JP2017043089A - Polyethylene coated steel tube and manufacturing method therefor - Google Patents

Polyethylene coated steel tube and manufacturing method therefor Download PDF

Info

Publication number
JP2017043089A
JP2017043089A JP2016150646A JP2016150646A JP2017043089A JP 2017043089 A JP2017043089 A JP 2017043089A JP 2016150646 A JP2016150646 A JP 2016150646A JP 2016150646 A JP2016150646 A JP 2016150646A JP 2017043089 A JP2017043089 A JP 2017043089A
Authority
JP
Japan
Prior art keywords
steel pipe
polyethylene
coated steel
dust
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016150646A
Other languages
Japanese (ja)
Other versions
JP6399055B2 (en
Inventor
慶一郎 岸
Keiichiro Kishi
慶一郎 岸
村瀬 正次
Masaji Murase
正次 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2017043089A publication Critical patent/JP2017043089A/en
Application granted granted Critical
Publication of JP6399055B2 publication Critical patent/JP6399055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyethylene coated steel tube excellent in cathode peeling resistance of a polyethylene coated layer and capable of being manufactured without conducting a chromate treatment.SOLUTION: There is provided a polyethylene coated steel tube having a polyethylene coated layer on a steel pipe outside surface with the amount of duct contained in the steel tube outside surface and the polyethylene coated layer having area ratio of Fe by Fe mapping a surface contacting with the steel tube outside surface of peeled polyethylene coated layer by EPMA of 20% or less.SELECTED DRAWING: None

Description

本発明は、ポリエチレン被覆層の密着性に優れたポリエチレン被覆鋼管およびその製造方法に関する。また、本発明は、ガス管、水道管、ケーブル保護管、ラインパイプ等に用いられる外面ポリエチレン被覆鋼管に関する。   The present invention relates to a polyethylene-coated steel pipe excellent in adhesion of a polyethylene coating layer and a method for producing the same. The present invention also relates to an outer polyethylene-coated steel pipe used for gas pipes, water pipes, cable protection pipes, line pipes and the like.

鋼管表面に防食層としてポリエチレン被覆層を被覆したポリエチレン被覆鋼管は、防食性に優れ各種配管に利用されている。ポリエチレン被覆鋼管は特に海底や地下への埋設用途が増大しており、その場合、電気防食が併用されることが多い。電気防食の効果によってポリエチレン被覆鋼管の鋼管は防食されるが、一方でポリエチレン被覆層が鋼管外表面から剥離しやすくなる問題があり、この問題は陰極剥離として知られている。   A polyethylene-coated steel pipe having a steel pipe surface coated with a polyethylene coating layer as an anticorrosion layer has excellent anticorrosion properties and is used for various pipes. Polyethylene-coated steel pipes are increasingly used for embedment in the seabed and underground, and in that case, anticorrosion is often used in combination. Although the steel pipe of the polyethylene-coated steel pipe is anticorrosive due to the effect of cathodic protection, there is a problem that the polyethylene coating layer tends to peel from the outer surface of the steel pipe, and this problem is known as cathodic peeling.

このような陰極剥離を抑制する方法として、クロメート処理が有効であることが知られている。例えば、特許文献1には、鋼材表面にクロメート層を有するクロメート被覆鋼材であって、エポキシプライマー層、無水マレイン酸変性ポリオレフィン層及びポリオレフィン層を順次積層した樹脂被覆重防食鋼材が開示されている。また、特許文献2には、鋼材の表面に特定のエポキシプライマーを適用するとともに、下地処理としてクロメート処理を施すことが示されている。   It is known that chromate treatment is effective as a method for suppressing such cathode peeling. For example, Patent Document 1 discloses a resin-coated heavy-duty anticorrosive steel material that is a chromate-coated steel material having a chromate layer on the surface of the steel material, in which an epoxy primer layer, a maleic anhydride-modified polyolefin layer, and a polyolefin layer are sequentially laminated. Patent Document 2 discloses that a specific epoxy primer is applied to the surface of a steel material and that chromate treatment is performed as a base treatment.

また、近年では環境負荷の観点からクロメート処理を施さない、すなわち、ノンクロメート処理を施した耐食性に優れた有機被覆鋼材が望まれている。特許文献3には、ノンクロメート処理を施した耐食性に優れた有機被覆鋼板が示されている。   In recent years, there has been a demand for an organic coated steel material excellent in corrosion resistance that is not subjected to chromate treatment, that is, subjected to non-chromate treatment, from the viewpoint of environmental load. Patent Document 3 discloses an organic coated steel sheet that is non-chromated and has excellent corrosion resistance.

特開2005−35061号公報JP-A-2005-35061 特開2000−190422号公報JP 2000-190422 A 特開2011−111638号公報JP 2011-111638 A

特許文献1、2の方法では、鋼管を被覆する場合は環境負荷の高いクロメート処理を必要とする問題がある。特許文献3の方法はめっき鋼板を処理して耐食性を向上させるものであり、また、陰極剥離を抑制するものでもないという問題がある。   In the methods of Patent Documents 1 and 2, there is a problem that a chromate treatment with a high environmental load is required when coating a steel pipe. The method of Patent Document 3 has a problem that the plated steel sheet is treated to improve the corrosion resistance and does not suppress the cathode peeling.

したがって本発明の目的は、以上のような従来技術の課題を解決し、ポリエチレン被覆層の耐陰極剥離性に優れるとともに、クロメート処理を施すことなく製造することができるポリエチレン被覆鋼管を提供することにある。   Accordingly, an object of the present invention is to provide a polyethylene-coated steel pipe that solves the problems of the prior art as described above, is excellent in the cathode peel resistance of the polyethylene coating layer, and can be manufactured without performing chromate treatment. is there.

本発明者らは、上記課題を解決するために鋭意研究を重ね、鋼管外表面とポリエチレン被覆層の間に存在する粉じん量が陰極剥離に影響することを突き止めた。そこで、複数の鋼管外表面の粉じん付着状態のポリエチレン被覆鋼管を製造し、その耐陰極剥離性との関係の検討を行って、本発明を完成させた。   The inventors of the present invention have made extensive studies to solve the above-mentioned problems, and have found that the amount of dust existing between the outer surface of the steel pipe and the polyethylene coating layer affects the cathode peeling. Thus, a plurality of dust-coated polyethylene-coated steel pipes on the outer surface of the steel pipe were manufactured, and the relationship with the cathode peeling resistance was examined to complete the present invention.

本発明の要旨は以下のとおりである。   The gist of the present invention is as follows.

[1]鋼管外表面にポリエチレン被覆層を有するポリエチレン被覆鋼管であって、前記鋼管外表面と前記ポリエチレン被覆層間に含まれる粉じん量が、剥離したポリエチレン被覆層の鋼管外表面に接していた面をEPMAでFeのマッピングをしたFeの面積比が20%以下となる量である、ポリエチレン被覆鋼管。   [1] A polyethylene coated steel pipe having a polyethylene coating layer on the outer surface of the steel pipe, wherein the amount of dust contained between the outer surface of the steel pipe and the polyethylene coating layer is in contact with the outer surface of the peeled polyethylene coating layer. A polyethylene-coated steel pipe having an Fe area ratio of 20% or less obtained by mapping Fe with EPMA.

[2]電気防食とともに使用される、[1]に記載のポリエチレン被覆鋼管。   [2] The polyethylene-coated steel pipe according to [1], which is used together with cathodic protection.

[3]海底または地下への埋設用である、[1]または[2]に記載のポリエチレン被覆鋼管。   [3] The polyethylene-coated steel pipe according to [1] or [2], which is for embedding in the seabed or underground.

[4]ブラスト処理後、JIS Z0313(2004)に規定された方法で粘着媒体に鋼管外表面の粉じんを付着させ、その粘着媒体の画像解析により、粉じんの付着面積比を測定し、粉じんの付着面積比が20%以下である鋼管に、ポリエチレン被覆をする、ポリエチレン被覆鋼管の製造方法。   [4] After the blast treatment, the dust on the outer surface of the steel pipe is adhered to the adhesive medium by the method specified in JIS Z0313 (2004), and the adhesion area ratio of the dust is measured by image analysis of the adhesive medium. A method for producing a polyethylene-coated steel pipe, wherein a steel pipe having an area ratio of 20% or less is coated with polyethylene.

[5]前記粉じんの付着面積比が20%以下である鋼管の外表面にシランカップリング剤を塗布し、乾燥させる下地処理を行い、その後前記ポリエチレン被覆をする、[4]に記載のポリエチレン被覆鋼管の製造方法。   [5] The polyethylene coating according to [4], in which a silane coupling agent is applied to an outer surface of a steel pipe having a dust adhesion area ratio of 20% or less and dried, and then the polyethylene coating is performed. Steel pipe manufacturing method.

[6]前記シランカップリング剤の乾燥を、赤外線加熱、誘導加熱、もしくは熱風加熱のいずれか、またはこれらの組み合わせにて行う、[5]に記載のポリエチレン被覆鋼管の製造方法。   [6] The method for producing a polyethylene-coated steel pipe according to [5], wherein the silane coupling agent is dried by any one of infrared heating, induction heating, hot air heating, or a combination thereof.

[7]前記シランカップリング剤の乾燥を、赤外線加熱にて行う、[6]に記載のポリエチレン被覆鋼管の製造方法。   [7] The method for producing a polyethylene-coated steel pipe according to [6], wherein the silane coupling agent is dried by infrared heating.

なお、本発明において、ポリエチレン被覆層の密着性に優れたとは、後述の実施例に記載の試験において、陰極剥離距離の平均値が20mm以下であることを意味する。   In the present invention, the excellent adhesion of the polyethylene coating layer means that the average value of the cathode peeling distance is 20 mm or less in the test described in the examples described later.

本発明のポリエチレン被覆鋼管は、電気防食が併用された場合において、ポリエチレン被覆層の陰極剥離が効果的に抑制され、優れた防食性を発揮する。このように本発明のポリエチレン被覆鋼管は、優れた耐陰極剥離性を有するため、特に海底や地下への埋設用途に好適である。   In the polyethylene-coated steel pipe of the present invention, when the anticorrosion is used in combination, the cathode peeling of the polyethylene coating layer is effectively suppressed, and excellent anticorrosion properties are exhibited. Thus, since the polyethylene-coated steel pipe of the present invention has excellent cathode peeling resistance, it is particularly suitable for embedding in the seabed or underground.

以下本発明の構成を説明する。本発明のポリエチレン被覆鋼管は、優れた耐陰極剥離性を発揮するため、鋼管外表面の粉じん量の規定が必要となる。該粉じんはFeを主成分とし、通常、ブラスト処理粒子の破片、ブラスト処理によって剥離した鋼管の破片、鋼管外表面に残存したスケール等を含んでいることが多い。   The configuration of the present invention will be described below. Since the polyethylene-coated steel pipe of the present invention exhibits excellent cathode peeling resistance, it is necessary to define the amount of dust on the outer surface of the steel pipe. The dust is mainly composed of Fe, and usually contains blast-treated particles, steel pipe fragments peeled off by blasting, and scales remaining on the outer surface of the steel pipe.

1.鋼管表面に付着した粉じん量について
陰極剥離は鋼管外表面とポリエチレン被覆層間で生じる。鋼管外表面にブラスト処理等で付着した粉じんが多量に付着していると、その部分で鋼管外表面とポリエチレン被覆層の密着が十分なされないため、陰極剥離が生じやすくなる。そのため、以下のように鋼管外表面の粉じん付着量を制御することにより、優れた耐陰極剥離性を発揮する。
1. Cathode delamination occurs between the outer surface of the steel pipe and the polyethylene coating layer with respect to the amount of dust adhering to the steel pipe surface. If a large amount of dust adhered by blasting or the like adheres to the outer surface of the steel pipe, the outer surface of the steel pipe and the polyethylene coating layer are not sufficiently adhered to each other, so that the cathode is easily peeled off. Therefore, excellent cathode peeling resistance is exhibited by controlling the amount of dust adhering to the outer surface of the steel pipe as follows.

例えば、ポリエチレン被覆鋼管のポリエチレン被覆層を強制剥離し、剥離した被覆層の鋼管外表面に接していた面をEPMA(電子線マイクロアナライザ)でFeのマッピングをした際のFe面積比を20%以下とする。後述の製造方法において記載のとおり、例えば鋼管外表面のエアブロー等により鋼管外表面に付着した粉じん量を低減できる。ポリエチレン被覆層を強制剥離する方法は、特に限定されるものではないが、例えばポリエチレン被覆鋼管の一部20mm×50mmほどを切り出し測定片とし、測定片を液体窒素中に浸漬した後、取り出してポリエチレン被覆層をプラスチックハンマーで叩くなどすると、ポリエチレン被覆層が鋼管外表面から剥離する。剥離したポリエチレン被覆層の鋼管外表面に接していた面10mm×10mmを以下の条件にてEPMAでFeのマッピングをした際、Feの面積比を20%以下とすることでポリエチレン被覆層と鋼管外表面との密着性が向上し、陰極剥離が発生し難くなる。該面積比が20%を超える場合、ポリエチレン被覆層と鋼管外表面との密着性が低下し、陰極剥離が発生し易くなる。Feの面積比は好ましくは15%以下、さらに好ましくは10%以下である。   For example, when the polyethylene coating layer of a polyethylene coated steel pipe is forcibly peeled and the surface of the peeled coating layer in contact with the outer surface of the steel pipe is mapped with Fe using EPMA (electron beam microanalyzer), the Fe area ratio is 20% or less. And As described in the manufacturing method described later, the amount of dust attached to the outer surface of the steel pipe can be reduced by, for example, air blowing on the outer surface of the steel pipe. The method for forcibly peeling the polyethylene coating layer is not particularly limited. For example, a part of a polyethylene-coated steel pipe having a size of about 20 mm × 50 mm is cut out as a measurement piece, the measurement piece is immersed in liquid nitrogen, taken out, and then taken into polyethylene. When the coating layer is hit with a plastic hammer, the polyethylene coating layer is peeled off from the outer surface of the steel pipe. When the surface of the peeled polyethylene coating layer that was in contact with the outer surface of the steel pipe was mapped to Fe with EPMA under the following conditions, the area ratio of Fe was set to 20% or less so that the polyethylene coating layer and the outer surface of the steel pipe Adhesion with the surface is improved, and cathode peeling is less likely to occur. When the area ratio exceeds 20%, the adhesion between the polyethylene coating layer and the outer surface of the steel pipe is lowered, and the cathode peeling tends to occur. The area ratio of Fe is preferably 15% or less, more preferably 10% or less.

−EPMA分析条件−
加速電圧5〜10kV、ビーム径10μmの条件で測定することができる。面積比は画像解析により測定部全面積に対するFeが検出された面積の比から求めることができる。
-EPMA analysis conditions-
It can be measured under conditions of an acceleration voltage of 5 to 10 kV and a beam diameter of 10 μm. The area ratio can be obtained from the ratio of the area where Fe is detected to the total area of the measurement part by image analysis.

2.鋼管について
本発明で用いられる母材鋼管の種類や寸法などに特に制限はなく、鋼管の種類としては、例えば、電縫鋼管、スパイラル鋼管、UOE鋼管、プレスベンド鋼管等が挙げられるが、これらに限定されるものではない。強度や経済性の面から母材鋼管は電縫鋼管が好ましい。
2. There are no particular restrictions on the type and dimensions of the base steel pipe used in the present invention for the steel pipe, and examples of the type of steel pipe include an electric-welded steel pipe, a spiral steel pipe, a UOE steel pipe, and a press-bend steel pipe. It is not limited. The base steel pipe is preferably an electric resistance steel pipe from the viewpoint of strength and economy.

3.ポリエチレン被覆について
ポリエチレン被覆には一般的な材料を用いることができる。ポリエチレン被覆層は鋼管外表面に接する側から順にプライマー層、接着性ポリエチレン層、ポリエチレン層を形成することで作製できる。なお、ポリエチレン被覆層は後述のシランカップリング剤を使用して形成した表面処理層を更に含んでもよい。本発明のポリエチレン被覆層は、クロメート処理により形成した表面処理層を含まない。
3. Regarding the polyethylene coating, common materials can be used for the polyethylene coating. The polyethylene coating layer can be produced by forming a primer layer, an adhesive polyethylene layer, and a polyethylene layer in this order from the side in contact with the outer surface of the steel pipe. The polyethylene coating layer may further include a surface treatment layer formed using a silane coupling agent described later. The polyethylene coating layer of the present invention does not include a surface treatment layer formed by chromate treatment.

プライマー層を形成するためのプライマーとしては例えば、エポキシプライマー(JIS G3477−1:2012)等を用いることができる。   As a primer for forming the primer layer, for example, an epoxy primer (JIS G3477-1: 2012) can be used.

接着性ポリエチレン層を形成するための接着性ポリエチレン樹脂としては、例えば無水マレイン酸変性ポリエチレン、不飽和カルボン酸変性ポリエチレン等を用いることができる。   Examples of the adhesive polyethylene resin for forming the adhesive polyethylene layer include maleic anhydride-modified polyethylene and unsaturated carboxylic acid-modified polyethylene.

ポリエチレン層を形成するためのポリエチレン樹脂としては低密度、中密度、高密度のいずれを用いてもよいが、特に高密度ポリエチレン樹脂(0.94〜0.97g/cm)が防食性の観点から望ましい。ポリエチレン樹脂には、必要に応じて酸化防止剤、紫外線吸収剤、難燃剤、顔料、充填剤、滑剤、帯電防止剤、着色剤等の添加剤を加えることができる。 As the polyethylene resin for forming the polyethylene layer, any of low density, medium density, and high density may be used, and in particular, high density polyethylene resin (0.94 to 0.97 g / cm 3 ) is a viewpoint of corrosion resistance. Is desirable. If necessary, additives such as antioxidants, ultraviolet absorbers, flame retardants, pigments, fillers, lubricants, antistatic agents, and colorants can be added to the polyethylene resin.

ポリエチレン被覆層は厚さ1mm〜5mm程度が防食性と経済性の面から好ましい。防食性の面から、より好ましい下限は2.5mm以上であり、更に好ましい下限は3mm超である。   The polyethylene coating layer preferably has a thickness of about 1 mm to 5 mm from the viewpoint of corrosion resistance and economy. From the standpoint of corrosion resistance, a more preferred lower limit is 2.5 mm or more, and a further preferred lower limit is more than 3 mm.

4.製造方法について
以下に本発明のポリエチレン被覆鋼管の製造方法について説明する。まず、鋼管外表面をブラスト処理する。その後エアブロー等で鋼管外表面の粉じんを除去する。次いでエアブロー後の鋼管外表面における粉じんを、JIS Z0313(2004)に規定された方法で粘着媒体であるセロハン粘着テープ(JIS Z1522:2009)に付着させ、粘着媒体を画像解析により、粉じんの付着面積比を測定し、その面積比が20%以下であることを確認する。また、あらかじめ、粉じんの付着面積比が20%であることを確認した見本サンプルと比較し、粉じんの除去状況を確認しても良い。上記粘着媒体は、粘着力1.8 N/10mm以上の粘着層を有する透明の薄膜である。
4). About a manufacturing method The manufacturing method of the polyethylene covering steel pipe of this invention is demonstrated below. First, the outer surface of the steel pipe is blasted. Thereafter, dust on the outer surface of the steel pipe is removed by air blow or the like. Next, the dust on the outer surface of the steel pipe after the air blow is attached to the cellophane adhesive tape (JIS Z1522: 2009), which is an adhesive medium, by the method specified in JIS Z0313 (2004). The ratio is measured and it is confirmed that the area ratio is 20% or less. Further, the dust removal status may be confirmed by comparing with a sample sample that has been confirmed in advance that the dust adhesion area ratio is 20%. The adhesive medium is a transparent thin film having an adhesive layer having an adhesive strength of 1.8 N / 10 mm or more.

画像解析は、例えば複合機などを用い白色紙上に貼り付けたセロハン粘着テープをスキャンし、Adobe社製画像解析ソフトPhotoshopCS6を用いて、セロハン粘着テープ画像の任意の位置を指定し、その範囲の粉じん付着部と非付着部を二値化することで粉じん付着部の面積比を測定することができる。粉じんの付着面積比は全面積に対する粉じん付着部の面積により求める。画像解析のサイズは特に限定されないが、簡便さの観点から20mm×20mmとすることが好ましい。   For image analysis, for example, a cellophane adhesive tape affixed on white paper is scanned using a multifunction machine or the like, and an arbitrary position of the cellophane adhesive tape image is designated using image analysis software Photoshop CS6 manufactured by Adobe, and dust in that range is specified. By binarizing the adhering part and the non-adhering part, the area ratio of the dust adhering part can be measured. The adhering area ratio of the dust is determined by the area of the dust adhering portion with respect to the total area. The size of the image analysis is not particularly limited, but is preferably 20 mm × 20 mm from the viewpoint of simplicity.

粉じんの付着面積比が20%以下となる粉じんの少ない状態で被覆を行うと、鋼管外表面とポリエチレン被覆層の密着性が向上し、陰極剥離が発生し難くなる。粉じんの付着面積比が20%を超える場合、ポリエチレン被覆層と鋼管外表面との密着性が低下し、陰極剥離が発生し易くなる。粉じんの付着面積比は好ましくは15%以下、さらに好ましくは10%以下である。   When coating is performed with a small amount of dust with a dust adhesion area ratio of 20% or less, the adhesion between the outer surface of the steel pipe and the polyethylene coating layer is improved, and the cathode peeling hardly occurs. When the adhesion area ratio of the dust exceeds 20%, the adhesion between the polyethylene coating layer and the outer surface of the steel pipe is lowered, and cathode peeling is likely to occur. The adhesion area ratio of dust is preferably 15% or less, more preferably 10% or less.

ポリエチレン被覆層の形成方法は特に限定されない。例えば、外表面の粉じんが除去された鋼管にエポキシプライマーを塗布し、所定温度(例えば130〜170℃)まで高周波加熱装置、熱風炉等で加熱し、更に外側に極性を有する接着性ポリエチレン層と、ポリエチレン層を順次、丸ダイス、Tダイス等より押出し被覆層を形成後、冷却するといった方法がある。また、外表面の粉じんが除去された鋼管にエポキシプライマーを塗布、加熱後、接着性ポリエチレン層とポリエチレン層を同時に丸ダイス、Tダイス等より押出し被覆するといった方法等も挙げられる。この場合、2層の被覆層が一度に形成されることになる。特に、この場合はポリエチレン被覆鋼管とした後のポリエチレン被覆層の接着性が優れたものになる。   The method for forming the polyethylene coating layer is not particularly limited. For example, an epoxy primer is applied to a steel pipe from which dust on the outer surface has been removed, heated to a predetermined temperature (for example, 130 to 170 ° C.) with a high-frequency heating device, a hot air oven, etc., and an adhesive polyethylene layer having polarity on the outside There is a method in which a polyethylene layer is sequentially extruded from a round die, a T die, or the like, and a coating layer is formed, followed by cooling. In addition, there may be mentioned a method in which an epoxy primer is applied to a steel pipe from which dust on the outer surface has been removed, and after heating, the adhesive polyethylene layer and the polyethylene layer are simultaneously extruded and coated with a round die, a T die or the like. In this case, two coating layers are formed at a time. In particular, in this case, the adhesiveness of the polyethylene coating layer after forming the polyethylene-coated steel pipe is excellent.

さらに、耐陰極剥離性を向上させるため、鋼管を加熱後、上記ポリエチレン被覆層を形成するための樹脂を被覆する前に、0.5〜2質量%程度に希釈したシランカップリング剤をスプレー等で塗布し、乾燥させて表面処理層を形成しても良い。シランカップリング剤は特に限定されるものではないが、エポキシ基、メルカプト基、アミノ基などの官能基をもつものを用いることができる。エポキシ基をもつシランカップリング剤としては、例えば、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジメトキシシランなどがある。メルカプト基をもつシランカップリング剤としては、例えば、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシランなどがある。アミノ基をもつシランカップリング剤としては3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシランなどがある。シランカップリング剤の乾燥条件は適宜選択可能である。   Furthermore, in order to improve the cathode peel resistance, a silane coupling agent diluted to about 0.5 to 2% by mass is sprayed after the steel tube is heated and before the resin for forming the polyethylene coating layer is coated. May be applied and dried to form a surface treatment layer. Although a silane coupling agent is not specifically limited, What has functional groups, such as an epoxy group, a mercapto group, and an amino group, can be used. Examples of the silane coupling agent having an epoxy group include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, and 3-glycidoxypropyl. Examples include methyldimethoxysilane. Examples of the silane coupling agent having a mercapto group include 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane. Examples of the silane coupling agent having an amino group include 3-aminopropyltrimethoxysilane and 3-aminopropyltriethoxysilane. The drying conditions for the silane coupling agent can be selected as appropriate.

シランカップリング剤の乾燥には赤外線加熱、誘導加熱、熱風加熱、もしくはこれら組み合わせを用いることが出来る。シランカップリング剤は加熱乾燥されることにより、水分が除去されるとともに、鋼表面の水酸基などと縮合反応し、耐陰極剥離性を向上させる。   For drying the silane coupling agent, infrared heating, induction heating, hot air heating, or a combination thereof can be used. When the silane coupling agent is dried by heating, moisture is removed and a condensation reaction with a hydroxyl group on the steel surface and the like improves the resistance to cathodic peeling.

シランカップリング剤の乾燥を赤外線加熱で行った場合には、耐陰極剥離性が他の加熱方法を採用した場合に比べて向上する。よって、より良好な耐陰極剥離性を求められる用途には赤外線加熱を行うのが有利である。   When the silane coupling agent is dried by infrared heating, the resistance to cathodic stripping is improved compared to the case where other heating methods are employed. Therefore, it is advantageous to perform infrared heating for applications that require better cathode peel resistance.

以上のとおり、本発明のポリエチレン被覆鋼管は、電気防食とともに使用されることが好ましい。また、本発明のポリエチレン被覆鋼管は、海底や地下への埋設用途に好適である。本発明のポリエチレン被覆鋼管は、海底や地下へ埋設され、かつ、電気防食とともに使用されることがより好ましい。   As described above, it is preferable that the polyethylene-coated steel pipe of the present invention is used together with an anticorrosion. Moreover, the polyethylene-coated steel pipe of the present invention is suitable for use in the seabed or underground. It is more preferable that the polyethylene-coated steel pipe of the present invention is embedded in the seabed or underground and used together with cathodic protection.

以下に、本発明の実施例を説明する。本実施例では、以下の方法により、鋼管外表面における粉じん付着量が異なるNo.1〜15のポリエチレン被覆鋼管について試験した。なお、本発明の技術的範囲は以下の実施例に限定されない。   Examples of the present invention will be described below. In this example, the number of dust deposits on the outer surface of the steel pipe is different by the following method. 1-15 polyethylene coated steel tubes were tested. The technical scope of the present invention is not limited to the following examples.

(粉じんの面積比の測定)
ブラスト処理したJIS SGP 200A鋼管について、エアブローで外表面に付着した粉じんを除去し、JIS Z0313(2004)に規定された方法でセロハン粘着テープ(サイズ:24mm×200mm)に鋼管外表面の粉じんを付着させ、そのセロハン粘着テープを白色の普通紙に貼り付けた。普通紙に貼り付けたテープはその後スキャナで電子データとし、画像解析ソフト(Adobe社製PhotoshopCS6)で粉じんの付着面積を測定し、ポリエチレン被覆前の鋼管外表面の粉じんの付着面積比を求めた。
(Measurement of dust area ratio)
Remove dust adhering to the outer surface of the blasted JIS SGP 200A steel pipe by air blowing, and adhere the dust on the outer surface of the steel pipe to the cellophane adhesive tape (size: 24 mm × 200 mm) by the method specified in JIS Z0313 (2004) The cellophane adhesive tape was affixed to white plain paper. The tape affixed to the plain paper was then converted into electronic data by a scanner, and the dust adhesion area was measured with image analysis software (Photoshop CS6 manufactured by Adobe) to determine the ratio of the dust adhesion area on the outer surface of the steel pipe before polyethylene coating.

(ポリエチレン被覆)
上記エアブロー処理した鋼管外表面に、市販の液状エポキシ樹脂(三菱化学(株)製「基本液状タイプ828」)と硬化剤(三菱化学(株)製「変性脂肪族アミングレードT」)を混合したエポキシプライマーを膜厚が40μmとなるようにスプレー塗布し、表面温度150℃まで加熱し硬化させた。
(Polyethylene coating)
A commercially available liquid epoxy resin (“Basic Liquid Type 828” manufactured by Mitsubishi Chemical Corporation) and a curing agent (“Modified Aliphatic Amine Grade T” manufactured by Mitsubishi Chemical Corporation) were mixed on the outer surface of the steel pipe subjected to the air blow treatment. The epoxy primer was applied by spraying so as to have a film thickness of 40 μm and heated to a surface temperature of 150 ° C. to be cured.

その後、市販の接着性ポリエチレン樹脂(三井化学(株)製「アドマーNE065」)、ポリエチレン樹脂(プライムポリマー(株)製「HI−ZEX5100E」、高密度ポリエチレン樹脂である)を押出被覆により被覆して、ポリエチレン被覆層の厚さが5mmとなるポリエチレン被覆鋼管を作製した。   Thereafter, a commercially available adhesive polyethylene resin (“Admer NE065” manufactured by Mitsui Chemicals, Inc.), a polyethylene resin (“HI-ZEX5100E” manufactured by Prime Polymer Co., Ltd., which is a high density polyethylene resin) is coated by extrusion coating. A polyethylene-coated steel pipe having a polyethylene coating layer thickness of 5 mm was produced.

(表面処理層形成)
また、一部の鋼管には上記エアブロー処理した鋼管にシランカップリング剤として、エポキシ基をもつ3−グリシドキシプロピルトリメトキシシラン(信越化学工業(株)製「KBM−403」)を用い、シランカップリング剤が1質量%となるように純水で希釈した処理液をスプレーで塗布し、その後赤外線加熱、誘導加熱、熱風加熱それぞれの装置により処理液が完全に乾燥するように加熱し、表面処理層を形成した後、上記のポリエチレン被覆を行った。表面処理層を有するものは、表1において、「表面処理液」欄に「エポキシシラン」と記載した。
(Surface treatment layer formation)
In addition, for some steel pipes, 3-glycidoxypropyltrimethoxysilane having an epoxy group (“KBM-403” manufactured by Shin-Etsu Chemical Co., Ltd.) having an epoxy group is used as a silane coupling agent for the above-described air blow-treated steel pipe. A treatment liquid diluted with pure water so that the silane coupling agent is 1% by mass is applied by spraying, and then heated so that the treatment liquid is completely dried by each apparatus of infrared heating, induction heating, and hot air heating, After forming the surface treatment layer, the above polyethylene coating was performed. Those having a surface treatment layer are described as “epoxysilane” in the “surface treatment liquid” column in Table 1.

(EPMAでのFeマッピング)
ポリエチレン被覆後鋼管の端部20mm×50mmを切り出し測定片とし、測定片を液体窒素中に浸漬した後、取り出して被覆層をプラスチックハンマーで叩いてポリエチレン被覆層を鋼管外表面から剥離した。剥離したポリエチレン被覆層の鋼管外表面側10mm×10mmをEPMAでFeのマッピングをし、Feの面積比を測定した。
(Fe mapping in EPMA)
After the polyethylene coating, the end 20 mm × 50 mm of the steel pipe was cut out and used as a measurement piece. After the measurement piece was immersed in liquid nitrogen, it was taken out and the coating layer was hit with a plastic hammer to peel the polyethylene coating layer from the outer surface of the steel pipe. The peeled polyethylene coating layer 10 mm × 10 mm on the outer surface side of the steel pipe was subjected to Fe mapping with EPMA, and the area ratio of Fe was measured.

(参考例:No.15)
参考例としてクロメート処理を施した鋼管を用いたポリエチレン被覆鋼管を作製した。上記のシランカップリング剤の代わりに、クロメート処理液(関西ペイント(株)製「コスマー100」)を純水で1/5(質量%)に希釈したものを使用し、鋼管外表面にCr換算付着量が300mg/mとなるようスプレー塗布し、鋼管表面到達温度が100℃となるよう加熱乾燥させてクロメート層を形成した。それ以外は、他の実施例と同様とし、ポリエチレン被覆鋼管を作製した。Cr換算付着量は、クロメート層を形成したダミー板を作製し、所定面積のクロメート皮膜を10%NaOHで剥離した後、剥離溶液中のCr量を吸光光度法で測定し、これを元に1m当たりのCr換算付着量を算出した。
(Reference example: No. 15)
As a reference example, a polyethylene-coated steel pipe using a steel pipe treated with chromate was prepared. Instead of the above silane coupling agent, a chromate treatment solution (“Cosmer 100” manufactured by Kansai Paint Co., Ltd.) diluted with pure water to 1/5 (mass%) is used, and Cr is converted to the outer surface of the steel pipe. The chromate layer was formed by spray-coating so that the adhesion amount was 300 mg / m 2 and heating and drying so that the steel tube surface temperature reached 100 ° C. Other than that was carried out similarly to the other Example, and produced the polyethylene covering steel pipe. The amount of Cr equivalent deposited is 1 m based on the measurement of the amount of Cr in the stripping solution by absorptiometry after a dummy plate with a chromate layer is prepared and the chromate film of a predetermined area is stripped with 10% NaOH. The amount of Cr equivalent adhesion per 2 was calculated.

(陰極剥離試験)
ポリエチレン被覆鋼管から適当な大きさの試験片を採取し、以下の方法で陰極剥離距離を測定し、耐陰極剥離性を評価した。試験片の中央部に直径6mmφの円形の人工欠陥部を形成し、鋼管外表面を露出させた。人工欠陥部を中心にして直径70mmφのアクリル製の円筒をポリエチレン被覆層上に縦に設置してシール材でポリエチレン被覆層に固定し、円筒内部を3質量%NaCl水溶液で満たし、セルを作成した。
(Cathode peeling test)
A test piece of an appropriate size was taken from the polyethylene-coated steel tube, and the cathode peeling distance was measured by the following method to evaluate the cathode peeling resistance. A circular artificial defect having a diameter of 6 mmφ was formed at the center of the test piece, and the outer surface of the steel pipe was exposed. An acrylic cylinder having a diameter of 70 mmφ centered on the artificial defect portion was vertically installed on the polyethylene coating layer, fixed to the polyethylene coating layer with a sealing material, and the inside of the cylinder was filled with a 3% by mass NaCl aqueous solution to form a cell. .

対極に白金を使用して人工欠陥部の鋼管の電位を−1.5V vsSCEにポテンシオスタットを使用して保持した。このまま60℃の恒温槽内に試験片を静置し、28日間電位を保持した。   Platinum was used as the counter electrode, and the potential of the steel pipe at the artificial defect portion was maintained at -1.5 V vs SCE using a potentiostat. The test piece was left still in a constant temperature bath at 60 ° C., and the potential was maintained for 28 days.

以上の試験により、試験片には陰極剥離が生じている。次いで、試験片を回収後、セルをはずし、人工欠陥部の周囲をたがねとカッターを使用して強制的に剥離した。人工欠陥部の周辺部はポリエチレン被覆層が鋼管外表面から剥離し、鋼管の表面が露出した。人工欠陥部を中心とした4方向(管軸方向を12時方向として、12時、3時、6時、9時方向)で人工欠陥部端部からのポリエチレン被覆層剥離部の距離を測定して、その平均値を陰極剥離距離(mm)とした。この陰極剥離距離は、値が小さいほど良好であり、「20mm以下」を合格とした。合格であるポリエチレン被覆鋼管は、海底や地下への埋設用途に好適である。表1に試験結果を示す。   As a result of the above test, cathode peeling occurred on the test piece. Next, after collecting the test piece, the cell was removed, and the periphery of the artificial defect portion was forcibly separated using a chisel and a cutter. At the periphery of the artificial defect portion, the polyethylene coating layer was peeled off from the outer surface of the steel pipe, and the surface of the steel pipe was exposed. Measure the distance of the peeling part of the polyethylene coating layer from the edge of the artificial defect part in 4 directions centered on the artificial defect part (12 o'clock, 3 o'clock, 6 o'clock, 9 o'clock direction with the tube axis direction being 12 o'clock) The average value was defined as the cathode separation distance (mm). The smaller the value of the cathode peeling distance, the better, and “20 mm or less” was considered acceptable. The accepted polyethylene-coated steel pipe is suitable for embedment in the seabed or underground. Table 1 shows the test results.

Figure 2017043089
Figure 2017043089

本発明例No.1〜10では、陰極剥離距離が目標の20mm以下を満足し、優れた耐陰極剥離性を示している。シランカップリング剤を有する処理液を赤外線加熱で乾燥させた発明例はいずれも陰極剥離距離が12.0mmを下回り、優れた耐陰極剥離性を精度良く実現した。   Invention Example No. In Nos. 1 to 10, the cathode peeling distance satisfies the target of 20 mm or less, and exhibits excellent cathode peeling resistance. In all of the inventive examples in which the treatment liquid having a silane coupling agent was dried by infrared heating, the cathode peeling distance was less than 12.0 mm, and excellent cathode peeling resistance was accurately realized.

No.11〜14は比較例である。No.11、12は鋼管外表面粉じん付着量が多く、Fe面積比が20%を超え、粉じん面積比も20%を超え、陰極剥離距離は目標値を満足しない。No.13、14は表面処理としてシランカップリング剤を用いたが、鋼管外表面粉じん付着量が多く、Fe面積比が20%を超え、粉じん面積比も20%を超え、陰極剥離距離は目標値を満足しない。   No. 11 to 14 are comparative examples. No. Nos. 11 and 12 have a large amount of dust on the outer surface of the steel pipe, the Fe area ratio exceeds 20%, the dust area ratio also exceeds 20%, and the cathode peeling distance does not satisfy the target value. No. 13 and 14 used a silane coupling agent as the surface treatment, but the amount of dust on the outer surface of the steel pipe was large, the Fe area ratio exceeded 20%, the dust area ratio also exceeded 20%, and the cathode peeling distance was the target value. I'm not satisfied.

No.15は参考例のクロメート処理材である。クロメート処理材は鋼管外表面粉じん付着量が多く、Fe面積比が20%を超えているが、陰極剥離距離は目標値を満足する。ただし、環境負荷が高いため、望ましくない。   No. Reference numeral 15 denotes a chromate treatment material of a reference example. Although the chromate treatment material has a large amount of dust on the outer surface of the steel pipe and the Fe area ratio exceeds 20%, the cathode separation distance satisfies the target value. However, it is not desirable because the environmental load is high.

Claims (7)

鋼管外表面にポリエチレン被覆層を有するポリエチレン被覆鋼管であって、前記鋼管外表面と前記ポリエチレン被覆層間に含まれる粉じん量が、剥離したポリエチレン被覆層の鋼管外表面に接していた面をEPMAでFeのマッピングをしたFeの面積比が20%以下となる量である、ポリエチレン被覆鋼管。   A polyethylene-coated steel pipe having a polyethylene coating layer on the outer surface of the steel pipe, wherein the amount of dust contained between the outer surface of the steel pipe and the polyethylene coating layer is in contact with the outer surface of the peeled polyethylene coating layer with EPMA. A polyethylene-coated steel pipe in which the area ratio of Fe to which the above mapping is performed is 20% or less. 電気防食とともに使用される、請求項1に記載のポリエチレン被覆鋼管。   The polyethylene-coated steel pipe according to claim 1, which is used together with an anticorrosion. 海底または地下への埋設用である、請求項1または2に記載のポリエチレン被覆鋼管。   The polyethylene-coated steel pipe according to claim 1 or 2, which is used for embedding in the seabed or underground. ブラスト処理後、JIS Z0313(2004)に規定された方法で粘着媒体に鋼管外表面の粉じんを付着させ、その粘着媒体の画像解析により、粉じんの付着面積比を測定し、粉じんの付着面積比が20%以下である鋼管に、ポリエチレン被覆をする、ポリエチレン被覆鋼管の製造方法。   After blasting, dust on the outer surface of the steel pipe is adhered to the adhesive medium by the method specified in JIS Z0313 (2004), and the adhesion area ratio of the dust is measured by image analysis of the adhesive medium. A method for producing a polyethylene-coated steel pipe, wherein a steel pipe that is 20% or less is coated with polyethylene. 前記粉じんの付着面積比が20%以下である鋼管の外表面にシランカップリング剤を塗布し、乾燥させる下地処理を行い、その後前記ポリエチレン被覆をする、請求項4に記載のポリエチレン被覆鋼管の製造方法。   The production of a polyethylene-coated steel pipe according to claim 4, wherein a surface treatment is performed by applying a silane coupling agent to an outer surface of a steel pipe having a dust adhesion area ratio of 20% or less, followed by drying, and then coating the polyethylene. Method. 前記シランカップリング剤の乾燥を、赤外線加熱、誘導加熱、もしくは熱風加熱のいずれか、またはこれらの組み合わせにて行う、請求項5に記載のポリエチレン被覆鋼管の製造方法。   The method for producing a polyethylene-coated steel pipe according to claim 5, wherein the silane coupling agent is dried by infrared heating, induction heating, hot air heating, or a combination thereof. 前記シランカップリング剤の乾燥を、赤外線加熱にて行う、請求項6に記載のポリエチレン被覆鋼管の製造方法。   The method for producing a polyethylene-coated steel pipe according to claim 6, wherein the silane coupling agent is dried by infrared heating.
JP2016150646A 2015-08-24 2016-07-29 Polyethylene-coated steel pipe and method for producing the same Active JP6399055B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015164346 2015-08-24
JP2015164346 2015-08-24

Publications (2)

Publication Number Publication Date
JP2017043089A true JP2017043089A (en) 2017-03-02
JP6399055B2 JP6399055B2 (en) 2018-10-03

Family

ID=58209482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016150646A Active JP6399055B2 (en) 2015-08-24 2016-07-29 Polyethylene-coated steel pipe and method for producing the same

Country Status (1)

Country Link
JP (1) JP6399055B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058350A (en) * 2016-09-28 2018-04-12 Jfeスチール株式会社 Polyethylene coated steel pipe and manufacturing method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138642A (en) * 1982-02-10 1983-08-17 三菱化学株式会社 Manufacture of laminate of polyolefin and metal
JPS602354A (en) * 1983-06-20 1985-01-08 日本鋼管株式会社 Plastic coated steel pipe
JPS62294183A (en) * 1986-06-13 1987-12-21 Sumitomo Metal Ind Ltd Pretreatment of steel pipe before resin coating
JPH06122979A (en) * 1992-10-09 1994-05-06 Kawasaki Steel Corp Pretreatment of rein-coated steel tube
US20100055327A1 (en) * 2006-11-22 2010-03-04 Bs Coatings Sas Method for Applying an Anti-Corrosion Coating on Parts of a Duct Including the Use of a Silane Aqueous Solution and an Epoxy Powdery Paint
JP2014088612A (en) * 2012-10-05 2014-05-15 Jfe Steel Corp Polyethylene-coated steel pipe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138642A (en) * 1982-02-10 1983-08-17 三菱化学株式会社 Manufacture of laminate of polyolefin and metal
JPS602354A (en) * 1983-06-20 1985-01-08 日本鋼管株式会社 Plastic coated steel pipe
JPS62294183A (en) * 1986-06-13 1987-12-21 Sumitomo Metal Ind Ltd Pretreatment of steel pipe before resin coating
JPH06122979A (en) * 1992-10-09 1994-05-06 Kawasaki Steel Corp Pretreatment of rein-coated steel tube
US20100055327A1 (en) * 2006-11-22 2010-03-04 Bs Coatings Sas Method for Applying an Anti-Corrosion Coating on Parts of a Duct Including the Use of a Silane Aqueous Solution and an Epoxy Powdery Paint
JP2014088612A (en) * 2012-10-05 2014-05-15 Jfe Steel Corp Polyethylene-coated steel pipe

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIS G 3477−1:2012「ポリエチレン被覆鋼管—第1部:3層ポリエチレン押出被覆鋼管」, JPN7018000151, 20 November 2012 (2012-11-20), JP *
JIS Z 0313−1:2004「素地調整用ブラスト処理面の試験及び評価方法」, JPN7018000152, 20 March 2004 (2004-03-20), JP *
塗膜の評価基準STANDARDS FOR EVALUATION OF PAINT FILM 2003, JPN7018000150, 2003, JP *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058350A (en) * 2016-09-28 2018-04-12 Jfeスチール株式会社 Polyethylene coated steel pipe and manufacturing method therefor

Also Published As

Publication number Publication date
JP6399055B2 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
US5686185A (en) Disbondment resistant epoxy powder coating composition
JP6399056B2 (en) Polyethylene-coated steel pipe and method for producing the same
JP6551366B2 (en) Polyethylene-coated steel pipe and method for producing the same
JP6399055B2 (en) Polyethylene-coated steel pipe and method for producing the same
JP6551480B2 (en) Polyethylene-coated steel pipe and method for producing the same
JP6610685B2 (en) Polyethylene-coated steel pipe and method for producing the same
JP6607265B2 (en) Polyethylene-coated steel pipe and method for producing the same
JP2009220328A (en) Polyolefin-coated steel material
JP6079717B2 (en) Polyethylene-coated steel pipe and manufacturing method thereof
JP4742950B2 (en) Inner coated steel pipe for water piping
JP6551479B2 (en) Polyethylene-coated steel pipe and method for producing the same
JP2002105393A (en) Anticorrosive powder coating composition for steel material, steel material coated with the coating and method for producing the coated steel material
JP6085932B2 (en) Polyethylene-coated steel material and epoxy resin primer layer forming material
JPWO2014157554A1 (en) Manufacturing method of wire harness pipe
JP3787047B2 (en) Anticorrosive paint composition for steel
JPH1028928A (en) Polyolefin coated steel material
JP2008229998A (en) Heavy corrosion-proof coated steel material
JP6766404B2 (en) 4-layer polyolefin resin coated steel pipe
JP3111908B2 (en) Polyethylene resin coated steel
JP2023152869A (en) Method for manufacturing polyethylene-coated steel pipe
JPH11279481A (en) Anticorrosive coating composition for steel material
JP3327177B2 (en) Polyolefin coated steel pipe
CN112680065A (en) Heavy anti-corrosion coating and coating process thereof
JP2002212495A (en) Corrosion-resistant coating composition for steel and steel applied therewith
JP2003049114A (en) Epoxy powder primer composition for polyolefin-coated steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180308

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180820

R150 Certificate of patent or registration of utility model

Ref document number: 6399055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250