained.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, a piezoelectric device substrate manufacturing method, a piezoelectric device substrate, and a surface acoustic wave device using the same according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3.
[0017]
In order to manufacture the piezoelectric device substrate and the surface acoustic wave device of the present embodiment, first, the first composition range shown in FIG.
Point A shown in FIG. 1 (La 2 O 3 is 47.98 wt%, Ga 2 O 3 is 46.32 wt%, SiO 2 is 5.70 wt%),
Point B (La 2 O 3 is 48.50 wt%, Ga 2 O 3 is 46.32 wt%, SiO 2 is 5.18 wt%),
Point C (La 2 O 3 is 48.50 wt%, Ga 2 O 3 is 47.50 wt%, SiO 2 is 4.00 wt%),
Point D (La 2 O 3 is 47.50 wt%, Ga 2 O 3 is 47.50 wt%, SiO 2 is 5.00 wt%),
Point E (La 2 O 3 is 47.50 wt%, Ga 2 O 3 is 46.32 wt%, SiO 2 is 6.18 wt%),
Point F (La 2 O 3 is 47.50 wt%, Ga 2 O 3 is 46.00 wt%, SiO 2 is 6.50 wt%),
The raw materials are weighed within a composition range surrounded by point G (La 2 O 3 is 47.98 wt%, Ga 2 O 3 is 46.00 wt%, SiO 2 is 6.02 wt%).
[0018]
This composition range is such that La 2 O 3 is 47.50 wt% to 48.50 wt%, Ga 2 O 3 is 46.00 wt% to 47.50 wt%, and SiO 2 is 4. The composition excluding the composition range in which La 2 O 3 exceeds 47.98% by weight and Ga 2 O 3 is less than 46.32% by weight from the composition range from 00% to 6.50% by weight. It is a range.
Next, these raw materials are mixed with a vibration stirrer for 1 hour and formed into pellets having a size of an outer diameter of 100 mm × 60 mm. Next, the pellet is fired in air at a temperature of 1200 ° C. for 1 hour in an electric furnace.
[0019]
Crystal growth is performed in a high-frequency heating and growth furnace using an iridium crucible 1 as shown in FIG. An insulating material 2 made of alumina and zirconia is provided outside and above the crucible 1 to form a hot zone. A high-frequency work coil 3 for heating is installed outside the heat insulating material 2. A thermocouple 4 is installed at the bottom of the crucible 1.
[0020]
At the time of growth, the baked pellets are charged in the crucible 1 and heated and melted to obtain a melt L having a predetermined temperature. Then, a seed crystal S of langasite (La 3 Ga 5 SiO 14 ) is fixed to the pulling shaft 5, and a langasite single crystal C is grown from the melt L at a predetermined rotation speed and pulling speed. The automatic diameter control is performed by a weight change signal of the crystal detected by the weight sensor 6 connected to the pulling shaft 5.
[0021]
The langasite single crystal C (having a diameter of 85 cm and a length of the straight body portion of 190 cm) grown in this manner is a single crystal having a composition range similar to the composition range at the time of weighing. That is, the single crystal grown by weighing in the above composition range has a composition of a point A shown in FIG. 1 with a point a (La 2 O 3 is 47.98 wt%, Ga 2 O 3 is 46.32 wt%, SiO 2 5. In the composition of point B, point b (La 2 O 3 is 48.48% by weight, Ga 2 O 3 is 46.32% by weight, SiO 2 is 5.20% by weight) In the composition of point C, point c (La 2 O 3 is 48.49% by weight, Ga 2 O 3 is 47.49% by weight, SiO 2 is 4.02% by weight). (La 2 O 3 is 47.52 wt%, Ga 2 O 3 is 47.49 wt%, SiO 2 is 4.99 wt%). In the composition of point E, the point eLa 2 O 3 is 47.52 wt%. , Ga 2 O 3 is 46.32 wt%, SiO 2 is 6.16 wt%), and a point f (La 2 O 3 in the composition of the point F 47.51 double %, Ga 2 O 3 is 46.01 wt%, SiO 2 is 6.48 wt%), and the point in the composition of the point G g (La 2 O 3 is 47.98 wt%, Ga 2 O 3 is 46. 02 wt%, SiO 2 6.00 wt%). Therefore, this single crystal is a single crystal within the composition range surrounded by the points a to g shown in FIG. In the langasite single crystal within these composition ranges, almost no secondary phase is generated.
[0022]
Next, the langasite single crystal C is sliced and processed into a piezoelectric device substrate. Further, as shown in FIG. 3, the substrate for piezoelectric device has an excitation electrode (interdigital electrode (comb electrode)) 7 formed on the surface thereof, and a SAW filter (surface acoustic wave device) 8 is manufactured.
Note that the piezoelectric device substrate has variations in the surface acoustic wave sound velocity (propagation speed when the surface acoustic wave propagates on the surface, that is, when it propagates in a certain direction used by the device (opposite direction of the excitation electrode 3)). Is 100 ppm or less.
[0023]
【Example】
Next, a piezoelectric device substrate manufacturing method, a piezoelectric device substrate, and a surface acoustic wave device using the same according to the present invention will be described in detail with reference to FIGS. 1 and 4 to 7. To do.
[0024]
In the above manufacturing method, piezoelectric device substrates were manufactured by changing the composition of La 2 O 3 , Ga 2 O 3 and SiO 2 , and experimental data for examining the occurrence of secondary phases in these substrates were shown in the following table. 1 and FIG. The mark in FIG. 1 is marked with ■ when the secondary phase occurs, and □ when it does not occur. Further, the point X in FIG. 1 shows the conventional stoichiometric composition (La 2 O 3 is 48.04 wt%, Ga 2 O 3 is 46.06 wt%, SiO 2 is 5.91 wt%). This is a case of a single crystal grown on the basis of the above, and the Y point is the composition described in the above-mentioned paper published by J. Crystal Growth (La 2 O 3 is 47.9 wt%, Ga 2 O 3 is 46.30). This is a case of a single crystal grown on the basis of wt%, SiO 2 ( 5.71 wt%).
[0025]
[Table 1]
Figure 0003911967
[0026]
As shown in Table 1 and FIG. 1, sample numbers A to G manufactured with compositions in the above-described composition range have no secondary phase and good quality crystals are obtained. It can be seen that a secondary phase has been generated for samples outside the composition range (sample numbers H to M).
[0027]
Also, among the above composition ranges, La 2 O 3 is 47.93% by weight, Ga 2 O 3 is 46.66% by weight, and SiO 2 is 5.41% by weight. The crucible 1 was charged to grow a langasite single crystal C having a diameter of 85 cm and a length of 190 cm. The composition of the langasite single crystal in the crystal length direction was analyzed by ICP analysis (Inductive Coupled Plasma). As a result, as shown in Table 2 and FIGS. 4 and 5, the content of each component matched with an error within ± 0.02% of the input composition. Therefore, it was found that crystals with good uniformity were obtained through the upper part, the middle part, and the lower part. Furthermore, this langasite single crystal did not generate a secondary phase.
[0028]
[Table 2]
Figure 0003911967
[0029]
As a comparative example, as shown in Table 3 and FIG. 6, raw materials were weighed based on a conventional stoichiometric composition, and crystals were grown in the same manner as in the above examples. A secondary phase was generated in the formation stage of the upper part (shoulder part) of the crystal. And the variation of the composition from the upper part of the crystal to the lower part was ± 0.5% of the target content. The lower part of this crystal cannot be used as an acoustic wave device.
[0030]
[Table 3]
Figure 0003911967
[0031]
Next, a 50-degree rotated Y-axis wafer was fabricated from the langasite single crystal of the above example. In order to investigate the variation of the surface acoustic wave sound velocity (propagation velocity) in the wafer surface, the excitation electrode 7 of aluminum electrode was formed by sputtering, and the SAW filter 8 of the above embodiment was produced. Then, to measure the center frequency f c of the SAW filter 8 with a net analyzer. In this measurement, an AC signal was applied to the input terminal of the SAW filter, the output signal was measured from the output terminal, and the frequency characteristics of the relative amplitude of the filter output signal and the input signal were obtained by frequency scanning.
[0032]
The center frequency f c is the transmission loss from the peak value of the frequency characteristic is a frequency of the pass band center point to be -10 dB. Here, the surface acoustic wave velocities v can be found by relational expression v = f c · 2d. Note that 2d is the period of the excitation electrode (bending electrode) 7 of the SAW filter 8, and the accuracy of the dimensions is confirmed by an electron microscope. By doing this, the surface acoustic wave sound velocity can be obtained from the center frequency of the SAW filter, and the in-plane variation of the surface acoustic wave sound velocity can be examined. Furthermore, the total variation of the substrate from the top, middle and bottom of the crystal was also examined. As a result, as shown in FIG. 7, the variation of the surface acoustic wave sound velocity was 100 ppm or less, and it was found that the uniformity of the characteristics of the SAW filter was improved by the uniformity of the crystal composition.
[0033]
In order to investigate the effect of changes in crystal composition on the variation of surface acoustic wave sound velocity, a conventional crystal grown based on a stoichiometric composition was used as a comparative example on a piezoelectric device substrate in the same manner as in the examples. The SAW filter was manufactured by processing. In this experiment, only the transparent part above the crystal was used. When the center frequency of the SAW filter was measured, the surface acoustic wave sound speed variation in the crystal growth direction was 400 ppm, and the variation was too large as an acoustic wave device.
[0034]
That is, in the present invention, each of the composition ranges of La 2 O 3 , Ga 2 O 3 and SiO 2 which are raw materials of langasite are weighed within the above ranges and melted in the crucible 1, and the langasite single unit is extracted from the crucible. Since the crystal C is pulled up and grown, a high-quality langasite single crystal having a uniform composition in the length direction and the lateral direction (in the wafer plane) is obtained with very little secondary phase, and a substrate having a uniform propagation speed Is obtained. Since a substrate for a piezoelectric device having a surface acoustic wave sound velocity variation of 100 ppm or less can be obtained, the use of this substrate can improve the uniformity of SAW filter characteristics and provide a high-quality device with a high yield. it can.
[0035]
In addition, when considering the volatility of Ga, in order to manufacture the piezoelectric device substrate and the surface acoustic wave device, the second composition range shown in FIG.
Point A shown in FIG. 1 (La 2 O 3 is 47.98 wt%, Ga 2 O 3 is 46.32 wt%, SiO 2 is 5.70 wt%),
Point B (La 2 O 3 is 48.50 wt%, Ga 2 O 3 is 46.32 wt%, SiO 2 is 5.18 wt%),
Point C (La 2 O 3 is 48.50 wt%, Ga 2 O 3 is 47.50 wt%, SiO 2 is 4.00 wt%),
Point D (La 2 O 3 is 47.50 wt%, Ga 2 O 3 is 47.50 wt%, SiO 2 is 5.00 wt%),
The raw materials are weighed within a composition range surrounded by point E (La 2 O 3 is 47.50 wt%, Ga 2 O 3 is 46.32 wt%, SiO 2 is 6.18 wt%).
[0036]
In this way, pulling growth is performed in the same manner as described above by weighing with a further limited composition range, the pulled langasite single crystal is processed into a piezoelectric device substrate, and the SAW device is formed on the piezoelectric device substrate in the same manner as described above. Is made.
That is, if the composition ratio of Ga 2 O 3 is lower than 46.32% by weight, the change in the composition ratio due to the volatilization of Ga cannot be ignored and affects the pull-up growth. By limiting and increasing the composition ratio of Ga 2 O 3 , not only the generation of the secondary phase is suppressed, but also the growth of Ga due to the volatility is almost eliminated, and stable growth can be performed. Such a piezoelectric device substrate has less variation in composition ratio, and a SAW device using this substrate can obtain more stable characteristics.
[0037]
【The invention's effect】
According to the present invention, each of the composition ranges of La 2 O 3 , Ga 2 O 3 and SiO 2 which are raw materials of La 3 Ga 5 SiO 14 are weighed within the ranges described above and melted in the crucible, and pulling a single crystal is grown of La 3 Ga 5 SiO 14 from and La 3 Ga 5 SiO 14 is, because La 2 O 3, a composition range in the Ga 2 O 3 and the SiO 2 is a single crystal in the above-described range As a result, a high-quality La 3 Ga 5 SiO 14 single crystal with very few secondary phases can be obtained, the crystal is difficult to break, and it is not necessary to lower the growth rate, so that the production efficiency can be maintained. In addition, a substrate having a uniform center frequency and propagation speed can be obtained. That is, a Langasite single crystal having a uniform composition in the length direction and the transverse direction can be grown, and the variation of the surface acoustic wave propagation speed of the substrate for a piezoelectric device cut out from this crystal is greatly reduced. The variation in performance can be sufficiently reduced.
[Brief description of the drawings]
FIG. 1 is a state diagram showing composition display and occurrence of secondary phase of each langasite single crystal grown by changing the composition in a piezoelectric device substrate and a manufacturing method thereof according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing pulling growth by a CZ method in a method for manufacturing a piezoelectric device substrate according to an embodiment of the present invention.
FIG. 3 is a perspective view showing a surface acoustic wave device according to an embodiment of the present invention.
FIG. 4 is a schematic front view of a single crystal showing measurement points in the length direction of the crystal in the piezoelectric device substrate and the manufacturing method thereof according to an embodiment of the present invention.
FIG. 5 is a graph showing the content of each raw material with respect to measurement points in the crystal length direction in the piezoelectric device substrate and the manufacturing method thereof according to an embodiment of the present invention.
FIG. 6 is a graph showing the content of each raw material with respect to a measurement location in the length direction of a crystal in a piezoelectric device substrate and a manufacturing method thereof in a conventional example according to the present invention.
FIG. 7 is a graph showing in-plane variation of the SAW sound velocity of the SAW filter in the surface acoustic wave device according to the embodiment of the present invention.
[Explanation of symbols]
1 Crucible 7 Excitation electrode 8 SAW (surface acoustic wave) device C Langasite single crystal L Melt S Seed crystal

Claims (4)

ランガサイト単結晶を育成して圧電デバイス用基板に加工する圧電デバイス用基板の製造方法であって、
添付図面1に示すB(Laが48.50重量%、Gaが46.32重量%、SiOが5.18重量%)、
点C(Laが48.50重量%、Gaが47.50重量%、SiOが4.00重量%)、
点D(Laが47.50重量%、Gaが47.50重量%、SiOが5.00重量%)で囲まれる組成範囲内で秤量してルツボ内で融解させ、該ルツボ内からランガサイトの単結晶を引き上げ育成することを特徴とする圧電デバイス用基板の製造方法。
A method for manufacturing a piezoelectric device substrate, comprising growing a langasite single crystal and processing it into a piezoelectric device substrate,
B (La 2 O 3 is 48.50% by weight, Ga 2 O 3 is 46.32% by weight, SiO 2 is 5.18% by weight) shown in the accompanying drawings 1,
Point C (La 2 O 3 is 48.50% by weight, Ga 2 O 3 is 47.50% by weight, SiO 2 is 4.00% by weight),
Weigh within a composition range surrounded by point D (La 2 O 3 is 47.50 wt%, Ga 2 O 3 is 47.50 wt%, SiO 2 is 5.00 wt%) and melted in the crucible, A method for manufacturing a substrate for a piezoelectric device, characterized by pulling and growing a single crystal of langasite from within the crucible.
ランガサイトの単結晶で形成された圧電デバイス用基板であって、
添付図面1に示すB(Laが48.50重量%、Gaが46.32重量%、SiOが5.18重量%)、
点C(Laが48.50重量%、Gaが47.50重量%、SiOが4.00重量%)、
点D(Laが47.50重量%、Gaが47.50重量%、SiOが5.00重量%)で囲まれる組成範囲内で秤量してルツボ内で融解させ、該ルツボ内から引き上げ育成された単結晶であることを特徴とする圧電デバイス用基板。
A piezoelectric device substrate formed of a single crystal of langasite ,
B (La 2 O 3 is 48.50% by weight, Ga 2 O 3 is 46.32% by weight, SiO 2 is 5.18% by weight) shown in the accompanying drawings 1,
Point C (La 2 O 3 is 48.50% by weight, Ga 2 O 3 is 47.50% by weight, SiO 2 is 4.00% by weight),
Weigh within a composition range surrounded by point D (La 2 O 3 is 47.50 wt%, Ga 2 O 3 is 47.50 wt%, SiO 2 is 5.00 wt%) and melted in the crucible, A piezoelectric device substrate, wherein the substrate is a single crystal grown from the inside of the crucible.
引き上げにより育成されたランガサイトの単結晶で形成された圧電デバイス用基板であって、
前記ランガサイトは、
添付図面1に示す点b(Laが48.48重量%、Gaが46.32重量%、SiOが5.20重量%)、
点c(Laが48.49重量%、Gaが47.49重量%、SiOが4.02重量%)、
点d(Laが47.52重量%、Gaが47.49重量%、SiOが4.99重量%)で囲まれる組成範囲内の単結晶であることを特徴とする圧電デバイス用基板。
A piezoelectric device substrate formed of a single crystal of langasite grown by pulling,
The Langasite is
Point b shown in attached drawing 1 (La 2 O 3 is 48.48 wt%, Ga 2 O 3 is 46.32 wt%, SiO 2 is 5.20 wt%),
Point c (La 2 O 3 is 48.49 wt%, Ga 2 O 3 is 47.49 wt%, SiO 2 is 4.02 wt%),
It is a single crystal within a composition range surrounded by a point d (La 2 O 3 is 47.52 wt%, Ga 2 O 3 is 47.49 wt%, SiO 2 is 4.99 wt%). Substrates for piezoelectric devices.
請求項2又は3に記載の圧電デバイス基板の表面上に表面弾性波を送受信する電極を形成したことを特徴とする表面弾性波デバイス。  A surface acoustic wave device, wherein an electrode for transmitting and receiving surface acoustic waves is formed on the surface of the piezoelectric device substrate according to claim 2.
JP2000165114A 1999-12-28 2000-06-01 Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same Expired - Fee Related JP3911967B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000165114A JP3911967B2 (en) 2000-06-01 2000-06-01 Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same
EP00987694A EP1302570A4 (en) 1999-12-28 2000-12-21 Langasite single crystal ingot, substrate for piezoelectric device and method for manufacture thereof, and surface acoustic wave device
PCT/JP2000/009115 WO2001048276A1 (en) 1999-12-28 2000-12-21 Langasite single crystal ingot, substrate for piezoelectric device and method for manufacture thereof, and surface acoustic wave device
AU24003/01A AU2400301A (en) 1999-12-28 2000-12-21 Langasite single crystal ingot, substrate for piezoelectric device and method for manufacture thereof, and surface acoustic wave device
US10/297,491 US7090724B2 (en) 1999-12-28 2000-12-21 Langasite single crystal ingot, substrate for piezoelectric device and method for manufacture thereof, and surface acoustic wave device
TW90108950A TW512588B (en) 2000-06-01 2001-04-13 Langasite single crystal ingot, the manufacturing method of substrate for piezoelectric device and the substrate for the piezoelectric device, and the surface elastic wave device using the substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000165114A JP3911967B2 (en) 2000-06-01 2000-06-01 Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006193317A Division JP4270232B2 (en) 2006-07-13 2006-07-13 Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same

Publications (2)

Publication Number Publication Date
JP2001348299A JP2001348299A (en) 2001-12-18
JP3911967B2 true JP3911967B2 (en) 2007-05-09

Family

ID=18668639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000165114A Expired - Fee Related JP3911967B2 (en) 1999-12-28 2000-06-01 Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same

Country Status (1)

Country Link
JP (1) JP3911967B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7280008B2 (en) 2002-01-24 2007-10-09 Mitsubishi Materials Corporation Printed-circuit board, electronic part having shield structure, and radio communication apparatus
JP5098922B2 (en) * 2008-09-19 2012-12-12 三菱マテリアル株式会社 Piezoelectric device substrate and surface acoustic wave device using the same

Also Published As

Publication number Publication date
JP2001348299A (en) 2001-12-18

Similar Documents

Publication Publication Date Title
CN1902817B (en) Boundary acoustic wave device
JP3911967B2 (en) Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same
JP4270232B2 (en) Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same
JP3911992B2 (en) Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same
US4333842A (en) Piezoelectric single crystal and surface acoustic wave element employing the same
JP4353262B2 (en) Surface acoustic wave device and substrate for piezoelectric device
WO2010102563A1 (en) Piezoelectric crystal elements
US7090724B2 (en) Langasite single crystal ingot, substrate for piezoelectric device and method for manufacture thereof, and surface acoustic wave device
JP3968934B2 (en) Method for manufacturing substrate for piezoelectric device
JP7210828B2 (en) surface acoustic wave device
JP6485307B2 (en) Lithium tantalate single crystal and method for producing the same
CN101792928B (en) High temperature piezocrystal of melilite structure and preparation method and application thereof
JP4168796B2 (en) Single crystal pulling apparatus crucible and single crystal pulling apparatus
JP5098922B2 (en) Piezoelectric device substrate and surface acoustic wave device using the same
JPH11186870A (en) Langasite single crystal wafer
JP4239506B2 (en) Method for manufacturing substrate for piezoelectric device
JP4300889B2 (en) Surface acoustic wave device and substrate for surface acoustic wave device
JP3835286B2 (en) Piezoelectric material, substrate for piezoelectric device, and surface acoustic wave device
JP4168797B2 (en) Single crystal pulling apparatus crucible and single crystal pulling apparatus
JP4096577B2 (en) Method for producing langasite single crystal
JP3589064B2 (en) Piezoelectric crystal and piezoelectric element
JP2006282433A (en) Piezoelectric single crystal composition, piezoelectric vibrator, and surface acoustic wave device
JP3816646B2 (en) Piezoelectric substrate for surface acoustic wave device and surface acoustic wave device
JP4130107B2 (en) Piezoelectric substrate and surface acoustic wave device
JPH11340782A (en) Surface acoustic wave device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees