JP2017052601A - クレーンの振れ止め制御装置、及びクレーンの振れ止め制御方法 - Google Patents

クレーンの振れ止め制御装置、及びクレーンの振れ止め制御方法 Download PDF

Info

Publication number
JP2017052601A
JP2017052601A JP2015177006A JP2015177006A JP2017052601A JP 2017052601 A JP2017052601 A JP 2017052601A JP 2015177006 A JP2015177006 A JP 2015177006A JP 2015177006 A JP2015177006 A JP 2015177006A JP 2017052601 A JP2017052601 A JP 2017052601A
Authority
JP
Japan
Prior art keywords
rope
speed
pattern
trolley
rope length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015177006A
Other languages
English (en)
Other versions
JP2017052601A5 (ja
JP6449744B2 (ja
Inventor
木村 亮介
Ryosuke Kimura
亮介 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Plant Engineering Co Ltd
Original Assignee
JFE Plant Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Plant Engineering Co Ltd filed Critical JFE Plant Engineering Co Ltd
Priority to JP2015177006A priority Critical patent/JP6449744B2/ja
Publication of JP2017052601A publication Critical patent/JP2017052601A/ja
Publication of JP2017052601A5 publication Critical patent/JP2017052601A5/ja
Application granted granted Critical
Publication of JP6449744B2 publication Critical patent/JP6449744B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control And Safety Of Cranes (AREA)

Abstract

【課題】本発明は、より高精度の振れ止めを可能とする振れ止め制御装置を提供することを目的とする。【解決手段】振れ止め制御装置8は、基準パターン生成部810が、予め定められた仮のロープ長Lから求められる吊り荷12の振れ周期T1に基づき、吊り荷12が目標位置に到達したときに吊り荷12の振れが止まる、トロリー2の水平方向の加速度または速度のパターンである基準パターンを生成する。また、補償量算出部820が、仮のロープ長Lと吊り荷12の搬送時のロープ長(L−ΔL)との差による加速度への影響を補償する補償量Δd2X/dt2を算出する。そして、速度パターン生成部830が、基準パターンを補償量Δd2X/dt2で補償した補償結果に基づき、速度パターンを生成する。【選択図】図1

Description

本発明は、クレーンの振れ止め制御装置、及びクレーンの振れ止め制御方法に関する。
従来、クレーンの振れ止め制御の技術としては、例えば、特許文献1〜4に記載の技術がある。この特許文献1に記載の技術では、吊りロープで吊り荷を懸垂して目標位置まで搬送すると共に、吊り荷が目標位置に到達したときに吊り荷の振れが止まるように、トロリーの水平方向の速度パターンを生成し、生成した速度パターンをクレーンに出力するようになっている。その際、速度パターンの算出は、吊り荷の振れ周期を用いて行われる。これにより、横行・走行の終了時に、吊り荷の残留振れを抑制するようになっている。
しかしながら、上記特許文献1に記載の技術では、クレーンの搬送能率を向上させるために、横行・走行中に吊りロープのロープ長の変更を行うようにすると、横行・走行の終了時に、吊り荷の残留振れが発生するという問題があった。この問題を解決するため、特許文献2〜4に記載の技術では、吊り荷の搬送経路を区分して設定した各区間毎に、吊りロープの代表値や最適値を求めて吊り荷の振れ周期を算出するようになっている。
特開平6−305686号公報 特開平7−257876号公報 特開平11−35277号公報 特開2011−193022号公報
しかしながら、吊り荷の振れ周期は、吊りロープのロープ長の変化にともない次々と変化する。それゆえ、上記特許文献1、2、3に記載の技術では、代表値や最適値等の1つの数値を吊りロープのロープ長として、吊り荷の振れ周期を算出するようになっているため、横行または走行の終了時に、吊り荷に残留振れが発生する可能性があった。
本発明は、上記のような点に着目し、より高精度の振れ止めを可能とするクレーンの振れ止め制御装置、及びクレーンの振れ止め制御方法を提供することを目的とする。
本発明の一態様は、吊りロープのロープ長を変更しながら、吊りロープで吊り荷を懸垂して目標位置まで搬送すると共に、吊り荷が目標位置に到達したときに吊り荷の振れを止まらせるトロリーの水平方向の速度パターンを生成するクレーンの振れ止め制御装置であって、予め定められた仮のロープ長から求められる吊り荷の振れ周期に基づき、吊り荷が目標位置に到達したときに吊り荷の振れが止まる、トロリーの水平方向の加速度または速度のパターンである基準パターンを生成する基準パターン生成部と、仮のロープ長と吊り荷の搬送時のロープ長との差による加速度または速度への影響を補償する補償量を算出する補償量算出部と、基準パターンを補償量で補償した補償結果に基づき、速度パターンを生成する速度パターン生成部と、を備えたことを特徴とする。
本発明の一態様によれば、仮のロープ長から求められる吊り荷の振れ周期に基づくトロリーの水平方向への加速度または速度のパターンである基準パターンを、仮のロープ長と吊り荷の搬送時のロープ長との差によるトロリーの水平方向への加速度または速度への影響を補償する補償量で補償し、補償結果を基に速度パターンを生成する。それゆえ、ロープ長の変化にあわせて基準パターンをより適切に補償することができ、例えば、代表値や最適値等を用いて速度パターンを生成する方法に比べ、残留振れをより適切に抑制することができ、より高精度の振れ止めを行うことができる。
クレーンの概略構成を表す概念図である。 基準パターン及びトロリー速度を表すグラフである。 速度パターン演算処理を表すフローチャートである。 補償量及び補償後の加速度を表すグラフである。 クレーンの動作を表すシーケンス図である。 実施例を表すグラフである。 比較例を表すグラフである。
以下、本発明の実施形態を図面に基づき説明する。
本実施形態は、本発明を、吊りロープ11のロープ長を変更しながら、吊りロープ11で吊り荷12を懸垂して目標位置まで搬送すると共に、吊り荷12が目標位置に到達したときに吊り荷12の振れを止まらせるトロリー2の水平方向の速度パターンを生成するクレーン1の振れ止め制御装置8に適用したものである。なお、本実施形態では、理解の容易のため、クレーン1の水平方向への運動、つまり、横行・走行のうち、横行にのみ着目し、トロリー2の水平方向の速度パターンとして、横行時の速度パターンを生成する。
また、本実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の形状、構造、及び配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
(構成)
図1に示すように、本実施形態のクレーン1は、トロリー2と、ホイスト3と、ロープ長検出装置4と、トロリー位置検出装置5と、移動条件入力装置6と、ホイスト制御装置7と、振れ止め制御装置8と、トロリー制御装置9とを備える。
トロリー2は、ガーダ10上に配置され、吊りロープ11で吊り荷12を懸垂する。また、トロリー2は、走行用モータ210で駆動され、ガーダ10に沿って走行する。
ホイスト3は、トロリー2に搭載されている。ホイスト3は、巻上用モータ310で駆動され、吊りロープ11の巻き上げ及び巻き下げ、つまり、ロープ長の変更を行う。
ロープ長検出装置4は、吊りロープ11のロープ長を検出する。そして、ロープ長検出装置4は、検出結果をホイスト制御装置7に出力する。
トロリー位置検出装置5は、ガーダ10に沿った方向のトロリー2の位置を検出する。そして、トロリー位置検出装置5は、検出結果をトロリー制御装置9に出力する。
移動条件入力装置6は、クレーン1のオペレータの操作により、横行時の吊り荷12の始点と終点(目標位置)、及び横行中の吊りロープ11のロープ長の目標パターンが入力される。そして、移動条件入力装置6は、入力された情報(以下、「移動条件」とも呼ぶ)をホイスト制御装置7と振れ止め制御装置8とトロリー制御装置9とに出力する。
なお、本実施形態では、クレーン1のオペレータが、移動条件を入力する例を示したが、他の構成を採用することもできる。例えば、移動条件入力装置6が、各種センサの検出結果を基に、移動条件を自動的に入力する構成としてもよい。
ホイスト制御装置7は、振れ止め制御装置8からトロリー制御装置9に速度パターンが入力されると、横行を開始すると判定し、ロープ長検出装置4が出力した検出結果(ロープ長の実際値)と、移動条件入力装置6が出力した移動条件(ロープ長の目標パターン)とを同一とするモータ速度指令を生成する。そして、ホイスト制御装置7は、生成したモータ速度指令を巻上用モータ310に出力する。これにより、巻上用モータ310は、横行の実行中、つまりクレーン1による吊り荷12の搬送中に、モータ速度指令に従って回転速度を制御し、吊りロープ11の長さをロープ長の目標パターンどおりに変化させる。
振れ止め制御装置8は、吊りロープ11のロープ長を変更しながら、吊りロープ11で吊り荷12を懸垂して目標位置まで搬送すると共に、吊り荷12が目標位置に到達したときに吊り荷12の振れを止まらせるトロリー2の水平方向の速度パターンを搬送開始前に生成する。具体的には、振れ止め制御装置8は、基準パターン生成部810と、補償量算出部820と、速度パターン生成部830と、速度パターン補償部840とを備える。
基準パターン生成部810は、予め定められた仮のロープ長Lから求められる吊り荷12の振れ周期T1に基づき、吊り荷12が目標位置に到達したときに吊り荷12の振れが止まる、トロリー2の水平方向の加速度のパターン(以下、「基準パターン」とも呼ぶ)を生成する。仮のロープ長Lとしては、例えば、横行開始時のロープ長を採用できる。
基準パターンは、図2(a)に示すように、加速区間Iと、一定速度区間IIと、減速区間IIIとから構成され、加速区間Iは、走り始め部Aと、等速連結部Bとからなる。
走り始め部Aでは、基準パターン生成部810は、トロリー2の加速度d2X/dt2を振れ周期T1時間だけ一定の勾配で「0」から直線的に増大させる。すなわち、走り始め部Aではd2X/dt2=αt(α>0)と設定する。これにより、トロリー速度vは、下記(4)式のように、二次関数的に増大するので、図2(b)に示すように緩和曲線を描く。
v=(1/2)αt2 ………(4)
ここで、Xはトロリーの水平方向(ガーダ10に沿った方向)への移動距離である。
等速連結部Bでは、基準パターン生成部810は、トロリー2の加速度d2X/dt2を、振れ周期T1時間だけ走り始め部Aと同じ勾配で、αT1から「0」に直線的に減少させる。すなわち、等速連結部Bではd2X/dt2=−αt+2αT1と設定する。これにより、トロリー速度vは、下記(5)式のように、二次関数的に減少するので、図2(b)に示すように、走り始め部Aの緩和曲線と連続した二次関数の緩和曲線を描く。
v=−(1/2)αt2+2αT1t−αT1 2………(5)
この結果、加速区間Iでは、トロリー2の急激な速度切替を防止できる。それゆえ、トロリー2は、滑らかに走行し、車輪のスリップや駆動系のガタ等の発生を抑制できる。
また、一定速度区間IIでは、基準パターン生成部810は、トロリー2の加速度d2X/dt2を「0」に保持し、トロリー速度vを最大速度vmaxに維持する。一定速度区間IIの区間長は、横行を開始してからの経過時間が振れ周期T1の整数N倍の時間とする。
また、減速区間IIIでは、基準パターン生成部810は、加速区間Iの加速度のパターンを一定速度区間IIの中間点Qを中心に負側に反転させた加速度のパターンとする。
なお、基準パターンの生成方法としては、他の構成を採用することもでき、仮のロープ長Lから求められる吊り荷12の振れ周期T1に基づくものであればよい。例えば、特許文献1〜4に記載された加速度のパターンの生成方法を採用してもよい。
また、補償量算出部820、速度パターン生成部830、及び速度パターン補償部840は、速度パターン演算処理を実行する。速度パターン演算処理では、補償量算出部820等は、移動条件入力装置6が出力した移動条件を基に、仮のロープ長Lと吊り荷12の搬送時のロープ長(L−ΔL)との差による加速度への影響を補償する補償量Δd2X/dt2を算出し、算出した補償量Δd2X/dt2で基準パターンを補償した補償結果に基づき、トロリー2の速度パターンを生成する。速度パターン演算処理の詳細については後述する。
トロリー制御装置9は、振れ止め制御装置8から速度パターンが入力されると、横行を開始すると判定し、入力された速度パターンと、トロリー位置検出装置5が出力した検出結果(トロリー2の位置)とを基に、モータ速度指令を生成する。そして、トロリー制御装置9は、生成したモータ速度指令を走行用モータ210に出力する。これにより、走行用モータ210は、横行の実行中に、モータ速度指令に従って回転速度を制御し、トロリー2を速度パターンどおり、つまり、補償後の加速度パターンどおりに制御する。
(速度パターン演算処理)
次に、図3を参照し、補償量算出部820、速度パターン生成部830、及び速度パターン補償部840が実行する速度パターン演算処理について説明する。
図3に示すように、まず、ステップS101に移行して、補償量算出部820は、横行の開始時(搬送の開始時)からの経過時間tを設定する。経過時間tは、初期値を0[sec]とし、その後、このステップを実行するたびに0.1[sec]ずつ大きくする。
続いてステップS102に移行して、補償量算出部820は、ステップS101で設定した経過時間tにおける、吊りロープ11の振れ角θsの角加速度d2θs/dt2を算出する。振れ角θsとは、吊りロープ11のロープ長の変化を考慮しない場合の吊りロープ11の振れ角である。具体的には、補償量算出部820は、基準パターン生成部810で生成した加速度パターンから、経過時間tにおける加速度d2X/dt2を取得し、取得した加速度d2X/dt2に基づき、下記(9)式に従って、振れ角θsの角加速度d2θs/dt2を算出する。下記(9)式は、吊りロープ11のロープ長の変化を考慮しない場合の吊りロープ11の振れ角θsの角加速度d2θs/dt2に関する第1の運動方程式である。
d2θs/dt2=−(d2X/dt2)/L−g/L・θs ………(9)
ここで、gは重力加速度である。
続いてステップS103に移行して、補償量算出部820は、ステップS101で設定した経過時間tにおける、吊りロープ11の振れ角θの角加速度d2θ/dt2を算出する。振れ角θとは、吊りロープ11のロープ長の変化を考慮した場合の吊りロープ11の振れ角である。具体的には、補償量算出部820は、基準パターン生成部810で生成した加速度パターンから、経過時間tにおける加速度d2X/dt2を取得する。続いて、補償量算出部820は、移動条件(横行中の吊りロープ11のロープ長の目標パターン)に基づき、経過時間tにおけるロープ長の変化速度dL/dtとロープ長(L−ΔL)とを算出する。
続いて、補償量算出部820は、取得した加速度d2X/dt2と、変化速度dL/dtと、ロープ長(L−ΔL)とに基づき、下記(10)式に従って、振れ角θの角加速度d2θ/dt2を算出する。下記(10)式は、吊りロープ11のロープ長の変化を考慮した場合の吊りロープ11の振れ角θの角加速度d2θ/dt2に関する第2の運動方程式である。
d2θ/dt2=−d2X/dt2/(L−ΔL)−2dL/dt・dθ/dt(L−ΔL)−g/(L−ΔL)・θ ………(10)
続いてステップS104に移行して、補償量算出部820は、ステップS102で算出した振れ角θの角加速度d2θs/dt2と、ステップS103で算出した振れ角θsの角加速度Δd2θ/dt2とに基づき、下記(11)式に従って補償量Δd2X/dt2を算出する。
Δd2X/dt2=(d2θ/dt2−d2θs/dt2)×(L−ΔL) ………(11)
続いてステップS105に移行して、速度パターン生成部830は、基準パターン生成部810で生成した加速度パターンから、経過時間tにおける加速度d2X/dt2を取得する。続いて、速度パターン生成部830は、取得した加速度d2X/dt2に、ステップS104で算出した補償量Δd2X/dt2を加算し、補償後の加速度d2Xa/dt2を算出する。
d2Xa/dt2=d2X/dt2+Δd2X/dt2 ………(12)
続いてステップS106に移行して、速度パターン生成部830は、ステップS101で設定した経過時間tが、基準パターン生成部810で生成した基準パターンでトロリー2を移動させた場合に吊り荷12の目標位置への到着にかかる到着時間Te以上であるかを判定する。そして、速度パターン生成部830は、到着時間Te以上であると判定した場合には(Yes)、ステップS107に移行する。一方、速度パターン生成部830は、到着時間Te未満であると判定した場合には(No)、ステップS101に戻る。
これにより、ステップS101〜S106のフローを繰り返し実行し、図4(a)に示すように、ステップS101で設定した経過時間tそれぞれに対し、補償量Δd2X/dt2を算出し、図4(b)に示すように、補償後の加速度d2Xa/dt2を算出する。そして、算出した加速度d2Xa/dt2に基づき、補償後の加速度パターンを算出(生成)する。
続いてステップS107に移行して、補償量算出部820は、ステップS101〜S106で算出した補償後の加速度パターン(加速度d2Xa/dt2)を時間積分し、トロリー2の水平方向の速度パターンを算出する。続いて、補償量算出部820は、算出した速度パターン(速度dXa/dt)を時間積分し、トロリー2の総移動距離Xaを算出する。
ここで、算出した速度パターンには、トロリー2が水平方向、つまり、ガーダ10に沿った方向に一定速度で移動する一定速度区間が含まれる。
続いてステップS108に移行して、補償量算出部820は、移動条件入力装置6が出力した移動条件に基づき、横行時の吊り荷12の始点と終点(目標位置)との距離(以下、「目標総移動距離」とも呼ぶ)と、ステップS107で算出したトロリー2の総移動距離Xaとが同一であるか否かを判定する。そして、補償量算出部820は、同一であると判定した場合には(Yes)、ステップS109に移行する。一方、補償量算出部820は、同一でないと判定した場合には(No)、ステップS110に移行する。
ステップS109では、補償量算出部820は、ステップS107で算出した速度パターンをトロリー制御装置9に出力した後、この演算処理を終了する。
一方、ステップS110では、速度パターン補償部840は、ステップS101〜S106で算出した補償後の加速度パターン(補償結果)に従ってトロリー2を水平方向へ移動させた場合の吊り荷12の位置と目標位置との間のずれ量が「0」となるように、ステップS107で生成した速度パターンに含まれる一定速度区間の時間長を変化させる。
なお、本実施形態では、目標位置とのずれ量が「0」となるように速度パターンを補償する例を示したが、ずれ量が低減するように速度パターンを補償するものであればよい。
続いてステップS111に移行して、補償量算出部820は、ステップS110で補償した速度パターンをトロリー制御装置9に出力した後、この演算処理を終了する。
(動作その他)
次に、図5を参照し、クレーン1の動作について説明する。
まず、クレーン1のオペレータが、搬送対象となる吊り荷(例えばコイル)12を選択し、図5に示すように、横行時の吊り荷12の始点と終点(目標位置)、及び横行中の吊りロープ11のロープ長の目標パターン(移動条件)を選択する(ステップS201)。続いて、オペレータが、移動条件入力装置6を操作し、選択した移動条件を入力する(ステップS202)。すると、移動条件入力装置6が、入力された移動条件をホイスト制御装置7と振れ止め制御装置8とトロリー制御装置9とに出力する(ステップS203)。
続いて、振れ止め制御装置8の基準パターン生成部810が、図2(a)に示すように、仮のロープ長L(例えば、横行開始時のロープ長)から求められる吊り荷12の振れ周期T1に基づき、基準パターンを生成する(ステップS204)。続いて、振れ止め制御装置8の補償量算出部820、速度パターン生成部830、及び速度パターン補償部840が、速度パターン演算処理を実行し、図4(a)に示すように、移動条件入力装置6が出力した移動条件を基に、仮のロープ長Lと吊り荷12の搬送時のロープ長(L−ΔL)との差による加速度への影響を補償する補償量Δd2X/dt2を算出する。そして、図4(b)に示すように、算出した補償量Δd2X/dt2で基準パターンを補償し、補償後の加速度Δd2Xa/dt2に基づき、トロリー2の速度パターンを生成する(ステップS205)。
ここで、生成された速度パターンに基づくトロリー2の総移動距離Xaと、横行時の吊り荷12の始点と終点(目標位置)との距離(目標総移動距離)とが同一であったとする。即ち、速度パターンに補償の必要がなかったとする。すると、速度パターン生成部830が、生成された速度パターンをトロリー制御装置9に出力する(ステップS206)。
続いて、トロリー制御装置9が、出力された速度パターンと、トロリー位置検出装置5が出力したトロリー2の位置とを基にモータ速度指令を生成する。そして、トロリー制御装置9が、生成したモータ速度指令を走行用モータ210に出力する(ステップS207)。これにより、走行用モータ210が、モータ速度指令に従って、回転速度を制御し、トロリー2を速度パターンどおり、つまり、補償後の加速度パターンどおりに制御する。
また同時に、ホイスト制御装置7が、移動条件入力装置6が出力した移動条件(ロープ長の目標パターン)と、ロープ長検出装置4が出力した検出結果(ロープ長の実際値)とを同一とするモータ速度指令を生成する。そして、ホイスト制御装置7が、生成したモータ速度指令を巻上用モータ310に出力する(ステップS208)。これにより、巻上用モータ310が、モータ速度指令に従って回転速度を制御し、トロリー2の水平方向への移動と同時に、吊りロープ11の長さをロープ長の目標パターンどおりに変化させる。
これにより、本実施形態のクレーン1によれば、吊りロープ11のロープ長を変更しながら、吊りロープ11で吊り荷12を懸垂して目標位置まで搬送すると共に、吊り荷12が目標位置に到達したときに吊り荷12の振れを止まらせることができる。また、ロープ長の変化にあわせて基準パターンをより適切に補償でき、残留振れをより適切に抑制でき、より高精度の振れ止めを行うことができる。それゆえ、吊り荷12の巻き下ろしを行いながら、横行を行うことが可能になり、クレーン1の搬送能率を向上することができる。
一方、トロリー2の総移動距離Xaと、横行時の吊り荷12の始点と終点(目標位置)との距離(目標総移動距離)とが同一でなかったとする。即ち、速度パターンに補償の必要があったとする。すると、速度パターン生成部830が、生成した速度パターンに含まれる一定速度区間の時間長を、補償後の加速度パターン(補償結果)に従ってトロリー2を水平方向へ移動させた場合の吊り荷12の位置と目標位置との間のずれ量が「0」となるように変化させる。そして、補償した速度パターンをトロリー制御装置9に出力する。
これにより、本実施形態によれば、吊り荷12をより適切な位置で停止できる。
(本実施形態の効果)
本実施形態に係る発明は、次のような効果を奏する。
(1)本実施形態に係る振れ止め制御装置8では、基準パターン生成部810は、予め定められた仮のロープ長Lから求められる吊り荷12の振れ周期T1に基づき、吊り荷12が目標位置に到達したときに吊り荷12の振れが止まる、トロリー2の水平方向の加速度または速度のパターンである基準パターンを生成する。また、補償量算出部820は、仮のロープ長Lと吊り荷12の搬送時のロープ長(L−ΔL)との差による加速度への影響を補償する補償量Δd2X/dt2を算出する。そして、速度パターン生成部830は、基準パターンを補償量Δd2X/dt2で補償した補償結果に基づき、速度パターンを生成する。
このような構成によれば、仮のロープ長Lから求められる吊り荷12の振れ周期T1に基づくトロリー2の水平方向への加速度のパターンである基準パターンを、仮のロープ長Lと吊り荷12の搬送時のロープ長(L−ΔL)との差によるトロリー2の水平方向への加速度への影響を補償する補償量Δd2X/dt2で補償し、補償結果を基に速度パターンを生成する。それゆえ、代表値や最適値等を用いることなく速度パターンを生成する。それゆえ、ロープ長の変化にあわせて基準パターンをより適切に補償することができ、例えば、代表値や最適値等を用いて速度パターンを生成する方法に比べ、残留振れをより適切に抑制することができ、より高精度の振れ止めを行うことができる。
(2)本実施形態に係る振れ止め制御装置8では、補償量算出部820は、予め定めた前記搬送の開始時からの経過時間tそれぞれに対し、吊りロープ11のロープ長の変化を考慮しない場合の吊りロープ11の振れ角θsの角加速度d2θs/dt2に関する第1の運動方程式に基づき角加速度d2θs/dt2を算出し、吊りロープ11のロープ長の変化を考慮した場合の吊りロープ11の振れ角θの角加速度d2θ/dt2に関する第2の運動方程式に基づき角加速度d2θ/dt2を算出し、算出した角加速度d2θs/dt2と角加速度d2θ/dt2との差に基づき、補償量Δd2X/dt2を算出する。
このような構成によれば、補償量Δd2X/dt2を適切に算出することができる。
(3)本実施形態に係る振れ止め制御装置8では、第1の運動方程式は、下記(13)式であり、
d2θs/dt2=−(d2X/dt2)/L−g/L・θs ………(13)
第2の運動方程式は、下記(14)式であり、
d2θ/dt2=−d2X/dt2/(L−ΔL)−2dL/dt・dθ/dt(L−ΔL)−g/(L−ΔL)・θ ………(14)
補償量算出部820は、経過時間tそれぞれに対し、上記(13)式に従って角加速度d2θs/dt2を算出し、上記(14)式に従って角加速度d2θ/dt2を算出し、算出した角加速度d2θs/dt2と角加速度d2θ/dt2との差に基づき、下記(15)式に従って、補償量Δd2X/dt2を算出する。
Δd2X/dt2=(d2θ/dt2−d2θs/dt2)×(L−ΔL) ………(15)
このような構成によれば、補償量Δd2X/dt2を比較的容易な計算で算出できる。
(4)本実施形態に係る振れ止め制御装置8では、速度パターン補償部840が、補償結果に従ってトロリー2を水平方向へ移動させた場合の吊り荷12の位置と目標位置との間のずれ量が低減するように、速度パターン生成部830で生成した速度パターンに含まれる一定速度区間の時間長を変化させる。
このような構成によれば、吊り荷12をより適切な位置で停止できる。
(5)本実施形態に係る振れ止め制御方法では、予め定められた仮のロープ長Lから求められる吊り荷12の振れ周期T1に基づき、吊り荷12が目標位置に到達したときに吊り荷12の振れが止まる、トロリー2の水平方向の加速度のパターンである基準パターンを算出し、仮のロープ長Lと吊り荷12の搬送時のロープ長(L−ΔL)との差による加速度への影響を補償する補償量Δd2X/dt2を算出し、基準パターンを補償量Δd2X/dt2で補償した補償結果に基づき、速度パターンを生成する。
このような構成によれば、仮のロープ長Lから求められる吊り荷12の振れ周期T1に基づくトロリー2の水平方向への加速度のパターンである基準パターンを、仮のロープ長Lと吊り荷12の搬送時のロープ長(L−ΔL)との差によるトロリー2の水平方向への加速度への影響を補償する補償量Δd2X/dt2で補償し、補償結果を基に速度パターンを生成する。それゆえ、代表値や最適値等を用いることなく速度パターンを生成する。それゆえ、ロープ長の変化にあわせて基準パターンをより適切に補償することができ、例えば、代表値や最適値等を用いて速度パターンを生成する方法に比べ、残留振れをより適切に抑制することができ、より高精度の振れ止めを行うことができる。
(変形例)
(1)なお、本実施形態では、クレーン1の横行にのみ着目し、振れ止め制御装置8が、トロリー2の水平方向の速度パターンとして、横行時の速度パターンを生成する例を示したが、水平方向の速度パターンであればよく、走行時の速度パターンを生成する構成としてもよいし、横行時の速度パターンと走行時の速度パターンとの両方を生成する構成としてもよい。横行時の速度パターンと走行時の速度パターンとの両方を生成する場合、これらの速度パターンの時間長にずれがあるか否かを判定する。そして、ずれがあると判定した場合には、時間長のずれが「0」となるように、時間長の短い速度パターンの速度変化率(加速度)を低減する。これにより、横行と走行とを同時に終了することができる。
(2)また、本実施形態では、トロリー2の横行時の加速度、つまり、水平方向の加速度のパターンを基準パターンとする例を示したが、他の構成を採用することもできる。トロリー2の水平方向の速度のパターンを基準パターンとしてもよい。
(3)また、本実施形態では、仮のロープ長Lとして、吊り荷12が横行時の始点にあるときのロープ長、つまり、1つの数値を用いる例を示したが、他の構成を採用することもできる。例えば、複数の数値を用いる構成としてもよい。この場合、例えば、吊り荷12の搬送経路を区分して設定した各区間毎に、仮のロープ長を設定する構成としてもよい。
(実施例)
以下、図6、図7を参照し、本実施形態の実施例及び比較例を説明する。
本実施例では、横行時の吊り荷12の始点と終点(目標位置)とを、平面視で45[m]離れた位置に設定した。また、吊りロープ11のロープ長の目標パターンを、10[m]→6[m]→10[m]の順に変更するパターンに設定した。吊りロープ11の巻上げ速度及び巻き下げ速度を0.3[m/s]に設定した。そして、本実施形態の振れ止め制御装置8を用い、これらの数値を基に、図6(a)(c)(d)に示すように、基準パターン、補償量Δd2X/dt2、及び補償後の加速度パターンを算出した。続いて、算出した補償後の加速度パターン(補償結果)に基づき、速度パターンを生成した。
そして、生成した速度パターンを用いて、クレーン1の横行を行った場合をシミュレーションした。シミュレーション結果を図6(e)(f)に示す。これら図6(e)(f)より、横行の終了時に、振れ角、振れ角速度が「0」になることが確認できた。
(比較例)
比較例では、横行時の吊り荷12の始点と終点(目標位置)とを、平面視で45[m]離れた位置に設定した。また、吊りロープ11のロープ長の目標パターンを、10[m]→7[m]→10[m]の順に変更するパターンに設定した。吊りロープ11の巻上げ速度及び巻き下げ速度を0.3[m/s]に設定した。そして、これらの数値を基に、図7(a)に示すように、基準パターンを算出し、算出した基準パターンに基づき速度パターンを生成した。そして、生成した速度パターンを用いてクレーン1の横行を行った場合をシミュレーションした。シミュレーション結果を図7(c)(d)に示す。このように、比較例では、横行の終了時に、振れ角、振れ角速度が「0」にならなかった。
1 クレーン
2 トロリー
210 走行用モータ
3 ホイスト
310 巻上用モータ
4 ロープ長検出装置
5 トロリー位置検出装置
6 移動条件入力装置
7 ホイスト制御装置
8 止め制御装置
810 基準パターン生成部
820 補償量算出部
830 速度パターン生成部
840 速度パターン補償部
9 トロリー制御装置
10 ガーダ
11 吊りロープ
12 吊り荷

Claims (5)

  1. 吊りロープのロープ長を変更しながら、前記吊りロープで吊り荷を懸垂して目標位置まで搬送すると共に、前記吊り荷が目標位置に到達したときに前記吊り荷の振れを止まらせるトロリーの水平方向の速度パターンを生成するクレーンの振れ止め制御装置であって、
    予め定められた仮のロープ長から求められる前記吊り荷の振れ周期に基づき、前記吊り荷が前記目標位置に到達したときに前記吊り荷の振れが止まる、前記トロリーの水平方向の加速度または速度のパターンである基準パターンを生成する基準パターン生成部と、
    前記仮のロープ長と前記吊り荷の搬送時のロープ長との差による前記加速度または速度への影響を補償する補償量を算出する補償量算出部と、
    前記基準パターンを前記補償量で補償した補償結果に基づき、前記速度パターンを生成する速度パターン生成部と、を備えたことを特徴とするクレーンの振れ止め制御装置。
  2. 前記補償量算出部は、予め定めた前記搬送の開始時からの経過時間それぞれに対し、前記吊りロープのロープ長の変化を考慮しない場合の吊りロープの振れ角の角加速度に関する第1の運動方程式に基づき第1の角加速度を算出し、前記吊りロープのロープ長の変化を考慮した場合の吊りロープの振れ角の角加速度に関する第2の運動方程式に基づき第2の角加速度を算出し、前記第1の角加速度と前記第2の角加速度との差に基づき、前記補償量を算出することを特徴とする請求項1に記載のクレーンの振れ止め制御装置。
  3. 前記第1の運動方程式は、下記(1)式であり、
    d2θs/dt2=−(d2X/dt2)/L−g/L・θs ………(1)
    (θs:吊りロープのロープ長の変化を考慮しない場合の吊りロープの振れ角、X:トロリーの水平方向への移動距離、L:仮のロープ長、g:重力加速度)
    前記第2の運動方程式は、下記(2)式であり、
    d2θ/dt2=−d2X/dt2/(L−ΔL)−2dL/dt・dθ/dt(L−ΔL)−g/(L−ΔL)・θ ………(2)
    (θ:吊りロープのロープ長の変化を考慮した場合の吊りロープの振れ角、(L−ΔL):吊り荷の搬送時のロープ長)
    前記補償量算出部は、前記経過時間それぞれに対し、前記(1)式に従って角加速度d2θs/dt2を算出し、前記(2)式に従って角加速度d2θ/dt2を算出し、前記角加速度d2θs/dt2と前記角加速度d2θ/dt2との差に基づき、下記(3)式に従って前記補償量Δd2X/dt2を算出することを特徴とする請求項2に記載のクレーンの振れ止め制御装置。
    Δd2X/dt2=(d2θ/dt2−d2θs/dt2)×(L−ΔL) ………(3)
  4. 前記速度パターンは、前記トロリーが一定速度で移動する一定速度区間を含み、
    前記補償結果に従って前記トロリーを水平方向へ移動させた場合の前記吊り荷の位置と前記目標位置との間のずれ量が低減するように、前記速度パターン生成部で生成した速度パターンに含まれる前記一定速度区間の時間長を変化させる速度パターン補償部を更に備えたことを特徴とする請求項1から3のいずれか1項に記載のクレーンの振れ止め制御装置。
  5. 吊りロープのロープ長を変更しながら、前記吊りロープで吊り荷を懸垂して目標位置まで搬送すると共に、前記吊り荷が目標位置に到達したときに前記吊り荷の振れを止まらせるトロリーの水平方向の速度パターンを生成するクレーンの振れ止め制御方法であって、
    予め定められた仮のロープ長から求められる前記吊り荷の振れ周期に基づき、前記吊り荷が前記目標位置に到達したときに前記吊り荷の振れが止まる、前記トロリーの水平方向の加速度または速度のパターンである基準パターンを算出し、前記仮のロープ長と前記吊り荷の搬送時のロープ長との差による前記加速度または速度への影響を補償する補償量を算出し、前記基準パターンを前記補償量で補償した補償結果に基づき、前記速度パターンを生成することを特徴とするクレーンの振れ止め制御方法。
JP2015177006A 2015-09-08 2015-09-08 クレーンの制御装置、及びクレーンの制御方法 Active JP6449744B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015177006A JP6449744B2 (ja) 2015-09-08 2015-09-08 クレーンの制御装置、及びクレーンの制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015177006A JP6449744B2 (ja) 2015-09-08 2015-09-08 クレーンの制御装置、及びクレーンの制御方法

Publications (3)

Publication Number Publication Date
JP2017052601A true JP2017052601A (ja) 2017-03-16
JP2017052601A5 JP2017052601A5 (ja) 2017-11-24
JP6449744B2 JP6449744B2 (ja) 2019-01-09

Family

ID=58316946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015177006A Active JP6449744B2 (ja) 2015-09-08 2015-09-08 クレーンの制御装置、及びクレーンの制御方法

Country Status (1)

Country Link
JP (1) JP6449744B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04243796A (ja) * 1991-01-28 1992-08-31 Murata Mach Ltd クレーンの速度制御方法
US5443566A (en) * 1994-05-23 1995-08-22 General Electric Company Electronic antisway control
JP2000313586A (ja) * 1999-04-30 2000-11-14 Mitsubishi Heavy Ind Ltd 吊荷の振れ止め制御装置
JP2001278579A (ja) * 2000-03-30 2001-10-10 Fuso Koki Kk 吊り荷の振れ止め制御方法および制御装置
JP2003155192A (ja) * 2001-11-16 2003-05-27 Mitsubishi Heavy Ind Ltd クレーンの運転方法及び制御装置並びにこれを備えたクレーン

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04243796A (ja) * 1991-01-28 1992-08-31 Murata Mach Ltd クレーンの速度制御方法
US5443566A (en) * 1994-05-23 1995-08-22 General Electric Company Electronic antisway control
JP2000313586A (ja) * 1999-04-30 2000-11-14 Mitsubishi Heavy Ind Ltd 吊荷の振れ止め制御装置
JP2001278579A (ja) * 2000-03-30 2001-10-10 Fuso Koki Kk 吊り荷の振れ止め制御方法および制御装置
JP2003155192A (ja) * 2001-11-16 2003-05-27 Mitsubishi Heavy Ind Ltd クレーンの運転方法及び制御装置並びにこれを備えたクレーン

Also Published As

Publication number Publication date
JP6449744B2 (ja) 2019-01-09

Similar Documents

Publication Publication Date Title
JP2012193022A (ja) クレーンの振れ止め制御方法及び振れ止め制御装置
JP4883272B2 (ja) クレーンの振れ止め制御方法
CN109896428B (zh) 吊车的工作控制装置
CN104961051B (zh) 适用于抓斗起重机上的抓斗防晃方法
JP2010030728A (ja) スタッカクレーンの制振方法
JP2016169091A (ja) 単振り子式搬送装置
JP5194660B2 (ja) クレーン振れ止め制御装置およびクレーンの振れ止め制御方法
WO2019138616A1 (ja) 巻上げ機
JP2008127127A (ja) クレーンのスキュー振れ止め装置およびクレーン
KR910008199B1 (ko) 현수식 기중기에서의 방진제어방식
JP6449744B2 (ja) クレーンの制御装置、及びクレーンの制御方法
JP7156848B2 (ja) 経路探索方法
JP2017178545A (ja) クレーンの振れ止め制御方法、及びクレーンの振れ止め制御装置
JP6592389B2 (ja) クレーンの運転支援方法、及びクレーンの運転支援装置
JP2007052608A (ja) パターンの実機への実装方法
JP2016188143A (ja) クレーンおよびクレーンの制御方法
JP2004284735A (ja) クレーンの運転制御方法
KR100293185B1 (ko) 흔들림방지기능을구비한무인천정크레인제어장치
JP2008285269A (ja) 物品搬送装置
JP2021102503A (ja) 懸架式クレーンの制御装置及びインバータ装置
JP2017126286A (ja) 移動体、移動体システム、および、移動体の補正係数算出方法
JP6671238B2 (ja) 移動体の速度制御方法及び装置
JP3376772B2 (ja) クレーンの振れ止め・位置決め装置
JP2001278579A (ja) 吊り荷の振れ止め制御方法および制御装置
FI93201C (fi) Menetelmä nosturin ohjaamiseksi

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181206

R150 Certificate of patent or registration of utility model

Ref document number: 6449744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250