JP4168796B2 - Single crystal pulling apparatus crucible and single crystal pulling apparatus - Google Patents

Single crystal pulling apparatus crucible and single crystal pulling apparatus Download PDF

Info

Publication number
JP4168796B2
JP4168796B2 JP2003077446A JP2003077446A JP4168796B2 JP 4168796 B2 JP4168796 B2 JP 4168796B2 JP 2003077446 A JP2003077446 A JP 2003077446A JP 2003077446 A JP2003077446 A JP 2003077446A JP 4168796 B2 JP4168796 B2 JP 4168796B2
Authority
JP
Japan
Prior art keywords
single crystal
crucible
pulling apparatus
crystal pulling
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003077446A
Other languages
Japanese (ja)
Other versions
JP2004284853A (en
Inventor
敦 坪井
希 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003077446A priority Critical patent/JP4168796B2/en
Publication of JP2004284853A publication Critical patent/JP2004284853A/en
Application granted granted Critical
Publication of JP4168796B2 publication Critical patent/JP4168796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Details (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、LaGaSiO14(ランガサイト)の単結晶を引上げ成長するための単結晶引上装置用坩堝及び単結晶引上装置に関する。
【0002】
【従来の技術】
La3Ga5SiO14(ランガサイト)の単結晶は、温度による弾性波伝搬速度や周波数の変化率が小さく、圧電性の大きさを示す電気機械結合係数が大きいことから、表面弾性波フィルタ等の圧電デバイスの基板材料として研究が行われている。すなわち、このランガサイト単結晶は水晶と同等の温度特性を有し、しかも電気機械結合係数が水晶の3倍というように大きいことから、ランガサイト単結晶を用いると、携帯電話等に多用されているSAWフィルタの広帯域化と小型化を図ることが可能となる(例えば、特許文献1参照。)。
この単結晶を製造する方法として、育成速度を速く設定することができるチョクラルスキー法による単結晶育成方法がある。
【0003】
このチョクラルスキー法による育成方法では、予め単結晶原料を容器となる坩堝内に充填した後これを加熱して融解させ、その融液にシードといわれる種結晶を接触させた後、回転させながらゆっくりと引き上げ、ある程度融液を残して育成を終了する。
このときに使われる単結晶引上装置の一つに誘導加熱を利用する装置が知られている。この装置は、垂直な中心軸を有する加熱コイル内に底部と側壁とからなる坩堝を配しており、加熱コイルにより坩堝を誘導加熱して内部の原料を溶融させ、貯留した融液から単結晶を引き上げることによって単結晶を育成させる。
【0004】
しかし、加熱コイルによって坩堝を誘導加熱しても、底部は側壁部よりも加熱コイルから離れているために渦電流の発生が少なく発熱が不十分であった。そのため、坩堝内に発生する自然対流が弱くなり、融液界面の成長速度が安定しないために、得られたランガサイト単結晶から作製したウエハ面内における表面弾性波速度のバラツキが大きく、均一な単結晶を育成するのが困難であった。
【0005】
また、坩堝下部のほうが坩堝上部よりも温度が高くなるという適正な温度勾配を得にくいため、結晶成長時に融液から結晶になる際の潜熱を逃がしにくく、単結晶内に二次相等の結晶欠陥が生じ、結晶の長尺化に影響を及ぼす可能性があった。
従来、これらを解決する単結晶引上装置用坩堝として、適正な温度勾配を得るために、坩堝底部に補助ヒータを配設して加熱することによって、坩堝下部の温度を上部よりも高温となるように補正するものが提案されている(例えば、特許文献2参照。)。
【0006】
【特許文献1】
特開平10−126209号公報
【特許文献2】
特開昭63−103889号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来の単結晶引上装置用坩堝においては、補助ヒータを配設するスペースが必要となるとともに、補助ヒータを加熱コイルとは別に配設して制御する必要が生じるため、適正な温度勾配を付与して制御するのが困難であった。そのため、単一相で長尺な単結晶を得ることが未だ困難であった。
本発明は上記事情に鑑みて成されたものであり、適正な温度勾配を容易に設けることができる単結晶引上装置用坩堝及び単結晶引上装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するため、以下の手段を採用する。
本発明の単結晶引上装置用坩堝は、垂直な中心軸を有する加熱コイル内に配され、該コイルにより誘導加熱されて内部の原料を溶融し貯留された融液からLa Ga SiO 14 (ランガサイト)の単結晶を引き上げる単結晶引上装置坩堝であって、側壁を構成する円筒状部材と、底部を構成する円板状部材とから構成されるとともに、該円筒状部材および円板状部材はそれぞれイリジウムで形成され、前記円板状部材の板厚が、前記円筒状部材の板厚の80%以下であることを特徴とする。
【0009】
この単結晶引上装置用坩堝には、La Ga SiO 14 (ランガサイト)単結晶原料が収納されるので、単結晶育成時に融液の界面における成長速度が一様なランガサイト単結晶を育成できる。また結晶欠陥が抑えられるので、長尺なランガサイト単結晶を製造することができる。また、坩堝を構成する金属としてイリジウムを用いているので、効率よい高周波誘導加熱ができるとともに、高温融点を有する単結晶原料も溶融できる。
また、円板状部材の板厚が円筒状部材の板厚の80%以下なので、後述する実験データから、円板状部材と円筒状部材との厚さの違いが鮮明となって、表面弾性波速度のバラツキが少なく直胴長が長くとれるとともに結晶欠陥の発生が抑制されるランガサイト単結晶を得ることができる。
【0014】
本発明の単結晶引上装置は、垂直な中心軸を有する加熱コイル内に金属製の坩堝を配し、該コイルにより前記坩堝を誘導加熱して内部の原料を溶融させ貯留した融液から単結晶を引き上げる単結晶引上装置であって、前記坩堝が、本発明に係る単結晶引上装置用坩堝であることを特徴とする。
この単結晶引上装置は、坩堝の下部表面に渦電流を多く流して誘導加熱させ、坩堝内に強い自然対流を発生させることができるので、単結晶育成時、固液界面の成長速度が一様になるとともに、坩堝下部側が上部側よりも高温となる適正な温度勾配を維持することができる。また結晶欠陥が抑えられ、長尺な単結晶を製造することができる。
【0015】
【発明の実施の形態】
次に、本発明の一実施形態について、図1及び図2を参照して説明する。
図1に示す単結晶引上装置10は、加熱コイル11、単結晶引上装置用坩堝12、断熱材13、熱反射体14、及び引上げ軸15を備えている。
加熱コイル11は、垂直な中心軸を有して構成されており、図示しない外部の高周波電源に接続されている。
坩堝12は、加熱コイル11内に中心軸を同じくして配され、図2に示すように側壁を構成する円筒状部材16と、底部を構成する円板状部材17とを互いに接合させて備えている。
円筒状部材16及び円板状部材17はイリジウムで構成されており、円板状部材17の板厚は、円筒状部材16より薄く(例えば、円筒状部材16の板厚の80%)形成されている。
坩堝12には、内部にランガサイト単結晶18の原料19が配設されており、加熱コイル11により誘導加熱されることによって発熱して原料19を溶融し、融液20となった後はこれを内部に貯留する。
【0016】
断熱材13は、加熱コイル11と坩堝12との間を断熱するもので、円筒状に形成されたアルミナ製の外部断熱材21と、外部断熱材21の内部に配設され、円筒状に形成されて内部に坩堝12を収納するジルコニア製の内部断熱材22とを備えている。
熱反射体14は、引き上げたランガサイト単結晶18が急激に冷却するのを防ぐために、ランガサイト単結晶18の周囲から放射される熱を反射するのものであり、坩堝12と同じ材質のイリジウム又は白金で円筒状に構成されている。この熱反射体14は、円筒状に形成されたアルミナ製の中間断熱材23を介して内部断熱材22の上方に配設されている。
引上げ軸15は、先端部にランガサイト種結晶24が固定されており、坩堝12の上方から坩堝12の内部に挿入されて配設されている。この引上げ軸15に所定の回転数と引上げ速度を付加することによって、融液20を坩堝12上方に引き上げてランガサイト単結晶18を育成する。
【0017】
次に、本発明に係る単結晶引上用坩堝12及び単結晶引上装置10を用いたランガサイト単結晶18の製造方法について説明する。
まず、化学量論比で酸化ランタンLa23(30mol%)、酸化ガリウム(III)Ga23(50mol%)、二酸化珪素SiO2(20mol%)の粉末を秤量する。それらを充分混合して混合粉末とし、これを100mm×60mmの寸法となるようにプレスを行い成形加工した後、ゴム袋に入れて真空引きを行うことによってゴムと密着させる。さらに、静水圧ラバープレスを行い、ゴムを除去した後焼結させてペレット状の原料19を得る。
この原料19を、図2に示すように坩堝12に挿入する。
【0018】
続いて、原料19を融解する。
加熱コイル11に図示しない高周波電源から高周波電圧を印加して電流を流す。すると、加熱コイル11と坩堝12とに磁界が発生し、これに伴う渦電流が円筒状部材16及び円板状部材17それぞれの表面に発生する。この渦電流と坩堝12を構成するイリジウムの電気抵抗とによって坩堝12が誘導加熱され、内部の原料19を加熱溶解させる。
このとき、加熱コイル11に近い位置となる円筒状部材16のほうが、円板状部材17よりも渦電流が発生しやすい。しかし、円板状部材17の板厚が円筒状部材16の板厚よりも薄いので、円板状部材17全体が発熱しやすくなり、円筒状部材16よりも高効率により速く高温になる。こうして坩堝12に、下部のほうが上部よりも高温となる適正な温度勾配を付加することができ、原料19を溶解して内部の対流が強い融液20を得る。
【0019】
次に、所定の温度とされた融液20から、ランガサイト単結晶18を育成する。
引上げ軸15を坩堝12内に挿入してランガサイト種結晶24を融液20に浸漬させ、所定の回転数と引上げ速度を付加する。すると、このランガサイト種結晶24を基にしてランガサイト単結晶18が析出する。
このとき、適正な温度勾配を融液20に付与していることから、界面での成長速度が一定となり均一なランガサイト単結晶18を得る。
【0020】
この単結晶引上用坩堝12及び単結晶引上装置10によれば、円板状部材17が円筒状部材16よりも薄く設定されて底部が効率的に誘導加熱されるので、坩堝12に適正な温度勾配を容易に付加することができ、融液20の界面における成長速度が一様なランガサイト単結晶18を育成できる。また、結晶欠陥が抑えられるので、長尺なランガサイト単結晶18を製造することができる。さらに、得られたランガサイト単結晶18から切り出された圧電デバイス用基板は、その表面弾性波速度のバラツキを大幅に減少させ、この基板上に作製する表面弾性波デバイス等の表面弾性波素子の製造歩留まりを大幅に向上することができる。
【0021】
なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では、坩堝12の円板状部材17を一様の板厚としているが、図3(a)に示すように、円板状部材25の中央部25aが、円板状部材25の周辺部25bより板厚が薄く形成されている坩堝26でも、同様の作用・効果を得ることができる。
また、図3(b)及び図3(c)に示すように、円筒状部材27の上部が厚く下部が薄くなるようなテーパ部27aが形成されている坩堝28、及び段差部27bが形成されている坩堝29の側壁が形成されていても、同様の作用・効果を得ることができる。
【0022】
【実施例】
上述した実施形態に係る単結晶引上用坩堝12及び単結晶引上装置10から、本実施例として直径115mm、直胴部の長さ180mmのランガサイト単結晶を育成した。また、比較例として従来の坩堝を用いて同形状のランガサイト単結晶を育成した。
このとき、融液中及び融液上の温度を熱電対で測定して、温度勾配の評価を実施した。結果を表1及び図4に示す。
この結果、本実施例のランガサイト単結晶のほうが、融液中及び融液上の何れの場合も従来よりも温度勾配が大きくなっており、また、二次相等の結晶欠陥の発生が皆無であった。
【0023】
【表1】

Figure 0004168796
【0024】
次に、円筒状部材と円板状部材との板厚比を変化させて構成した坩堝にてランガサイト単結晶を育成した。板厚比は、側壁に対する底部厚み比として、90%、80%、50%、20%とし、それぞれ実施例1から実施例4とした。また、比較例として厚み比が100%の従来の坩堝にてランガサイト単結晶を育成した。
各実施例における結晶に対し、上部(直胴下30mm位置)、中部(直胴下90mm位置)、下部(直胴下150mm位置)のそれぞれをスライスした。そして、得られたランガサイト単結晶の均質性を表面弾性波速度のバラツキとして評価するために、さらにラッピング、ポリッシングにより、図5に示す圧電デバイス用基板30を作製した。この圧電デバイス用基板30の表面に、一対のアルミ製励振電極31a、31bと、シリコン系樹脂製の一対の吸音部32a、32bとを形成してSAWフィルタ33を作製した。
なお、比較例の場合、直胴下部に二次相が発生したので結晶上部と中部のみを使用した。
【0025】
そして、ネットワークアナライザを用いてSAWフィルタ33の入力端子に交流信号をかけ、出力端子からの出力信号を測定し、周波数走査によって出力信号と入力信号との相対振幅の周波数特性を得て、このピーク値から挿入損失が−10dBとなる通過帯域中心点の周波数である中心周波数fcを測定した。
ここで、表面弾性波速度は、v=fc・2dという関係式によって求める。式中の2dは、SAWフィルタ33の励振電極31a、31bの配線周期であり電子顕微鏡で測定して求めた。測定結果を表2に示す。
【0026】
【表2】
Figure 0004168796
【0027】
各実施例における表面弾性波速度の平均値は2740.73m/s、バラツキの平均値は92.27ppmとなった。このことから、均質性の優れた圧電デバイス用基板の目安とされる100ppm以下を実現できたこととなり、結晶の均質性を向上させることができた。
一方、比較例では、それぞれ、2740.23m/s、250.63ppmとなり、特に結晶の育成方向の表面弾性波のバラツキは400ppm以上であり、表面弾性波素子としては大きすぎる結果となった。
【0028】
【発明の効果】
以上説明した本発明においては以下の効果を奏する。
本発明の単結晶引上用坩堝によれば、適切な温度勾配を容易に設けることができ、坩堝内に発生する自然対流が強くなることで、単結晶育成時における固液界面の成長速度を一様にするので、二次相等の異相及び結晶欠陥が発生するのを抑制し、単結晶構造の均一化及び長尺化を図ることができる。
【0029】
また、本発明の単結晶引上装置によれば、二次相等の異相及び結晶欠陥の発生を抑制し、均一化及び長尺化された単結晶を得ることができる。また、得られた単結晶から切り出された圧電デバイス用基板は、その表面弾性波速度のバラツキを大幅に減少させ、この基板上に作製する表面弾性波デバイス等の表面弾性波素子の製造歩留まりを大幅に向上することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態における単結晶引上装置の要部断面図である。
【図2】 本発明の一実施形態における単結晶引上装置用坩堝を示す断面図である。
【図3】 本発明の一実施形態における単結晶引上装置用坩堝の他の例を示す断面図である。
【図4】 本発明に係る実施例において、溶融した単結晶原料の融液中及び融液上の温度を示すグラフである。
【図5】 本発明に係る実施例において、育成したランガサイト単結晶で作製したSAWフィルタを示す斜視図である。
【符号の説明】
10 単結晶引上装置
11 加熱コイル
12、26、28、29 坩堝(単結晶引上装置用坩堝)
16、27 円筒状部材
17、25 円板状部材
18 La3Ga5SiO14(ランガサイト)単結晶
19 原料
20 融液
25a 中央部
25b 周辺部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crucible for a single crystal pulling apparatus and a single crystal pulling apparatus for pulling and growing a single crystal of La 3 Ga 5 SiO 14 (Langasite ) .
[0002]
[Prior art]
A single crystal of La 3 Ga 5 SiO 14 (Langasite) has a low rate of change in elastic wave propagation speed and frequency due to temperature and a large electromechanical coupling coefficient indicating the magnitude of piezoelectricity. Research has been conducted on substrate materials for piezoelectric devices. That is, this langasite single crystal has a temperature characteristic equivalent to that of quartz and has an electromechanical coupling coefficient as large as three times that of quartz. Therefore, when a langasite single crystal is used, it is often used for mobile phones and the like. Therefore, it is possible to reduce the bandwidth and size of the existing SAW filter (see, for example, Patent Document 1).
As a method for producing this single crystal, there is a single crystal growing method by the Czochralski method which can set the growing speed fast.
[0003]
In the growing method by this Czochralski method, after filling a single crystal raw material in a crucible serving as a container in advance, this is heated and melted, a seed crystal called a seed is brought into contact with the melt, and then rotated. Pull it up slowly and leave the melt to some extent to finish the growth.
An apparatus using induction heating is known as one of the single crystal pulling apparatuses used at this time. In this apparatus, a crucible composed of a bottom and a side wall is arranged in a heating coil having a vertical central axis. The crucible is induction-heated by the heating coil to melt the raw material inside, and a single crystal is obtained from the stored melt. A single crystal is grown by pulling up.
[0004]
However, even if the crucible was induction-heated by the heating coil, the bottom part was farther from the heating coil than the side wall part, so that eddy current was not generated and heat generation was insufficient. Therefore, the natural convection generated in the crucible becomes weak and the growth rate of the melt interface is not stable, so the variation in surface acoustic wave velocity in the wafer surface made from the obtained langasite single crystal is large and uniform. It was difficult to grow a single crystal.
[0005]
In addition, since it is difficult to obtain an appropriate temperature gradient in which the temperature at the lower part of the crucible is higher than that at the upper part of the crucible, it is difficult to release latent heat when the crystal is grown from the melt during crystal growth. May occur, which may affect the lengthening of the crystal.
Conventionally, as a crucible for a single crystal pulling apparatus that solves these problems, in order to obtain an appropriate temperature gradient, an auxiliary heater is provided at the bottom of the crucible and heated, so that the temperature at the bottom of the crucible becomes higher than that at the top. A correction is proposed in this way (see, for example, Patent Document 2).
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-126209 [Patent Document 2]
Japanese Patent Laid-Open No. 63-103889
[Problems to be solved by the invention]
However, in the conventional crucible for a single crystal pulling apparatus, a space for arranging the auxiliary heater is required, and it is necessary to control the auxiliary heater separately from the heating coil. It was difficult to control by applying a gradient. Therefore, it was still difficult to obtain a long single crystal with a single phase.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a crucible for a single crystal pulling apparatus and a single crystal pulling apparatus that can easily provide an appropriate temperature gradient.
[0008]
[Means for Solving the Problems]
The present invention employs the following means in order to solve the above problems.
The crucible for a single crystal pulling apparatus according to the present invention is arranged in a heating coil having a vertical central axis, and La 3 Ga 5 SiO 14 from a melt that is heated by induction heating by the coil to melt and store the raw materials inside. A crucible for a single crystal pulling apparatus for pulling up a single crystal of (Langasite), comprising a cylindrical member constituting a side wall and a disk-like member constituting a bottom, and the cylindrical member and the circle Each of the plate-like members is made of iridium, and the thickness of the disk-like member is 80% or less of the plate thickness of the cylindrical member .
[0009]
In this crucible for single crystal pulling apparatus , La 3 Ga 5 SiO 14 (Langasite) single crystal raw material is stored, so that a single growth rate of the Langasite single crystal at the interface of the melt is obtained when growing the single crystal. Can be nurtured. In addition, since crystal defects are suppressed, a long langasite single crystal can be produced. Further, since iridium is used as the metal constituting the crucible, efficient high-frequency induction heating can be performed, and a single crystal raw material having a high temperature melting point can be melted.
Further, since the thickness of the disk-shaped member is 80% or less of the thickness of the cylindrical member, the difference in thickness between the disk-shaped member and the cylindrical member becomes clear from the experimental data described later, and the surface elasticity It is possible to obtain a langasite single crystal in which the variation in wave velocity is small and the length of the straight body is long and the generation of crystal defects is suppressed.
[0014]
In the single crystal pulling apparatus of the present invention, a metal crucible is arranged in a heating coil having a vertical center axis, and the crucible is induction-heated by the coil to melt the raw material inside and store the single material from the stored melt. A single crystal pulling apparatus for pulling a crystal, wherein the crucible is a crucible for a single crystal pulling apparatus according to the present invention.
This single crystal pulling apparatus can induce a strong natural convection in the crucible by causing a large amount of eddy current to flow through the lower surface of the crucible to induce induction heating. At the same time, it is possible to maintain an appropriate temperature gradient in which the lower side of the crucible is hotter than the upper side. Moreover, a crystal defect is suppressed and a long single crystal can be manufactured.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described with reference to FIGS.
A single crystal pulling apparatus 10 shown in FIG. 1 includes a heating coil 11, a single crystal pulling apparatus crucible 12, a heat insulating material 13, a heat reflector 14, and a pulling shaft 15.
The heating coil 11 has a vertical central axis and is connected to an external high-frequency power source (not shown).
The crucible 12 is arranged in the heating coil 11 with the same central axis, and includes a cylindrical member 16 constituting a side wall and a disk-like member 17 constituting a bottom part, as shown in FIG. ing.
The cylindrical member 16 and the disc-like member 17 are made of iridium, and the thickness of the disc-like member 17 is thinner than that of the cylindrical member 16 (for example, 80% of the thickness of the cylindrical member 16). ing.
In the crucible 12, a raw material 19 of the langasite single crystal 18 is disposed. After being heated by induction heating by the heating coil 11, the raw material 19 is melted and becomes a melt 20. Is stored inside.
[0016]
The heat insulating material 13 insulates between the heating coil 11 and the crucible 12, and is disposed inside the external heat insulating material 21 made of alumina in a cylindrical shape and inside the external heat insulating material 21, and formed in a cylindrical shape. And an internal heat insulating material 22 made of zirconia for accommodating the crucible 12 therein.
The heat reflector 14 reflects the heat radiated from the periphery of the langasite single crystal 18 in order to prevent the pulled langasite single crystal 18 from rapidly cooling, and is made of the same material as the crucible 12. Or it is comprised by the cylindrical shape with platinum. The heat reflector 14 is disposed above the internal heat insulating material 22 via an alumina intermediate heat insulating material 23 formed in a cylindrical shape.
The pulling shaft 15 has a Langasite seed crystal 24 fixed to the tip, and is inserted into the crucible 12 from above the crucible 12. By adding a predetermined rotational speed and a pulling speed to the pulling shaft 15, the melt 20 is pulled up above the crucible 12 to grow the langasite single crystal 18.
[0017]
Next, a method for producing the langasite single crystal 18 using the single crystal pulling crucible 12 and the single crystal pulling apparatus 10 according to the present invention will be described.
First, lanthanum oxide La 2 O 3 (30 mol%), gallium oxide (III) Ga 2 O 3 (50 mol%), and silicon dioxide SiO 2 (20 mol%) are weighed in a stoichiometric ratio. These are mixed sufficiently to obtain a mixed powder, which is pressed and molded so as to have a size of 100 mm × 60 mm, and then put into a rubber bag and vacuumed to be brought into close contact with the rubber. Further, an isostatic rubber press is performed to remove the rubber and then sinter to obtain a pellet-shaped raw material 19.
This raw material 19 is inserted into the crucible 12 as shown in FIG.
[0018]
Subsequently, the raw material 19 is melted.
A high-frequency voltage is applied to the heating coil 11 from a high-frequency power source (not shown) to pass a current. Then, a magnetic field is generated in the heating coil 11 and the crucible 12, and an eddy current associated therewith is generated on the surfaces of the cylindrical member 16 and the disk-shaped member 17. The crucible 12 is induction-heated by this eddy current and the electric resistance of iridium constituting the crucible 12, and the raw material 19 inside is heated and melted.
At this time, the cylindrical member 16 located closer to the heating coil 11 is more likely to generate eddy currents than the disk-shaped member 17. However, since the thickness of the disk-shaped member 17 is thinner than the thickness of the cylindrical member 16, the entire disk-shaped member 17 is likely to generate heat, and the temperature becomes higher with higher efficiency and faster than the cylindrical member 16. Thus, an appropriate temperature gradient can be applied to the crucible 12 so that the lower portion has a higher temperature than the upper portion, and the raw material 19 is melted to obtain a melt 20 having strong internal convection.
[0019]
Next, the langasite single crystal 18 is grown from the melt 20 at a predetermined temperature.
The pulling shaft 15 is inserted into the crucible 12 and the langasite seed crystal 24 is immersed in the melt 20 to add a predetermined rotation speed and pulling speed. Then, the langasite single crystal 18 is precipitated based on the langasite seed crystal 24.
At this time, since an appropriate temperature gradient is applied to the melt 20, the growth rate at the interface is constant, and a uniform langasite single crystal 18 is obtained.
[0020]
According to the single crystal pulling crucible 12 and the single crystal pulling apparatus 10, the disk-shaped member 17 is set thinner than the cylindrical member 16 and the bottom is efficiently induction-heated. Thus, a single temperature gradient can be easily added, and the langasite single crystal 18 having a uniform growth rate at the interface of the melt 20 can be grown. Further, since crystal defects are suppressed, a long langasite single crystal 18 can be manufactured. Further, the piezoelectric device substrate cut out from the obtained langasite single crystal 18 greatly reduces the variation in the surface acoustic wave velocity, and the surface acoustic wave device such as the surface acoustic wave device manufactured on the substrate is reduced. The manufacturing yield can be greatly improved.
[0021]
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above embodiment, the disc-like member 17 of the crucible 12 has a uniform thickness, but as shown in FIG. 3A, the central portion 25a of the disc-like member 25 is a disc-like member. The same operation and effect can be obtained with the crucible 26 having a plate thickness thinner than the peripheral portion 25b of 25.
Further, as shown in FIGS. 3B and 3C, a crucible 28 in which a tapered portion 27a is formed so that the upper portion of the cylindrical member 27 is thick and the lower portion is thin, and a step portion 27b are formed. even side walls of which crucible 29 is formed, it is possible to obtain the same effects.
[0022]
【Example】
As this example, a langasite single crystal having a diameter of 115 mm and a straight body length of 180 mm was grown from the above-described single crystal pulling crucible 12 and single crystal pulling apparatus 10 according to the embodiment. Further, as a comparative example, a Langasite single crystal having the same shape was grown using a conventional crucible.
At this time, the temperature gradient was evaluated by measuring the temperature in the melt and on the melt with a thermocouple. The results are shown in Table 1 and FIG.
As a result, the Langasite single crystal of this example has a larger temperature gradient than the conventional case both in the melt and on the melt, and there is no occurrence of crystal defects such as secondary phases. there were.
[0023]
[Table 1]
Figure 0004168796
[0024]
Next, a langasite single crystal was grown in a crucible configured by changing the thickness ratio of the cylindrical member and the disk-shaped member. The plate thickness ratios were 90%, 80%, 50%, and 20% as the bottom thickness ratio with respect to the sidewalls, respectively, and Example 1 to Example 4, respectively. As a comparative example, a langasite single crystal was grown in a conventional crucible having a thickness ratio of 100%.
With respect to the crystal in each example, each of the upper part (position 30 mm below the straight cylinder), the middle part (position 90 mm below the straight cylinder), and the lower part (position 150 mm below the straight cylinder) was sliced. Then, in order to evaluate the homogeneity of the obtained langasite single crystal as variations in surface acoustic wave velocity, a piezoelectric device substrate 30 shown in FIG. 5 was produced by lapping and polishing. A pair of aluminum excitation electrodes 31a and 31b and a pair of sound absorbing portions 32a and 32b made of silicon resin were formed on the surface of the piezoelectric device substrate 30 to produce a SAW filter 33.
In the case of the comparative example, since the secondary phase was generated at the lower part of the straight cylinder, only the upper part and the middle part of the crystal were used.
[0025]
Then, an AC signal is applied to the input terminal of the SAW filter 33 using a network analyzer, the output signal from the output terminal is measured, and the frequency characteristic of the relative amplitude between the output signal and the input signal is obtained by frequency scanning. The center frequency fc, which is the frequency at the center point of the passband where the insertion loss is −10 dB, was measured from the value.
Here, the surface acoustic wave velocity is obtained by a relational expression of v = fc · 2d. 2d in the equation is the wiring period of the excitation electrodes 31a and 31b of the SAW filter 33, and was obtained by measurement with an electron microscope. The measurement results are shown in Table 2.
[0026]
[Table 2]
Figure 0004168796
[0027]
In each Example, the average value of the surface acoustic wave velocity was 2740.73 m / s, and the average value of the variation was 92.27 ppm. From this, it was possible to achieve 100 ppm or less, which is a standard for a piezoelectric device substrate having excellent homogeneity, and the crystal homogeneity could be improved.
On the other hand, in the comparative example, it was 2740.23 m / s and 250.63 ppm, respectively, and especially the variation of the surface acoustic wave in the crystal growth direction was 400 ppm or more, which was too large as a surface acoustic wave device.
[0028]
【The invention's effect】
The present invention described above has the following effects.
According to the single crystal pulling crucible of the present invention, an appropriate temperature gradient can be easily provided, and the natural convection generated in the crucible becomes strong, so that the growth rate of the solid-liquid interface during single crystal growth can be increased. Since they are uniform, it is possible to suppress the occurrence of heterogeneous phases such as secondary phases and crystal defects, and to make the single crystal structure uniform and long.
[0029]
Moreover, according to the single crystal pulling apparatus of the present invention, generation of a heterogeneous phase such as a secondary phase and crystal defects can be suppressed, and a uniform and elongated single crystal can be obtained. In addition, the piezoelectric device substrate cut out from the obtained single crystal greatly reduces the variation in the surface acoustic wave velocity, and the production yield of surface acoustic wave devices such as surface acoustic wave devices fabricated on this substrate is reduced. It can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of a single crystal pulling apparatus according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a crucible for a single crystal pulling apparatus according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view showing another example of a crucible for a single crystal pulling apparatus according to an embodiment of the present invention.
FIG. 4 is a graph showing temperatures in and on the melt of a molten single crystal raw material in an example according to the present invention.
FIG. 5 is a perspective view showing a SAW filter made of a grown langasite single crystal in an example according to the present invention.
[Explanation of symbols]
10 Single Crystal Pulling Device 11 Heating Coils 12, 26, 28, 29 Crucible (Crucible for Single Crystal Pulling Device)
16, 27 Cylindrical members 17, 25 Disc-shaped members 18 La 3 Ga 5 SiO 14 (Langasite) single crystal 19 Raw material 20 Melt 25a Central part 25b Peripheral part

Claims (2)

垂直な中心軸を有する加熱コイル内に配され、該コイルにより誘導加熱されて内部の原料を溶融し貯留された融液からLa Ga SiO 14 (ランガサイト)の単結晶を引き上げる単結晶引上装置坩堝であって、
側壁を構成する円筒状部材と、底部を構成する円板状部材とから構成されるとともに、該円筒状部材および円板状部材はそれぞれイリジウムで形成され、
前記円板状部材の板厚が、前記円筒状部材の板厚の80%以下であることを特徴とする単結晶引上装置用坩堝。
Single crystal pulling which is arranged in a heating coil having a vertical central axis and which pulls up a single crystal of La 3 Ga 5 SiO 14 (Langasite) from the melt melted by induction heating by the coil to melt the raw material inside. A crucible for the upper device,
It is composed of a cylindrical member that constitutes the side wall and a disc-like member that constitutes the bottom, and the cylindrical member and the disc-like member are each formed of iridium,
A crucible for a single crystal pulling apparatus , wherein the thickness of the disk-shaped member is 80% or less of the thickness of the cylindrical member .
垂直な中心軸を有する加熱コイル内に金属製の坩堝を配し、該コイルにより前記坩堝を誘導加熱して内部の原料を溶融させ貯留した融液から単結晶を引き上げる単結晶引上装置であって、
前記坩堝が、請求項記載の単結晶引上装置用坩堝であることを特徴とする単結晶引上装置。
This is a single crystal pulling apparatus in which a metal crucible is arranged in a heating coil having a vertical central axis, and the crucible is induction-heated by the coil to melt the raw materials inside and pull up the single crystal from the stored melt. And
The single crystal pulling apparatus according to claim 1, wherein the crucible is a crucible for a single crystal pulling apparatus according to claim 1 .
JP2003077446A 2003-03-20 2003-03-20 Single crystal pulling apparatus crucible and single crystal pulling apparatus Expired - Fee Related JP4168796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003077446A JP4168796B2 (en) 2003-03-20 2003-03-20 Single crystal pulling apparatus crucible and single crystal pulling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003077446A JP4168796B2 (en) 2003-03-20 2003-03-20 Single crystal pulling apparatus crucible and single crystal pulling apparatus

Publications (2)

Publication Number Publication Date
JP2004284853A JP2004284853A (en) 2004-10-14
JP4168796B2 true JP4168796B2 (en) 2008-10-22

Family

ID=33292198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003077446A Expired - Fee Related JP4168796B2 (en) 2003-03-20 2003-03-20 Single crystal pulling apparatus crucible and single crystal pulling apparatus

Country Status (1)

Country Link
JP (1) JP4168796B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5765805B2 (en) * 2011-06-02 2015-08-19 信越化学工業株式会社 Iridium crucible and method for producing lithium tantalate single crystal using the same
JP7155968B2 (en) * 2018-12-04 2022-10-19 Tdk株式会社 Single crystal growth crucible and single crystal manufacturing method

Also Published As

Publication number Publication date
JP2004284853A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
CN109905098A (en) A kind of thin film bulk acoustic wave resonator and preparation method
JP5601273B2 (en) Method for producing oxide single crystal
JP4168796B2 (en) Single crystal pulling apparatus crucible and single crystal pulling apparatus
JP4168797B2 (en) Single crystal pulling apparatus crucible and single crystal pulling apparatus
JP3911967B2 (en) Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same
JPH10287488A (en) Pulling up of single crystal
WO2001048276A1 (en) Langasite single crystal ingot, substrate for piezoelectric device and method for manufacture thereof, and surface acoustic wave device
CN107925399B (en) Substrate for surface acoustic wave element and method for manufacturing the same
JP3911992B2 (en) Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same
JP4270232B2 (en) Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same
JP6439733B2 (en) Nonmagnetic garnet single crystal growth method
JP4132846B2 (en) Single crystal manufacturing method
JP3770035B2 (en) Surface acoustic wave device and electronic apparatus, method for manufacturing surface acoustic wave device, and method for manufacturing piezoelectric material for surface acoustic wave device
JP4353262B2 (en) Surface acoustic wave device and substrate for piezoelectric device
JP4239506B2 (en) Method for manufacturing substrate for piezoelectric device
JP4276497B2 (en) Single crystal manufacturing method and apparatus
JP3968934B2 (en) Method for manufacturing substrate for piezoelectric device
JP2005089223A (en) Single crystal and its manufacturing method
JP4403720B2 (en) Method and apparatus for producing langasite single crystal and langasite single crystal
Wang et al. Bridgman growth and characterization of the structure ordered CTGS single crystal
JP4096577B2 (en) Method for producing langasite single crystal
JP5098922B2 (en) Piezoelectric device substrate and surface acoustic wave device using the same
JP2000219599A (en) Piezoelectric single crystal and piezoelectric element
JP2015137204A (en) single crystal growth apparatus
JP2021080139A (en) Method for manufacturing single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees