JP5463999B2 - Manufacturing method of inner surface coated steel pipe for water piping - Google Patents

Manufacturing method of inner surface coated steel pipe for water piping Download PDF

Info

Publication number
JP5463999B2
JP5463999B2 JP2010069331A JP2010069331A JP5463999B2 JP 5463999 B2 JP5463999 B2 JP 5463999B2 JP 2010069331 A JP2010069331 A JP 2010069331A JP 2010069331 A JP2010069331 A JP 2010069331A JP 5463999 B2 JP5463999 B2 JP 5463999B2
Authority
JP
Japan
Prior art keywords
steel pipe
layer
coated steel
chemical conversion
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010069331A
Other languages
Japanese (ja)
Other versions
JP2011202711A (en
Inventor
康人 猪原
啓司 菅原
志郎 宮田
俊幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010069331A priority Critical patent/JP5463999B2/en
Publication of JP2011202711A publication Critical patent/JP2011202711A/en
Application granted granted Critical
Publication of JP5463999B2 publication Critical patent/JP5463999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、樹脂層と鋼管との間の密着力が高く、防食性能に優れた水配管用内面被覆鋼管の製造方法に関するものである。   The present invention relates to a method for producing an inner surface-coated steel pipe for water piping that has high adhesion between a resin layer and a steel pipe and is excellent in corrosion resistance.

従来から、排水等に使われる配管には、鋼管内面に防食性を付与するため、塩化ビニル樹脂を鋼管内面に貼り付けた内面硬質塩ビ被覆鋼管が使用されている。しかし、塩化ビニル樹脂は低温での耐衝撃性が低いため、水配管用などとして内面硬質塩ビ被覆鋼管を寒冷地で使用する際や施工時に内面硬質塩ビ被覆鋼管を屋外に放置する際に、内面被覆層がダメージを受ける場合がある。さらに、近年では、塩化ビニル樹脂を廃却する際の有害物の発生、塩化ビニル樹脂を処理ルートに乗せるための鋼管と塩化ビニル樹脂の分離処理などの負荷が大きく、環境負荷が大きい材料としての認識ももたれてきている。   2. Description of the Related Art Conventionally, pipes used for drainage or the like have been used internal hard vinyl chloride coated steel pipes in which a vinyl chloride resin is attached to the steel pipe inner surface in order to impart corrosion resistance to the steel pipe inner surface. However, since vinyl chloride resin has low impact resistance at low temperatures, the inner surface of the internal hard vinyl chloride coated steel pipe is not suitable for use in water pipes, etc. The covering layer may be damaged. Furthermore, in recent years, the generation of harmful substances when disposing of vinyl chloride resin, the load of separating steel pipes and vinyl chloride resin for placing vinyl chloride resin on the treatment route, etc. are large, and as a material with a large environmental load Recognition is also leaning.

上記以外の被覆鋼管として、ポリエチレン樹脂粉体等を化成処理、プライマー処理等の表面処理が施された鋼管の内面に加熱した状態で粉体塗装することで内面被覆層を形成した内面ポリエチレン被覆鋼管も使用されている(例えば、日本水道協会規格 JWWA K132)。しかし、この内面ポリエチレン被覆鋼管は、環境によっては管端部での接水により端部から被覆が剥離することがある。   Other than the above coated steel pipe, an inner polyethylene coated steel pipe in which an inner coating layer is formed by powder coating in a heated state on the inner surface of a steel pipe that has been subjected to surface treatment such as chemical conversion treatment or primer treatment of polyethylene resin powder, etc. (For example, Japan Water Works Association Standard JWWA K132). However, this inner surface polyethylene-coated steel pipe may peel off from the end due to water contact at the end of the pipe depending on the environment.

また、架橋ポリエチレン管に形状復元性を付与し、鋼管内で加熱復元することにより拡径して内面被覆する方法が知られている(例えば、特許文献1参照)。しかしながら、特許文献1に記載の方法では、架橋剤からの溶出成分があるため水道水の衛生性を確保できないなどの問題がある。   Further, a method is known in which a cross-linked polyethylene pipe is imparted with a shape restoring property and is heated and restored in a steel pipe to expand the diameter and coat the inner surface (see, for example, Patent Document 1). However, the method described in Patent Document 1 has a problem that sanitary properties of tap water cannot be ensured because there is an elution component from the crosslinking agent.

また、ポリエチレン管に形状復元性を付与して鋼管の内面を被覆する方法も開示されている(例えば、特許文献2参照)。しかしながら、特許文献2に記載の方法では、一旦ポリエチレンなどからなる樹脂管を作製し、それに形状復元性などを付加する必要があるため、コスト的に高いものとなる。さらに、工業的な速度では均一な内面被覆が困難となる。   In addition, a method of covering the inner surface of a steel pipe by imparting a shape restoring property to the polyethylene pipe is also disclosed (for example, see Patent Document 2). However, in the method described in Patent Document 2, it is necessary to once produce a resin tube made of polyethylene or the like and add a shape restoration property or the like to the resin tube. Furthermore, uniform inner surface coating becomes difficult at industrial speeds.

特開2001−9912号公報JP 2001-9912 A 特開2002−257265号公報JP 2002-257265 A

以上のように、排水等の水配管用に使用される配管は、鋼管と内面被覆層の界面が露出する管端を防食するために、通常、管端防食継手などが使用され配管されている。しかし、施工時の不良や長期の使用により管端が接水環境にさらされることもあり、内面被覆層には低温から高温まで幅広い温度領域における接水環境での耐剥離性が求められる。そして、内面被覆層の耐剥離性が低いと、管端が接水環境にさらされた時、内面被覆層の剥離が起こり剥離した部分の鋼管が錆びてしまい、その結果、赤水などの原因となる。
本発明は、かかる事情に鑑み、上記問題点を有利に解決し、塩化ビニル樹脂を使用しない内面被覆鋼管であって、幅広い温度領域の接水環境においても耐剥離性が高い水配管用内面被覆鋼管を製造する方法を提供することを目的とする。
As described above, pipes used for water pipes such as drainage are usually piped using pipe end anti-corrosion joints or the like in order to prevent corrosion at the pipe end where the interface between the steel pipe and the inner surface coating layer is exposed. . However, pipe ends may be exposed to a wetted environment due to defects during construction or long-term use, and the inner surface coating layer is required to have peel resistance in a wide temperature range from low temperature to high temperature. And if the peel resistance of the inner surface coating layer is low, when the pipe end is exposed to a wetted environment, the inner surface coating layer is peeled off and the peeled portion of the steel pipe is rusted. Become.
In view of such circumstances, the present invention advantageously solves the above-described problems, and is an inner surface-coated steel pipe that does not use a vinyl chloride resin, and has an inner surface coating for water pipes that has high peel resistance even in a wetted environment in a wide temperature range. It aims at providing the method of manufacturing a steel pipe.

本発明者らは、上記の目的を達成するために、水配管用内面被覆鋼管の製造工程において混入する腐食因子に着目し、それらの影響を精査した。その結果、塩化物イオンおよび水分の混入が、製造後の内面被覆の耐剥離性に大きな影響を及ぼすことを知見し、これらの混入量を制御することで耐剥離性が格段に向上した水配管用内面被覆鋼管を安定して製造できることを見出した。   In order to achieve the above-mentioned object, the present inventors paid attention to the corrosion factors mixed in the manufacturing process of the inner surface coated steel pipe for water piping, and examined their influences. As a result, it was discovered that the mixing of chloride ions and moisture had a significant effect on the peeling resistance of the inner surface coating after production, and the water piping with greatly improved peeling resistance by controlling the amount of these mixing It was found that the inner surface coated steel pipe can be manufactured stably.

本発明による、水配管用内面被覆鋼管の製造方法の要旨は以下の通りである。
[1]鋼管の内側にリン酸塩化成処理を施してなる化成処理皮膜層を有し、該化成処理皮膜層の上層には、平均厚さが10〜40μmであるプライマー層を有し、該プライマー層の上層には、変性ポリエチレン系樹脂層を有した水配管用内面被覆鋼管を製造する方法であって、前記プライマー層を形成する前の鋼管の内側表面における塩化物イオン濃度を塩化ナトリウム付着量に換算して3mg/m以下とすることを特徴とする水配管用内面被覆鋼管の製造方法。
[2]前記[1]において、前記プライマー層を形成するに際し、塗布するプライマー液中の水分含有量を0.5質量%以下とすることを特徴とする水配管用内面被覆鋼管の製造方法。
[3]前記[1]または[2]において、前記変性ポリエチレン系樹脂層を形成するに際し、被覆するポリエチレン粉体中の水分含有量を0.05質量%以下とすることを特徴とする水配管用内面被覆鋼管の製造方法。
The summary of the method for producing an inner surface-coated steel pipe for water piping according to the present invention is as follows.
[1] It has a chemical conversion treatment film layer formed by performing a phosphate chemical conversion treatment on the inside of a steel pipe, and has a primer layer having an average thickness of 10 to 40 μm on the upper layer of the chemical conversion treatment film layer, A method for producing an internally coated steel pipe for water piping having a modified polyethylene resin layer on the primer layer, wherein the chloride ion concentration on the inner surface of the steel pipe before forming the primer layer is attached to sodium chloride. A method for producing an inner surface-coated steel pipe for water piping, wherein the amount is 3 mg / m 2 or less in terms of amount.
[2] The method for producing an inner surface-coated steel pipe for water piping according to [1], wherein, when the primer layer is formed, the water content in the primer solution to be applied is 0.5% by mass or less.
[3] In the above [1] or [2], when forming the modified polyethylene resin layer, the water content in the polyethylene powder to be coated is 0.05% by mass or less. Of manufacturing inner surface-coated steel pipes.

本発明によれば、耐剥離性が高い水配管用内面被覆鋼管が得られる。本発明の水配管用内面被覆鋼管は、従来の内面ポリエチレン被覆鋼管に比べ、内面被覆層と鋼管との密着力が高く、施工不良や長期使用などにより管端部が接水環境にさらされた時にもより高い耐久性を有する。   ADVANTAGE OF THE INVENTION According to this invention, the inner surface coated steel pipe for water piping with high peeling resistance is obtained. The inner surface-coated steel pipe for water piping according to the present invention has higher adhesion between the inner surface coating layer and the steel pipe than the conventional inner surface polyethylene-coated steel pipe, and the end of the pipe has been exposed to a wetted environment due to poor construction or long-term use. Sometimes more durable.

本発明の水配管用内面被覆鋼管の一部を模式的に示す図である。It is a figure which shows typically a part of inner surface coated steel pipe for water piping of this invention.

以下に本発明を詳細に説明する。
本発明の水配管用内面被覆鋼管の一部を図1に模式的に示す。図1に示す通り、本発明の水配管用内面被覆鋼管は、鋼管1の内側にリン酸塩化成処理を施してなる化成処理皮膜層2を、前記化成処理皮膜層2の上層に平均厚さが10〜40μmであるプライマー層3を、
前記プライマー層の上層に変性ポリエチレン系樹脂層4を有した水配管用内面被覆鋼管である。
上記のような構成かつ順序の被覆層としたのは、以下の理由による。最上層である変性ポリエチレン樹脂は無極性であるため、直接、鋼管表面と接着しない。そこで、本発明では、鋼管と変性ポリエチレン樹脂層との間に、化成処理皮膜層とプライマー層を設けることにより密着性を確保している。
1)鋼管
前記被覆層を有する鋼管としては、特に限定はしないが、外径が10〜170mm程度、長さは通常4〜6m程度、肉厚は1.0〜6.0mm程度のものを用いるのが好ましい。本発明で用いられる鋼管は、鋼管外面にブラスト処理、酸洗処理、化成処理、メッキ処理、プライマー処理もしくは樹脂被覆を行っても良い。また、鋼管内面は、通常、ブラスト処理、酸洗処理等を行い、その後の化成処理などが行なわれやすいようにすることもできる。
The present invention is described in detail below.
A part of the internally coated steel pipe for water piping according to the present invention is schematically shown in FIG. As shown in FIG. 1, the inner surface coated steel pipe for water piping according to the present invention has an average thickness of a chemical conversion coating layer 2 formed by subjecting the inside of a steel pipe 1 to a phosphate chemical conversion treatment and an upper layer of the chemical conversion coating layer 2. A primer layer 3 having a thickness of 10 to 40 μm,
It is an inner surface-coated steel pipe for water pipes having a modified polyethylene resin layer 4 as an upper layer of the primer layer.
The reason why the coating layer has the above configuration and order is as follows. Since the modified polyethylene resin as the uppermost layer is nonpolar, it does not directly adhere to the steel pipe surface. Therefore, in the present invention, adhesion is ensured by providing a chemical conversion film layer and a primer layer between the steel pipe and the modified polyethylene resin layer.
1) Steel pipe Although it does not specifically limit as a steel pipe which has the said coating layer, The outer diameter is about 10-170 mm, length is about 4-6 m normally, and thickness uses about 1.0-6.0 mm. Is preferred. The steel pipe used in the present invention may be subjected to blasting, pickling, chemical conversion, plating, primer treatment, or resin coating on the outer surface of the steel pipe. Further, the inner surface of the steel pipe is usually subjected to a blasting process, a pickling process, etc. so that a subsequent chemical conversion process or the like can be easily performed.

2)まず、リン酸塩化成処理を施してなる化成処理皮膜層の形成について説明する。
本発明の化成処理皮膜層は、リン酸亜鉛、リン酸亜鉛カルシウムなどのリン酸塩系の化成処理を単独、もしくは併用して鋼管に施すことにより得られる。化成処理は、化成処理液を鋼管内面に吹き付けたり、流し込んだり、もしくは化成処理液の浴に鋼管を浸すなどの方法で行うことができ、適宜、促進剤などを併用しても良い。また、60℃以上に加温した状態で行うこともできる。
2) First, formation of a chemical conversion treatment film layer formed by performing a phosphate chemical conversion treatment will be described.
The chemical conversion treatment film layer of the present invention is obtained by subjecting a steel pipe to a phosphate chemical conversion treatment such as zinc phosphate and zinc calcium phosphate alone or in combination. The chemical conversion treatment can be performed by spraying or pouring the chemical conversion treatment liquid on the inner surface of the steel pipe, or by immersing the steel pipe in a bath of the chemical conversion treatment liquid, and an accelerator or the like may be used as appropriate. Moreover, it can also carry out in the state heated at 60 degreeC or more.

上記リン酸塩系の化成処理、および化成処理の前処理として行われる酸洗処理は水系の処理であり、これらの処理は鋼管内側表面への塩化物イオン付着の原因となりうる製造工程である。鋼管内側表面に塩化物イオンが付着すると、鋼管とプライマー層の間に塩化物イオンが濃縮し、水分を吸収しさびが成長する。その結果、内面被覆層の剥離が起こり剥離した部分の鋼管が錆びてしまい、その結果、赤水などの原因となる。   The phosphate-based chemical conversion treatment and the pickling treatment performed as a pretreatment for the chemical conversion treatment are water-based treatments, and these treatments are manufacturing steps that can cause adhesion of chloride ions to the inner surface of the steel pipe. When chloride ions adhere to the inner surface of the steel pipe, the chloride ions are concentrated between the steel pipe and the primer layer, so that moisture is absorbed and rust grows. As a result, peeling of the inner surface coating layer occurs and the peeled portion of the steel pipe rusts, resulting in red water and the like.

よって、本発明ではプライマー層を形成する前の鋼管の内側表面における塩化物イオン濃度は塩化ナトリウム付着量に換算して3mg/m以下とする。好ましくは1mg/m以下である。化成処理後、プライマー層を形成する前に、鋼管内側表面における塩化物イオン濃度が塩化ナトリウム付着量に換算して3mg/mを超えた場合、内面被覆層下でのさびの成長が促進され、耐剥離性が劣化することになる。 Therefore, in this invention, the chloride ion density | concentration in the inner surface of the steel pipe before forming a primer layer shall be 3 mg / m < 2 > or less converted into sodium chloride adhesion amount. Preferably it is 1 mg / m 2 or less. After the chemical conversion treatment, before forming the primer layer, if the chloride ion concentration on the inner surface of the steel pipe exceeds 3 mg / m 2 in terms of the amount of sodium chloride, rust growth under the inner surface coating layer is promoted. The peel resistance will deteriorate.

例えば、最終洗浄液として用いる水溶液中の塩化物イオン濃度を30ppm以下に下げることで、プライマー層を形成する前の鋼管の内側表面における塩化物イオン濃度を塩化ナトリウム付着量に換算して3mg/m以下とすることができる。 For example, by reducing the chloride ion concentration in the aqueous solution used as the final cleaning solution to 30 ppm or less, the chloride ion concentration on the inner surface of the steel pipe before forming the primer layer is converted to 3 mg / m 2 in terms of sodium chloride adhesion. It can be as follows.

また、鋼管の内側表面における塩化物イオン濃度は付着塩分拭取法によって測定することができる。これはマスキングによって面積規定した範囲を蒸留水に浸したガーゼで拭取り、これに付着した塩分を一定量の蒸留水に溶出させてその濃度を測定するものである。   Further, the chloride ion concentration on the inner surface of the steel pipe can be measured by the attached salt wiping method. In this method, the area defined by masking is wiped off with gauze soaked in distilled water, and the salt attached thereto is eluted in a certain amount of distilled water and its concentration is measured.

3)次いで、前記化成処理皮膜層の上層に積層される平均厚さ:10〜40μmのプライマー層の形成について説明する。
プライマー層は、化成処理層の上に、エポキシ樹脂と硬化剤とを溶剤希釈してなるプライマー液を塗装して形成される。
プライマー液に使用するエポキシ樹脂は、ビスフェノール型エポキシ樹脂とすることが好ましい。エポキシ樹脂に、酸化チタン、シリカ、タルク、白雲母、酸化クロム、リン酸亜鉛等の無機顔料を添加しても良い。また、エポキシ樹脂との接着性を良くするために、無機顔料にシランカップリング処理等の化学処理を施しても良い。
また、エポキシ樹脂を硬化させるために使用する硬化剤としては、ジシアンジアミドもしくはその誘導体、もしくは酸無水物系化合物とその誘導体とすることが好ましい。エポキシ樹脂と硬化剤の配合割合に関しては、適宜、目的に合わせ設定される。硬化物のガラス転移温度を考慮し、硬化物のガラス転移温度が低下しない範囲で配合比を設定するのが好ましい。
また、プライマー液は、エポキシ樹脂と硬化剤を、溶剤で20〜35質量%に希釈して作製したものを使用することが好ましい。そして、プライマー液を、鋼管内面に流し込む、スプレー塗布する等の方法で鋼管内面に塗装することが好ましい。塗装前に鋼管を加熱しておくか、あるいは塗装後、鋼管を熱風、高周波誘導加熱等の方法で加熱することが好ましく、これにより、塗装した熱硬化性樹脂組成物を硬化させ、プライマー層を形成することができる。なお、エポキシ樹脂と硬化剤とを溶剤希釈するのに用いる溶剤としては、アルコール系溶剤、エーテル系溶剤、エステル系溶剤等、通常、使用される溶剤がいずれも好適である。
3) Next, formation of a primer layer having an average thickness of 10 to 40 μm laminated on the upper layer of the chemical conversion coating layer will be described.
The primer layer is formed by coating a primer solution obtained by diluting an epoxy resin and a curing agent on a chemical conversion treatment layer.
The epoxy resin used in the primer solution is preferably a bisphenol type epoxy resin. Inorganic pigments such as titanium oxide, silica, talc, muscovite, chromium oxide, and zinc phosphate may be added to the epoxy resin. Further, in order to improve the adhesiveness with the epoxy resin, the inorganic pigment may be subjected to chemical treatment such as silane coupling treatment.
The curing agent used for curing the epoxy resin is preferably dicyandiamide or a derivative thereof, or an acid anhydride compound and a derivative thereof. The blending ratio of the epoxy resin and the curing agent is appropriately set according to the purpose. In consideration of the glass transition temperature of the cured product, it is preferable to set the compounding ratio within a range in which the glass transition temperature of the cured product does not decrease.
Further, it is preferable to use a primer solution prepared by diluting an epoxy resin and a curing agent to 20 to 35% by mass with a solvent. And it is preferable to apply | coat a primer liquid to the steel pipe inner surface by methods, such as pouring into a steel pipe inner surface and spray-coating. It is preferable to heat the steel pipe before painting, or after painting, the steel pipe is heated by a method such as hot air or high-frequency induction heating, whereby the coated thermosetting resin composition is cured, and the primer layer is Can be formed. In addition, as a solvent used for solvent dilution of an epoxy resin and a hardening | curing agent, all the solvents normally used, such as an alcohol solvent, an ether solvent, and an ester solvent, are suitable.

また、以上からなるプライマー層の平均厚さは10〜40μmとする。10μm未満では、十分な密着性が得られない場合があり、一方、40μm超えでは塗布時に垂れが生じて膜厚が不均一になりやすく、均一な塗布のためには製造能率が悪くなり、また密着性も飽和するためである。   Moreover, the average thickness of the primer layer which consists of the above shall be 10-40 micrometers. If the thickness is less than 10 μm, sufficient adhesion may not be obtained. On the other hand, if the thickness exceeds 40 μm, dripping occurs during application and the film thickness tends to be non-uniform. This is because the adhesion is also saturated.

上記プライマー層を形成する工程において、プライマー液中に水分が含まれる場合、鋼管内面の塗装下のさび発生に影響をおよぼす。プライマー液中の水分含有量が0.5質量%を超えると、さびの成長が顕著に促進されるため、水分含有量は0.5質量%以下が好ましい。   In the step of forming the primer layer, when moisture is contained in the primer solution, it affects rust generation under the paint on the inner surface of the steel pipe. If the water content in the primer solution exceeds 0.5% by mass, rust growth is remarkably promoted, so the water content is preferably 0.5% by mass or less.

プライマー液中の水分含有量の管理は、プライマー液タンクの設置場所の湿度を管理し、平衡させることで行なう。   The water content in the primer solution is managed by controlling the humidity at the location where the primer solution tank is installed and balancing it.

また、プライマー液中の水分含有量は、JIS K 0068「化学製品の水分測定方法」に規定されるカールフィッシャー滴定法によって測定することができる。
4)次いで、最上層の変性ポリエチレン系樹脂層の形成について説明する。
変性ポリエチレン樹脂は、直鎖状低密度ポリエチレン、もしくは高圧法低密度ポリエチレン、もしくは高密度ポリエチレンを無水マレイン酸などの酸無水物によりグラフト変性したものを用いることができる。変性量は通常6質量%以下が好ましく、定法により変性することができ、通常、メルトインデックスが2以上8以下のものが好ましい。
また、変性ポリエチレン樹脂には本発明の性能を損なわない範囲で、上記樹脂組成物を主成分として他の樹脂を混ぜ合わせても良く、必要に応じて酸化防止剤や顔料などを加えることができる。
変性ポリエチレン系樹脂層は、鋼管を210℃以上に加熱した状態で変性ポリエチレン粉末を塗装し、さらに必要により140℃以上で保熱することにより、形成することができる。
この変性ポリエチレン層の厚みは、0.3mm〜1.0mmが好ましく、より好ましくは0.5mm〜0.9mmである。0.3mmより薄いと施工時の疵付きなどで変性ポリエチレン層に穴があきやすくなり、透水性の高いエポキシ樹脂層がむき出しになるため防食性が損なわれる場合がある。1.0mmより厚いと、粉体塗装での効率が低くなる。
また、変性ポリエチレン系樹脂層として、上記変性ポリエチレン樹脂層の上にさらに既知の直鎖状低密度ポリエチレン、もしくは高圧法低密度ポリエチレン、もしくは高密度ポリエチレンなどのポリエチレンの粉末を同様に塗装して、変性ポリエチレン層とポリエチレン層の合計厚みが0.5mm〜1.0mmになるような層を形成しても良い。この際、エチレン−酢酸ビニル共重合樹脂、エチレン−アクリル酸エステル共重合樹脂などのエチレンと不飽和結合を有するモノマーとの共重合樹脂は、その軟化温度が低くなりすぎるため、使用することはできない。
The water content in the primer solution can be measured by the Karl Fischer titration method defined in JIS K 0068 “Method for measuring water content of chemical products”.
4) Next, formation of the uppermost modified polyethylene resin layer will be described.
As the modified polyethylene resin, linear low-density polyethylene, high-pressure method low-density polyethylene, or high-density polyethylene graft-modified with an acid anhydride such as maleic anhydride can be used. The amount of modification is usually preferably 6% by mass or less, and can be modified by a conventional method. Usually, the melt index is preferably 2 or more and 8 or less.
In addition, the modified polyethylene resin may be mixed with other resins containing the above resin composition as a main component within a range not impairing the performance of the present invention, and an antioxidant or a pigment can be added as necessary. .
The modified polyethylene-based resin layer can be formed by coating the modified polyethylene powder with the steel pipe heated to 210 ° C. or higher and, if necessary, keeping the heat at 140 ° C. or higher.
The thickness of the modified polyethylene layer is preferably from 0.3 mm to 1.0 mm, more preferably from 0.5 mm to 0.9 mm. If it is thinner than 0.3 mm, the modified polyethylene layer is likely to be perforated due to wrinkles at the time of construction, and the highly water-permeable epoxy resin layer is exposed, which may impair corrosion resistance. If it is thicker than 1.0 mm, the efficiency in powder coating is lowered.
In addition, as a modified polyethylene resin layer, a known linear low density polyethylene, or a high pressure method low density polyethylene, or a polyethylene powder such as high density polyethylene is similarly coated on the modified polyethylene resin layer, A layer in which the total thickness of the modified polyethylene layer and the polyethylene layer is 0.5 mm to 1.0 mm may be formed. At this time, a copolymer resin of ethylene and a monomer having an unsaturated bond such as an ethylene-vinyl acetate copolymer resin or an ethylene-acrylic ester copolymer resin cannot be used because its softening temperature becomes too low. .

変性ポリエチレン系樹脂層を形成する工程において、上記ポリエチレン粉体中に水分が含まれる場合、鋼管内面塗装後のさび発生に影響をおよぼす。ポリエチレン粉体中の水分含有量が0.05%を超えると、さびの成長が顕著に促進されるため、水分含有量は0.05%以下が好ましい。   In the step of forming the modified polyethylene-based resin layer, if the polyethylene powder contains moisture, it affects rust generation after coating the inner surface of the steel pipe. If the water content in the polyethylene powder exceeds 0.05%, the growth of rust is remarkably promoted, so the water content is preferably 0.05% or less.

ポリエチレン粉体中の水分含有量の管理は、ポリエチレン粉体タンクの設置場所の湿度を管理し、平衡させることで行なう。   The water content in the polyethylene powder is managed by controlling and equilibrating the humidity at the location where the polyethylene powder tank is installed.

また、ポリエチレン粉体中の水分含有量は、JIS K 0068「化学製品の水分測定方法」に規定されるカールフィッシャー滴定法によって測定することができる。   The water content in the polyethylene powder can be measured by the Karl Fischer titration method defined in JIS K 0068 “Method for measuring water content of chemical products”.

次に、本発明の実施例について説明する。
変性ポリエチレン樹脂内面被覆鋼管(水配管用内面被覆鋼管)を製造し、得られた水配管用内面被覆鋼管より試験片を採取して、防食性能を調査した。試験片1〜8が本発明例、試験片9〜12が比較例に該当する。詳細を以下に示す。
Next, examples of the present invention will be described.
A modified polyethylene resin inner surface coated steel pipe (inner surface coated steel pipe for water piping) was manufactured, and a test piece was collected from the obtained inner surface coated steel pipe for water piping to investigate the anticorrosion performance. Test pieces 1 to 8 correspond to examples of the present invention, and test pieces 9 to 12 correspond to comparative examples. Details are shown below.

酸洗処理を施した鋼管(内径27.6mmφ、外径34mmφ×4m)を80℃のリン酸亜鉛カルシウム系処理液に浸漬し、化成処理を行った。次いで、鋼管の内側にプライマー液を、平均厚さ25μmとなるように塗布し、130℃に加熱硬化させて、プライマー層を形成した。プライマー液は、主剤としてビスフェノール型エポキシ樹脂を、硬化剤としてジシアンジアミドを用い、20質量%となるようにシンナーで希釈したものを用いた。次いで、鋼管を230℃に加熱した。加熱後、鋼管内面に、密度0.923、メルトインデックス4.9の直鎖状低密度ポリエチレンを無水マレイン酸で変性した粉状の変性ポリエチレン樹脂を粉体塗装し、厚さ0.6〜0.8mmの変性ポリエチレン系樹脂層を形成した。塗装後、150℃以上の炉内で保熱した後、自然冷却して内面被覆鋼管を得た。
鋼管内側表面に付着する塩分量は、化成処理後の洗浄水中の塩化ナトリウム量を変えることにより、変化させた。実際の付着量は、鋼管内側表面の拭き取り分析により確認した。
プライマー液およびポリエチレン粉体の水分含有量は、それぞれを恒湿槽内で平衡させることで調製し、製造に使用したものを分析することで確認した。
防食性能評価は、耐温水性について行った。
製造後、1ヶ月経過した内面被覆鋼管を50cm長さに切断し、60℃の3質量%食塩水に浸漬した。28日後、鋼管端部の被覆層の剥離状況を観察し、端部からの剥離がなかったものを「◎」、5mm未満のものを「○」、5mm以上のものを「×」とした。
A steel pipe (inner diameter 27.6 mmφ, outer diameter 34 mmφ × 4 m) subjected to pickling treatment was immersed in a zinc calcium phosphate treatment solution at 80 ° C. and subjected to chemical conversion treatment. Next, a primer solution was applied to the inside of the steel pipe so as to have an average thickness of 25 μm, and was heated and cured at 130 ° C. to form a primer layer. The primer solution used was a bisphenol-type epoxy resin as the main agent and dicyandiamide as the curing agent, diluted with thinner to 20% by mass. The steel pipe was then heated to 230 ° C. After heating, the inner surface of the steel pipe was powder-coated with a powdered modified polyethylene resin obtained by modifying a linear low density polyethylene having a density of 0.923 and a melt index of 4.9 with maleic anhydride, and having a thickness of 0.6 to 0 A modified polyethylene resin layer having a thickness of 8 mm was formed. After coating, heat was retained in a furnace at 150 ° C. or higher, and then naturally cooled to obtain an inner surface coated steel pipe.
The amount of salt adhering to the inner surface of the steel pipe was changed by changing the amount of sodium chloride in the wash water after the chemical conversion treatment. The actual adhesion amount was confirmed by wiping analysis on the inner surface of the steel pipe.
The water content of the primer solution and the polyethylene powder was prepared by equilibrating each in a humidity chamber, and was confirmed by analyzing what was used in the production.
The anticorrosion performance was evaluated for hot water resistance.
After the production, the inner surface-coated steel pipe that had passed for one month was cut to a length of 50 cm and immersed in 3% by mass saline solution at 60 ° C. After 28 days, the state of peeling of the coating layer at the end of the steel pipe was observed, and “◎” indicates that there was no peeling from the end, “◯” indicates that it was less than 5 mm, and “x” indicates that it was 5 mm or more.

以上により得られた評価結果を実験条件と併せて表1に示す。   The evaluation results obtained as described above are shown in Table 1 together with the experimental conditions.

Figure 0005463999
Figure 0005463999

本発明例では耐温水性が優れているのがわかる。一方、比較例では耐温水性が劣っている。   It can be seen that the example of the present invention is excellent in hot water resistance. On the other hand, in the comparative example, the hot water resistance is poor.

本発明の水配管用内面被覆鋼管は、防食性能にすぐれているため、例えば、水配管用などとして寒冷地で使用する際や施工時に屋外に放置する際などに用いる内面被覆鋼管として最適である。   The inner surface-coated steel pipe for water piping according to the present invention has excellent anticorrosion performance, so that it is optimal as an inner surface-coated steel tube used for, for example, when used in cold districts for water piping or when left outdoors during construction. .

1 鋼管
2 化成処理被覆層
3 プライマー層
4 変性ポリエチレン系樹脂層
1 Steel pipe 2 Chemical conversion coating layer 3 Primer layer 4 Modified polyethylene resin layer

Claims (3)

鋼管の内側にリン酸塩化成処理を施してなる化成処理皮膜層を有し、該化成処理皮膜層の上層には、平均厚さが10〜40μmであるプライマー層を有し、該プライマー層の上層には、変性ポリエチレン系樹脂層を有した水配管用内面被覆鋼管を製造する方法であって、前記プライマー層を形成する前の鋼管の内側表面における塩化物イオン濃度を塩化ナトリウム付着量に換算して3mg/m以下とすることを特徴とする水配管用内面被覆鋼管の製造方法。 The steel pipe has a chemical conversion coating layer formed by subjecting it to a phosphate chemical conversion treatment. An upper layer of the chemical conversion coating layer has a primer layer having an average thickness of 10 to 40 μm. The upper layer is a method for producing an internally coated steel pipe for water pipes having a modified polyethylene resin layer, and the chloride ion concentration on the inner surface of the steel pipe before forming the primer layer is converted to the amount of sodium chloride attached 3 mg / m < 2 > or less, The manufacturing method of the inner surface coated steel pipe for water piping characterized by the above-mentioned. 前記プライマー層を形成するに際し、塗布するプライマー液中の水分含有量を0.5質量%以下とすることを特徴とする請求項1に記載の水配管用内面被覆鋼管の製造方法。   The method for producing an inner surface-coated steel pipe for water piping according to claim 1, wherein when forming the primer layer, the water content in the primer solution to be applied is 0.5 mass% or less. 前記変性ポリエチレン系樹脂層を形成するに際し、被覆するポリエチレン粉体中の水分含有量を0.05質量%以下とすることを特徴とする請求項1または2に記載の水配管用内面被覆鋼管の製造方法。   The inner surface-coated steel pipe for water piping according to claim 1 or 2, wherein the moisture content in the polyethylene powder to be coated is 0.05% by mass or less when forming the modified polyethylene resin layer. Production method.
JP2010069331A 2010-03-25 2010-03-25 Manufacturing method of inner surface coated steel pipe for water piping Active JP5463999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010069331A JP5463999B2 (en) 2010-03-25 2010-03-25 Manufacturing method of inner surface coated steel pipe for water piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010069331A JP5463999B2 (en) 2010-03-25 2010-03-25 Manufacturing method of inner surface coated steel pipe for water piping

Publications (2)

Publication Number Publication Date
JP2011202711A JP2011202711A (en) 2011-10-13
JP5463999B2 true JP5463999B2 (en) 2014-04-09

Family

ID=44879573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010069331A Active JP5463999B2 (en) 2010-03-25 2010-03-25 Manufacturing method of inner surface coated steel pipe for water piping

Country Status (1)

Country Link
JP (1) JP5463999B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105443879A (en) * 2014-09-28 2016-03-30 董瑾 Composite pipe used for city heat-supply engineering and processing technology thereof
JP6954788B2 (en) * 2017-08-31 2021-10-27 日本製鉄株式会社 Manufacturing method of polyethylene-coated steel pipe for gas conduit and polyethylene-coated steel pipe for gas conduit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080599A (en) * 2001-09-07 2003-03-19 Dai Ichi High Frequency Co Ltd Manufacturing method of interior resin lining tube
JP4158580B2 (en) * 2003-04-07 2008-10-01 住友金属工業株式会社 Polyolefin resin inner surface coated steel pipe
JP4581742B2 (en) * 2004-03-01 2010-11-17 Jfeスチール株式会社 Resin-coated steel pipe excellent in earthquake resistance and corrosion resistance and method for producing the same

Also Published As

Publication number Publication date
JP2011202711A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
CN102107176B (en) Coating process for pipeline three-layer structural anticorrosive coating
TW201219598A (en) Method for manufacturing zinc coated steel sheet and the zinc coated steel sheet
JP5353297B2 (en) Polyolefin powder lining steel pipe
JP5463999B2 (en) Manufacturing method of inner surface coated steel pipe for water piping
JPS59222275A (en) Coating method of metallic surface
JP4742950B2 (en) Inner coated steel pipe for water piping
JP5233493B2 (en) Manufacturing method of inner surface coated steel pipe
JP2018176053A (en) Method for producing polyolefin resin-coated steel pipe
JP6079717B2 (en) Polyethylene-coated steel pipe and manufacturing method thereof
JP6803799B2 (en) Manufacturing method of coated steel pipe
JP4742949B2 (en) Inner coated steel pipe for water piping
JP5471127B2 (en) Inner coated steel pipe for water piping
JP6398851B2 (en) Polyolefin-coated steel with base conversion treatment
JP5359098B2 (en) Inner coated steel pipe for water piping
JP5648525B2 (en) Inner coated steel pipe for water piping
CN107858073A (en) A kind of joint coating on pipeline conductive protection anti-corrosion material and preparation method
JP3736377B2 (en) Method for producing polyolefin-coated steel pipe
JP3168871B2 (en) Polyolefin coated steel pipe
JP5813315B2 (en) Pre-coated aluminum material and method for producing the same
CN109294297B (en) Heat pipe coating, preparation method thereof and prepared heat pipe
JP3111908B2 (en) Polyethylene resin coated steel
JP4831896B2 (en) Epoxy powder primer composition for polypropylene coated steel
JP5644546B2 (en) Manufacturing method of inner surface coated steel pipe for water piping
JPS6023038A (en) Outer-surface powdered body epoxy resin coated steel pipe having excellent anticathode release characteristic
JP3322010B2 (en) Chromate treatment agent for resin coating and method for producing polyolefin resin-coated steel using the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Ref document number: 5463999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250