JPH11186870A - Langasite single crystal wafer - Google Patents

Langasite single crystal wafer

Info

Publication number
JPH11186870A
JPH11186870A JP34927097A JP34927097A JPH11186870A JP H11186870 A JPH11186870 A JP H11186870A JP 34927097 A JP34927097 A JP 34927097A JP 34927097 A JP34927097 A JP 34927097A JP H11186870 A JPH11186870 A JP H11186870A
Authority
JP
Japan
Prior art keywords
surface acoustic
single crystal
langasite
langasite single
acoustic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34927097A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Shiono
嘉幸 塩野
Masayuki Tanno
雅行 丹野
Toshihiko Riyuuou
俊彦 流王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP34927097A priority Critical patent/JPH11186870A/en
Publication of JPH11186870A publication Critical patent/JPH11186870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a smaller power flow angle, a large electromechanical coupling factor and excellent temperature characteristics by using La3 Ga5 SiO14 worked so as to propagate the surface acoustic waves of a specified value by Eulerian angle display. SOLUTION: This langasite single crystal wafer 1 for a surface acoustic wave device is worked so as to propagate the surface acoustic waves of (0 deg., >=45 deg. and <=54 deg., 0 deg.) by the Eulerian angle display and the propagation direction 2 of the surface acoustic waves is the direction for which θ is turned to be >=45 deg. and <=54 deg.. When Eulerian angle is out of the range, the power flow angle is increased and the large electromechanical coupling factor and the excellent temperature characteristics are not obtained. The langasite single crystal wafer is obtained by preparing a raw material for signal crystal by weighing and mixing La2 O3 , Ga2 O3 and SiO2 powder so as to be a stoichiometric composition, filling it inside a crucible and growing langasite single crystal indicated by a formula La3 Ga5 SiO14 by a Czochralski method by high frequency heating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、弾性表面波デバイ
ス用ランガサイト(La3 Ga5 SiO14)単結晶ウェ
ーハに関する。
The present invention relates to a langasite (La 3 Ga 5 SiO 14 ) single crystal wafer for a surface acoustic wave device.

【0002】[0002]

【従来の技術】弾性表面波デバイスは、電気信号を表面
波に変換して信号処理を行う回路素子であり、フィル
タ、共振子、遅延線などに用いられている。弾性表面波
デバイスは、圧電性を有する単結晶を適当な単結晶育成
法により育成し、一定の結晶方位を有するウェーハ状に
切断し、弾性表面波を送受信する電極を形成するウェー
ハ面を鏡面加工し、主としてアルミニウムからなるすだ
れ状電極を一定の方位に形成した後、チップ状に切り出
すことによって作られている。弾性表面波デバイスの性
能は使用するウェーハ材料及び結晶方位、言い換えれば
弾性表面波の伝搬方向により決定され、水晶、タンタル
酸リチウム、ニオブ酸リチウム、四ほう酸リチウムなど
がそれぞれ適当な結晶方位にウェーハ加工され使用され
る。
2. Description of the Related Art A surface acoustic wave device is a circuit element that performs signal processing by converting an electric signal into a surface wave, and is used for a filter, a resonator, a delay line, and the like. A surface acoustic wave device grows a single crystal having piezoelectricity by an appropriate single crystal growth method, cuts it into a wafer with a certain crystal orientation, and mirror-processes the wafer surface to form electrodes for transmitting and receiving surface acoustic waves. It is made by forming an interdigital electrode mainly made of aluminum in a certain direction and then cutting it out into chips. The performance of a surface acoustic wave device is determined by the wafer material used and the crystal orientation, in other words, the direction of propagation of the surface acoustic wave. Used.

【0003】近年、弾性バルク波で大きな電気機械結合
係数、零温度係数を有する材料としてLa3 Ga5 Si
14(ランガサイトと表記する)が報告(V.V.Bezdelki
n and E.E.Antonova, JOURNAL DE PHYSIQUE,4,139 -15
6,1994 )、実用化されている。一方、弾性表面波では
オイラー角表示で(90°,90°,21°) の伝搬方向でラ
ンガサイトが大きな電気機械結合係数、良好な温度特性
を有することが報告(佐藤、森、弾性波素子技術第150
委員会、第51回研究資料、21−27、1997参照)されてい
る。
In recent years, La 3 Ga 5 Si has been used as a material having a large electromechanical coupling coefficient and a zero temperature coefficient in an elastic bulk wave.
O 14 (written as Langasite) reported (VVBezdelki
n and EEAntonova, JOURNAL DE PHYSIQUE, 4,139 -15
6,1994). On the other hand, for surface acoustic waves, it was reported that Langasite has a large electromechanical coupling coefficient and good temperature characteristics in the propagation direction of (90 °, 90 °, 21 °) in Euler angles (Sato, Mori, Technology No. 150
Committee, 51st Research Material, 21-27, 1997).

【0004】[0004]

【発明が解決しようとする課題】上記報告では、ランガ
サイトの全ての弾性表面波伝搬方向は検討されていな
い。また、伝搬方向がオイラー角表示で(90°,90°,
21°) の弾性表面波はパワーフロー角が11°と大きく、
弾性表面波デバイスの設計、製作に不利であった。本発
明の目的はより小さいパワーフロー角を有し、かつ大き
な電気機械結合係数、良好な温度特性を有する伝搬方向
のランガサイト単結晶ウェーハを提供することである。
In the above-mentioned report, the propagation directions of all surface acoustic waves at langasite are not considered. In addition, the propagation direction is represented by Euler angles (90 °, 90 °,
(21 °) surface acoustic wave has a large power flow angle of 11 °,
This is disadvantageous for the design and manufacture of a surface acoustic wave device. It is an object of the present invention to provide a langasite single crystal wafer in the propagation direction having a smaller power flow angle, a large electromechanical coupling coefficient and good temperature characteristics.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究を行い本発明を完成したもので、
本発明は、オイラー角表示で(0°,45°以上54°以
下,0°) の弾性表面波が伝搬可能なように加工された
La3 Ga5 SiO14からなることを特徴とするランガ
サイト単結晶ウェーハを要旨とするものであり、このウ
ェーハは小さいパワーフロー角を有し、かつ大きな電気
結合係数と良好な温度特性を有する。
Means for Solving the Problems The present inventors have made intensive studies to solve the above problems and completed the present invention.
The present invention provides a langasite comprising La 3 Ga 5 SiO 14 processed so that a surface acoustic wave (0 °, 45 ° or more and 54 ° or less, 0 °) in Euler angle representation can propagate. The subject matter of the present invention is a single crystal wafer, which has a small power flow angle, a large electric coupling coefficient, and good temperature characteristics.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
ランガサイトの結晶方位とオイラー角の関係を説明する
と、ランガサイトは三方晶系、点群32に属し、六方晶系
表示の場合、1本のc軸(光軸)とそれに垂直な3本の
a軸(電気軸)を有している。座標軸と方位の関係は水
晶と同様にZ軸はc軸、X軸は3本あるa軸の一つに一
致させ、Z軸、X軸に垂直な軸をY軸にとる。X、Y、
Z軸は格子定数が既知であることからX線回折測定によ
り決定でき、{110}と垂直な方向がX軸、{10
0}と垂直な方向がY軸、{001}と垂直な方向がZ
軸であり、主要面のX線回折角はJCPDSカード4101
55に記載されている。軸の正負はオシロスコープを使用
した簡便な方向(二宮、NHK技術研究、24、215 −23
3 、1972)により決定することができる。さらに座標軸
(X、Y、Z)と右手系のオイラー角(φ,θ,ψ)は
図2に示す関係(弾性波素子技術ハンドブック、549 −
550 )にある。ここでX1 は弾性表面波の伝搬方向を、
2 は弾性表面波のビーム軸方向を、またX3 は基板の
深さ方向を表す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The relationship between the crystal orientation of langasite and the Euler angle will be described. Langasite belongs to a trigonal system and a point group 32. In the case of hexagonal system, one c-axis (optical axis) and three perpendicular to the c-axis (optical axis) are displayed. It has an a-axis (electric axis). The relationship between the coordinate axis and the azimuth is the same as that of quartz, in which the Z axis is coincident with the c axis, the X axis is coincident with one of the three a axes, and the axis perpendicular to the Z axis and the X axis is the Y axis. X, Y,
Since the lattice constant is known, the Z axis can be determined by X-ray diffraction measurement. The direction perpendicular to {110} is the X axis,
The direction perpendicular to 0} is the Y axis, and the direction perpendicular to {001} is Z
Axis and the X-ray diffraction angle of the main surface is JCPDS card 4101
55. The positive and negative axes are simple directions using an oscilloscope (Ninomiya, NHK Technical Research, 24, 215-23
3, 1972). Further, the coordinate axes (X, Y, Z) and the Euler angles (φ, θ, ψ) of the right-handed system are shown in FIG. 2 (elastic wave element technology handbook, 549−).
550). Where X 1 is the propagation direction of the surface acoustic wave,
X 2 indicates the direction of the beam axis of the surface acoustic wave, and X 3 indicates the depth direction of the substrate.

【0007】図1は本発明の弾性表面波デバイス用ラン
ガサイト単結晶ウェーハ1の加工方位を示したもので、
オイラー角表示で(0°,45°以上54°以下,0°) の
弾性表面波が伝搬可能なように加工されたもので、図1
において、弾性表面波の伝搬方向2はθを45°以上54°
以下とした方向である。オイラー角が上記の範囲外で
は、パワーフロー角が増大し、大きな電気結合係数や良
好な温度特性が得られない。例えば図1でθ=50°、オ
イラー角表示で(0°,50°,0°)のランガサイトウ
ェーハを座標軸(X、Y、Z)で表現するならば、140
°回転YカットX伝搬のランガサイトウェーハとなる。
図1のθが45°以上54°以下のランガサイトウェーハに
X軸方向に平行に弾性表面波が伝搬するとして、すなわ
ちパワーフロー角が0°であるとして、すだれ状アルミ
ニウム電極を形成し、共振子を製作すると、この共振子
は良好に弾性表面波を送受信することができ、パワーフ
ロー角はほぼ0°となる。
FIG. 1 shows the processing orientation of a langasite single crystal wafer 1 for a surface acoustic wave device according to the present invention.
It is processed so that surface acoustic waves (0 °, 45 ° or more and 54 ° or less, 0 °) in Euler angle display can be propagated.
In the propagation direction 2 of the surface acoustic wave, θ is 45 ° or more and 54 ° or more.
The direction is as follows. If the Euler angle is out of the above range, the power flow angle increases, and a large electric coupling coefficient and good temperature characteristics cannot be obtained. For example, in FIG. 1, if a Langasite wafer of (0 °, 50 °, 0 °) in θ = 50 ° and Euler angle display is represented by coordinate axes (X, Y, Z), 140
° It becomes a Langasite wafer of rotation Y cut X propagation.
Assuming that a surface acoustic wave propagates in parallel to the X-axis direction on a Langasite wafer having θ of 45 ° or more and 54 ° or less in FIG. 1, that is, assuming that the power flow angle is 0 °, an interdigital aluminum electrode is formed, and resonance occurs. When the resonator is manufactured, this resonator can transmit and receive surface acoustic waves well, and the power flow angle becomes almost 0 °.

【0008】本発明のランガサイト単結晶ウェーハは、
La23 、Ga23 、SiO2粉末を化学量論組成
となるように秤量、混合し、単結晶用原料を作製し、こ
の単結晶用原料をルツボ内に充填し、高周波加熱による
チョクラルスキー法で式La3 Ga5 SiO14で示され
るランガサイト単結晶を育成し、次いで、このランガサ
イト単結晶を円形状に加工し、オイラー角表示で(0
°,45°以上54°以下,0°) の弾性表面波が伝搬可能
となる方位に切断し、弾性表面波を送受信する電極を形
成するウェーハ面を鏡面加工し、他方の面を粗面加工し
て、製作される。
[0008] The langasite single crystal wafer of the present invention comprises:
La 2 O 3 , Ga 2 O 3 , and SiO 2 powders are weighed and mixed so as to have a stoichiometric composition to prepare a single crystal raw material, and the single crystal raw material is filled in a crucible and heated by high frequency heating. A langasite single crystal represented by the formula La 3 Ga 5 SiO 14 is grown by the Czochralski method, and then the langasite single crystal is processed into a circular shape, and expressed as (0
(45 ° or more, 54 ° or less, 0 ° or less), the surface is cut so that the surface acoustic wave can propagate, the surface of the wafer on which electrodes for transmitting and receiving the surface acoustic wave are formed is mirror-finished, and the other surface is roughened. And it is produced.

【0009】この様に、オイラー角表示で(0°,45°
以上54°以下,0°) の弾性表面波が伝搬可能なように
加工されたランガサイト単結晶ウェーハを使用すること
により、弾性表面波デバイスの設計、製作が容易になる
と同時に良好な特性を有する弾性表面波デバイスを提供
することができる。
Thus, the Euler angle display (0 °, 45 °
(54 ° or less, 0 °) The use of a langasite single crystal wafer processed so that surface acoustic waves can be propagated makes it easy to design and manufacture surface acoustic wave devices and has good characteristics. A surface acoustic wave device can be provided.

【0010】[0010]

【実施例】(実施例)La23 、Ga23 、SiO
2 粉末を化学量論組成となるように秤量、混合して単結
晶用原料を作製し、この単結晶用原料をルツボ内に充填
し、高周波加熱によるチョクラルスキー法により直径80
mm、長さ50mmの式La3 Ga5 SiO14で示されるラン
ガサイト単結晶を育成した。このランガサイト単結晶を
円形状に加工し、さらにオイラー角表示で(0°,50
°,0°) の弾性表面波が伝搬可能となる方位に切断
し、弾性表面波を送受信する電極を形成するウェーハ面
を鏡面加工、他方の面を粗面加工し、直径3インチ、厚
さ0.5 mmの図1に示すθが50°のウェーハを20枚製作し
た。
EXAMPLES (Examples) La 2 O 3 , Ga 2 O 3 , SiO
2 The powder was weighed and mixed so as to have a stoichiometric composition to prepare a single crystal raw material.The single crystal raw material was filled in a crucible, and the diameter was adjusted to 80 mm by Czochralski method using high frequency heating.
A langasite single crystal represented by the formula La 3 Ga 5 SiO 14 having a length of 50 mm and a length of 50 mm was grown. This langasite single crystal was processed into a circular shape, and further expressed in Euler angles (0 °, 50 °).
(0 °, 0 °) in a direction that allows surface acoustic waves to propagate, mirror-finish the wafer surface on which electrodes for transmitting and receiving surface acoustic waves are to be formed, and roughen the other surface, and have a diameter of 3 inches and a thickness of 3 inches. Twenty 0.5 mm wafers having a θ of 50 ° shown in FIG. 1 were manufactured.

【0011】このランガサイトウェーハにX軸方向と平
行に弾性表面波が伝搬するとして、すだれ状アルミニウ
ム電極を形成し、共振子を製作したところ、この共振子
は良好に弾性表面波を送受信することができ、パワーフ
ロー角がほぼ0°であった。また、−25℃から+75℃の
温度範囲で共振周波数変化を観測したところ、全ての共
振子で260ppm以下と周波数温度変化が小さいことが分か
った。また伝搬速度差から電気機械結合係数を測定する
方法(弾性波素子技術ハンドブック、338 −339 参照)
により電気機械結合係数を測定したところ、全ての共振
子において0.2%以上0.3 %以下と大きな電気機械結合
係数が得られた。
Assuming that a surface acoustic wave propagates parallel to the X-axis direction on this langasite wafer, an interdigital aluminum electrode is formed and a resonator is manufactured. This resonator can transmit and receive surface acoustic waves favorably. And the power flow angle was almost 0 °. In addition, when the resonance frequency change was observed in the temperature range from -25 ° C to + 75 ° C, it was found that the frequency temperature change was small at 260 ppm or less for all resonators. In addition, a method of measuring the electromechanical coupling coefficient from the difference in propagation speed (see Elastic Wave Device Technology Handbook, 338-339)
As a result, a large electromechanical coupling coefficient of 0.2% or more and 0.3% or less was obtained for all the resonators.

【0012】[0012]

【発明の効果】本発明によると、パワーフロー角が小さ
く、電気結合係数が大きく、温度特性が良好で、設計、
製作が容易な弾性表面波デバイスを提供することができ
る。
According to the present invention, the power flow angle is small, the electric coupling coefficient is large, the temperature characteristics are good, and the design,
A surface acoustic wave device that can be easily manufactured can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のランガサイト単結晶ウェーハの加工方
位を説明した図である。
FIG. 1 is a diagram illustrating the processing orientation of a langasite single crystal wafer of the present invention.

【図2】座標軸(X、Y、Z)と右手系のオイラー角の
関係を説明した図である。
FIG. 2 is a diagram illustrating a relationship between coordinate axes (X, Y, Z) and Euler angles of a right-handed system.

【符号の説明】[Explanation of symbols]

1…ランガサイト単結晶ウェーハ 2…弾性表面波の伝搬方向 1. Langasite single crystal wafer 2. Propagation direction of surface acoustic wave

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 オイラー角表示で(0°,45°以上54°
以下,0°) の弾性表面波が伝搬可能なように加工され
たLa3 Ga5 SiO14からなることを特徴とするラン
ガサイト単結晶ウェーハ。
1. An Euler angle display (0 °, 45 ° or more and 54 ° or more)
A langasite single crystal wafer made of La 3 Ga 5 SiO 14 processed so that a surface acoustic wave of 0 °) can be propagated.
JP34927097A 1997-12-18 1997-12-18 Langasite single crystal wafer Pending JPH11186870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34927097A JPH11186870A (en) 1997-12-18 1997-12-18 Langasite single crystal wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34927097A JPH11186870A (en) 1997-12-18 1997-12-18 Langasite single crystal wafer

Publications (1)

Publication Number Publication Date
JPH11186870A true JPH11186870A (en) 1999-07-09

Family

ID=18402636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34927097A Pending JPH11186870A (en) 1997-12-18 1997-12-18 Langasite single crystal wafer

Country Status (1)

Country Link
JP (1) JPH11186870A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033780A1 (en) * 2001-10-16 2003-04-24 Utar Scientific Inc. Method of growing piezoelectric lanthanide gallium crystals
KR100382160B1 (en) * 1999-10-20 2003-05-01 신건철 The Langasite Powder and method for manufacturing Langasite powder
KR100450905B1 (en) * 2002-08-09 2004-10-01 엘지이노텍 주식회사 Optimal cut saw device and the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100382160B1 (en) * 1999-10-20 2003-05-01 신건철 The Langasite Powder and method for manufacturing Langasite powder
WO2003033780A1 (en) * 2001-10-16 2003-04-24 Utar Scientific Inc. Method of growing piezoelectric lanthanide gallium crystals
KR100450905B1 (en) * 2002-08-09 2004-10-01 엘지이노텍 주식회사 Optimal cut saw device and the method

Similar Documents

Publication Publication Date Title
KR970004619B1 (en) Surface acoustic wave device
US4333842A (en) Piezoelectric single crystal and surface acoustic wave element employing the same
JPH11186870A (en) Langasite single crystal wafer
Takeda et al. Growth and characterization of lanthanum calcium oxoborate LaCa4O (BO3) 3 single crystals
JP7210828B2 (en) surface acoustic wave device
US4019074A (en) LiNbO3 saw device
US4511817A (en) Temperature compensated orientation of berlinite for surface acoustic wave devices
CA1233094A (en) Temperature compensated orientations of berlinite for surface acoustic wave devices
Bornand et al. An Alternative Route for the Synthesis of Oriented LiNbO 3 Thin Films
JP4300889B2 (en) Surface acoustic wave device and substrate for surface acoustic wave device
JP3911967B2 (en) Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same
Klemenz et al. High‐Quality 2 Inch La3Ga5. 5Ta0. 5O14 and Ca3TaGa3Si2O14 Crystals for Oscillators and Resonators
JP4353262B2 (en) Surface acoustic wave device and substrate for piezoelectric device
JP4270232B2 (en) Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same
JP3835286B2 (en) Piezoelectric material, substrate for piezoelectric device, and surface acoustic wave device
JP3911992B2 (en) Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same
JP3968934B2 (en) Method for manufacturing substrate for piezoelectric device
JPH10126209A (en) Surface acoustic wave device
Takeda et al. High coupling and high velocity surface acoustic waves using ac‐axis oriented ZnO film on translucent Al2O3 ceramics
Dieulesaint et al. Properties of piezoelectric Selenium and Selenium layers
Klemenz et al. HIGH-QUALITY 2 INCH La, Ga,', Ta0_, 0, AND Ca, TaGa, Si, O “CRYSTALS FOR OSCILLATORS AND RESONATORS
JPH0580171B2 (en)
JPH11340782A (en) Surface acoustic wave device
EP0243215B1 (en) A single crystal wafer of lithium tantalate
JPH02248110A (en) Surface acoustic wave device