JP2017050666A - 量子干渉装置、原子発振器、電子機器および移動体 - Google Patents

量子干渉装置、原子発振器、電子機器および移動体 Download PDF

Info

Publication number
JP2017050666A
JP2017050666A JP2015171734A JP2015171734A JP2017050666A JP 2017050666 A JP2017050666 A JP 2017050666A JP 2015171734 A JP2015171734 A JP 2015171734A JP 2015171734 A JP2015171734 A JP 2015171734A JP 2017050666 A JP2017050666 A JP 2017050666A
Authority
JP
Japan
Prior art keywords
light
quantum interference
pair
interference device
atomic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015171734A
Other languages
English (en)
Other versions
JP6627335B2 (ja
JP2017050666A5 (ja
Inventor
暢仁 林
Nobuhito Hayashi
暢仁 林
義之 牧
Yoshiyuki Maki
義之 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015171734A priority Critical patent/JP6627335B2/ja
Publication of JP2017050666A publication Critical patent/JP2017050666A/ja
Publication of JP2017050666A5 publication Critical patent/JP2017050666A5/ja
Application granted granted Critical
Publication of JP6627335B2 publication Critical patent/JP6627335B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

【課題】EIT信号の強度を効果的に向上させることができる量子干渉装置を提供すること、また、かかる量子干渉装置を備える原子発振器、電子機器および移動体を提供すること。【解決手段】本発明の原子発振器1は、アルカリ金属が封入されている内部空間Sを有している原子セル2と、互いに同方向に円偏光していてアルカリ金属を共鳴させる共鳴光対LL1を原子セル2に向けて出射する第1光源部31と、内部空間Sにおいて共鳴光対LL1の伝播方向に平行な方向の偏光成分を有していてアルカリ金属を共鳴させる調整光LL2を共鳴光対LL1と交差する方向で原子セル2に対して出射する第2光源部32と、を備える。【選択図】図4

Description

本発明は、量子干渉装置、原子発振器、電子機器および移動体に関するものである。
長期的に高精度な発振特性を有する発振器として、ルビジウム、セシウム等のアルカリ金属の原子のエネルギー遷移に基づいて発振する原子発振器が知られている。
一般に、原子発振器の動作原理は、光およびマイクロ波による二重共鳴現象を利用した方式と、波長の異なる2種類の光による量子干渉効果(CPT:Coherent Population Trapping)を利用した方式とに大別される。量子干渉効果を利用した原子発振器は、二重共鳴現象を利用した原子発振器よりも小型化できることから、近年、様々な機器への搭載が期待されている(例えば、特許文献1参照)。
量子干渉効果を利用した原子発振器は、例えば、特許文献1に開示されているように、気体状のアルカリ金属を封入したガスセルと、ガスセル中のアルカリ金属を共鳴させる共鳴光対を出射する光源と、ガスセルを透過した共鳴光対を検出する光検出器(受光部)と、を備えている。そして、このような原子発振器では、2種類の共鳴光の周波数差が特定の値のときに2種類の共鳴光の双方がガスセル内のアルカリ金属に吸収されずに透過する電磁誘起透明化(EIT:Electromagnetically Induced Transparency)現象を生じるが、そのEIT現象に伴って発生する急峻な信号であるEIT信号を光検出器で検出し、そのEIT信号を基準信号として用いる。
特開2014−17824号公報
ここで、短期周波数安定度を高める観点から、EIT信号は、線幅(半値幅)が小さく、かつ、強度が高いことが好ましい。そのため、例えば、特許文献1に係る原子発振器では、EIT信号の強度を向上させる目的で、円偏光している共鳴光対を用いている。
しかし、特許文献1に係る原子発振器では、互いに同方向に円偏光している共鳴光対のみをガスセル中のアルカリ金属に照射するため、当該アルカリ金属の磁気量子数の分布に偏りが生じてしまう。そのため、EITに寄与する所望の磁気量子数の金属原子の数が減少してしまい、その結果、EIT信号の強度を十分に向上させることができない。
本発明の目的は、EIT信号の強度を効果的に向上させることができる量子干渉装置を提供すること、また、かかる量子干渉装置を備える原子発振器、電子機器および移動体を提供することにある。
上記目的は、下記の本発明により達成される。
本発明の量子干渉装置は、金属が封入されている内部空間を有している原子セルと、
互いに同方向に円偏光していて前記金属を共鳴させる共鳴光対を前記原子セルに向けて出射する第1光源部と、
前記内部空間において前記共鳴光対の伝播方向に平行な方向の偏光成分を有していて前記金属を共鳴させる調整光を前記共鳴光対と交差する方向で前記原子セルに対して出射する第2光源部と、を備えることを特徴とする。
このような量子干渉装置によれば、互いに同方向に円偏光している共鳴光対に加えて、原子セル内において共鳴光対の伝搬方向に平行な方向の偏光成分を有している調整光を原子セル内の金属に対して共鳴光対と交差する方向で照射することにより、共鳴光対による磁気量子数の分布の偏りを調整光により相殺または緩和させ、金属の磁気量子数の分布の偏りを低減することができる。そのため、EITに寄与する所望の磁気量子数の金属原子の数を増加させ、その結果、円偏光している共鳴光対を用いることによってEIT信号の強度を向上させる効果を顕著に発現させることができる。よって、EIT信号の強度を効果的に向上させることができる。
また、調整光が共鳴光対と交差する方向で原子セルに入射するため、調整光が原子セルを透過しても、原子セルを透過した共鳴光対を検出する受光部に調整光が入射することを防止または低減することができる。そのため、EIT信号のS/N比を高めることができる。
本発明の量子干渉装置では、前記内部空間において前記共鳴光対の伝播方向に沿った方向の磁場を発生させる磁場発生部を備えることが好ましい。
これにより、EIT信号の強度を効果的に向上させることができる。
本発明の量子干渉装置では、前記磁場発生部は、ヘルムホルツコイルを含むことが好ましい。
これにより、磁場発生部を原子セルに近づけた状態で、調整光を原子セルに入射させることができる。
本発明の量子干渉装置では、前記調整光は、円偏光または楕円偏光であることが好ましい。
これにより、原子セル内において共鳴光対の伝搬方向に沿った方向の偏光成分を有する調整光を実現することができる。
本発明の量子干渉装置では、前記第2光源部は、発光素子と、前記発光素子と前記原子セルとの間に配置されている1/4波長板と、を有することが好ましい。
これにより、円偏光または楕円偏光の調整光を生成することができる。また、発光素子からの光の軸まわりに1/4波長板を回転させることで、調整光が有する所望の偏光成分の大きさを調整することもできる。
本発明の量子干渉装置では、前記調整光は、直線偏光であることが好ましい。
これにより、原子セル内において共鳴光対の伝搬方向に沿った方向の偏光成分を有する調整光を実現することができる。また、調整光が有する所望の偏光成分の大きさを効率的に大きくすることができる。
本発明の量子干渉装置では、前記第2光源部は、発光素子と、前記発光素子と前記原子セルとの間に配置されている偏光子と、を有することが好ましい。
これにより、直線偏光の調整光を生成することができる。また、発光素子からの光の軸まわりに偏光子を回転させることで、調整光が有する所望の偏光成分の大きさを調整することもできる。
本発明の量子干渉装置では、前記原子セルは、前記共鳴光対を入射させる入射側窓部と、前記共鳴光対を出射させる出射側窓部と、前記入射側窓部と前記出射側窓部との間に配置されていて前記入射側窓部および前記出射側窓部とともに前記内部空間を形成している胴体部と、を有し、
前記調整光は、前記胴体部を透過して前記内部空間に入射することが好ましい。
これにより、調整光を共鳴光対と交差する方向で原子セルに入射させることができる。
本発明の量子干渉装置では、前記共鳴光対はD1線であり、
前記調整光はD2線であることが好ましい。
これにより、EIT信号の強度を効率的に向上させることができる。
本発明の原子発振器は、本発明の量子干渉装置を備えることを特徴とする。
これにより、EIT信号の強度を効果的に向上させることができる量子干渉装置を備える原子発振器を提供することができる。
本発明の電子機器は、本発明の量子干渉装置を備えることを特徴とする。
これにより、EIT信号の強度を効果的に向上させることができる量子干渉装置を備える電子機器を提供することができる。
本発明の移動体は、本発明の量子干渉装置を備えることを特徴とする。
これにより、EIT信号の強度を効果的に向上させることができる量子干渉装置を備える移動体を提供することができる。
本発明の第1実施形態に係る原子発振器(量子干渉装置)を示す概略図である。 アルカリ金属原子のエネルギー状態を簡略的に説明するための図である。 光源部から出射される2つの光の周波数差と、受光部で検出される光の強度との関係を示すグラフである。 図1に示す原子発振器が備える光源部、原子セルおよび磁場発生部を説明するための概略図である。 図4に示す原子セルの横断面図である。 セシウム原子のエネルギー状態と共鳴光対(第1共鳴光、第2共鳴光)および調整光(第3共鳴光)との関係の一例を示す図である。 ナトリウム原子の磁気量子数の分布を示す図であって、(a)は、σ円偏光の共鳴光を照射した場合の分布を示す図、(b)は、σ円偏光の共鳴光を照射した場合の分布を示す図である。 図4に示す構成における調整光(リポンプ光)のパワー密度とセシウム原子の磁気副準位の分布数との関係を示すグラフである。 本発明の第2実施形態に係る原子発振器が備える光源部、原子セルおよび磁場発生部を説明するための概略図である。 図9に示す構成における調整光(リポンプ光)のパワー密度とセシウム原子の磁気副準位の分布数との関係を示すグラフである。 本発明の第3実施形態に係る原子発振器が備える原子セルの横断面図である。 GPS衛星を利用した測位システムに本発明の原子発振器を用いた場合の概略構成を示す図である。 本発明の移動体の一例を示す図である。
以下、本発明の量子干渉装置、原子発振器、電子機器および移動体を添付図面に示す実施形態に基づいて詳細に説明する。
1.原子発振器(量子干渉装置)
まず、本発明の原子発振器(本発明の量子干渉装置を備える原子発振器)について説明する。なお、以下では、本発明の量子干渉装置を原子発振器に適用した例を説明するが、本発明の量子干渉装置は、これに限定されず、例えば、磁気センサー、量子メモリー等のデバイスにも適用可能である。
<第1実施形態>
図1は、本発明の第1実施形態に係る原子発振器(量子干渉装置)を示す概略図である。図2は、アルカリ金属原子のエネルギー状態を簡略的に説明するための図である。図3は、光源部から出射される2つの光の周波数差と、受光部で検出される光の強度との関係を示すグラフである。
図1に示す原子発振器1は、量子干渉効果を利用した原子発振器である。この原子発振器1は、図1に示すように、原子セル2(ガスセル)と、光源部3と、受光部4と、ヒーター5(温度調節部)と、温度センサー6と、磁場発生部7と、制御部8と、を備えている。
まず、原子発振器1の原理を簡単に説明する。
アルカリ金属は、図2に示すように、2つの基底準位(第1基底準位および第2基底準位)と励起準位とからなる3準位系のエネルギー準位を有する。ここで、第1基底準位は、第2基底準位よりも低いエネルギー状態である。
周波数の異なる2種の共鳴光である第1共鳴光および第2共鳴光をアルカリ金属に照射したとき、第1共鳴光の周波数ωと第2共鳴光の周波数ωとの差(ω−ω)に応じて、共鳴光1、2のアルカリ金属における光吸収率(光透過率)が変化する。
そして、第1共鳴光の周波数ωと第2共鳴光の周波数ωとの差(ω−ω)が第1基底準位と第2基底準位とのエネルギー差ΔEに相当する周波数に一致したとき、第1基底準位および第2基底準位から励起準位への励起がそれぞれ停止する。このとき、第1共鳴光および第2共鳴光は、いずれも、アルカリ金属に吸収されずに透過する。このような現象をCPT現象または電磁誘起透明化現象(EIT:Electromagnetically Induced Transparency)と呼ぶ。
例えば、第1共鳴光の周波数ωを固定し、第2共鳴光の周波数ωを変化させていくと、第1共鳴光の周波数ωと第2共鳴光の周波数ωとの差(ω−ω)が第1基底準位と第2基底準位とのエネルギー差ΔEに相当する周波数ωに一致したとき、アルカリ金属を透過した第1共鳴光および第2共鳴光の強度は、図3に示すように、急峻に上昇する。このような急峻な信号をEIT信号として検出する。このEIT信号は、アルカリ金属の種類によって決まった固有値をもっている。したがって、このようなEIT信号を基準として用いることにより、高精度な発振器を構成することができる。
以下、原子発振器1の各部を簡単に説明する。
[ガスセル]
原子セル2内には、ガス状のルビジウム、セシウム、ナトリウム等のアルカリ金属が封入されている。また、原子セル2内には、必要に応じて、アルゴン、ネオン等の希ガス、窒素等の不活性ガスが緩衝ガスとしてアルカリ金属ガスとともに封入されていてもよい。
後に詳述するが、原子セル2は、貫通孔を有する胴体部と、この胴体部の貫通孔の開口を塞ぐ1対の窓部とを有し、これにより、気体状のアルカリ金属が封入される内部空間が形成されている。
[光出射部]
光源部3は、原子セル2内のアルカリ金属原子を共鳴させる共鳴光対を構成する前述した第1共鳴光および第2共鳴光を含む光LLを出射する機能を有する。
また、光源部3が出射する光LLは、第1共鳴光および第2共鳴光に加えて、第3共鳴光を含んでいる。
第1共鳴光は、原子セル2内のアルカリ金属原子を前述した第1基底準位から励起準位へ励起する光(probe光)である。一方、第2共鳴光は、原子セル2内のアルカリ金属原子を前述した第2基底準位から励起準位へ励起する光(coupling光)である。ここで、第1共鳴光および第2共鳴光は、互いに同方向に円偏光している。また、第3共鳴光は、原子セル2内のアルカリ金属の磁気量子数を調整する「調整光」(repump光)である。なお、光源部3については、後に詳述する。なお、「円偏光」とは、光波の電場成分または磁場成分の、どちらか一方の振動に着目するとき、その振動方向が光の進行方向に対して垂直な面内で光波の周波数で回転し、振幅がその向きによらず一定である光であり、言い換えれば電場(または磁場)の振動が伝播に伴って円を描く光である。
[受光部]
受光部4は、原子セル2内を透過した光LL(特に、第1共鳴光および第2共鳴光で構成された共鳴光対)の強度を検出する機能を有する。
この受光部4としては、上述したような光LLの強度を検出し得るものであれば、特に限定されないが、例えば、受光した光の強度に応じた信号を出力するフォトダイオード等の光検出器(受光素子)を用いることができる。
[ヒーター]
ヒーター5(温度調節部)は、前述した原子セル2(より具体的には原子セル2中のアルカリ金属)を加熱する機能を有する。これにより、原子セル2中のアルカリ金属を適切な濃度のガス状に維持することができる。
このヒーター5は、例えば、通電により発熱する発熱抵抗体を含んで構成されている。この発熱抵抗体は、原子セル2に対して接触して設けられていてもよいし、原子セル2に対して非接触で設けられていてもよい。
なお、ヒーター5は、原子セル2を加熱することができるものであれば、前述した形態に限定されず、各種ヒーターを用いることができる。また、ヒーター5に代えて、または、ヒーター5と併用して、ペルチェ素子を用いて、原子セル2を温度調節してもよい。
[温度センサー]
温度センサー6は、ヒーター5または原子セル2の温度を検出する機能を有する。
この温度センサー6は、例えば、ヒーター5または原子セル2に接触して配置される。
温度センサー6としては、それぞれ、特に限定されず、サーミスタ、熱電対等の公知の各種温度センサーを用いることができる。
[磁場発生部]
磁場発生部7は、原子セル2内のアルカリ金属に磁場を印加する機能を有する。これにより、ゼーマン分裂により、原子セル2内のアルカリ金属原子の縮退している異なる複数のエネルギー準位間のギャップを拡げて、分解能を向上させることができる。その結果、原子発振器1の発振周波数の精度を高めることができる。
ここで、磁場発生部7からの磁場は、原子セル2内において、第1共鳴光および第2共鳴光の進行方向に沿っている(平行またはほぼ平行である)。なお、原子セル2内のアルカリ金属に対して第1共鳴光および第2共鳴光を効率的に作用させる観点から、原子セル2内において、磁場発生部7からの磁場の方向は、第1共鳴光および第2共鳴光の進行方向に対して、0°以上30°以下であることが好ましく、0°以上20°以下であることがより好ましく、0°以上10°以下であることがさらに好ましい。
この磁場発生部7は、ヘルムホルツ型を構成するように原子セル2を介して対向して設けられた1対のコイルを有して構成されている。なお、磁場発生部7は、ソレノイド型を構成するように原子セル2の外周に沿って巻回して設けられたコイルを有して構成されていてもよい。
また、磁場発生部7が発生する磁場は、定磁場(直流磁場)であるが、交流磁場が重畳されていてもよい。
[制御部]
制御部8は、光源部3、ヒーター5および磁場発生部7をそれぞれ制御する機能を有する。
この制御部8は、光源部3を制御する光源制御部82と、原子セル2中のアルカリ金属の温度を制御する温度制御部81と、磁場発生部7からの磁場を制御する磁場制御部83とを有する。
光源制御部82は、前述した受光部4の検出結果に基づいて、光源部3から出射される第1共鳴光および第2共鳴光の周波数を制御する機能を有する。より具体的には、光源制御部82は、前述した周波数差(ω−ω)が前述したアルカリ金属固有の周波数ωとなるように、光源部3から出射される第1共鳴光および第2共鳴光の周波数を制御する。
より具体的に説明すると、光源制御部82は、図示しないが、例えば、周波数制御部と、電圧制御型水晶発振器(VCXO:Voltage Controlled Crystal Oscillators)と、位相同期回路(PLL:phase locked loop)と、を有している。
周波数制御部は、受光部4の受光強度に基づいて原子セル2内のEIT状態を検出し、その検出結果に応じた制御電圧を出力する。これにより、周波数制御部は、受光部4でEIT信号が検出されるように電圧制御型水晶発振器を制御する。
電圧制御型水晶発振器は、周波数制御部により所望の発振周波数となるように制御され、例えば、数MHz〜数10MHz程度の周波数で発振する。また、電圧制御型水晶発振器の出力信号は、位相同期回路に入力されるとともに、原子発振器1の出力信号として出力される。
位相同期回路は、電圧制御型水晶発振器からの出力信号を周波数逓倍する。これにより、位相同期回路は、前述したアルカリ金属原子の2つの異なる基底準位のエネルギー差ΔEに相当する周波数の1/2の周波数で発振する。このように逓倍された信号(高周波信号)は、直流バイアス電流が重畳された上で駆動信号として後述する第1光源部31の第1光源311に入力される。これにより、第1光源311に含まれる半導体レーザー等の発光素子を変調して、周波数差(ω−ω)がωとなる2つの光である第1共鳴光および第2共鳴光を出射させることができる。ここで、直流バイアス電流の電流値は、図示しないバイアス制御部により所定値に制御される。これにより、第1共鳴光および第2共鳴光の中心波長を所望に制御することができる。
また、温度制御部81は、温度センサー6の検出結果に基づいて、ヒーター5への通電を制御する。これにより、原子セル2を所望の温度範囲内に維持することができる。例えば、原子セル2は、ヒーター5により、例えば、70℃程度に温度調節される。
また、磁場制御部83は、磁場発生部7が発生する磁場が一定となるように、磁場発生部7への通電を制御する。
以上説明したような制御部8は、例えば、基板上に実装されたICチップに設けられている。
以上、原子発振器1の構成を簡単に説明した。
(光源部、原子セルおよび磁場発生部の詳細な説明)
図4は、図1に示す原子発振器が備える光源部、原子セルおよび磁場発生部を説明するための概略図である。
図4に示すように、光源部3は、第1共鳴光および第2共鳴光を含む共鳴光対LL1を第1光として出射する第1光源部31と、第3共鳴光を含む調整光LL2を第2光として出射する第2光源部32と、を備えている。
第1光源部31は、第1光源311(第1発光素子)と、1/4波長板312と、を有している。なお、第1光源部31は、第1光源311と1/4波長板312との間にλ/2波長板が配置されていてもよい。この場合、第1光源311を光軸まわりに90°回転させた姿勢で設置すればよい。また、第1光源部31は、第1光源311と原子セル2との間に、レンズが配置されていてもよい。これにより、原子セル2内の共鳴光対LL1を平行光とすることができる。
第1光源311は、直線偏光されている共鳴光対LL1aを出射する機能を有する。この第1光源311は、共鳴光対LL1aを含む光を出射し得るものであれば特に限定されないが、例えば、端面発光レーザー、垂直共振器面発光レーザー(VCSEL)等の半導体レーザーである。なお、「直線偏光」とは、電磁波(光)の振動面が一平面内にある光であり、言い換えれば、電場(または磁場)の振動方向が一定な光である。
1/4波長板312は、直交する偏光成分間に位相差π/2(90°)を生じさせる複屈折素子である。この1/4波長板312は、第1光源311からの共鳴光対LL1aを直線偏光から円偏光(楕円偏光も含む)の共鳴光対LL1に変換する機能を有する。これにより、前述した第1共鳴光および第2共鳴光で構成された共鳴光対LL1を生成することができる。
以上のように、第1光源部31は、第1光源311からの光を用いて共鳴光対LL1を出射する。
一方、第2光源部32は、第2光源321(第2発光素子)と、偏光子322と、1/4波長板323と、を有している。なお、第2光源部32は、第2光源321と原子セル2との間に、レンズが配置されていてもよい。これにより、原子セル2内の調整光LL2を平行光とすることができる。
第2光源321は、直線偏光されている共鳴光を含む光LL2aを出射する機能を有する。特に、光LL2aは、前述した第1光源311からの共鳴光対LL1aよりも線幅が大きい。これにより、後述するように、共鳴光対LL1よりも線幅の大きい調整光LL2を生成することができる。この第2光源321は、共鳴光対LL1aよりも線幅の大きい光LL2aを出射し得るものであれば特に限定されないが、例えば、端面発光レーザー、垂直共振器面発光レーザー(VCSEL)等の半導体レーザー、発光ダイオード(LED)、有機エレクトロルミネッセンス(有機EL)素子等の発光素子である。
中でも、第2光源321は、非偏光の光を出射するもの、例えば、発光ダイオードであることが好ましい。すなわち、第2光源部32が、第2光源321を構成する発光ダイオードからの光を用いて調整光LL2を生成することが好ましい。これにより、比較的簡単な構成で、線幅の広い調整光LL2を生成させることができる。
偏光子322は、第2光源321からの光LL2aが入射し、その光LL2aに含まれる特定方向の直線偏光成分のみからなる共鳴光LL2bを通過させて取り出す。共鳴光LL2bは、原子セル2内における共鳴光対LL1の伝播方向(言い換えると、後述する磁場発生部7の磁場の方向C)に平行な方向に直線偏光している。なお、第2光源321として、偏光した光を出射する端面発光レーザー、垂直共振器面発光レーザー(VCSEL)等の半導体レーザーを用いる場合、偏光子322を省略してもよい。この場合、第2光源321からの光LL2aが共鳴光LL2bとなるように、第2光源321を設置すればよい。
1/4波長板323は、偏光子322で生成した共鳴光LL2bを直線偏光から円偏光(楕円偏光も含む)の調整光LL2に変換する機能を有する。これにより、前述した第3共鳴光となる調整光LL2を生成することができる。ここで、調整光LL2は、原子セル2内における共鳴光対LL1の伝播方向(言い換えると、後述する磁場発生部7の磁場の方向C)に平行な方向な偏光成分を有する。本実施形態では、直線偏光されている共鳴光LL2bの偏光方向(図4に示すb2方向)は、直線偏光されている共鳴光対LL1aの偏光方向(図4に示すb1方向)と異なる方向(直交する方向)である。したがって、1/4波長板312で生成した共鳴光対LL1が右円偏光である場合、1/4波長板323で生成した調整光LL2は左円偏光であり、一方、共鳴光対LL1が左円偏光である場合、調整光LL2は右円偏光である。
以上のように、第2光源部32は、第2光源321からの光を用いて調整光LL2を出射する。
以上説明したように構成された第1光源部31および第2光源部32からの共鳴光対LL1および調整光LL2は、原子セル2に照射される。
図4に示すように、原子セル2は、胴体部21と、胴体部21を挟んで設けられた1対の窓部22、23とを有している。この原子セル2では、胴体部21が1対の窓部22、23の間に配置されていて、気体状のアルカリ金属が封入されている内部空間Sを胴体部21および1対の窓部22、23が区画形成(構成)している。
より具体的に説明すると、胴体部21は、板状をなしており、この胴体部21には、胴体部21の厚さ方向に貫通している貫通孔211が形成されている。本実施形態では、貫通孔211の横断面は、図5に示すように、矩形をなしている。また、胴体部21の横断面の外形も、貫通孔211の形状に対応した矩形をなしている。また、胴体部21は、調整光LL2に対する透過性を有する。そして、胴体部21の図5中左側の部分は、原子セル2の内部空間S内へ調整光LL2が入射する入射側窓部(第3光透過部)であり、胴体部21の図5中右側の部分は、原子セル2の内部空間S内から調整光LL2が出射する出射側窓部(第4光透過部)である。
この胴体部21の構成材料としては、胴体部21が調整光LL2に対する透過性を有すれば、特に限定されないが、原子セル2の製造が容易であるという観点から、ガラス材料を用いることが好ましい。
このような胴体部21の一方の面には、窓部22が接合され、一方、胴体部21の他方の面には、窓部23が接合されている。これにより、貫通孔211の一端開口が窓部22により封鎖されるとともに、貫通孔211の他端開口が窓部23により封鎖されている。
胴体部21と窓部22、23との接合方法としては、これらの構成材料に応じて決められるものであり、気密的に接合できるものであれば、特に限定されないが、例えば、接着剤による接合方法、直接接合法、表面活性化接合法等を用いることができる。
このような胴体部21に接合されている各窓部22、23は、それぞれ、板状をなし、前述した共鳴光対LL1に対する透過性を有している。そして、一方の窓部22は、原子セル2の内部空間S内へ共鳴光対LL1が入射する入射側窓部(第1光透過部)であり、他方の窓部23は、原子セル2の内部空間S内から共鳴光対LL1が出射する出射側窓部(第2光透過部)である。
窓部22、23の構成材料としては、それぞれ、前述したような光LLに対する透過性を有していれば、特に限定されないが、原子セル2の製造が容易であるという観点から、ガラス材料を用いることが好ましい。
このような窓部22、23により封鎖された貫通孔211内の空間である内部空間Sには、主に、気体状のアルカリ金属が収納されている。
以上説明したように構成された原子セル2の内部空間Sにおいて、共鳴光対LL1の光軸a1が、原子セル2の窓部22と窓部23とが並ぶ方向に沿った軸線aと平行であり、一方、調整光LL2の光軸a2が、軸線aおよび光軸a1と交点Pにて交差している。なお、図4では、光軸a1が軸線aと一致しているが、光軸a1が軸線aに対して10°以下の範囲で傾斜していてもよい。
そして、原子セル2の内部空間Sに対して、共鳴光対LL1が窓部22を介して入射するとともに、調整光LL2が胴体部21を介して入射する。図5に示すように、原子セル2内において、調整光LL2の幅W2は、共鳴光対LL1の幅W1よりも大きい。また、調整光LL2の幅W2は、原子セル2内の幅Wよりも小さい。
内部空間Sに入射した共鳴光対LL1は、窓部23を介して出射する。また、内部空間Sに入射した調整光LL2は、胴体部21を介して出射する。ここで、原子セル2の共鳴光対LL1が出射する側において、光軸a1またはその延長線上には、前述した受光部4が配置されており、原子セル2を通過した共鳴光対LL1が受光部4で受光される。
また、原子セル2の外周には、磁場発生部7が備えるヘルムホルツコイルであるコイル71が配置されている。このコイル71から生じる磁場は、内部空間Sにおいて、軸線aおよび光軸a1に沿った方向(軸線aおよび光軸a1と平行またはほぼ平行)である。
(共鳴光対および調整光の作用)
以下、共鳴光対LL1および調整光LL2の作用について詳述する。
図6は、セシウム原子のエネルギー状態と共鳴光対(第1共鳴光、第2共鳴光)および調整光(第3共鳴光)との関係の一例を示す図である。図7は、ナトリウム原子の磁気量子数の分布を示す図であって、図7(a)は、σ円偏光の共鳴光を照射した場合の分布を示す図、図7(b)は、σ円偏光の共鳴光を照射した場合の分布を示す図である。
例えば、原子セル2内に封入されたセシウム原子に対して共鳴光対および調整光を照射する場合、図6に示すように、第1共鳴光および第2共鳴光(共鳴光対)としてσ偏光(左円偏光)しているD1線を用い、第3共鳴光(調整光)としてσ偏光(右円偏光)しているD2線を用いる。なお、第1共鳴光および第2共鳴光がσ偏光、第3共鳴光がσ偏光であってもよいし、また、第1共鳴光および第2共鳴光がD2線、第3共鳴光がD1線であってもよい。
アルカリ金属原子の一種であるセシウム原子は、6S1/2の基底準位と、6P1/2および6P3/2の2つの励起準位と、を有する。また、6S1/2、6P1/2、6P3/2の各準位は、複数のエネルギー準位に分裂した微細構造を有している。具体的には、6S1/2準位はF=3、4の2つの基底準位を有し、6P1/2準位はF’=3、4の2つの励起準位を有し、6P3/2準位はF”=2、3、4、5の4つの励起準位を有している。
6S1/2のF=3の第1基底準位にあるセシウム原子は、D2線を吸収することで、6P3/2のF”=2、3、4のいずれかの励起準位に遷移することができるが、F”=5の励起準位に遷移することはできない。6S1/2のF=4の第2基底準位にあるセシウム原子は、D2線を吸収することで、6P3/2のF”=3、4、5のいずれかの励起準位に遷移することができるが、F”=2の励起準位に遷移することはできない。これらは、電気双極子遷移を仮定した場合の遷移選択則による。逆に、6P3/2のF”=3、4のいずれかの励起準位にあるセシウム原子は、D2線を放出して6S1/2のF=3またはF=4の基底準位(元の基底準位または他方の基底準位のいずれか)に遷移することができる。このような6S1/2のF=3、4の2つの基底準位と6P3/2のF”=3、4のいずれかの励起準位からなる3準位は、D2線の吸収・発光によるΛ型の遷移が可能であることからΛ型3準位と呼ばれる。同様に、6S1/2のF=3、4の2つの基底準位と6P1/2のF’=3、4のいずれかの励起準位からなる3準位も、D1線の吸収・発光によるΛ型の遷移が可能であるからΛ型3準位を形成する。
これに対し、6P3/2のF”=2の励起準位にあるセシウム原子は、D2線を放出して必ず6S1/2のF=3の基底準位(元の基底準位)に遷移し、同様に、6P3/2のF”=5の励起準位にあるセシウム原子は、D2線を放出して必ず6S1/2のF=4の基底準位(元の基底準位)に遷移する。したがって、6S1/2のF=3、4の2つの基底準位と6P3/2のF”=2またはF”=5の励起準位からなる3準位は、D2線の吸収・放出によるΛ型の遷移が不可能であることからΛ型3準位を形成しない。
このようなセシウム原子は、真空中でのD1線の波長が894.593nmであり、真空中でのD2線の波長が852.347nmであり、6S1/2の超微細分裂周波数(ΔE)が9.1926GHzである。
なお、セシウム原子以外のアルカリ金属原子も、同様に、Λ型3準位を形成する2つの基底準位と励起準位を有する。ここで、ナトリウム原子は、真空中でのD1線の波長が589.756nmであり、真空中でのD2線の波長が589.158nmであり、3S1/2の超微細分裂周波数(ΔE)が1.7716GHzである。また、ルビジウム(85Rb)原子は、真空中でのD1線の波長が794.979nmであり、真空中でのD2線の波長が780.241nmであり、5S1/2の超微細分裂周波数(ΔE)が3.0357GHzである。また、ルビジウム(87Rb)原子は、真空中でのD1線の波長が794.979nmであり、真空中でのD2線の波長が780.241nmであり、5S1/2の超微細分裂周波数(ΔE)が6.8346GHzである。
例えば、図7に示すように、アルカリ金属原子の一種であるナトリウム原子は、Λ型3準位を形成する2つの基底準位と励起準位を有し、3S1/2のF=1の第1基底準位は、mF1=−1、0、1の3つの磁気量子数を有し、3S1/2のF=2の第2基底準位は、mF2=−2、−1、0、1、2の5つの磁気量子数を有し、3P1/2のF’=2の励起準位は、mF’=−2、−1、0、1、2の5つの磁気量子数を有する。
F=1またはF=2の基底準位にあるナトリウム原子に対してσ円偏光の共鳴光対を照射すると、図7(a)に示すように、磁気量子数が1増えるという選択則をもって、励起準位に励起される。このとき、F=1またはF=2の基底準位にあるナトリウム原子は、磁気量子数が大きい方に分布が変化する。
一方、F=1またはF=2の基底準位にあるナトリウム原子に対してσ円偏光の共鳴光対を照射すると、図7(b)に示すように、磁気量子数が1減るという選択則をもって、励起準位に励起される。このとき、F=1またはF=2の基底準位にあるナトリウム原子は、磁気量子数が小さい方に分布が変化する。
なお、図7では、説明の便宜上、簡単な構造のナトリウム原子を例に磁気量子数の分布を示しているが、他のアルカリ金属原子においても、基底準位および励起準位のそれぞれは、2F+1個の磁気量子数(磁気副準位)を有し、前述したような選択則をもって磁気量子数の分布が変化する。
以上説明したように、仮に原子セル2内のアルカリ金属に対して共鳴光対LL1および調整光LL2を同じ方向から照射する場合、共鳴光対および調整光の一方を右円偏光とし、他方を左円偏光とすることにより、アルカリ金属の磁気量子数の偏りを低減することができる。
前述したように、原子発振器1において、調整光LL2は、原子セル2に対して共鳴光対LL1と直交(交差)する方向で照射される。また、本実施形態では、調整光LL2は、円偏光している。そのため、調整光LL2は、原子セル2内のアルカリ金属に対して、π偏光50%、右円偏光25%および左円偏光25%を重ね合せた偏光状態の光として作用する。ここで、調整光LL2が有する右円偏光および左円偏光の成分が互いに同じであるため、これらの成分による磁気量子数の変化は生じない。
図8は、図4に示す構成における調整光(リポンプ光)のパワー密度とセシウム原子の磁気副準位の分布数との関係を示すグラフである。
例えば、原子セル2内のアルカリ金属としてセシウムを用い、共鳴光対LL1のパワー密度(光量子束密度)を一定(2mW/cm)とし、調整光LL2のパワー密度を変化(0mW/cmから5mW/cmまでの間の範囲で変化)させたとき、セシウム原子の第1基底準位F=3の磁気量子数について、磁場に対して安定な磁気量子数mF3=0となるセシウム原子の数は、図8に示すように、調整光LL2のパワー密度が大きくなるほど多くなる。
一方、セシウム原子の第2基底準位F=4の磁気量子数について、磁場に対して安定な磁気量子数mF4=0となるセシウム原子の数は、調整光LL2のパワー密度が0mW/cm超4.5mW/cm以下であるとき、調整光LL2を照射しない場合に比べて増えている。また、磁気量子数mF4=0となるセシウム原子の数は、調整光LL2のパワー密度が0.7mW/cmであるときに最大(最大値1.60%)となる。したがって、調整光LL2のパワー密度が0.7mW/cmであるときに最も効率的に調整光LL2が作用している。
以上のような観点から、共鳴光対LL1のパワー密度をP1とし、調整光LL2のパワー密度をP2としたとき、P2/P1は、0超2.25以下であることが好ましく、0.1以上1.0以下であることがより好ましく、0.2以上0.6以下であることがさらに好ましい。これにより、調整光LL2の作用を効率的なものとすることができる。
以上説明したような原子発振器1によれば、互いに同方向に円偏光している共鳴光対LL1に加えて、原子セル2内において共鳴光対LL1の伝搬方向(磁場発生部7の磁場の方向C)に平行な方向の偏光成分(π偏光として作用する偏向成分)を有している調整光LL2を原子セル2内のアルカリ金属に対して共鳴光対LL1と交差(直交)する方向で照射する。これにより、共鳴光対LL1による磁気量子数の分布の偏りを調整光LL2により相殺または緩和させ、アルカリ金属の磁気量子数の分布の偏りを低減することができる。そのため、EITに寄与する所望の磁気量子数のアルカリ金属原子の数(例えば、セシウム原子の場合、磁気量子数mF3=0、mF4=0となる原子の数)を増加させることができる。その結果、円偏光している共鳴光対LL1を用いることによってEIT信号の強度を向上させる効果を顕著に発現させることができる。よって、EIT信号の強度を効果的に向上させることができる。
また、調整光LL2が共鳴光対LL1と交差(本実施形態では直交)する方向で原子セル2に入射するため、調整光LL2が原子セル2を透過しても、原子セル2を透過した共鳴光対LL1を検出する受光部4に調整光LL2が入射することを防止または低減することができる。そのため、EIT信号のS/N比を高めることができる。
ここで、磁場発生部7が内部空間Sにおいて共鳴光対LL1の伝播方向に沿った方向の磁場を発生させるため、EIT信号の強度を効果的に向上させることができる。
また、磁場発生部7がヘルムホルツコイルであるコイル71を含むため、磁場発生部7を原子セル2に近づけた状態で、コイル71を構成する1対のコイル間を通じて調整光LL2を原子セル2に入射させることができる。
また、本実施形態では、調整光LL2が円偏光または楕円偏光である。これにより、原子セル2内において共鳴光対LL1の伝搬方向に沿った方向の偏光成分を有する調整光LL2を実現することができる。
また、前述したように、第2光源部32は、発光素子である第2光源321と、第2光源321と原子セル2との間に配置されている1/4波長板323と、を有する。これにより、円偏光または楕円偏光の調整光LL2を生成することができる。また、第2光源321からの光の軸まわりに1/4波長板323を回転させることで、調整光LL2が有する所望の偏光成分の大きさを調整することもできる。
また、前述したように、原子セル2は、共鳴光対LL1を入射させる入射側窓部である窓部22と、共鳴光対LL1を出射させる出射側窓部である窓部23と、窓部22と窓部23との間に配置されていて窓部22および窓部23とともに内部空間Sを形成している胴体部21と、を有し、調整光LL2は、胴体部21を透過して内部空間Sに入射する。これにより、調整光LL2を共鳴光対LL1と交差する方向で原子セル2に入射させることができる。
また、共鳴光対LL1がD1線であり、調整光LL2がD2線である場合、EIT信号の強度を効率的に向上させることができる。
<第2実施形態>
次に、本発明の第2実施形態について説明する。
図9は、本発明の第2実施形態に係る原子発振器が備える光源部、原子セルおよび磁場発生部を説明するための概略図である。図10は、図9に示す構成における調整光(リポンプ光)のパワー密度とセシウム原子の磁気副準位の分布数との関係を示すグラフである。
本実施形態は、第2光源部の構成が異なる以外は、前述した第1実施形態と同様である。
なお、以下の説明では、第2実施形態に関し、前述した実施形態との相違点を中心に説明し、同様の事項に関してはその説明を省略する。また、図9および図10において、前述した実施形態と同様の構成については、同一符号を付している。
図10に示す原子発振器1Aは、第2光源部32Aを備える。この第2光源部32Aは、1/4波長板323を省略した以外は、前述した第1実施形態の第2光源部32と同様であり、偏光子322で生成した共鳴光LL2bとそのまま調整光LL2として原子セル2に照射する。
すなわち、第2光源部32Aは、発光素子である第2光源321と、第2光源321と原子セル2との間に配置されている偏光子322と、を有する。これにより、直線偏光の調整光LL2を生成することができる。また、第2光源321からの光の軸まわりに偏光子322を回転させることで、調整光LL2が有する所望の偏光成分の大きさを調整することもできる。
また、調整光LL2が直線偏光であるため、調整光LL2が有する所望の偏光成分の大きさを効率的に大きくすることができる。
例えば、原子セル2内のアルカリ金属としてセシウムを用い、共鳴光対LL1のパワー密度(光量子束密度)を一定(2mW/cm)とし、調整光LL2のパワー密度を変化(0mW/cmから5mW/cmまでの間の範囲で変化)させたとき、セシウム原子の第1基底準位F=3の磁気量子数について、磁場に対して安定な磁気量子数mF3=0となるセシウム原子の数は、図11に示すように、調整光LL2のパワー密度が大きくなるほど多くなる。
一方、セシウム原子の第2基底準位F=4の磁気量子数について、磁場に対して安定な磁気量子数mF4=0となるセシウム原子の数は、調整光LL2を照射しない場合に比べて増えている。また、磁気量子数mF4=0となるセシウム原子の数は、調整光LL2のパワー密度が1.1mW/cmであるときに最大(最大値2.32%)となる。したがって、調整光LL2のパワー密度が1.1mW/cmであるときに最も効率的に調整光LL2が作用している。
以上のような観点から、共鳴光対LL1のパワー密度をP1とし、調整光LL2のパワー密度をP2としたとき、P2/P1は、0.1以上2.5以下であることが好ましく、0.2以上1.5以下であることがより好ましく、0.3以上0.8以下であることがさらに好ましい。これにより、調整光LL2の作用を効率的なものとすることができる。
以上説明したような第2実施形態によっても、EIT信号の強度を効果的に向上させることができる。
<第3実施形態>
次に、本発明の第3実施形態について説明する。
図11は、本発明の第3実施形態に係る原子発振器が備える原子セルの横断面図である。
本実施形態は、原子セルの構成が異なる以外は、前述した第1実施形態と同様である。
なお、以下の説明では、第3実施形態に関し、前述した実施形態との相違点を中心に説明し、同様の事項に関してはその説明を省略する。また、図11において、前述した実施形態と同様の構成については、同一符号を付している。
本実施形態の原子発振器が備える原子セル2Bは、図11に示すように、胴体部21の外表面の一部に遮光膜24が設けられている。この遮光膜24は、胴体部21の調整光LL2の出射側に設けられている。これにより、調整光LL2が迷光となって特性に悪影響を与えるのを低減することができる。
この遮光膜24の構成材料としては、遮光膜24が遮光性を有することができれば、特に限定されず、例えば、樹脂材料、金属材料等を用いることができるが、遮光膜24が光の反射を防止することができるものが好ましい。また、遮光膜24の形成方法は、特に限定されない。本実施形態の場合、例えば、胴体部21上に公知の成膜法を用いて遮光膜24を形成することができる。
以上説明したような第3実施形態によっても、EIT信号の強度を効果的に向上させることができる。
2.電子機器
以上説明したような原子発振器は、各種電子機器に組み込むことができる。
以下、本発明の電子機器について説明する。
図12は、GPS衛星を利用した測位システムに本発明の原子発振器を用いた場合の概略構成を示す図である。
図12に示す測位システム100は、GPS衛星200と、基地局装置300と、GPS受信装置400とで構成されている。
GPS衛星200は、測位情報(GPS信号)を送信する。
基地局装置300は、例えば電子基準点(GPS連続観測局)に設置されたアンテナ301を介してGPS衛星200からの測位情報を高精度に受信する受信装置302と、この受信装置302で受信した測位情報をアンテナ303を介して送信する送信装置304とを備える。
ここで、受信装置302は、その基準周波数発振源として前述した本発明の原子発振器1を備える電子装置である。このような受信装置302は、優れた信頼性を有する。また、受信装置302で受信された測位情報は、リアルタイムで送信装置304により送信される。
GPS受信装置400は、GPS衛星200からの測位情報をアンテナ401を介して受信する衛星受信部402と、基地局装置300からの測位情報をアンテナ403を介して受信する基地局受信部404とを備える。
3.移動体
図13は、本発明の移動体の一例を示す図である。
この図において、移動体1500は、車体1501と、4つの車輪1502とを有しており、車体1501に設けられた図示しない動力源(エンジン)によって車輪1502を回転させるように構成されている。このような移動体1500には、原子発振器1が内蔵されている。
なお、本発明の電子機器は、前述したものに限定されず、例えば、スマートフォン、タブレット端末、時計、携帯電話機、ディジタルスチルカメラ、インクジェット式吐出装置(例えばインクジェットプリンター)、パーソナルコンピューター(モバイル型パーソナルコンピューター、ラップトップ型パーソナルコンピューター)、テレビ、ビデオカメラ、ビデオテープレコーダー、カーナビゲーション装置、ページャー、電子手帳(通信機能付も含む)、電子辞書、電卓、電子ゲーム機器、ワードプロセッサー、ワークステーション、テレビ電話、防犯用テレビモニター、電子双眼鏡、POS端末、医療機器(例えば電子体温計、血圧計、血糖計、心電図計測装置、超音波診断装置、電子内視鏡)、魚群探知機、各種測定機器、計器類(例えば、車両、航空機、船舶の計器類)、フライトシミュレーター、地上デジタル放送、携帯電話基地局、GPSモジュール等に適用することができる。
以上、本発明の量子干渉装置、原子発振器、電子機器および移動体について、図示の実施形態に基づいて説明したが、本発明は、これらに限定されるものではない。
また、本発明の各部の構成は、前述した実施形態の同様の機能を発揮する任意の構成のものに置換することができ、また、任意の構成を付加することもできる。また、本発明は、前述した各実施形態の任意の構成同士を組み合わせるようにしてもよい。
1…原子発振器、1A…原子発振器、2…原子セル、2B…原子セル、3…光源部、4…受光部、5…ヒーター、6…温度センサー、7…磁場発生部、8…制御部、21…胴体部、22…窓部、23…窓部、24…遮光膜、31…第1光源部、32…第2光源部、32A…第2光源部、71…コイル、81…温度制御部、82…光源制御部、83…磁場制御部、100…測位システム、200…GPS衛星、211…貫通孔、300…基地局装置、301…アンテナ、302…受信装置、303…アンテナ、304…送信装置、311…第1光源、312…1/4波長板、321…第2光源、322…偏光子、323…1/4波長板、400…GPS受信装置、401…アンテナ、402…衛星受信部、403…アンテナ、404…基地局受信部、1500…移動体、1501…車体、1502…車輪、a…軸線、a1…光軸、a2…光軸、b1、b2、C…方向、LL…光、LL1…共鳴光対、LL1a…共鳴光対、LL2…調整光、LL2a…光、LL2b…共鳴光、S…内部空間、P…交点

Claims (12)

  1. 金属が封入されている内部空間を有している原子セルと、
    互いに同方向に円偏光していて前記金属を共鳴させる共鳴光対を前記原子セルに向けて出射する第1光源部と、
    前記内部空間において前記共鳴光対の伝播方向に平行な方向の偏光成分を有していて前記金属を共鳴させる調整光を前記共鳴光対と交差する方向で前記原子セルに対して出射する第2光源部と、を備えることを特徴とする量子干渉装置。
  2. 前記内部空間において前記共鳴光対の伝播方向に沿った方向の磁場を発生させる磁場発生部を備える請求項1に記載の量子干渉装置。
  3. 前記磁場発生部は、ヘルムホルツコイルを含む請求項2に記載の量子干渉装置。
  4. 前記調整光は、円偏光または楕円偏光である請求項1ないし3のいずれか1項に記載の量子干渉装置。
  5. 前記第2光源部は、発光素子と、前記発光素子と前記原子セルとの間に配置されている1/4波長板と、を有する請求項4に記載の量子干渉装置。
  6. 前記調整光は、直線偏光である請求項1ないし3のいずれか1項に記載の量子干渉装置。
  7. 前記第2光源部は、発光素子と、前記発光素子と前記原子セルとの間に配置されている偏光子と、を有する請求項6に記載の量子干渉装置。
  8. 前記原子セルは、前記共鳴光対を入射させる入射側窓部と、前記共鳴光対を出射させる出射側窓部と、前記入射側窓部と前記出射側窓部との間に配置されていて前記入射側窓部および前記出射側窓部とともに前記内部空間を形成している胴体部と、を有し、
    前記調整光は、前記胴体部を透過して前記内部空間に入射する請求項1ないし7のいずれか1項に記載の量子干渉装置。
  9. 前記共鳴光対はD1線であり、
    前記調整光はD2線である請求項1ないし8のいずれか1項に記載の量子干渉装置。
  10. 請求項1ないし9のいずれか1項に記載の量子干渉装置を備えることを特徴とする原子発振器。
  11. 請求項1ないし9のいずれか1項に記載の量子干渉装置を備えることを特徴とする電子機器。
  12. 請求項1ないし9のいずれか1項に記載の量子干渉装置を備えることを特徴とする移動体。
JP2015171734A 2015-09-01 2015-09-01 量子干渉装置、原子発振器、および電子機器 Active JP6627335B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015171734A JP6627335B2 (ja) 2015-09-01 2015-09-01 量子干渉装置、原子発振器、および電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015171734A JP6627335B2 (ja) 2015-09-01 2015-09-01 量子干渉装置、原子発振器、および電子機器

Publications (3)

Publication Number Publication Date
JP2017050666A true JP2017050666A (ja) 2017-03-09
JP2017050666A5 JP2017050666A5 (ja) 2018-09-20
JP6627335B2 JP6627335B2 (ja) 2020-01-08

Family

ID=58280365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015171734A Active JP6627335B2 (ja) 2015-09-01 2015-09-01 量子干渉装置、原子発振器、および電子機器

Country Status (1)

Country Link
JP (1) JP6627335B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087621A1 (en) * 2008-01-07 2009-07-16 Rafael Advanced Defense Systems Ltd. Frequency standard based on coherent population trapping (cpt)
JP2014049886A (ja) * 2012-08-30 2014-03-17 Ricoh Co Ltd 原子発振器及びcpt共鳴の励起方法
JP2015154297A (ja) * 2014-02-14 2015-08-24 セイコーエプソン株式会社 原子セル、原子セルの製造方法、量子干渉装置、原子発振器、電子機器および移動体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087621A1 (en) * 2008-01-07 2009-07-16 Rafael Advanced Defense Systems Ltd. Frequency standard based on coherent population trapping (cpt)
JP2014049886A (ja) * 2012-08-30 2014-03-17 Ricoh Co Ltd 原子発振器及びcpt共鳴の励起方法
JP2015154297A (ja) * 2014-02-14 2015-08-24 セイコーエプソン株式会社 原子セル、原子セルの製造方法、量子干渉装置、原子発振器、電子機器および移動体

Also Published As

Publication number Publication date
JP6627335B2 (ja) 2020-01-08

Similar Documents

Publication Publication Date Title
US10027335B2 (en) Quantum interference device, atomic oscillator, electronic device, and moving object
JP6291768B2 (ja) 原子共鳴遷移装置、原子発振器、電子機器および移動体
US10133095B2 (en) Quantum interference device, atomic oscillator, electronic apparatus, and moving object comprising FM-modulated adjustment light
JP2015119443A (ja) ガスセル、量子干渉装置、原子発振器、電子機器および移動体
JP2015231053A (ja) 原子セル、量子干渉装置、原子発振器、電子機器および移動体
US9577652B2 (en) Atomic resonance transition device, atomic oscillator, electronic apparatus, and moving object
JP6520039B2 (ja) 量子干渉装置、原子発振器および電子機器
US9935642B2 (en) Quantum interference device, atomic oscillator, electronic apparatus, and moving object
JP6519169B2 (ja) 原子共鳴遷移装置、原子発振器、時計、電子機器および移動体
JP6361129B2 (ja) ガスセル、量子干渉装置、原子発振器、電子機器および移動体
JP6743410B2 (ja) 量子干渉装置、原子発振器および電子機器
JP6337456B2 (ja) 量子干渉装置、原子発振器、電子機器および移動体
JP2018137397A (ja) 量子干渉装置、原子発振器、電子機器および移動体
JP6442969B2 (ja) 量子干渉装置、原子発振器および電子機器
JP2017123511A (ja) 量子干渉装置、原子発振器、電子機器および移動体
JP6627335B2 (ja) 量子干渉装置、原子発振器、および電子機器
JP6264876B2 (ja) 量子干渉装置、原子発振器、および電子機器
JP2018146310A (ja) 磁気センサ、生体磁気測定装置
JP6565397B2 (ja) 量子干渉装置、原子発振器および電子機器
JP6662061B2 (ja) 量子干渉装置、原子発振器、電子機器および移動体
JP2018082108A (ja) 量子干渉装置、原子発振器、電子機器および移動体
JP2017022653A (ja) 量子干渉装置、原子発振器、電子機器および移動体
JP2015185984A (ja) 原子セル、原子セルの製造方法、量子干渉装置、原子発振器、電子機器および移動体

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180807

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180906

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R150 Certificate of patent or registration of utility model

Ref document number: 6627335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250