JP2017044548A - 電流センサ - Google Patents

電流センサ Download PDF

Info

Publication number
JP2017044548A
JP2017044548A JP2015166440A JP2015166440A JP2017044548A JP 2017044548 A JP2017044548 A JP 2017044548A JP 2015166440 A JP2015166440 A JP 2015166440A JP 2015166440 A JP2015166440 A JP 2015166440A JP 2017044548 A JP2017044548 A JP 2017044548A
Authority
JP
Japan
Prior art keywords
magnetic
current sensor
current
conversion means
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015166440A
Other languages
English (en)
Inventor
石田 俊郎
Toshiro Ishida
俊郎 石田
誠治 川縁
Seiji Kawabuchi
誠治 川縁
秀樹 庄司
Hideki Shoji
秀樹 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SETTO ENGINEERING KK
Toyo System Co Ltd
Original Assignee
SETTO ENGINEERING KK
Toyo System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SETTO ENGINEERING KK, Toyo System Co Ltd filed Critical SETTO ENGINEERING KK
Priority to JP2015166440A priority Critical patent/JP2017044548A/ja
Publication of JP2017044548A publication Critical patent/JP2017044548A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】大電流を計測する場合に好適な計測特性の直線性ならびに計測精度を有し、小型軽量とコスト抑制を図ることが可能な電流センサを提供する。
【解決手段】電流が流れる導体表面に設置される電流センサ1であって、電流によって生じる磁界方向に沿って配置される長形の磁気集束器本体11と、磁気集束器本体11の長手方向各端部から延設された複数のアーム部12a,12bと、アーム部12a,12bの先端から空隙を設けて設置されたアンテナ部121a,121bと、複数のアーム部12a,12bの先端に設けた各間隙に配置される電磁変換手段13a,13bとを備え、アーム部12a,12bは、磁気集束器本体11の端部における磁気ポテンシャルと同位の位置でアンテナ部121a,121bが磁束を集束し、該磁束密度を磁電変換手段13a,13bが検出するように磁界方向に対して鉛直方向に延設されることを特徴とする。
【選択図】図1

Description

本発明は、電流を磁気的に計測する電流センサに関するもので、特に大きな電流計測を可能にするものである。
銅バー、大ゲージケーブルなどの導体に流れる電流を計測対象とするときには、磁気的な計測を行っており、従来より閉磁路方式ならびに適度な空隙を設けた開磁路方式が利用されている。
これらの計測方式は、流れる電流によって磁気回路に起磁力を生じさせ、計測対象に流れる電流の量的情報を磁電変換によって取得するものである。具体的には、磁気センサによる磁束密度の計測を行い、間接的に電流計測を実施している(例えば、特許文献1参照)。
上記の計測方式は、磁気的外乱の影響が少なく、計測原理的に優れていることから広範囲の電流計測に用いられている。
しかしながら、1万アンペア程度の大電流を計測する場合に、従来より使用されているホール素子または磁気変換素子では、磁気回路の抵抗を大きく設定しなければならず、前述の空隙部分を大きく設ける必要がある。空隙部分を極度に大きくすると、磁気回路において空隙部分の高磁気抵抗路と磁性材料による低磁気抵抗路の比率が変化し、電流を起磁力として計測する場合の精度が劣化する。
そのため、大きな空隙部分を設ける場合には、磁気抵抗の低い磁性体部分の磁気路を延長することが必要になる。即ち磁気回路の総磁路を長く設け、電流路を中心に大きな半径で磁気回路を形成する必要がある。
特開2013−79862号公報
前述のような磁気回路を有する電流センサを使用して、大電流計測を行う場合には相対的に大型で高コストの装置が必要になる。
また、計測系を構築するとき、電流路となる電流ケーブル等を磁気回路内に挿通させる特別な工事が必要になる。即ち、前述のように磁気回路の半径を大きく構成して、所望の空隙部分の比率を確保すると、膨大なコストが必要になり事業的観点でバランスを欠くことになるという問題点があった。
また、大電流を計測する場合には、前述のように磁気回路ならびに空隙部分の構成を大きくすることが望まれるが、小電流を計測する場合に比べて計測精度を犠牲にすることが避けられず、上述のような磁気回路型の大電流計測では、保証可能な計測精度に限界があり、小電流計測の精度に大きく及ばないという問題点があった。
これに対して、計測精度を適度に妥協して計測原理自体を見直した方法がある。この計測方法は、電流が流れる導体近傍の磁界分布を検出して当該電流を推測するもので、大きな磁気回路を形成する必要がないことから、小型軽量化を図ることが容易になる。また、大電流計測に要するコストを、大幅に低減する可能性がある。
上記の導体近傍の磁界を検出する計測方法は、電流を磁気量として計測するとき、変換処理の安定性を維持して良好な計測精度を確保するためには、計測系の設置・変更毎に校正が必須となる。この校正によって、電流値と計測量との間に良好な直線性を得ることができる。しかしながら、近傍磁界を計測するときには、地磁気や周辺の建築構造物に含まれる磁性体によって発生する外乱磁界が影響する。即ち、地磁気や外乱磁界によって計測値が変動し、計測精度が損なわれるという問題点があった。
本発明は、上記の課題を解決するためになされたもので、大電流を計測する場合に好適な計測特性の直線性ならびに計測精度を有し、小型軽量とコスト抑制を図ることが可能な電流センサを提供することを目的とする。
本発明に係る電流センサは、電流が流れる導体表面に設置される電流センサであって、前記電流によって生じる磁界方向に沿って配置される長形の磁気集束器本体と、前記磁気集束器本体の長手方向各端部から延設された複数のアーム部と、前記アーム部の先端から空隙を設けて設置されたアンテナ部と、前記複数のアーム部の先端に設けた各間隙に配置される磁電変換手段とを備え、前記アーム部は、前記磁気集束器本体の端部における磁気ポテンシャルと同位の位置で前記アンテナ部が磁束を集束し、該磁束密度を前記磁電変換手段が検出するように前記磁界方向に対して鉛直方向に延設されることを特徴とする。
また、前記複数のアーム部先端に設置されたアンテナ部間の距離をL、前記電流によって生じる磁界強度をHとしたとき、前記アンテナ部は、磁気ポテンシャルが+LH/2となる位置に配置された第1アンテナ部と、磁気ポテンシャルが−LH/2となる位置に配置された第2アンテナ部とからなり、前記複数のアーム部は、前記第1アンテナ部を先端に設置した第1アーム部と、前記第2アンテナ部を先端に設置した第2アーム部と、からなることを特徴とする。
また、前記磁電変換手段は、前記第1アーム部の空隙に配置された第1磁電変換手段と、前記第2アーム部の空隙に配置された第2磁電変換手段と、であり、前記第1磁電変換手段の出力信号と前記第2磁電変換手段の出力信号とを用いて、前記導体に流れる電流値を求める演算手段を有することを特徴とする。
また、前記演算手段は、前記第1磁電変換手段の出力信号と前記第2磁電変換手段の出力信号とを演算処理することにより、該電流センサの取り付け位置ならびに磁束の偏流による誤差要因を除去することを特徴とする。
本発明によれば、導体に設置することが簡易にでき、また、リニアな計測特性を備えることにより精度良く大きな電流を計測することができる。
本発明の実施例による電流センサの概略構成図である。 実施例の電流センサに集束される磁束を示す説明図である。 実施例の電流センサに集束される磁束を示す説明図である。 導体に電流が流れることによって生じる磁界を示す説明図である。 磁性体モデルの周囲の磁界を示す説明図である。 図5の磁性体モデル周囲に生じる磁気ポテンシャルを示す説明図である。 集束磁性体が磁界に与える影響を示す説明図である。 図1の電流センサの概略構成を示す説明図である。 集束磁性体の影響を示す説明図である。 この実施例による電流センサの他の構成例を示す説明図である。 この実施例による電流センサの他の設置例を示す説明図である。
以下、この発明の実施の一形態を説明する。
(実施例)
図1は、本発明の実施例による電流センサの概略構成図である。この図は、本実施例の電流センサ1を上方から視た場合の構成を表しており、磁電変換素子の出力信号を処理する回路部分や配線接続等の図示を省略している。
図示した電流センサ1は、電流を通電するバスバー(Bus−bar)2に装着された状態であり、バスバー2の表面上において略U字状に設置構成されている。
バスバー2は、例えば帯状銅板からなる導体であり、少なくとも上面等に電流センサ1を設置することができる平面部分を有し、数[kA]程度、もしくはそれ以上の大電流通電に耐用可能なものである。
電流センサ1は、上方視したとき略U字状となる磁気集束器10を基板14の上面に設置している。磁気集束器10は、U字状の二つの両端部分を成すアーム部12a,12b、これらアーム部12aとアーム部12bとを接続してU字状の底部分を形成する磁気集束器本体11によって構成されている。
アーム部12aは、先端部分にアンテナ部121aが配置され、このアンテナ部121aとアーム部12aとの間に空隙が設けられている。この空隙にはホール素子13aが設置されている。この空隙の間隔は、ホール素子13a,13bを配置することが可能であり、U字コア(電流センサ1の略U字状に形成された部位)の較差の程度で決まる。
また、この空隙を設けることによって、アンテナ部121aに周辺の磁気ポテンシャルを反映させるため、適度な磁気抵抗を生じさせている。
アーム部12bは、先端部分にアンテナ部121bが配置され、このアンテナ部121bとアーム部12bとの間に、アーム部12aと同様な空隙が設けられている。この空隙にはホール素子13bが設置されている。
アンテナ部121aを含むアーム部12a及びアンテナ部121bを含むアーム部12bは、集束磁性体を用いて構成されており、例えば磁気集束器本体11と同一の強磁性体によって構成されている。
即ち、磁気集束器10(ホール素子13a,13bを除く)は、高い透磁率の磁性体によって構成されている。また、アーム部12aのアンテナ部121aを除いた部分、ならびにアーム部12bのアンテナ部121bを除いた部分は、磁気集束器本体11と一体形成されている。
アンテナ部121a,121bの断面、もしくはホール素子13a,13bと接する端面は、当該ホール素子13a,13bの磁束検出部分と同様な形状ならびに大きさ(面積)をしており、磁束が効率良くホール素子13a及びホール素子13bを通過するように形成されている。なお、ホール素子13a,13bと接する端面を除いて、アンテナ部121a,121bの断面等をホール素子13a,13bの磁束検出部分よりも大きく構成してもよい。
ホール素子13a,13bは、いずれも同様な磁電変換素子であり、磁束密度に応じた電圧を出力し、リニアな出力特性を有したものである。
磁気集束器10は、バスバー2を流れる電流方向に対応させてU字状の開口部分を配置しており、例えば、図中上方に向って開口している。換言すると、磁気集束器10は、電流の下流側へ向けて開口するようにバスバー2の表面上に設置されている。
基板14は、例えばガラスエポキシの板材に図示を省略したプリントパターンを形成したもので、例えば、ホール素子13a及びホール素子13bに電源電流を供給する配線パターン、各ホール素子13a,13bの出力信号を外部出力するための配線パターンなどが形成されている。
なお、基板14は、ガラスエポキシの他、紙エポキシなどを用いることも可能で、吸湿性、剛性、熱膨張率などが電流センサ1の使用環境に耐用できるものであればよい。
また、基板14は、上記の電源電流を外部から入力し、また、各ホール素子13a,13bの出力信号(出力電圧)を外部へ出力するためのコネクタあるいはリード配線等(図示省略)を備えている。
なお、電流センサ1、もしくは各素子などを実装した基板14は、例えば図示を省略した取り付け部材等を介してバスバー2に固定されており、当該バスバー2から電気的に絶縁されている。
また、電流センサ1は、ホール素子13a,13bの各出力信号を入力して電流Ifの値を求める例えば演算ユニット等(図示省略)に配線接続されている。
次に動作について説明する。
図2及び図3は、本実施例の電流センサに集束される磁束を示す説明図である。図2は、図1に示した電流センサ1の斜視図であり、バスバー2に電流Ifが流れた場合に生じる磁束φ1,φ2を示したものである。
また、図3は、図2に示した電流センサ1の周囲に生じている磁束φ1,φ2を、当該電流センサ1の上方ならびに側方から視た状態を示したものである。
図4は、導体に電流が流れることによって生じる磁界を示す説明図である。導体100に電流Ifが流れたとき、導体100の周囲には磁界Hが発生する。磁界Hは、アンペールの法則によって表現すると、導体100から距離rの点(位置)において、H=If/(2πr)の強さを有する。
図2において、図中奥方向へ電流Ifが流れるとき、バスバー2の周囲には右回りの磁界が生じる。この磁界中に電流センサ1が載置されている場合、電流センサ1に設けた磁気回路内を矢印で示したように磁束が通過する。
磁気回路を構成する磁気集束器10は、バスバー2の上面において略U字状となるように形成されており、概ね、磁束φ1の経路と磁束φ2の経路が生じる。
バスバー2に電流Ifが流れると、当該バスバー2の断面周囲に沿って磁束φ1が流れ、この磁束φ1は磁気集束器本体11を長手方向に通過する。
また、バスバー2の周囲を流れる磁束φ2は、アーム部12a,12bの先端部分に集束し、磁気集束器10を介してバスバー2の周囲を周回する。
詳しくは、アンテナ部121aの先端から入射してホール素子13aを通過し、アーム部12aの基端部分を通過する。さらに、磁気集束器本体11を長手方向に通過してアーム部12bの基端部分からホール素子13bを通過し、アンテナ部121bの先端から放出される。磁束φ2は、このようにアンテナ部121aの先端とアンテナ部121bの先端との間に設けた磁気回路を流れ、バスバー2の周囲を周回する。
なお、バスバー2から磁束φ2の計測点(ホール素子13a,13bの磁束φ2が通過する部分)までの距離は、図3(b)に示した距離r1である。
図5は、磁性体モデルの周囲の磁界を示す説明図である。この図は、磁界中に磁気集束器の磁性体モデルを設置したとき、その周囲の磁気ポテンシャルを、等高線を用いて表したものである。なお、図中の磁界の向きは、矢印αで示した方向である。
図示した磁気集束器150は、直線状に延びた長形の磁性体モデルであり、長手方向の長さがLで高透磁率の磁性体である。この磁気集束器150は、長手方向が磁界の向きに沿うように配置されている。
なお、前述の磁気集束器10もしくは電流センサ1を構成する各磁性体は、計測対象の電流範囲(最大電流値)において生じる磁界中で磁気飽和することのない材料であり、また磁気飽和し難い形状に形成されている。
図6は、図5の磁性体モデル周囲に生じる磁気ポテンシャルを示す説明図である。この図は、図5の磁気集束器150を例えばX−Y平面上に存在する磁性体とした場合の磁気ポテンシャルを表したものである。
図5において矢印αで示した磁界方向に沿って長形の磁気集束器150を設置したとき、当該磁気集束器150における磁気ポテンシャルの勾配は図6に示したようになり、磁気集束器150内においては磁気ポテンシャルの勾配が概ね「0」になる。
なお、磁気集束器150周囲の勾配は、当該磁気集束器150の表面近傍で急峻になり、ある程度以上離れると本来の磁界の勾配となる。
磁気集束器150の長さをL、磁界の強さをHとしたとき、磁気集束器150の長手方向両端において、磁気集束器150に磁束が入力する側では上記の磁気ポテンシャルの差が+LH/2となり、磁気集束器150から磁束が出力する側では−LH/2の差が生じる。
また、磁気集束器150の長手方向両端では磁気ポテンシャルの差が上記のようになることから、磁気集束器150の長手方向中央の周囲磁界は、磁気ポテンシャルの勾配が「0」になる。
磁気集束器150の表面は磁気ポテンシャル「0」であることから、磁気集束器150の表面近傍では、磁気集束器150の表面に沿って磁気ポテンシャルの差(勾配)が生じる。このことから、図5に示したように磁気集束器150周囲において、部分的に当該磁気集束器150の長手方向と略平行になる等高線が生じる。
即ち、磁気集束器150は、矢印αの磁界方向に対して90度の方向(矢印Bが示す方向)に、当該磁気集束器150近傍の磁界方向を変換する。
このように磁界方向が変化することによって、磁気集束器150の周囲には部分的に斉一な強度の磁界が生じる。このことから、磁気集束器150の長手方向の長さLに関して積分処理を行うことにより、様々な外乱要素を抑圧することができる。
本実施例の電流センサ1は、アーム部12a,12bが磁気集束器本体11の長手方向両端に各々設置されており、磁気集束器150の両端から鉛直方向に延設したように設けられている。
前述のように磁気集束器150の長手方向両端は、磁気ポテンシャルが各々+LH/2、−LH/2となっていることから、磁気集束器本体11の各端部に配置されているアーム部12a(ホール素子13a)は+LH/2に比例した値を計測し、アーム部12b(ホール素子13b)は−LH/2に比例した値を計測する。
具体的には、アンテナ部121aならびにアンテナ部121bの先端部分が配置された位置の磁束を集束し、例えば図5に示した計測位置201a,201bの磁束密度を計測する。ここで、計測位置201aの磁気ポテンシャルは+LH/2、計測位置201bの磁気ポテンシャルは−LH/2である。なお、上記のLは、アーム部12aとアーム部12bとの間の距離を示し、磁気集束器本体11の長手方向長さである。
図7は、集束磁性体が磁界に与える影響を示す説明図であり、前述のアーム部12a,12bの長さに関する条件を説明するためのモデルを例示している。
磁気集束器10において、アンテナ部121aとアーム部12aとの間の空隙、ならびにアンテナ部121bとアーム部12bとの間の空隙が磁束の計測点となる。磁束を計測するとき、アーム部12a,12bの長さが短すぎると、磁気集束器本体11の磁界歪を直接計測点が拾うことになり、計測精度や感度に影響を与える。
以下、磁気集束器本体11によって生じる影響、ならびにアーム部12a,12bの適当な長さに関し、図7に示したモデル(集束磁性体301)を用いて説明する。なお、アーム部12a,12bにおいても厳密には磁界歪が発生し、この影響を受ける。しかしながら、この影響は計測手段に関して阻害要因にならないことから、ここでは、計測感度阻害要因となり得る磁気集束器の影響と考え、当該各アーム部の影響については説明を省略する。
図7(a)は、ソレノイドコイル300の内部に集束磁性体301を配置した状態を示している。ここで、ソレノイドコイル300は無限長であって、電流が導通されたとき図中左側がS極、右側がN極となる斉一磁界を発生させるものとする。また、集束磁性体301は、ソレノイドコイル300と同様に無限長の磁性体モデルであり、集束磁性体301の断面302は、図7(b)ならびに図7(c)に示したように高さhを有している。
ここで、集束磁性体301の周辺磁界(磁気ポテンシャル)の測定点を、図7(b)に示したx1とする。この測定点x1は、例えばソレノイドコイル300が発生する斉一磁界のS極側に配置されており、集束磁性体300の高さhを有する側面303から距離x離れた位置に設けられている。
また、ここで、上記の側面303と測定点x1との間に生じる立体角をω[str]とする。なお、立体角ωは、集束磁性体301の、延設方向における任意の長さ部分(周辺磁界を測定する部分)に対して生じるものである。
図7のモデルにおいて、ソレノイドコイル300が発生させた(例えばS極からN極方向の)斉一磁界の強さを「1」としたとき、測定点x1で測定される磁界は、集束磁性体301の影響によって(4π−2ω)/4π=1−ω/2πに弱められる。
測定点x1で測定される磁界強さを50[%]以上とするためには、上式の1−ω/2πより、立体角ωをπ以下にする必要がある。そのため、断面302から測定点x1までの距離をxとしたとき、距離xはh/2以上に設定しなければならない。
また、測定点x1で測定される磁界の強さを75[%]以上とするためには、立体角ωをπ/2以下にする必要がある。このとき、距離xはh以上に設定しなければならない。
前述のように集束磁性体301は磁界に影響することから、斉一磁界に生じる磁気ポテンシャルを、集束磁性体301による影響を50[%]以下に抑えて測定するには、立体角ω=π以下、距離x=h/2以上となる位置に測定点x1を設ける。
また、集束磁性体301の影響を25[%]以下に抑えて磁気ポテンシャルを測定するには、立体角ω=π/2以下、距離x=h以上となる位置に測定点x1を設ける。
無限長の集束磁性体301の影響を抑えて磁気ポテンシャルを測定するには、上記の位置に測定点x1を設定する。なお、集束磁性体301の影響は、測定点x1から遠ざかるほど影響が小さくなり、集束磁性体301の無限遠となる部分は影響が皆無と考えることができる。即ち、測定点x1に大きく影響するのは、当該測定点x1に最も近い側面303であり、この側面303と測定点x1との間に生じる立体角ωの大きさが影響する。
これらのことから、実際に電流センサを構成するときには、測定点に最も近い集束磁性体の影響について考慮すれば実用上は十分である。そこで、例えば側面303からの距離xがh、立体角ωが仰角Aとなる位置に測定点x1を設定する。
図8は、図1の電流センサの概略構成を示す説明図である。図1を用いて説明した電流センサ1は、図8に示したように磁気集束器10(アーム部12a,12bを含む)の高さをhとし、磁気集束器本体11と接するアーム部12aの基端部から、アンテナ部121aの(アーム部12aの長手方向)中心までの長さをxとして構成されている。なお、アーム部12bの基端部からアンテナ部121bの中心までの長さも同様にxである。
図9は、集束磁性体の影響を示す説明図である。この図は、横軸が任意の集束磁性体から測定点までの距離xで、縦軸が集束磁性体の影響によって減少する磁界強さの割合を示している。なお、ここでもhは集束磁性体の断面高さを表している。
図9に示したように、集束磁性体の影響は、集束磁性体端部の断面から測定点までの距離xがh/2のとき仰角Aは90度となり、この測定点においては実際の斉一磁界よりも50[%]減少した磁界強さが観測される。
また、距離xがhのとき仰角Aは53度となり、この測定点においては29[%]減少したものが観測される。距離xが3h/2のときには仰角Aが37度となり、この測定点においては21[%]減少したものが観測される。距離xが2hのときには仰角Aが28度となり、この測定点においては16[%]減少したものが観測される。
仰角A[rad]としたとき、距離xの測定点では集束磁性体によってA/π×100[%]減少したものが観測される。
図8などに示した電流センサ1は、アーム部12aの基端部からの距離がxとなるアンテナ部121aの中心位置に測定点が設定されている。
なお、アンテナ部121bについても同様な位置に測定点が設定されており、ここではアーム部12aならびにアンテナ部121aを例示して説明する。
アンテナ部121aに設定された測定点と、(アーム部12a基端部断面と接する)磁気集束器本体11の壁面との間に生じる仰角をAとしたとき、ω=A/2π、x4π=2Aとなる。電流センサ1もしくはアンテナ部121a周辺の磁気ポテンシャルPは、P=kI{(4π−2A)−2A}=4kI(π−A)と表される。
集束磁性体即ち磁気集束器本体11が無い場合には仰角A=0となることから、このときの磁気ポテンシャルPは、(π−A)/π×100[%]で表される強さを有する。また、磁気集束器本体11から受ける影響は、−A/π×100[%]で表される。このことから、仰角Aが90度のとき実際の磁界よりも50[%]低減したものが観測され、仰角Aが45度のときには25[%]低減したものが観測される。
アンテナ部121aは、前述の集束磁性体の影響を受けることなく周辺磁界を測定することが好ましい。そのためには、磁気集束器本体11に対する仰角Aが小さくなるように構成することが望まれる。
例えば、仰角Aを45度とした場合、図8に示した距離xは約1.2hの長さになる。
ホール素子13a及びホール素子13bの各出力信号は、前述のように演算ユニットに入力され、当該演算ユニットに備えられたプロセッサ等はソフトウェアプログラムに則した所定の演算を行う。
上記の演算ユニットは、前述のように磁気集束器10もしくは磁気集束器本体11の長さLについて積分処理を行い、磁気集束器本体11の近傍に存在する磁界に対する非直線性の影響、即ち次数の高い磁界変化の抑圧を行う。具体的には、電流センサ1の取り付け位置において生じる誤差要因、電流センサ1周辺(またさらに、電流センサ1の磁気回路内)の磁束の偏流によって生じる誤差要因などを除去もしくは抑圧する。
上記の積分処理は、直線状の積分となるため、例えば、図4に示した直線的に流れる電流(直線状の導体)周辺の周回積分を要するものに比べて、有効な外乱要素の抑圧を行うことができ、ホール素子13a,13bの出力信号から良好な出力直線性を得ることができる。
図10は、この実施例による電流センサの他の構成例を示す説明図である。この図は、これまで説明した磁気集束器10の様々な構成例を示したもので、同一あるいは相当する部分に、図1等と同じ符号を使用している。
図10(a)に示した電流センサの磁気集束器は、断面四辺形の角棒状あるいはレンガ状に形成された磁気集束器本体11の両端に、角棒状等に形成されたアーム部12aおよびアーム部12bを各々接合し、上方から視たとき略コの字状となるように構成されている。
図10(b)に示した電流センサの磁気集束器は、磁気集束器本体11の長手方向両端近傍に、図10(a)に示したものと同様に構成されたアーム部12aならびにアーム部12bを接合したものである。
詳しくは、図10(a)と同様に角棒状等に形成された磁気集束器本体11の長手方向の先端よりも中央寄りの位置に、アーム部12aまたはアーム部12bを接合している。そのため、磁気集束器本体11の長手方向端部は、アーム部12aならびにアーム部12bの各側面(外側面)よりも外側に突出した位置に配される。
図10(c)に示した磁気集束器は、磁気集束器本体11とアーム部12aとアーム部12bとを一体形成したもので、どの部分においても同様な断面形状をしており、例えば断面四辺形に形成されている。
また、この磁気集束器は、上方から視たとき略U字状となるように形成されており、磁気集束器本体11とアーム部12aとの接合部位、ならびに、磁気集束器本体11とアーム部12bとの接合部位は、角隅部分が生じないように各々ラウンド形状に形成されている。
なお、図10(a)〜(c)に示した各磁気集束器は、どの構成においても、図1、図2等を用いて説明した電流センサ1、もしくは磁気集束器10と同様な磁束の経路が形成され、前述の説明のように磁束を検出することができるものである。即ち、本実施例の電流センサ1は、図10に示した、いずれかのように構成してもよく、さらに、前述のように磁束の計測が可能なことを条件として、電流センサもしくは磁気集束器等の形状等は、ここで例示したものに限定されない。
図11は、この実施例による電流センサの他の設置例を示す説明図である。図11(a)に示した設置状態は、バスバー2に流れる電流Ifに対向して、アンテナ部121aおよびアンテナ部121bが先端となって、磁気集束器本体11がアンテナ部121a等の背後側に配置されるように、電流センサ1をバスバー2に設置したものである。
換言すると、図2に示した電流センサ1とは逆向きにバスバー2に設置したもので、前述の電流センサ1の略U字状、あるいは略コの字状の開口部位を、電流Ifに向けて設置している。
図11(b)に示した設置状態は、磁気集束器本体11の外側面(上記の開口した部位の背面側)がバスバー2の表面と対向近接し、また、アーム部12a、アーム部12b、アンテナ部121a、アンテナ部121b等が、バスバー2表面に対して鉛直方向に延びるように電流センサ1を設置したものである。
詳しくは、磁気集束器本体11をバスバー2に設置し、この磁気集束器本体11から上方へアーム部12aおよびアーム部12bを延設し、これらのアーム部先端に、前述のものと同様にホール素子13a、アンテナ部121a、ホール素子13b、アンテナ部121bを設けている。
例えば、図11の(a)および(b)に示したように本実施例の電流センサを設置した場合でも、バスバー2に流れる電流Ifによって発生した磁束を磁気集束器等によって集束し、バスバー2周辺の磁界強度、即ち電流Ifの大きさを計測することが可能である。なお、図11に示したように設置した場合でも、当該電流センサ内を通過する磁束は、図2ならびに図3を用いて説明したものと概ね同様な経路を通る。
また、図2ならびに図3に示した状態、あるいは、図11に例示した各状態のいずれかのように電流センサをバスバー2に設置するとき、電流センサをバスバー2の表面に直接載置してもよいが、例えば、バスバー2に発生する熱等の影響を避けるため、電流センサの筐体(図示省略)にスペーサまたは断熱材等を備え、バスバー2表面から当該電流センサを適当に離間して設置するように構成してもよい。
以上のように本実施例によれば、大きな空隙を磁気回路に設けることを要しないため、小型化ならびに設置装着を容易にすることができ、コストの低減を図ることが可能になる。
また、バスバー等の導体表面に設置することから、メンテナンス性を向上させることができる。
また、比較的簡易な演算処理によって外乱要素を抑圧し、所望の計測精度で計測値を得ることが可能になる。
1電流センサ
2バスバー
10磁気集束器
11磁気集束器本体
12a,12bアーム部
13a,13bホール素子
14基板
100導体
121a,121bアンテナ部
150磁気集束器
201a,201b計測位置
300ソレノイドコイル
301集束磁性体
302断面
303側面

Claims (4)

  1. 電流が流れる導体表面に設置される電流センサであって、
    前記電流によって生じる磁界方向に沿って配置される長形の磁気集束器本体と、
    前記磁気集束器本体の長手方向各端部から延設された複数のアーム部と、
    前記アーム部の先端から空隙を設けて設置されたアンテナ部と、
    前記複数のアーム部の先端に設けた各間隙に配置される磁電変換手段と、
    を備え、
    前記アーム部は、
    前記磁気集束器本体の端部における磁気ポテンシャルと同位の位置で前記アンテナ部が磁束を集束し、該磁束密度を前記磁電変換手段が検出するように前記磁界方向に対して鉛直方向に延設される、
    ことを特徴とする電流センサ。
  2. 前記複数のアーム部先端に設置されたアンテナ部間の距離をL、前記電流によって生じる磁界強度をHとしたとき、
    前記アンテナ部は、
    磁気ポテンシャルが+LH/2となる位置に配置された第1アンテナ部と、
    磁気ポテンシャルが−LH/2となる位置に配置された第2アンテナ部と、
    からなり、
    前記複数のアーム部は、
    前記第1アンテナ部を先端に設置した第1アーム部と、
    前記第2アンテナ部を先端に設置した第2アーム部と、
    からなる、
    ことを特徴とする請求項1に記載の電流センサ。
  3. 前記磁電変換手段は、
    前記第1アーム部の空隙に配置された第1磁電変換手段と、
    前記第2アーム部の空隙に配置された第2磁電変換手段と、
    であり、
    前記第1磁電変換手段の出力信号と前記第2磁電変換手段の出力信号とを用いて、前記導体に流れる電流値を求める演算手段を有する、
    ことを特徴とする請求項1または2に記載の電流センサ。
  4. 前記演算手段は、
    前記第1磁電変換手段の出力信号と前記第2磁電変換手段の出力信号とを演算処理することにより、該電流センサの取り付け位置ならびに磁束の偏流による誤差要因を除去する、
    ことを特徴とする請求項3に記載の電流センサ。
JP2015166440A 2015-08-26 2015-08-26 電流センサ Pending JP2017044548A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015166440A JP2017044548A (ja) 2015-08-26 2015-08-26 電流センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015166440A JP2017044548A (ja) 2015-08-26 2015-08-26 電流センサ

Publications (1)

Publication Number Publication Date
JP2017044548A true JP2017044548A (ja) 2017-03-02

Family

ID=58209762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015166440A Pending JP2017044548A (ja) 2015-08-26 2015-08-26 電流センサ

Country Status (1)

Country Link
JP (1) JP2017044548A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109459715A (zh) * 2018-10-17 2019-03-12 宁波中车时代传感技术有限公司 一种闭环霍尔效应电流传感器仿真方法
CN115831529A (zh) * 2022-11-17 2023-03-21 南方电网数字电网研究院有限公司 聚磁环和电流传感器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109459715A (zh) * 2018-10-17 2019-03-12 宁波中车时代传感技术有限公司 一种闭环霍尔效应电流传感器仿真方法
CN109459715B (zh) * 2018-10-17 2021-03-26 宁波中车时代传感技术有限公司 一种闭环霍尔效应电流传感器仿真方法
CN115831529A (zh) * 2022-11-17 2023-03-21 南方电网数字电网研究院有限公司 聚磁环和电流传感器
CN115831529B (zh) * 2022-11-17 2024-01-23 南方电网数字电网研究院有限公司 聚磁环和电流传感器

Similar Documents

Publication Publication Date Title
JP4833111B2 (ja) 電流検出器
KR101638234B1 (ko) 전류 센서
JP5065887B2 (ja) 電流測定装置
JP5489145B1 (ja) 電流センサ
JP4839393B2 (ja) 電流検出装置
WO2016194240A1 (ja) 電流センサ
JP2015175757A (ja) 電流センサ
JP2015179042A (ja) 電流センサ
JP5556468B2 (ja) 電流センサ
JP2019060646A (ja) 電流センサ
JP2017044548A (ja) 電流センサ
JP2009168790A (ja) 電流センサ
JP2015152418A (ja) 電流センサ
JP2009204415A (ja) 電流センサ及び電力量計
JP2018100904A (ja) 電磁界センサ、電磁界計測システムおよび電磁波の到来方向推定システム
JP2015184175A (ja) 電流センサ及び電流センサセット
JP6671986B2 (ja) 電流センサおよびその製造方法
JP2015206719A (ja) 電流センサ
JP6145467B2 (ja) 位置検出装置
JP2010044025A (ja) 電流センサ
JP2008241678A (ja) 電流センサおよび電流検出装置
JP2020071100A (ja) 電流検出方法及び電流検出構造
JP4597797B2 (ja) トロリ線電流検出装置
JP6226091B2 (ja) 電流センサ
JP2014098634A (ja) 電流センサ