JP2023152869A - Method for manufacturing polyethylene-coated steel pipe - Google Patents

Method for manufacturing polyethylene-coated steel pipe Download PDF

Info

Publication number
JP2023152869A
JP2023152869A JP2023047613A JP2023047613A JP2023152869A JP 2023152869 A JP2023152869 A JP 2023152869A JP 2023047613 A JP2023047613 A JP 2023047613A JP 2023047613 A JP2023047613 A JP 2023047613A JP 2023152869 A JP2023152869 A JP 2023152869A
Authority
JP
Japan
Prior art keywords
steel pipe
polyethylene
epoxy resin
layer
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023047613A
Other languages
Japanese (ja)
Inventor
慶一郎 岸
Keiichiro Kishi
秀徳 開
Hidenori Hiraki
芳秋 大田
Yoshiaki Ota
元規 石黒
Motoki Ishiguro
征哉 田村
Masaya Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2023152869A publication Critical patent/JP2023152869A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a method for manufacturing a polyethylene-coated steel pipe which is excellent in cathode peeling resistance and suppresses a change of mechanical property.SOLUTION: In a method for manufacturing a polyethylene-coated steel pipe having a powder epoxy resin primer layer, a modified polyethylene resin adhesive layer and a polyethylene layer layered in this order on a steel pipe surface, a steel pipe surface temperature at the time of coating of the powder epoxy resin primer when the powder epoxy resin primer layer is formed is 160-210°C.SELECTED DRAWING: None

Description

本発明は、ポリエチレン被覆鋼管の製造方法に関し、特に、水道管、ケーブル保護管、ラインパイプ、土木用途等に使用される、粉体エポキシ樹脂プライマー層、変性ポリエチレン樹脂接着剤層、ポリエチレン層を表面に有し、耐陰極剥離性に優れ、かつ製造時の鋼管の機械的性質変化を抑制するポリエチレン被覆鋼管の製造方法に関する。 The present invention relates to a method for manufacturing polyethylene-coated steel pipes, and in particular, to a method for manufacturing polyethylene-coated steel pipes, which are used for water pipes, cable protection pipes, line pipes, civil engineering applications, etc. The present invention relates to a method for producing a polyethylene-coated steel pipe, which has excellent cathodic peeling resistance and suppresses changes in mechanical properties of the steel pipe during production.

管表面に防食層としてポリエチレンを被覆したポリエチレン被覆鋼管は、防食性に優れ各種配管に利用されている。ポリエチレン被覆鋼管は、特に海底への敷設用途や地下への埋設用途が増大しており、その場合、電気防食が併用されることが多い。電気防食によってポリエチレン被覆鋼管の防食性はさらに高くなるが、一方で、電気防食が実施される場合にはポリエチレン被覆が鋼管外表面から剥離しやすくなるという問題があり、この問題は陰極剥離として知られている。 Polyethylene-coated steel pipes, whose surfaces are coated with polyethylene as an anticorrosion layer, have excellent corrosion resistance and are used in various types of piping. Polyethylene-coated steel pipes are increasingly being used for laying on the seabed or buried underground, and in such cases, cathodic protection is often used in combination. Although cathodic protection further improves the corrosion resistance of polyethylene-coated steel pipes, on the other hand, when cathodic protection is implemented, the polyethylene coating tends to peel off from the outer surface of the steel pipe, a problem known as cathodic peeling. It is being

このような陰極剥離を抑制する方法として、クロメート処理が有効であることが知られている。例えば、特許文献1には、鋼材表面にクロメート層を有するクロメート被覆鋼材であって、エポキシプライマー層、無水マレイン酸変性ポリオレフィン層及びポリオレフィン層を順次積層した樹脂被覆重防食鋼材が開示されている。 Chromate treatment is known to be effective as a method for suppressing such cathode peeling. For example, Patent Document 1 discloses a resin-coated heavy corrosion-resistant steel material that is a chromate-coated steel material having a chromate layer on the surface of the steel material, and in which an epoxy primer layer, a maleic anhydride-modified polyolefin layer, and a polyolefin layer are sequentially laminated.

特開2005-35061号公報Japanese Patent Application Publication No. 2005-35061

しかし、近年では環境負荷の低減の観点からクロメート処理を行なわない、すなわち、ノンクロメート処理とした耐食性に優れた有機被覆鋼材が望まれている。 However, in recent years, from the perspective of reducing environmental impact, there has been a demand for organic coated steel materials that are not subjected to chromate treatment, that is, are non-chromate treated and have excellent corrosion resistance.

特許文献1に記載の方法では、鋼管を被覆する場合は環境負荷の高いクロメート処理を必要とする問題がある。また、被覆をする際の加熱により鋼管の機械的性質が変化する場合、一般には強度が上昇するとともに加工性が低下する傾向がある。近年、現地施工性や配管としての使用時の安定性の観点から、加工性がより重視される用途が増加しており、これに対応できる技術が求められていた。 The method described in Patent Document 1 has a problem in that it requires chromate treatment, which has a high environmental impact, when coating a steel pipe. Furthermore, when the mechanical properties of the steel pipe change due to heating during coating, there is a tendency that the strength generally increases and the workability decreases. In recent years, there has been an increase in applications where workability is more important from the viewpoint of on-site workability and stability when used as piping, and there has been a need for technology that can accommodate this.

本発明は、上記事情に鑑みてなされたものであり、耐陰極剥離性に優れ、機械的性質変化が抑制されたポリエチレン被覆鋼管の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a polyethylene-coated steel pipe that has excellent cathode peeling resistance and suppresses changes in mechanical properties.

本発明者らは、上記目的を達成すべく鋭意検討したところ、鋼管表面に粉体エポキシ樹脂プライマー層、変性ポリエチレン樹脂接着剤層、ポリエチレン層を順次積層するポリエチレン被覆鋼管の製造方法において、前記粉体エポキシ樹脂プライマー層を形成する際の粉体エポキシ樹脂プライマー塗装時の鋼管表面温度を160~210℃とすることで鋼管の機械的性質変化を抑制しながら優れた耐陰極剥離性をもつポリエチレン被覆鋼管が得られることを見出した。 In order to achieve the above object, the present inventors have made extensive studies and found that in a method for manufacturing a polyethylene-coated steel pipe in which a powder epoxy resin primer layer, a modified polyethylene resin adhesive layer, and a polyethylene layer are sequentially laminated on the surface of the steel pipe, the powder The polyethylene coating has excellent cathodic peeling resistance while suppressing changes in the mechanical properties of the steel pipe by keeping the surface temperature of the steel pipe at 160 to 210°C when painting the powder epoxy resin primer layer. It was discovered that steel pipes can be obtained.

本発明は、以下の構成を有する。
[1]鋼管表面に、粉体エポキシ樹脂プライマー層、変性ポリエチレン樹脂接着剤層、ポリエチレン層を順次積層するポリエチレン被覆鋼管の製造方法において、
前記粉体エポキシ樹脂プライマー層を形成する際の粉体エポキシ樹脂プライマー塗装時の鋼管表面温度を160~210℃とすることを特徴とする、ポリエチレン被覆鋼管の製造方法。
[2]粉体エポキシ樹脂プライマー層を形成する前に、鋼管表面にブラスト処理を行い、当該ブラスト処理後の鋼管表面の表面粗さRzが60~100μm、かつピークカウント数が20以上であることを特徴とする、[1]に記載のポリエチレン被覆鋼管の製造方法。
The present invention has the following configuration.
[1] A method for manufacturing a polyethylene-coated steel pipe in which a powder epoxy resin primer layer, a modified polyethylene resin adhesive layer, and a polyethylene layer are sequentially laminated on the surface of the steel pipe,
A method for producing a polyethylene-coated steel pipe, characterized in that the surface temperature of the steel pipe during coating with the powder epoxy resin primer when forming the powder epoxy resin primer layer is 160 to 210°C.
[2] Before forming the powder epoxy resin primer layer, blasting is performed on the steel pipe surface, and the surface roughness Rz of the steel pipe surface after the blasting is 60 to 100 μm, and the peak count number is 20 or more. The method for producing a polyethylene-coated steel pipe according to [1], characterized by:

本発明によれば、耐陰極剥離性に優れ、機械的性質変化が抑制されたポリエチレン被覆鋼管を提供することができる。 According to the present invention, it is possible to provide a polyethylene-coated steel pipe that has excellent cathodic peeling resistance and suppresses changes in mechanical properties.

本発明によれば、ノンクロメート処理で、耐陰極剥離性に優れたポリエチレン被覆鋼管を製造することができるため、環境負荷が低減される。さらに、本発明によれば、プライマー層を形成する材料として、粉体エポキシ樹脂プライマーを用い、かつプライマー層を形成する際の鋼管表面温度を160~210℃とすることで鋼管の機械的性質変化を抑制しながら優れた耐陰極剥離性をもつポリエチレン被覆鋼管が得られる。鋼管の機械的性質変化を抑制できることで、鋼管自体の設計が容易になる利点がある。すなわち、塗覆装前後の鋼管の機械的性質変化が抑制されるため、塗覆装前の鋼管の機械的性質から、塗覆装後のポリエチレン被覆鋼管の機械的性質を設計、管理しやすくなり、所望の機械的性質を有するポリエチレン被覆鋼管を効率よく製造することができる。 According to the present invention, a polyethylene-coated steel pipe with excellent cathode peeling resistance can be manufactured by non-chromate treatment, so that the environmental load is reduced. Furthermore, according to the present invention, the mechanical properties of the steel pipe can be changed by using a powdered epoxy resin primer as the material for forming the primer layer, and by setting the surface temperature of the steel pipe to 160 to 210°C when forming the primer layer. A polyethylene-coated steel pipe can be obtained that has excellent cathode peeling resistance while suppressing this. Being able to suppress changes in the mechanical properties of the steel pipe has the advantage of facilitating the design of the steel pipe itself. In other words, changes in the mechanical properties of the steel pipe before and after coating are suppressed, making it easier to design and manage the mechanical properties of the polyethylene-coated steel pipe after coating from the mechanical properties of the steel pipe before coating. , polyethylene-coated steel pipes having desired mechanical properties can be efficiently produced.

本発明のポリエチレン被覆鋼管は、鋼管表面に、粉体エポキシ樹脂プライマー層、変性ポリエチレン樹脂接着剤層、ポリエチレン層を順次積層することにより製造される。 The polyethylene-coated steel pipe of the present invention is manufactured by sequentially laminating a powder epoxy resin primer layer, a modified polyethylene resin adhesive layer, and a polyethylene layer on the surface of the steel pipe.

以下、本発明のポリエチレン被覆鋼管の製造方法の一実施形態について説明する。 Hereinafter, one embodiment of the method for manufacturing a polyethylene-coated steel pipe of the present invention will be described.

本実施形態のポリエチレン被覆鋼管の製造方法は、鋼管表面に、粉体エポキシ樹脂プライマー層を形成する工程と、前記粉体エポキシ樹脂プライマー層を形成した鋼管表面に、変性ポリエチレン樹脂接着剤層を形成する工程と、前記変性ポリエチレン樹脂接着剤層を形成した鋼管表面に、ポリエチレン層を形成する工程と、前記ポリエチレン層を形成した後の鋼管を冷却する工程を有する。本実施形態において、これらの工程は、製造ライン(塗覆装ライン)において連続で行われる。
なお、本明細書において、粉体エポキシ樹脂プライマー層を形成する工程と、変性ポリエチレン樹脂接着剤層を形成する工程と、ポリエチレン層を形成する工程をまとめて、塗覆装工程ともいう。
The method for producing a polyethylene-coated steel pipe of this embodiment includes the steps of forming a powder epoxy resin primer layer on the surface of the steel pipe, and forming a modified polyethylene resin adhesive layer on the surface of the steel pipe on which the powder epoxy resin primer layer has been formed. a step of forming a polyethylene layer on the surface of the steel pipe on which the modified polyethylene resin adhesive layer has been formed; and a step of cooling the steel pipe after forming the polyethylene layer. In this embodiment, these steps are performed continuously on a manufacturing line (coating line).
In this specification, the process of forming a powder epoxy resin primer layer, the process of forming a modified polyethylene resin adhesive layer, and the process of forming a polyethylene layer are collectively referred to as a coating process.

粉体エポキシ樹脂プライマー層を形成する工程において、粉体エポキシ樹脂プライマー塗装の前には、鋼管表面にブラスト処理を行い、鋼管表面の清浄化と表面粗さの付与を行う。鋼管表面に付着した塩分除去のため、ブラスト処理の前に水を用いた洗浄を行ってもよい。またブラスト処理後、鋼管加熱前に水洗やリン酸酸洗等を実施することにより鉄粉等の異物除去を行ってもよい。 In the step of forming the powder epoxy resin primer layer, before applying the powder epoxy resin primer, the steel pipe surface is subjected to blasting treatment to clean the steel pipe surface and impart surface roughness. In order to remove salt adhering to the surface of the steel pipe, cleaning with water may be performed before blasting. Furthermore, after the blasting process and before heating the steel pipe, foreign matter such as iron powder may be removed by washing with water, pickling with phosphoric acid, or the like.

ブラスト処理後の鋼管表面(外面)は、表面粗さRzが60~100μm、かつピークカウント数が20以上とすることが好ましい。ここで、表面粗さRzとは、JIS B0601:1994で定義される十点平均粗さである。また、ピークカウント数とは、JIS B0601:2013で定義される輪郭曲線の長さLに含まれる輪郭曲線要素の平均長さの数であり、ここでは長さL=10mmとする。表面粗さRzが60μm以上であると、表面粗さによる接着表面積の増加や投錨効果による耐陰極剥離性向上効果がより高められる。表面粗さRzが100μm以下であると、濡れが十分となり塗膜と鋼管表面間に空隙が生じることを抑制しやすくなり、また、表面粗さにおける山頂部の塗膜厚さが小さくなることを抑制しやすくなり、耐陰極剥離性向上効果がより高められる。表面粗さRzは、60~90μmがより好ましい。また、鋼管表面のピークカウント数が20以上であると、接着表面積の増加による耐陰極剥離性向上効果がより高められる。前記ピークカウント数は25以上がより好ましい。なお、前記ピークカウント数の上限は、特に限定されないが、塗料の濡れ性確保の点から、50以下であることが好ましい。 The surface (outer surface) of the steel pipe after blasting preferably has a surface roughness Rz of 60 to 100 μm and a peak count of 20 or more. Here, the surface roughness Rz is the ten-point average roughness defined by JIS B0601:1994. Moreover, the peak count number is the number of average lengths of contour curve elements included in the length L of the contour curve defined in JIS B0601:2013, and here the length L=10 mm. When the surface roughness Rz is 60 μm or more, the effect of increasing the adhesion surface area due to the surface roughness and improving the cathode peeling resistance due to the anchoring effect is further enhanced. When the surface roughness Rz is 100 μm or less, wetting becomes sufficient and it becomes easier to suppress the formation of voids between the coating film and the steel pipe surface, and the coating film thickness at the top of the surface roughness becomes smaller. This makes it easier to suppress the effect, and the effect of improving cathode peeling resistance is further enhanced. The surface roughness Rz is more preferably 60 to 90 μm. Further, when the peak count number on the surface of the steel pipe is 20 or more, the effect of improving the cathode peeling resistance due to the increase in the adhesive surface area is further enhanced. The peak count number is more preferably 25 or more. Note that the upper limit of the peak count number is not particularly limited, but is preferably 50 or less from the viewpoint of ensuring wettability of the paint.

このようなブラスト処理は、ブラストの研掃材として、スチールグリットやスチールショット等を用いることで実施することが出来る。研掃材の種類、粒径等を変化させることで、鋼管表面の表面粗さRzやピークカウント数を変化させることが出来る。研掃材は、特に限定されないが、例えば、スチールグリットを単独で用いてもよいし、スチールショットを単独で用いてもよいし、スチールグリットとスチールショットを混合して用いてもよい。 Such blasting can be carried out by using steel grit, steel shot, or the like as an abrasive for blasting. By changing the type, particle size, etc. of the abrasive, the surface roughness Rz and peak count number of the steel pipe surface can be changed. The abrasive material is not particularly limited, but for example, steel grit may be used alone, steel shot may be used alone, or a mixture of steel grit and steel shot may be used.

ブラスト処理の後に鋼管の加熱を行う。前記鋼管の加熱は誘導加熱等で行うことができる。この加熱は、粉体エポキシ樹脂プライマーの溶融、硬化反応のために行うが、鋼管表面(鋼管外面)温度は160~210℃とする。前記温度が160℃未満では、粉体エポキシ樹脂プライマーの硬化が不十分となり良好な接着性が得られない。また、前記温度が、210℃を超えると鋼管のひずみ時効硬化が起き、鋼管の強度が上昇する材質変化が生じてしまう。前記温度のより好適な範囲は170~200℃である。 After blasting, the steel pipe is heated. The steel pipe can be heated by induction heating or the like. This heating is performed to melt and harden the powder epoxy resin primer, and the temperature of the steel pipe surface (outer surface of the steel pipe) is 160 to 210°C. If the temperature is less than 160°C, the curing of the powder epoxy resin primer will be insufficient and good adhesion will not be obtained. Furthermore, if the temperature exceeds 210° C., strain aging hardening of the steel pipe occurs, resulting in a material change that increases the strength of the steel pipe. A more preferred range of the temperature is 170-200°C.

粉体エポキシ樹脂プライマー層を形成する工程では、前記加熱後に、粉体エポキシ樹脂プライマーを鋼管表面(鋼管外面)に塗装し、粉体エポキシ樹脂プライマー層を形成する。前記塗装としては、静電粉体塗装が挙げられる。 In the step of forming a powder epoxy resin primer layer, after the heating, a powder epoxy resin primer is applied to the surface of the steel pipe (outer surface of the steel pipe) to form a powder epoxy resin primer layer. The coating includes electrostatic powder coating.

粉体エポキシ樹脂プライマーは、塗覆装ラインの特性に合わせて選択すればよい。具体的には、粉体エポキシ樹脂プライマーとしては、鋼板表面温度160~210℃において硬化する材料を用いる。さらに、2層目の変性ポリエチレン樹脂接着剤層を形成する際の、変性ポリエチレン樹脂を塗装(2層目塗装)するまでの間に完全に硬化してしまわない材料が好ましい。粉体エポキシ樹脂プライマー層が、2層目塗装までの間に完全に硬化してしまわないことで、粉体エポキシ樹脂プライマー層と、2層目の変性ポリエチレン樹脂接着剤層との間の接着性がより高められ、接着不良の原因となるおそれを軽減できる。さらに、塗覆装工程後、冷却を開始するまでに十分に硬化(硬化反応が終了)する材料が好ましい。ただし、冷却開始後も余熱で硬化反応が進行する場合もあるため、冷却完了までに十分に硬化する材料であれば使用できる。 The powder epoxy resin primer may be selected according to the characteristics of the coating line. Specifically, as the powder epoxy resin primer, a material that hardens at a steel plate surface temperature of 160 to 210° C. is used. Furthermore, it is preferable to use a material that does not completely harden before coating the modified polyethylene resin (second layer coating) when forming the second modified polyethylene resin adhesive layer. Since the powder epoxy resin primer layer is not completely cured before the second layer is applied, the adhesion between the powder epoxy resin primer layer and the second modified polyethylene resin adhesive layer is improved. is further increased, and the possibility of causing poor adhesion can be reduced. Furthermore, it is preferable to use a material that is sufficiently cured (the curing reaction is completed) before cooling is started after the coating process. However, since the curing reaction may proceed due to residual heat even after cooling has started, any material that can be sufficiently hardened by the time cooling is completed can be used.

このような粉体エポキシ樹脂プライマーは、例えば、候補となる粉体エポキシ樹脂プライマーについて、所定の温度(例えば180℃)におけるCSA規格(CSA:Canadian Standards Association、カナダ規格協会)のCSA Z245.20 Series 18の12.1項のCure Time(硬化時間)を求め、このCure Timeと、塗覆装ラインの特性(塗覆装工程に要する時間(ラインスピード))との関係から選択することができる。このような粉体エポキシ樹脂プライマーは、公知の方法により前記Cure Timeを調整したものを用いてもよいし、市販品のなかから選択してもよい。 Such a powder epoxy resin primer may, for example, meet the CSA Z245.20 Series of CSA standards (CSA: Canadian Standards Association) at a predetermined temperature (for example, 180° C.) for a candidate powder epoxy resin primer. The Cure Time (curing time) in Section 12.1 of Section 18 is determined, and selection can be made based on the relationship between this Cure Time and the characteristics of the coating line (the time required for the coating process (line speed)). Such a powder epoxy resin primer may be one whose cure time is adjusted by a known method, or may be selected from commercially available products.

上述のように、本発明では、プライマーとして、粉体エポキシ樹脂プライマーを用いる。一般に、プライマーとしては、粉体エポキシ樹脂プライマーのほかに、例えば、液状エポキシ樹脂プライマーが知られている。液状エポキシ樹脂プライマーを用いた場合には、プライマー層の膜厚が50μm程度となるのに対し、本発明では粉体エポキシ樹脂プライマーを用いることにより、150μm~500μm程度の膜厚のプライマー層を形成することができる。陰極剥離は、樹脂層を透過する酸素が鋼材表面で水酸化物イオンに還元され、その水酸化物イオンによって引き起こされることが知られている。本発明では、プライマーとして、粉体エポキシ樹脂プライマーを用いることで、膜厚の厚いプライマー層を形成できるため、樹脂層の酸素透過を抑制することができ、耐陰極剥離性をより向上することができる。さらに、本発明では、粉体エポキシ樹脂プライマーとして、低温で硬化させられる材料を用いることで、塗覆装による鋼管の機械的性質変化(特に塗覆装時の熱履歴に起因する高強度化)も回避することができる。 As described above, in the present invention, a powder epoxy resin primer is used as the primer. Generally, as a primer, in addition to a powder epoxy resin primer, for example, a liquid epoxy resin primer is known. When a liquid epoxy resin primer is used, the thickness of the primer layer is about 50 μm, whereas in the present invention, a powder epoxy resin primer is used to form a primer layer with a thickness of about 150 μm to 500 μm. can do. It is known that cathodic peeling is caused by oxygen passing through the resin layer being reduced to hydroxide ions on the surface of the steel material, and the hydroxide ions. In the present invention, by using a powdered epoxy resin primer as the primer, a thick primer layer can be formed, so oxygen permeation through the resin layer can be suppressed, and cathode peeling resistance can be further improved. can. Furthermore, in the present invention, by using a material that can be cured at low temperatures as the powder epoxy resin primer, changes in mechanical properties of the steel pipe due to coating (in particular, increase in strength due to thermal history during coating) can be achieved. can also be avoided.

粉体エポキシ樹脂プライマー層の形成後、連続して変性ポリエチレン樹脂接着剤層、ポリエチレン層を順次形成する。変性ポリエチレン樹脂接着剤層を形成する工程では、変性ポリエチレン樹脂接着剤を、粉体塗装、押出被覆などの方法で、前記粉体エポキシ樹脂プライマー層を形成した鋼管表面に塗布することで、変性ポリエチレン樹脂接着剤層を形成可能である。
また、ポリエチレン層を形成する工程では、加熱溶融したポリエチレン樹脂を、前記変性ポリエチレン樹脂接着剤層を形成した鋼管表面に押出被覆することで、ポリエチレン層を形成できる。その後、前記ポリエチレン層を形成した後の鋼管を冷却(水冷)する。
After the powder epoxy resin primer layer is formed, a modified polyethylene resin adhesive layer and a polyethylene layer are successively formed. In the step of forming a modified polyethylene resin adhesive layer, a modified polyethylene resin adhesive is applied to the surface of the steel pipe on which the powder epoxy resin primer layer has been formed by a method such as powder coating or extrusion coating. A resin adhesive layer can be formed.
Further, in the step of forming the polyethylene layer, the polyethylene layer can be formed by extrusion coating the surface of the steel pipe on which the modified polyethylene resin adhesive layer is formed with a heated and melted polyethylene resin. After that, the steel pipe after forming the polyethylene layer is cooled (water-cooled).

上記の工程により、鋼管表面に、粉体エポキシ樹脂プライマー層、変性ポリエチレン樹脂接着剤層、ポリエチレン層が順次積層されたポリエチレン被覆鋼管が得られる。前記ポリエチレン被覆鋼管は、機械的性質変化が抑制されたものである。具体的には、塗覆装工程前後(塗覆装前後)の鋼管の降伏強度の変化率[100×(ポリエチレン被覆鋼管の降伏強度(MPa)-塗覆装前の鋼管の降伏強度(MPa))/塗覆装前の鋼管の降伏強度(MPa)]が、5%未満である。 Through the above steps, a polyethylene-coated steel pipe is obtained in which a powder epoxy resin primer layer, a modified polyethylene resin adhesive layer, and a polyethylene layer are sequentially laminated on the surface of the steel pipe. The polyethylene-coated steel pipe is one in which changes in mechanical properties are suppressed. Specifically, the rate of change in the yield strength of the steel pipe before and after the coating process (before and after coating) [100 x (yield strength of polyethylene-coated steel pipe (MPa) - yield strength of the steel pipe before coating (MPa)) )/yield strength (MPa) of the steel pipe before coating] is less than 5%.

塗覆装工程の熱履歴で機械的性質変化が生じ、塗覆装後の鋼管の強度が高くなると、当該鋼管の加工性が低下する。そのため、塗覆装後に機械試験を実施する場合もあるが、工程上、塗覆装後の機械試験実施が困難な場合もあるため、塗覆装工程における熱履歴で機械的性質変化のない、すなわち、機械的性質変化の抑制されたポリエチレン被覆鋼管が求められる。本発明のポリエチレン被覆鋼管は、機械的性質変化の抑制効果に優れており、上記のようなわずかな機械的性質変化が問題となる用途に特に適する。前記用途としては、例えば、ガス管が挙げられる。 When mechanical properties change due to the thermal history of the coating process and the strength of the steel pipe increases after coating, the workability of the steel pipe decreases. For this reason, mechanical tests are sometimes carried out after coating, but due to the process, it is sometimes difficult to carry out mechanical tests after coating. In other words, a polyethylene-coated steel pipe with suppressed changes in mechanical properties is required. The polyethylene-coated steel pipe of the present invention has an excellent effect of suppressing changes in mechanical properties, and is particularly suitable for applications where slight changes in mechanical properties as described above are a problem. Examples of such uses include gas pipes.

鋼管として、外径610mm、管厚17.6mm、12m長のAPI SPECIFICATION 5L、X65の炭素鋼管を用いた。塗覆装前(粉体エポキシ樹脂プライマーの塗装前)に、機械的性質変化確認のために前記鋼管の管端部より引張試験片を採取した。前記鋼管外面に、研掃材として粒径の異なるスチールグリットを用いたブラスト処理を行い、鋼管表面を清浄化し、表面粗さRz52~95μm、ピークカウント数18~35の表面粗さを付与した。その後誘導加熱により鋼管表面(外面)を132~265℃に加熱した。加熱した鋼管外面に静電粉体塗装で粉体エポキシ樹脂プライマー(Valspar社製 PIPECLAD 2000 LAT-Slow GEL)を約300μmの厚さで塗装した。なお、前記粉体エポキシ樹脂プライマーの180℃におけるCure Time(CSA Z245.20 Series 18 12.1項に準拠)は130秒であった。その後、連続して変性ポリエチレン樹脂接着剤層、ポリエチレン層を順次形成した。変性ポリエチレン樹脂接着剤層は、静電粉体塗装で変性ポリエチレン樹脂接着剤(Borealis社製 ME0433)を約200μmの厚さで塗装した。ポリエチレン層は、押出機とTダイスを用いてポリエチレン(Borouge社製 HE3450)をシート状にして巻き付け、合計膜厚を3.2mmとした。なお、本実施例において、塗覆装工程に要した時間(粉体エポキシ樹脂プライマーの塗装から、冷却を開始するまでの時間)は130秒であった。塗覆装後、水冷を行ってポリエチレン被覆鋼管を製造した。 As the steel pipe, an API SPECIFICATION 5L, X65 carbon steel pipe with an outer diameter of 610 mm, a pipe thickness of 17.6 mm, and a length of 12 m was used. Before coating (before applying the powder epoxy resin primer), a tensile test piece was taken from the end of the steel pipe to confirm changes in mechanical properties. The outer surface of the steel pipe was blasted using steel grit of different particle sizes as an abrasive to clean the surface of the steel pipe and give it a surface roughness Rz of 52 to 95 μm and a peak count of 18 to 35. Thereafter, the surface (outer surface) of the steel pipe was heated to 132 to 265° C. by induction heating. A powdered epoxy resin primer (PIPECLAD 2000 LAT-Slow GEL manufactured by Valspar) was applied to a thickness of approximately 300 μm on the outer surface of the heated steel pipe by electrostatic powder coating. The cure time (based on CSA Z245.20 Series 18 Section 12.1) of the powder epoxy resin primer at 180° C. was 130 seconds. Thereafter, a modified polyethylene resin adhesive layer and a polyethylene layer were successively formed. The modified polyethylene resin adhesive layer was coated with a modified polyethylene resin adhesive (ME0433 manufactured by Borealis) to a thickness of about 200 μm by electrostatic powder coating. The polyethylene layer was formed by winding polyethylene (HE3450 manufactured by Borouge) into a sheet using an extruder and a T-die to give a total film thickness of 3.2 mm. In this example, the time required for the coating process (time from application of powdered epoxy resin primer to start of cooling) was 130 seconds. After coating, water cooling was performed to produce a polyethylene-coated steel pipe.

(引張試験)
塗覆装前の鋼管と、塗覆装後の鋼管(ポリエチレン被覆鋼管)からそれぞれ、鋼管と試験片の長手方向が一致するように、全肉厚の試験片を採取した。そして、API SPECIFICATION 5Lに準拠する引張試験を試験数5で行い、ひずみ時効硬化で変化が起きやすい降伏強度の平均値を求めた。塗覆装後の鋼管の降伏強度が塗覆装前の鋼管と比較し、変化率(上昇率)が5%未満であるものを機械的性質変化が抑制されたと判定した。変化率が5%未満のものは製造上、設計がしやすく歩留まりを高められる利点がある。試験結果を表1に示す。
(Tensile test)
Full-thickness test pieces were taken from the steel pipe before coating and from the steel pipe after coating (polyethylene-coated steel pipe), respectively, so that the longitudinal direction of the steel pipe and the test piece coincided. Then, a tensile test in accordance with API SPECIFICATION 5L was conducted with 5 tests, and the average value of the yield strength, which tends to change due to strain age hardening, was determined. When the yield strength of the steel pipe after coating was compared with that of the steel pipe before coating, it was determined that the change in mechanical properties was suppressed if the rate of change (rate of increase) was less than 5%. When the rate of change is less than 5%, there is an advantage in manufacturing that design is easy and yield can be increased. The test results are shown in Table 1.

(陰極剥離試験)
上記方法で製造したポリエチレン被覆鋼管から100mm×100mm×全厚の試験片を採取した。試験片の中央部に直径6mmφの円形の人工欠陥部を形成し、鋼管外表面を露出させた。人工欠陥部を中心にして内径70mmφのアクリル製の円筒をポリエチレン層上に縦に設置してシール材でポリエチレン層に固定し、円筒内部を3質量%NaCl水溶液で満たし、セルを作成した。対極に白金を使用して人工欠陥部の鋼管の電位を銀塩化銀電極に対して-1.5Vにポテンシオスタットを使用して保持した。このまま80℃の恒温槽内に試験片を静置し、28日間電位を保持した。次いで、試験片を回収後、アクリル製の円筒をはずし、たがねとカッターを使用して人工欠陥部の周囲からポリエチレン被覆を取り除いた。残ったプライマー層に人工欠陥部を中心として8方向にカッターで切り込みを入れた。カッターを人工欠陥部からプライマー層下に差し込み、容易に剥離し鋼表面が露出した部分を剥離部とした。人工欠陥部端部から8方向の剥離部先端までの長さをそれぞれ測定して、その平均値を陰極剥離距離(mm)とした。この陰極剥離距離は、値が小さいほど良好であり、「15mm以下」を合格とした。合格であるポリエチレン被覆鋼管は、海底への敷設用途や地下への埋設用途に好適である。表1に試験結果を示す。
(Cathode peeling test)
A test piece measuring 100 mm x 100 mm x total thickness was taken from the polyethylene-coated steel pipe manufactured by the above method. A circular artificial defect with a diameter of 6 mm was formed in the center of the test piece to expose the outer surface of the steel pipe. An acrylic cylinder with an inner diameter of 70 mmφ centered on the artificial defect was placed vertically on the polyethylene layer, fixed to the polyethylene layer with a sealant, and the inside of the cylinder was filled with a 3% by mass NaCl aqueous solution to create a cell. Platinum was used as a counter electrode, and the potential of the steel tube in the artificial defect area was maintained at −1.5 V with respect to the silver-silver chloride electrode using a potentiostat. The test piece was left as it was in a constant temperature bath at 80°C, and the potential was maintained for 28 days. After collecting the test piece, the acrylic cylinder was then removed and the polyethylene coating was removed from around the artificial defect using a chisel and a cutter. Incisions were made in the remaining primer layer in 8 directions with a cutter centered around the artificial defect. A cutter was inserted under the primer layer from the artificial defect, and the part where it was easily peeled off and the steel surface was exposed was designated as the peeled part. The lengths from the edge of the artificial defect part to the tip of the peeled part in eight directions were measured, and the average value was taken as the cathode peeling distance (mm). The smaller the value of this cathode peeling distance, the better it was, and "15 mm or less" was considered acceptable. Polyethylene-coated steel pipes that pass the test are suitable for installation on the seabed or buried underground. Table 1 shows the test results.

Figure 2023152869000001
Figure 2023152869000001

本発明例No.1~7では、鋼管の降伏強度の変化率が規定の5%未満を満足し、鋼管の機械的性質変化を抑制し、陰極剥離距離が規定の15mm以下を満足し、優れた耐陰極剥離性を示している。No.8~14は比較例である。No.8、9は、粉体エポキシ樹脂プライマー塗装時の鋼管表面温度が低く、粉体エポキシ樹脂プライマーの硬化が不十分となり、良好な接着性が得られず、陰極剥離距離が15mm超である。No.10~14は、粉体エポキシ樹脂プライマー塗装時の鋼管表面温度が高く、鋼管の降伏強度の変化率が5%以上である。No.11、12、14は、さらに粉体エポキシ樹脂プライマー塗装時の鋼管表面温度が高く、粉体エポキシ樹脂プライマーに熱がかかりすぎて樹脂が劣化し、陰極剥離距離が15mm超である。 Invention example No. 1 to 7, the rate of change in the yield strength of the steel pipe satisfies the specified 5% or less, changes in the mechanical properties of the steel pipe are suppressed, the cathode peeling distance satisfies the specified 15 mm or less, and excellent cathodic peeling resistance is achieved. It shows. No. 8 to 14 are comparative examples. No. In Nos. 8 and 9, the surface temperature of the steel pipe during coating with the powder epoxy resin primer was low, the curing of the powder epoxy resin primer was insufficient, good adhesion was not obtained, and the cathode peeling distance was more than 15 mm. No. In Nos. 10 to 14, the surface temperature of the steel pipe during coating with the powder epoxy resin primer is high, and the rate of change in yield strength of the steel pipe is 5% or more. No. In Nos. 11, 12, and 14, the surface temperature of the steel pipe during coating with the powder epoxy resin primer was high, too much heat was applied to the powder epoxy resin primer, causing the resin to deteriorate, and the cathode peeling distance was more than 15 mm.

このように、本発明によれば、耐陰極剥離性に優れ、機械的性質変化が抑制されたポリエチレン被覆鋼管が得られる。本発明によれば、ノンクロメート処理で、耐陰極剥離性に優れたポリエチレン被覆鋼管を製造することができるため、環境負荷が低減される。さらに、本発明により製造されたポリエチレン被覆鋼管は、塗覆装前後の鋼管の機械的性質変化が抑制されるため、塗覆装前後のわずかな機械的性質変化が問題となる用途にも好適に適用できる。 As described above, according to the present invention, a polyethylene-coated steel pipe with excellent cathodic peeling resistance and suppressed changes in mechanical properties can be obtained. According to the present invention, a polyethylene-coated steel pipe with excellent cathode peeling resistance can be manufactured by non-chromate treatment, so that the environmental load is reduced. Furthermore, the polyethylene-coated steel pipe manufactured by the present invention suppresses changes in the mechanical properties of the steel pipe before and after coating, making it suitable for applications where slight changes in mechanical properties before and after coating are a problem. Applicable.

Claims (2)

鋼管表面に、粉体エポキシ樹脂プライマー層、変性ポリエチレン樹脂接着剤層、ポリエチレン層を順次積層するポリエチレン被覆鋼管の製造方法において、
前記粉体エポキシ樹脂プライマー層を形成する際の粉体エポキシ樹脂プライマー塗装時の鋼管表面温度を160~210℃とすることを特徴とする、ポリエチレン被覆鋼管の製造方法。
In a method for manufacturing a polyethylene-coated steel pipe, in which a powder epoxy resin primer layer, a modified polyethylene resin adhesive layer, and a polyethylene layer are sequentially laminated on the surface of the steel pipe,
A method for producing a polyethylene-coated steel pipe, characterized in that the surface temperature of the steel pipe during coating with the powder epoxy resin primer when forming the powder epoxy resin primer layer is 160 to 210°C.
粉体エポキシ樹脂プライマー層を形成する前に、鋼管表面にブラスト処理を行い、当該ブラスト処理後の鋼管表面の表面粗さRzが60~100μm、かつピークカウント数が20以上であることを特徴とする、請求項1に記載のポリエチレン被覆鋼管の製造方法。 Before forming the powder epoxy resin primer layer, the surface of the steel pipe is blasted, and the surface roughness Rz of the steel pipe surface after the blasting is 60 to 100 μm, and the peak count is 20 or more. The method for manufacturing a polyethylene-coated steel pipe according to claim 1.
JP2023047613A 2022-03-30 2023-03-24 Method for manufacturing polyethylene-coated steel pipe Pending JP2023152869A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022055339 2022-03-30
JP2022055339 2022-03-30

Publications (1)

Publication Number Publication Date
JP2023152869A true JP2023152869A (en) 2023-10-17

Family

ID=88349580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023047613A Pending JP2023152869A (en) 2022-03-30 2023-03-24 Method for manufacturing polyethylene-coated steel pipe

Country Status (1)

Country Link
JP (1) JP2023152869A (en)

Similar Documents

Publication Publication Date Title
JP4859861B2 (en) Polyolefin coated steel
JP5353297B2 (en) Polyolefin powder lining steel pipe
JP2023152869A (en) Method for manufacturing polyethylene-coated steel pipe
JP2000190422A (en) Polyolefin-coated steel material
JP4742950B2 (en) Inner coated steel pipe for water piping
JP6399056B2 (en) Polyethylene-coated steel pipe and method for producing the same
JP2009072768A (en) Method for manufacturing internal coated steel pipe
JPH09268374A (en) Production of coated steel tube
JP6551480B2 (en) Polyethylene-coated steel pipe and method for producing the same
JP3111908B2 (en) Polyethylene resin coated steel
JP5463999B2 (en) Manufacturing method of inner surface coated steel pipe for water piping
JP6871794B2 (en) Manufacturing method of anticorrosion coated metal tube
JPH1028928A (en) Polyolefin coated steel material
JPH09268375A (en) Production of coated steel tube
JP2018134861A (en) Polyethylene coated steel tube and method for manufacturing the same
JP4617575B2 (en) Method for producing anti-corrosion coated steel
RU2735438C1 (en) Method for application of coatings on tubing string
JP2011093211A (en) Surface treated thick steel plate excellent in coating corrosion resistance and method for manufacturing the same
JP2008229998A (en) Heavy corrosion-proof coated steel material
JP4321262B2 (en) Production method of primer-coated resin-coated steel pipe with excellent corrosion resistance
JP3327177B2 (en) Polyolefin coated steel pipe
JPH0858023A (en) Production of polyethylene coated metal pipe
JP2007268796A (en) Inner surface coated steel pipe for water piping
JP2017043089A (en) Polyethylene coated steel tube and manufacturing method therefor
JP3163908B2 (en) Polyolefin resin coated steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231024