JP2017028416A - 撮像素子 - Google Patents

撮像素子 Download PDF

Info

Publication number
JP2017028416A
JP2017028416A JP2015143599A JP2015143599A JP2017028416A JP 2017028416 A JP2017028416 A JP 2017028416A JP 2015143599 A JP2015143599 A JP 2015143599A JP 2015143599 A JP2015143599 A JP 2015143599A JP 2017028416 A JP2017028416 A JP 2017028416A
Authority
JP
Japan
Prior art keywords
unit
signal
charge
switching
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015143599A
Other languages
English (en)
Inventor
結城 修
Osamu Yuki
修 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015143599A priority Critical patent/JP2017028416A/ja
Priority to US15/211,077 priority patent/US20170026591A1/en
Publication of JP2017028416A publication Critical patent/JP2017028416A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/59Control of the dynamic range by controlling the amount of charge storable in the pixel, e.g. modification of the charge conversion ratio of the floating node capacitance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】ダイナミックレンジの切替えの点で有利な撮像素子を提供する。【解決手段】入射光量を電荷に変換する光電変換部PDと、電荷を蓄積する容量を少なくともひとつ含む電荷蓄積部と、容量に蓄積された電荷に応じた電圧を増幅して出力する増幅部Tr6と、を有する画素が配置された撮像素子において、増幅部Tr6からの出力電圧と所定の閾値電圧とを比較する比較部3〜5と、比較部3〜5による比較結果を記憶する記憶部1と、記憶部1に記憶された比較結果に基づいて、電荷蓄積部に含まれる容量のうち、光電変換部PDと増幅部Tr6とに接続する容量を決定する切替え部Tr9〜Tr11と、切替え部Tr9〜Tr11が決定を行うか否かを制御する信号Φscを切替え部Tr9〜Tr11へ伝える信号線と、を有する。【選択図】図1

Description

本発明は、撮像素子に関する。
撮像装置に用いられるCMOSセンサ等の撮像素子は、撮像した被写体像を画素単位で光電変換し、光の強度に応じた映像信号に変換して、画像信号処理を行う。近年の撮像素子においては、静止画撮影と動画撮影を兼用するなど、複数のダイナミックレンジへの対応が要求されている。そのような撮像素子として、ダイナミックレンジを画素単位で切替える切替え手段を有する撮像素子(特許文献1)がある。
特許第4921581号公報
特許文献1に記載された撮像素子では、対応するダイナミックレンジの数が増加すると、切替え手段を制御するための信号線が増加したり、制御処理の負荷が重くなったりすることが考えられる。例えば、信号線の増加は、画素の受光面積を狭めることにつながりうる。特許文献1には、これら課題についての記載はみられない。
本発明は、例えば、ダイナミックレンジの切替えの点で有利な撮像素子を提供することを目的とする。
上記課題を解決するために、本発明は、入射光量を電荷に変換する光電変換部と、電荷を蓄積する容量を少なくともひとつ含む電荷蓄積部と、容量に蓄積された電荷に応じた電圧を増幅して出力する増幅部と、を有する画素が配置された撮像素子において、増幅部からの出力電圧と所定の閾値電圧とを比較する比較部と、比較部による比較結果を記憶する記憶部と、記憶部に記憶された比較結果に基づいて、電荷蓄積部に含まれる容量のうち、光電変換部と増幅部とに接続する容量を決定する切替え部と、切替え部が決定を行うか否かを制御する信号を切替え部へ伝える信号線と、を有することを特徴とする。
本発明によれば、例えば、ダイナミックレンジの切替えの点で有利な撮像素子を提供することができる。
第1実施形態に係る撮像素子に含まれる画素の回路構成を示す図である。 第1実施形態に係る撮像素子の各モードにおける各Trの状態を示す表である。 第1実施形態の画素の回路における各接続点における電位を示す図である。 ダイナミックレンジ切替えのフローチャートである。 感度の識別情報とそれに対応する選択容量および光電変換信号の倍率を示す図である。 出力信号の情報を示す図である。 第1実施形態の画素により構成された撮像素子を示す図である。 第1実施形態の画素の回路に含まれる各要素の動作タイミングを示すタイミングチャートである。 第1実施形態の画素を複数含む撮像素子を示す図である。 第2実施形態に係る撮像素子に含まれる画素の回路構成を示す図である。 第2実施形態の画素の回路に含まれる各要素の動作タイミングを示すタイミングチャートである。 第1実施形態の画素の回路にノイズ分離回路を追加した回路図である。 ノイズ分離方法に係る回路内の各要素の動作タイミングを示す図である。 第1実施形態および第2実施形態に係る撮像素子から読み出された輝度分布を元画像の輝度分布へ復調する方法を示す図である。 輝度重心検出方法を示す図である。 裏面照射型の撮像素子の受光構成を示す図である。
以下、本発明を実施するための形態について図面などを参照して説明する。
(第1実施形態)
図1は本発明の第1実施形態に係る撮像素子に含まれる画素の回路構成を示す図である。この画素は、フォトダイオード(光電変換部)PDと、蓄積容量C1〜C3を含む電荷蓄積部と、MOSトランジスタTr1〜11と、記憶部1と、画像信号/選択信号合成部2と、電圧比較器(比較部)3〜5と、を備える。PDは、画素への入射光量を電荷に変換する。蓄積容量C1〜C3は、ダイナミックレンジ(感度)切替え用の蓄積容量であり、それぞれ、ソースフォロワTr6(増幅部)のゲートに設けられたフローティングディフュージョン容量Cfd(不図示)と並列に配置されている。PDで変換された電荷を蓄積するフローティングディフュージョン容量Cfdは、PDへの入射光量が少ない場合でも、Tr6の出力電圧Vfdが大きくなるような容量をもつように設定される。蓄積容量C1〜C3には、それぞれ、切替えスイッチであるTr2〜4が接続される。
Tr1(リセット部)は、蓄積容量C1、C2、および、C3とフローティングディフュージョン容量Cfdに蓄積された電荷を放電(掃出)するためのリセットMOSトランジスタである。リセット後、PDで生成された電荷は、その寄生容量Cpdに蓄積される。この電荷は、Tr5(転送スイッチ)がオンになるとC1、C2、C3および、フローティングディフュージョン容量Cfdに転送される。Tr6は、PDの光電変換により発生した光信号電荷がTr5を通り蓄積容量C1、C2、C3および、フローティングディフュージョン容量Cfdに転送され発生した電圧のソースフォロワとして機能する。Tr6によりソースフォロワされた電圧Vfdは、PDの寄生容量Cpd/(C1〜C3のうちの少なくとも1つの容量とCfdの合計容量)であらわされる。Tr6の後段には電圧比較器3、4、および、5が設けられている。この比較器の入力の一端には所定の閾値電圧V1、V2、および、V3が入力され、他端にはTr6の出力電圧Vfdが入力される。これにより、出力電圧Vfdは、閾値電圧V1〜V3のいずれかと比較される。
本発明のダイナミックレンジの切替えは、サンプルモードと比較モードとの2つの動作モードを有し、各モードは、モード切換信号Φscのレベルのハイ/ローにより選択される。サンプルモードでは、ΦscをローにすることでTr9〜Tr11をオフにしてTr2〜Tr4を全てオンにする。これにより、蓄積容量C1〜C3とフローティングディフュージョン容量Cfdとは加算された値で接続される(最大蓄積容量=低感度、高輝度に対応)。この状態でTr5をオフにしてTr1をオンにすることで、蓄積容量C1〜C3とフローティングディフュージョン容量Cfdとに蓄積された電荷を放電する。次に、露光が行われPDで生成された電荷は、PDの寄生容量Cpdに蓄積される。この電荷は、Tr5がオンになるとC1〜C3、および、フローティングディフュージョン容量Cfdに転送される。転送された光信号電荷は、Tr6から式(1)で表わされるような電圧Vfdとして出力される。
Figure 2017028416
ここで、VphotoはPDによる生成電荷により発生する電圧、C1〜C3はそれぞれ蓄積容量C1〜C3の容量である。Vfdは比較器3〜5の入力の一端に入力され、閾値電圧V1〜V3のいずれかと比較され、低感度時の撮像でどの位の閾値レベルにあるか判定される。
モード切換信号Φscをハイにして比較モードに切り替えると、Tr9〜Tr11がオンになり、記憶部1に記憶された比較結果に基づいてTr2〜Tr4のオンオフが制御され、接続される蓄積容量が決定される。例えば、サンプルモードにおける比較結果がVfd<V3である場合について説明する。この場合は、Tr4のみをオンにする(C3を接続)、Tr4およびTr3をオンにする(C3およびC2を接続)、Tr2〜Tr4のすべてをオンにする(C1〜C3を接続)のいずれかが選択される。
Tr4のみをオンにした場合を考える。VfdがV3より小さい場合は、接続される蓄積容量はC3のみで変わらない。V2より小さい場合は、Tr3がオンになり、蓄積容量C2がさらに接続される。そして、VfdがV1より小さい場合は、Tr2がオンになり、さらに蓄積容量C1が接続される。
Tr4およびTr3をオンにした場合は、VfdがV2以上でありV1より小さい場合にTr2をオンにしてさらに蓄積容量C1を接続する。Tr2〜Tr4のすべてをオンにした場合は、Vfdの大きさによらず、蓄積容量が追加されて接続されることはない。
Tr2〜4のオンオフの状態は、記憶部1に感度の識別情報として記憶される。Tr6からの出力電圧Vfdは、Tr7が信号Φselによりオンにされると、Tr8を経て、画像信号/選択信号合成部2で、記憶部1に記憶された比較結果(感度の識別情報)と重畳されて外部に出力される。
図2に、各モードにおける各Trの状態をまとめる。サンプルモードでは、Tr9〜Tr11はオフにされており、Tr2〜Tr4は全てオンにされている。比較モードではTr9〜Tr11がオンされており、比較器3〜5における比較結果に基づいてTr2〜Tr4のオンオフが行われ、接続される蓄積容量が決定される。なお、本実施形態では、C1〜C3が順次加算されるように選択されているが、個別にC1、C2およびC3が選択されるように構成してもよい。
フローティングディフュージョン容量Cfdが十分小さいとすると、各接続点における電位は図3のようになる。PDで生成した電荷Qpdは、C1〜C3へそれぞれQpd1、pd2およびQpd3で分配される。サンプルモードではC1の関与が3桁レベルで大きいため、C1〜C3を全部接続した場合でも、V1、V2、およびV3の電位を微調整することにより、ダイナミックレンジ切替えの判定は可能である。例えば、C1:C2:C3の容量比を1,000,000:1,000:1とすれば、約120dB程度の幅で切替えが可能となる。
図3の構成でPDにより発生する光電変換電流をIとし、C1、C2、および、C3の接続条件によるVfdを試算した結果を以下に述べる。高輝度、中輝度および低輝度の電流比は、高輝度電流:中輝度電流:低輝度電流=1,000,000:1,000:1と設定する。また、C1〜C3の容量比は上述の通りである。C1〜C3をすべて接続したサンプルモードでは、Iと蓄積時間tと電圧Vfdの関係は、式(2)の様になる。
Figure 2017028416
比較モードで、C3だけが選択接続された場合は、光電変換電流Iと時間tと電圧Vfdの関係は、式(3)の様になる。
Figure 2017028416
同様に、比較モードで、C3およびC2が選択接続された場合は、光電変換電流Iと時間tと電圧Vfdの関係は、式(4)の様になる。
Figure 2017028416
同様に、比較モードで、C3〜C1が選択接続された場合は、光電変換電流Iと時間tと電圧Vfdの関係は、式(5)の様になる。
Figure 2017028416
高輝度電流:中輝度電流:低輝度電流=1,000,000:1,000:1に対して、高輝度電流時(低感度時)選択容量:中輝度電流時選択容量:低輝度電流時(高感度時)選択容量=1001001:1001:1である。したがって、出力電圧特性は3ケースともに略同じとなる。つまり、高輝度時、中輝度時、低輝度時で出力電圧が飽和せず、各選択感度に応じて電圧を出力できる。
図4にダイナミックレンジ切替えのフローを示す。上述したように、本発明の切替え制御ではサンプルモードと比較モードの2モードが存在する。サンプルモードは、S1〜S3のフローで動作し、比較モードでは、S4〜S6で動作する。まず、上述したように、モード切換信号ΦscをローレベルにしてTr2〜Tr4をオンにすることで蓄積容量C1〜C3、および、フローティングディフュージョン容量Cfdを接続する。続いて、S1では、Tr1が蓄積容量C1〜C3、および、フローティングディフュージョン容量Cfdのリセットを行う。リセット後、S2では最大蓄積容量により撮像を行う(高輝度、低感度)。PDで生成された電荷がPDの寄生容量Cpdに蓄積される。この電荷は、Tr5がオンになると蓄積容量C1〜C3、および、Tr6のゲートのフローティングディフュージョン容量Cfdへ転送される。S3では、Tr6により増幅されて出力された電圧Vfdが閾値電位V1〜V3のいずれかと比較され、低感度時の撮像でどの位の閾値レベルにあるか判定される。VfdがV1よりも大きい場合は、輝度によっては出力電圧が飽和してしまう可能性があるため、たとえば、C1の容量をより大きいものにして対応する。
モード切換信号Φscをハイレベルにして比較モードに切替えると、Tr9〜Tr11がオンになり、比較器3〜5による比較結果に基づいてTr2〜Tr4のオンオフが制御される。S4では、Tr1が蓄積容量C1〜C3、および、フローティングディフュージョン容量Cfdのリセットを行う。リセット後、蓄積容量C1〜C3を接続しない状態で出力した電圧Vfdが比較器3〜5の入力の一端に入力され、閾値電圧V1〜V3のいずれかと比較される。比較結果は記憶部1に記憶される。S5では、記憶部1に記憶された比較結果に基づいて選択された蓄積容量により撮像を行う。PDで生成され、PDの寄生容量Cpdに蓄積された電荷は、Tr5がオンになると蓄積容量C1〜C3の内の選択容量、および、Tr6のゲートのフローティングディフュージョン容量Cfdへ転送される。S6において、Tr6により増幅された電圧Vfdは、Tr7がオンにされて、Tr8を経て、画像信号/選択信号合成部2で、記憶部1に記憶された比較結果(感度の識別情報)と重畳されて外部に出力される(出力電圧の読み出し)。
図5に感度の識別情報とそれに対応する選択容量および光電変換信号の倍率を示す。また、画像信号/選択信号合成部2で重畳され出力された信号の情報を図6に示す。図6中、期間T1の信号はPDがリセットされた状態を示す。この信号は外部には直接出力されないので点線で示している。T2の期間が感度選択後の光信号の出力レベルになる。この信号をT2の期間出力した後に、T3の期間で3つの感度切換えタイミング(選択容量選択切替えのタイミング)の情報をV、Vresの信号レベルで2進数出力する。例えば、T3の期間の“10”の信号で2番目の閾位置のC2+C3の選択である事を示す。
図7は、図1で示した画素により構成された撮像素子を示す図である。簡単のため全体回路の内の3×3画素構成で示している。本撮像素子では、行毎に走査し読み出す方法が採られている。本撮像素子は、行走査のための垂直走査回路11と、列走査のための水平走査回路12と、画素10と、列選択MOSトランジスタ13と、電流負荷14と、アンプ15を有する。画素10は、図1で示した撮像素子の画素と同様のものである。垂直走査回路11からのΦtx、ΦresおよびΦselは、それぞれ図1で示す同符号の信号線と接続している。また、サンプルモードおよび比較モードの切替えの為に、上述のようにモード切替え信号Φscを流す信号線が全画素に直接接続されている。簡略化のため、信号線はこの4本のみを示している。各画素からの光信号は電流負荷14が接続された1本の信号出力線で水平走査回路12(不図示の水平シフトレジスタ、マルチプレクサ)と列選択MOSトランジスタ13を介してアンプ15に出力される。列選択MOSトランジスタ13は水平走査回路12からの信号によって動作し、列方向の信号線を選択するためのスイッチである。
図8は本実施形態における画素の回路に含まれる各要素の動作タイミングを示すタイミングチャートである。サンプルモードは、T3〜T9であり、比較モードは、T10〜T16である。T3では、Φscをオフにし、サンプルモードに設定する。さらに、Φresをオンにして、Tr1により蓄積容量C1〜C3、および、フローティングディフュージョン容量Cfdのリセットを行う。露光は一括露光であり、図7のような撮像素子における全画素で同一のタイミングで行なわれる。依って、撮像素子間、走査線間での画像の時間的ズレは生じない。光電荷の蓄積期間T4〜T7中は転送スイッチTr5がオフ状態(Φtxがローレベル)であり、T4〜T7の期間に発生した光電荷は寄生容量Cpdに蓄積される。蓄積容量C1、C2、C3、および、ソースフォロワTr6のゲート部に形成されたフローティングディフュージョンCfdには、この間に光電荷は転送されない。PDの蓄積が終了すると、T8において全画素一括で信号Φtxをハイレベルとして、Tr5をオンにすることで、寄生容量Cpdに蓄積されていた電荷が蓄積容量C1〜C3、および、Tr6のゲートのフローティングディフュージョン容量Cfdへ転送される。その後、T9において全画素一括で信号Φtxをローレベルとし、Tr5をオフする。
次に、T10でΦscをオンにし、比較モードに設定する。さらに、Φresをオンにして、Tr1により蓄積容量C1〜C3、および、フローティングディフュージョン容量Cfdのリセットを行う。光電荷の蓄積期間T11〜T14中は転送スイッチTr5がオフ状態であり、T11〜T14の期間に発生した光電荷は寄生容量Cpdに蓄積される。C1、C2、C3の内の選択容量、および、ソースフォロワTr6のゲート部に形成されたフローティングディフュージョンCfdには、この間、光電荷は転送されない。PDの蓄積を終了すると、T15において、全画素一括で信号Φtxをハイレベルとして、Tr5をオンにすることで、寄生容量Cpdに蓄積されていた電荷が蓄積容量C1〜C3、および、Tr6のフローティングディフュージョン容量Cfdへ転送される。続いて、T16において、全画素一括で垂直走査回路11からの信号Φselをハイレベルとする。これによりTr7がオンになり、負荷電流源Is2とTr8で構成された回路を動作状態とする。同時に、全画素一括で信号Φtxをローレベルとすることで、PDは次のフレームの露光が可能な状態となる。
図9は、本実施形態の画素を複数含む撮像素子を示す図である。ダイナミックレンジの切替えのための信号Φscを送るのに要する信号線は、各画素10に対して1本だけである。切替え制御は、Φscのレベルの設定だけで行うことができる。つまり、感度ごとに信号線を配線する必要がなく、その制御処理の負荷も重くなることがない。
以上のように、本実施形態によれば、ダイナミックレンジの切替えの点で有利な撮像素子を提供することができる。
(第2実施形態)
次に、本発明の第2実施形態に係る撮像素子について説明する。図10は、本実施形態に係る撮像素子に含まれる画素の回路構成を示す図である。本実施形態の画素は、モード切換信号Φscを画素外から画素内へ入力するための配線の代わりに、Φresが入力される2進カウンタ6が配置されている。Φresに基づいて、2進カウンタ6により切替え制御が行われる。すなわち、画素が自律して切替え制御を行う。これにより、第1実施形態と比べ、信号線の数および制御処理の負荷を少なくすることができる。図11は、本実施形態の画素回路に含まれる各要素の動作タイミングを示す。この図によると、Φresが立ち上がるT3で2進カウンタのレベルがローレベルとなり、次にΦresが立ち上がる期間T10でハイレベルとなる。第1実施形態の動作タイミングを示す図7と比較すると、Φscと2進カウンタの動作タイミングは同じとなる。以上のように、本実施形態の撮像素子も、第1実施形態と同様の効果を奏する。
(ノイズ分離)
第1実施形態および第2実施形態に適用可能な、撮像素子のノイズ分離方法について説明する。図12は、第1実施形態の画素の回路にノイズ分離回路を追加した回路図である。ノイズ分離回路は、トランジスタTr12〜17と、信号保持容量C4およびC5とを有する。図13は、ノイズ分離方法に係る回路内の各要素の動作タイミングを示す図である。期間T3〜T8はサンプルモードで、期間T9〜T16は比較モードである。比較モードに切替えるタイミングT9で、Φsh2をハイレベルとし、Tr13をオンすることでリセット信号を信号保持容量C5に転送する。この信号は、サンプルモードにおいてPDで生成され、C1、C2、C3の内の選択容量、および、Tr6のゲートのフローティングディフュージョン容量CFDへ転送された電荷を示す信号であり、熱雑音、1/fノイズおよび固定パターンノイズが含まれる。T10の期間でΦsh2をローレベルとし、転送を終了する。
T11〜T14の期間の撮像では、PDで生成された電荷が寄生容量Cpdに蓄積される。これらの電荷は、T15の期間にTr5(転送スイッチ)がオンになるとC1、C2、C3の内の選択容量、および、Tr6のゲートのフローティングディフュージョン容量Cfdへ転送される。転送された電荷は、期間T16でさらに信号Φsh1をハイレベルとし、Tr12をオンにすることでTr8を介して信号保持容量C4に転送される。この電荷にも、上記ノイズが含まれる。期間T17で信号Φsh1をローレベルとし、転送を終了する。同時に、信号Φsel1をハイレベルとし、Tr16およびTr17をオンすることで負荷電流源Is3およびIs4で構成されたソースフォロワ回路を動作状態とする。これにより、信号保持容量C4およびC5に保持された光信号とノイズ信号とがTr14およびTr15を通してノイズ信号出力線L2および光信号出力線L1に転送される。転送された信号は、ノイズ信号出力線L2と光信号出力線L1とに接続された減算出力アンプ(不図示)により、(信号−ノイズ)の減算処理が行われ、熱雑音、1/fノイズ、FPNが除去された光データ信号が出力される。
この際に、光信号出力線L1には、2進数化された、記憶部1に記憶された感度の識別情報が画像信号/選択信号合成部2で重畳されて外部に出力される。従って、ノイズ信号出力線L2と光信号出力線L1とに接続された減算出力アンプ(不図示)で減算処理を行った後も、感度の識別情報は信号上に保持される。光データ信号はこの識別情報で補正され用いられる。
(復調)
第1実施形態および第2実施形態に適用可能な、本発明の撮像素子から読み出される信号(輝度分布)の元画像の輝度分布への復調方法について図14(a)〜(c)を用いて説明する。図14(a)は、読み出された輝度分布であり、図14(b)は、元画像の輝度分布である。図14(a)で示すb〜fは、感度ごとの撮像期間を示している。図14(c)は、各期間の感度の識別情報と、そのときに選択された容量、容量に基づいて求められた復調に必要な倍率を示している。期間bおよびfの信号には、倍率1を、期間cおよびeの信号には、倍率1,000を、期間dの信号には、倍率1,000,000をそれぞれ乗じて、つなぎ合わせると図14(b)のように復調することができる。
(輝度重心検出〕
画像処理演算では、画像の輝度重心を必要とする場合が多くある。この場合、上述の復調方法により、感度の識別情報に基づいて読み出し信号を復調して輝度重心を求めることが考えられる。しかしながら、本発明の撮像素子によれば感度の識別情報による復調をせずに輝度重心を求めることができる。具体的な方法について、図15(a)および(b)を用いて説明する。図15(a)は、通常の撮像素子でダイナミックレンジ内の物体からの反射光を撮像した輝度分布を表わす。画像輝度重心はCaとして示されている。図15(b)は、同じ画像を本発明の撮像素子で撮像した場合の輝度分布を示している。この輝度分布から画像輝度重心Cbを求めるには、以下の5つの方法がある。すなわち、(1)dの期間の分布から求める。(2)cとeの期間期間の分布から求める。(3)bとfの期間期間の分布から求める。(4)cとe、および、bとfの期間期間の分布から求める。(5)b乃至f、全ての期間期間の分布から求めるといった方法である。対象物の形状や反射特性、センサのノイズ特性などにより方法を選択する事により、通常の撮像素子で撮像した画像から輝度重心を求める場合に比べ、より撮像条件に即した輝度重心検出が可能となる。
本実施形態における撮像素子は、図16に示すようないわゆる裏面照射型の撮像素子を用いてもよい。裏面照射型の撮像素子は、入射光21が撮像素子の裏面から照射される構造を示している。この撮像素子は、フォトダイオード20と、基板22と、トランジスタ23および24と、蓄積容量25乃至27と、配線28乃至33を有する。この構造によれば、画素に多くの回路や大きな容量を作りこむことが可能となる。
以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。
PD フォトダイオード(光電変換部)
C1、C2、C3 蓄積容量(容量)
3、4、5 電圧比較器(比較部)
Tr6 ソースフォロワ(増幅部)
Tr9、Tr10、Tr11 MOSトランジスタ(切替え部)
1 記憶部
Φsc モード切換信号

Claims (4)

  1. 入射光量を電荷に変換する光電変換部と、前記電荷を蓄積する容量を少なくともひとつ含む電荷蓄積部と、前記容量に蓄積された電荷に応じた電圧を増幅して出力する増幅部と、を有する画素が配置された撮像素子において、
    前記増幅部からの出力電圧と所定の閾値電圧とを比較する比較部と、
    前記比較部による比較結果を記憶する記憶部と、
    前記記憶部に記憶された比較結果に基づいて、前記電荷蓄積部に含まれる前記容量のうち、前記光電変換部と前記増幅部とに接続する前記容量を決定する切替え部と、
    前記切替え部が前記決定を行うか否かを制御する信号を前記切替え部へ伝える信号線と、
    を有することを特徴とする撮像素子。
  2. 前記信号線は、前記比較部が、前記電荷蓄積部に含まれるすべての容量に蓄積された電荷に応じた、前記増幅部により出力された電圧と前記閾値電圧とを比較した後に、前記切替え部が前記決定を行うように制御する信号を前記切替え部へ伝えることを特徴とする請求項1に記載の撮像素子。
  3. 前記容量に蓄積された電荷をすべて掃出して前記電荷蓄積部をリセットするリセット部をさらに有し、
    前記信号線は、前記リセット部が前記リセットを行うタイミングで前記信号を前記切替え部へ伝えることを特徴とする請求項1または2に記載の撮像素子。
  4. 前記容量に蓄積された電荷に応じた、前記増幅部により出力された電圧と、前記切替え部により決定された、前記電荷蓄積部に含まれる前記容量のうち、前記光電変換部と前記増幅部とに接続した前記容量と、とに基づいて前記光電変換部で変換された電荷を復調する復調手段を有することを特徴とする請求項1乃至3のいずれか1項に記載の撮像素子。
JP2015143599A 2015-07-21 2015-07-21 撮像素子 Pending JP2017028416A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015143599A JP2017028416A (ja) 2015-07-21 2015-07-21 撮像素子
US15/211,077 US20170026591A1 (en) 2015-07-21 2016-07-15 Image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015143599A JP2017028416A (ja) 2015-07-21 2015-07-21 撮像素子

Publications (1)

Publication Number Publication Date
JP2017028416A true JP2017028416A (ja) 2017-02-02

Family

ID=57836255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015143599A Pending JP2017028416A (ja) 2015-07-21 2015-07-21 撮像素子

Country Status (2)

Country Link
US (1) US20170026591A1 (ja)
JP (1) JP2017028416A (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9185314B2 (en) * 2011-11-08 2015-11-10 Texas Instruments Incorporated Mitigating the effects of signal overload in analog front-end circuits used in image sensing systems
KR20130062188A (ko) * 2011-12-02 2013-06-12 삼성전자주식회사 이미지 센서 및 이를 포함하는 이미지 처리 장치

Also Published As

Publication number Publication date
US20170026591A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
US6914227B2 (en) Image sensing apparatus capable of outputting image by converting resolution by adding and reading out a plurality of pixels, its control method, and image sensing system
US7326904B2 (en) In-pixel kTC noise suppression using circuit techniques
TWI424742B (zh) 用於像素單元之高動態運作之方法及裝置
KR101488036B1 (ko) 화상 센서 판독 방법 및 디지털 카메라의 화상 센서 판독 방법
US9402043B2 (en) Method and systems for amplifying an output of a CMOS pixel array
US20060262209A1 (en) Image sensing device and control method therefor
JP2008028678A (ja) 撮像素子
JP2008067107A (ja) 光電変換装置及び撮像装置
US8085324B2 (en) Solid-state imaging apparatus
KR20160018506A (ko) 분할-게이트 조건부-재설정 이미지 센서
JPH10290400A (ja) 動き検出用固体撮像装置
JP2007158626A (ja) 固体撮像装置
US20100149392A1 (en) Solid-state imaging device, driving method thereof, and imaging device
JP2008034974A (ja) 光電変換装置及び撮像装置
JP3890207B2 (ja) 撮像装置および撮像システム
JP2011023986A (ja) 撮像装置およびその制御方法
JP2004297546A (ja) 撮像装置
JP5222068B2 (ja) 撮像装置
US10051216B2 (en) Imaging apparatus and imaging method thereof using correlated double sampling
JP5966357B2 (ja) 撮像素子および撮像装置
JP2015095874A (ja) 固体撮像装置、撮像システム及び固体撮像装置の駆動方法
JP5271838B2 (ja) 点滅信号検出装置
JP2020017910A (ja) ストリーキング補正回路、撮像装置、及び、電子機器
CN113228623B (zh) 超高动态范围cmos传感器
JP2017028416A (ja) 撮像素子