JP2017024161A - Polishing tool and manufacturing method of the same, and manufacturing method of polished product - Google Patents

Polishing tool and manufacturing method of the same, and manufacturing method of polished product Download PDF

Info

Publication number
JP2017024161A
JP2017024161A JP2016102736A JP2016102736A JP2017024161A JP 2017024161 A JP2017024161 A JP 2017024161A JP 2016102736 A JP2016102736 A JP 2016102736A JP 2016102736 A JP2016102736 A JP 2016102736A JP 2017024161 A JP2017024161 A JP 2017024161A
Authority
JP
Japan
Prior art keywords
mass
polishing tool
metal
polishing
metal matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016102736A
Other languages
Japanese (ja)
Other versions
JP6687231B2 (en
Inventor
育典 松永
Ikunori Matsunaga
育典 松永
南 圭一
Keiichi Minami
圭一 南
幸広 藤森
Yukihiro Fujimori
幸広 藤森
雅行 片田
Masayuki Katada
雅行 片田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUI KENSAKU TOISHI KK
Yachiyo MicroScience Inc
Original Assignee
MITSUI KENSAKU TOISHI KK
Yachiyo MicroScience Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUI KENSAKU TOISHI KK, Yachiyo MicroScience Inc filed Critical MITSUI KENSAKU TOISHI KK
Priority to TW105118020A priority Critical patent/TWI597130B/en
Priority to KR1020160085360A priority patent/KR101891189B1/en
Publication of JP2017024161A publication Critical patent/JP2017024161A/en
Application granted granted Critical
Publication of JP6687231B2 publication Critical patent/JP6687231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0009Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing

Abstract

PROBLEM TO BE SOLVED: To provide a polishing tool that has high processing ability of a hard and brittle material, can obtain a polished product of a smooth surface in a short time, and is preferable for lapping processing of a hard and brittle material, particularly for processing in a final process (L2 process) of lapping.SOLUTION: A polishing tool is for lapping processing of a hard and brittle material having 8 or more of modified Mohs hardness, in which diamond particles are dispersed in a metal matrix, and the metal matrix contains metal capable of forming a hydride. It is preferable that the metal matrix is made of Sn-Cu based alloy containing Sn at more than 20 mass% and 60 mass% or less.SELECTED DRAWING: Figure 4

Description

本発明は、硬脆材料のラッピング加工用研磨工具に関する。   The present invention relates to a polishing tool for lapping processing of hard and brittle materials.

半導体材料、光デバイス材料等の各種材料を得るために、サファイヤ、炭化ケイ素、石英等の硬脆材料をラッピング加工することが従来行われている。   In order to obtain various materials such as semiconductor materials and optical device materials, it has been conventionally performed to wrap hard and brittle materials such as sapphire, silicon carbide, and quartz.

ここでいうラッピング加工とは例えば、ラップ定盤といわれる円形の定盤と板状の被研磨材とを面で擦り合わせて板状体の厚さや平行度、平坦度、面粗さ等を調整するための加工であり、通常、ダイヤモンドや立方晶窒化ホウ素等からなる固定砥石を用いたラッピング盤により行われる。その後、コロイダルシリカ等を用いたCMP等によりウエハー表面を研磨して、ウエハー表面を平坦で歪やキズのない鏡面状態に加工する(鏡面研磨工程)。   The lapping here refers to, for example, adjusting the thickness, parallelism, flatness, surface roughness, etc. of a plate-like body by rubbing a circular platen called a lapping platen and a plate-like object to be polished. This is usually performed by a lapping machine using a fixed grindstone made of diamond, cubic boron nitride or the like. Thereafter, the wafer surface is polished by CMP or the like using colloidal silica or the like, and the wafer surface is processed into a mirror surface state that is flat and free from distortion and scratches (mirror polishing step).

上述した従来のラッピング加工では得られる被研磨物の面粗度が大きく、その後のCMP工程に例えば数日間といった長い時間が必要となる。
このCMP工程の時間短縮を図るために、例えば、従来のラッピング加工とCMP工程との間に、表面平滑性を高めるためのラッピングの最終工程として、ダイヤモンドスラリーからなる遊離砥粒と、銅−錫合金を用いた研磨盤とを併用して研磨を行うことが行われている。上述した従来のラッピング工程をL1工程とするのに対し、このようなダイヤモンドスラリーによるラッピング工程をL2工程と呼ぶこともある。
In the above-described conventional lapping process, the surface roughness of the workpiece to be obtained is large, and a long time such as several days is required for the subsequent CMP process.
In order to shorten the time of the CMP process, for example, as a final process of lapping for improving surface smoothness between the conventional lapping process and the CMP process, free abrasive grains made of diamond slurry, and copper-tin Polishing is performed in combination with a polishing machine using an alloy. While the conventional lapping process described above is referred to as the L1 process, such a lapping process using diamond slurry is sometimes referred to as a L2 process.

しかしながら上記のL2工程では、ダイヤモンドスラリーが高価であり製造コストがかかること、遊離砥粒により研磨する形式であるため幾何精度を維持しにくく得られる板状体の研磨物の周辺部に所謂ダレが生じやすいこと、製造時間の短縮という点でも十分なものでないこと等といった問題がある。このために、上記のL2工程をダイヤモンドの固定砥粒を用いて行うことができれば、製造コストの低減や更なる時間短縮のみならず、幾何精度の向上、つまり歩留り向上に繋がると期待される。   However, in the above-described L2 process, diamond slurry is expensive and expensive to manufacture, and since it is a type of polishing with loose abrasive grains, so-called sagging occurs in the peripheral portion of the plate-like polished product that is difficult to maintain geometric accuracy. There are problems such as being easy to occur and insufficient in terms of shortening the manufacturing time. For this reason, if the above-described L2 step can be performed using diamond fixed abrasive grains, it is expected that not only the manufacturing cost is reduced and the time is further shortened, but also the geometric accuracy is improved, that is, the yield is improved.

特許文献1〜3には、硬脆材料の微細研削或いは研磨を目的として、ダイヤモンド等の固定砥粒を用いた研磨工具が記載されている。   Patent Documents 1 to 3 describe polishing tools using fixed abrasive grains such as diamond for the purpose of fine grinding or polishing of hard and brittle materials.

また研磨工具に係るものではないが、特許文献4にはダイヤモンド砥粒、ろう材、および水素化チタンを含む混粒を糊状物質に付着させ、その後で焼結させる固定砥粒式ソーワイヤが記載されている。   Although not related to a polishing tool, Patent Document 4 describes a fixed abrasive saw wire in which a mixed grain containing diamond abrasive grains, brazing material, and titanium hydride is attached to a paste-like substance and then sintered. Has been.

特開平8−174428号公報JP-A-8-174428 特開2012−178617号公報JP 2012-178617 A 特開2014−083611号公報Japanese Patent Application Laid-Open No. 2014-083611 特開2010−131698号公報JP 2010-131698 A

しかしながら、ダイヤモンドの固定砥粒を硬脆材料のラッピングの最終工程に用いるためには、加工時間の短縮効果を十分得るために、砥粒保持力、特に自生発刃の促進と砥粒保持力との両立が必要であるところ、特許文献1〜3のような従来の固定砥粒型の研磨工具は、これらの観点で改善の余地があり、硬脆材料の研磨能力が十分でない。   However, in order to use diamond fixed abrasive grains in the final step of wrapping hard and brittle materials, in order to obtain a sufficient effect of shortening the processing time, abrasive holding power, in particular, promotion of self-generated blades and abrasive holding power However, conventional fixed abrasive type polishing tools such as Patent Documents 1 to 3 have room for improvement from these viewpoints, and the polishing ability of hard and brittle materials is not sufficient.

また、特許文献4は水素化物を形成可能な金属を含むワイヤーソーは記載されているものの、研磨工具に水素化物を形成可能な金属を用いること、及びそれによりダイヤモンド固定砥粒を用いた研磨工具の加工能力を向上させることができることは、これまでに知られていなかった。   Moreover, although the patent document 4 describes the wire saw containing the metal which can form a hydride, the metal which can form a hydride is used for a grinding | polishing tool, and, thereby, the grinding | polishing tool using a diamond fixed abrasive grain It has not been known so far that it is possible to improve the processing capability of the steel.

従って、本発明の課題は、前述した従来技術が有する種々の欠点を解消し得る研磨工具を提供することにある。   Therefore, the subject of this invention is providing the polishing tool which can eliminate the various fault which the prior art mentioned above has.

本発明は、修正モース硬度8以上の硬脆材料のラッピング加工用研磨工具であって、ダイヤモンド粒子が金属マトリックスに分散されてなり、且つ、前記金属マトリックス中に水素化物の形成が可能な金属が含まれている、研磨工具を提供するものである。   The present invention is a polishing tool for wrapping a hard and brittle material having a modified Mohs hardness of 8 or more, wherein a diamond particle is dispersed in a metal matrix, and a metal capable of forming a hydride is formed in the metal matrix. An included polishing tool is provided.

また本発明は、前記の研磨工具の製造方法であって、ダイヤモンド粒子と、金属マトリックスを構成するか又はその原料である金属粉末と、金属水素化物とを混合する工程と、該工程により得られた混合粉を加圧成形する工程と、加圧成形された成形物を、非酸化性雰囲気下に焼成する工程とを有する、研磨工具の製造方法を提供するものである。   The present invention is also a method for producing the above polishing tool, comprising a step of mixing diamond particles, a metal powder constituting a metal matrix or a raw material thereof, and a metal hydride, and the step. A method for producing a polishing tool is provided, which includes a step of pressure-molding the mixed powder and a step of firing the pressure-molded molded article in a non-oxidizing atmosphere.

また本発明は、前記の研磨工具の製造方法であって、ダイヤモンド粒子と、金属マトリックスを構成するか又はその原料である金属粉末と、金属水素化物とを混合する工程と、該工程により得られた混合粉を加圧しながら非酸化性雰囲気下に焼成する工程とを有する、研磨工具の製造方法を提供するものである。   The present invention is also a method for producing the above polishing tool, comprising a step of mixing diamond particles, a metal powder constituting a metal matrix or a raw material thereof, and a metal hydride, and the step. And a method of firing the mixed powder under pressure in a non-oxidizing atmosphere.

また本発明は、修正モース硬度8以上の硬脆材料である被研磨物の表面に対して遊離砥粒を含む研磨液を供給しつつ請求項1に記載の研磨工具を摺接させて研磨する工程を備えた研磨物の製造方法であって、遊離砥粒として修正モース硬度が12以上であってダイヤモンド以外の砥粒を用い、研磨液として該遊離砥粒の濃度が2質量%以上40質量%以下であるものを用いる、研磨物の製造方法を提供するものである。   Moreover, this invention grind | polishes by making the polishing tool of Claim 1 slidably contact with the polishing liquid containing a free abrasive grain with respect to the surface of the to-be-polished object which is the brittle material of correction Mohs hardness 8 or more. A method for producing a polished article comprising a step, wherein a modified Mohs hardness is 12 or more as free abrasive grains, and abrasive grains other than diamond are used, and the concentration of the free abrasive grains is 2 mass% or more and 40 mass as a polishing liquid. It is intended to provide a method for producing a polished article using a composition having a content of not more than%.

本発明によれば、特に砥粒保持力が高いため、硬脆材料の加工能力が高く、短時間で表面平滑な研磨物が得られ、硬脆材料のラッピング加工用に好適な研磨工具が提供できる。
本発明の研磨工具をラッピングの最終工程に用いると、製造時間の短縮、製造コストの短縮、研磨物の幾何精度の向上による歩留り向上等を図ることが可能である。
また本発明の製造方法によれば、上記の研磨工具を効率よく製造することができる。
また本発明の研磨物の製造方法によれば、上記の研磨工具を用いて、表面平滑な硬脆材料の研磨物を短時間で得ることが可能である。
According to the present invention, a polishing tool suitable for lapping of a hard and brittle material is provided because the abrasive grain holding power is particularly high, so that a hardened and brittle material has a high processing capability and a surface smooth polished product can be obtained in a short time. it can.
When the polishing tool of the present invention is used in the final lapping process, it is possible to shorten the manufacturing time, the manufacturing cost, the yield by improving the geometric accuracy of the polished object, and the like.
Moreover, according to the manufacturing method of this invention, said polishing tool can be manufactured efficiently.
Further, according to the method for producing a polished product of the present invention, it is possible to obtain a polished product of a hard and brittle material with a smooth surface in a short time using the above polishing tool.

図1は、本発明の研磨工具を用いたラッピング工程で使用される両面加工機の一例を示す概略正面図である。FIG. 1 is a schematic front view showing an example of a double-sided processing machine used in a lapping process using the polishing tool of the present invention. 図2は、図1におけるX−X線矢視図である。FIG. 2 is a view taken along line XX in FIG. 図3は、図1の両面加工機に用いる本発明の研磨工具の形状の一例である。FIG. 3 is an example of the shape of the polishing tool of the present invention used in the double-sided processing machine of FIG. 図4は、実施例1の研磨工具の断面のSEM写真である。4 is an SEM photograph of a cross section of the polishing tool of Example 1. FIG. 図5は、比較例1の研磨工具の断面のSEM写真である。FIG. 5 is an SEM photograph of a cross section of the polishing tool of Comparative Example 1.

以下本発明を、その好ましい実施形態に基づき説明する。
本発明の研磨工具の研磨対象となる材料は、修正モース硬度8以上の硬脆材料である。本発明において、硬脆材料とは、ガラス、石英、セラミックス、各種半導体結晶材料等、非常に硬く脆いが、衝撃に弱く割れやすい素材をいう。
Hereinafter, the present invention will be described based on preferred embodiments thereof.
The material to be polished by the polishing tool of the present invention is a hard and brittle material having a modified Mohs hardness of 8 or more. In the present invention, the hard and brittle material refers to a material that is very hard and brittle, such as glass, quartz, ceramics, and various semiconductor crystal materials, but is weak against impact and easily broken.

修正モース硬度とは、標準物質に対しての傷の付き方を元に硬度を数値化するものである。柔らかいものから順に1から15までの標準物質が指定されており、具体的な標準物質としては、修正モース硬度1が滑石、2が石膏、3が方解石、4が蛍石、5が燐灰石、6が正長石、7が溶融石英、8が石英、9がトパーズ、10がガーネット、11が溶融ジルコニア、12が溶融アルミナ、13が炭化ケイ素、14が炭化ホウ素、および15がダイヤモンドである。例えば、試料を標準物質4の蛍石で引っ掻いて試料に傷が付かず、標準物質5の燐灰石で引っ掻いて試料に傷が付いた場合はこの試料は4より硬く、5より柔らかいことを示し、修正モース硬度として「4.5」と表記される。また、標準物質4の蛍石で引っ掻いて試料にも蛍石にも傷が付いた場合は、試料は標準物質4と同じ硬さとなり、修正モース硬度として「4」と表記する。修正モース硬度の数値はあくまでも相対的なものであり、絶対値ではない。硬脆材料の修正モース硬度はモース硬度計を用いて常法により測定できる。   The modified Mohs hardness is a numerical value based on how the standard material is scratched. Standard materials from 1 to 15 are specified in order from soft to soft. As specific standard materials, modified Mohs hardness 1 is talc, 2 is gypsum, 3 is calcite, 4 is fluorite, 5 is apatite, 6 Is feldspar, 7 is fused quartz, 8 is quartz, 9 is topaz, 10 is garnet, 11 is fused zirconia, 12 is fused alumina, 13 is silicon carbide, 14 is boron carbide, and 15 is diamond. For example, if the sample is scratched with the fluorite of the reference material 4 and the sample is not scratched, and if the sample is scratched with the apatite of the reference material 5, this indicates that the sample is harder than 4 and softer than 5. The modified Mohs hardness is written as “4.5”. When the sample and the fluorite are scratched by scratching with the fluorite of the standard material 4, the sample has the same hardness as that of the standard material 4, and is expressed as “4” as the modified Mohs hardness. The modified Mohs hardness value is a relative value, not an absolute value. The modified Mohs hardness of the hard and brittle material can be measured by a conventional method using a Mohs hardness meter.

修正モース硬度8以上の硬脆材料の具体例としては、サファイヤ(修正モース硬度12)、石英(修正モース硬度8)、SiC(修正モース硬度13)、アルミナ(修正モース硬度12)等を挙げることできる。   Specific examples of hard and brittle materials having a modified Mohs hardness of 8 or higher include sapphire (modified Mohs hardness 12), quartz (modified Mohs hardness 8), SiC (modified Mohs hardness 13), alumina (modified Mohs hardness 12), and the like. it can.

本発明の効果が高く奏される観点から、硬脆材料の修正モース硬度は13以下であることが好ましい。   From the viewpoint that the effect of the present invention is highly enhanced, the modified Mohs hardness of the hard and brittle material is preferably 13 or less.

本発明の研磨工具は、ダイヤモンド粒子が金属マトリックスに分散されてなり、且つ、前記金属マトリックス中に水素化物の形成が可能な金属が含まれている。   In the polishing tool of the present invention, diamond particles are dispersed in a metal matrix, and a metal capable of forming a hydride is contained in the metal matrix.

砥粒であるダイヤモンド粒子についてまず説明する。
ダイヤモンド粒子の形状は限定されない。本発明では、ダイヤモンド粒子の粒径としては、平均粒径1μm以上であることが、研磨工具の加工能力を高める観点から好ましい。またダイヤモンド粒子の粒径としては、平均粒径が20μm以下であることが、被研磨物の面粗度向上の観点から好ましい。これらの観点から、ダイヤモンド粒子の粒径としては、平均粒径2μm以上16μm以下であることがより好ましく、平均粒径4μm以上12μm以下であることが更に好ましい。
First, diamond particles that are abrasive grains will be described.
The shape of the diamond particles is not limited. In the present invention, the average particle size of the diamond particles is preferably 1 μm or more from the viewpoint of increasing the processing capability of the polishing tool. The average particle size of the diamond particles is preferably 20 μm or less from the viewpoint of improving the surface roughness of the object to be polished. From these viewpoints, the diamond particles preferably have an average particle size of 2 μm to 16 μm, and more preferably 4 μm to 12 μm.

ダイヤモンド粒子の平均粒径は、例えば、研磨工具を樹脂埋めした後ダイアモンドブレードにて切断し、走査型電子顕微鏡を用いて切断面を拡大(例えば倍率1000倍)にて観察し、200個の粒子についてフェレ径の測定を行い、その平均値を算出することによって求めることができる。   The average particle diameter of the diamond particles is, for example, that the polishing tool is filled with a resin, then cut with a diamond blade, and the cut surface is observed with a scanning electron microscope at an enlarged magnification (for example, 1000 times magnification). Can be obtained by measuring the ferret diameter and calculating the average value.

研磨工具は、ダイヤモンド粒子の含有量が0.1質量%未満である場合、本発明の研磨工具による加工時間の短縮効果が得られ難い場合があり、また研磨工具中のダイヤモンド粒子の含有量が10質量%超でも加工時間の短縮効果が得られ難い場合がある。この観点から、研磨工具中のダイヤモンド粒子の含有量は、0.1質量%以上10質量%以下であることが好ましく、1質量%以上5質量%以下であることがより好ましい。研磨工具中のダイヤモンド粒子の含有量は、例えば、研磨工具中の金属マトリックスを酸で溶解し、残留したダイヤモンドの量を測定すればよい。   When the content of diamond particles in the polishing tool is less than 0.1% by mass, the effect of shortening the processing time by the polishing tool of the present invention may be difficult to obtain, and the content of diamond particles in the polishing tool may be small. Even if it exceeds 10 mass%, the effect of shortening the processing time may be difficult to obtain. From this viewpoint, the content of diamond particles in the polishing tool is preferably 0.1% by mass or more and 10% by mass or less, and more preferably 1% by mass or more and 5% by mass or less. The content of diamond particles in the polishing tool may be determined by, for example, dissolving the metal matrix in the polishing tool with an acid and measuring the amount of remaining diamond.

本発明では、砥粒であるダイヤモンド粒子を結合する結合材マトリックスとして、金属マトリックスを用いる。金属は脆いボンドを構成でき、自生発刃の促進が可能となる。研磨工具の結合材となる金属マトリックスを構成する金属としては、Cu−Sn系合金、Cu-P系合金、Ni-Sn系合金、Cu系合金、Ni系合金、Co系合金、Fe系合金が挙げられる。これらは1種のみを用いてもよく、2種以上を混合して用いることができる。これらの中でも、本発明の効果が高い観点から、Cu−Sn系合金が好ましい。ここでいうCu−Sn系合金とは、Cu とSuの合金であり、Cu及びSn以外にも他の副元素を1または2以上さらに含有していても良い。Cu−Sn系合金におけるCu及びSn以外の副元素としては、例えば、ニッケル、リン、コバルト、チタン、クロム、バナジウムなどを挙げることができる。これら副元素は、1種または2種以上含まれていても良い。また、Cu−Sn系合金には、不可避的な不純物が含まれていても良い。   In the present invention, a metal matrix is used as a binder matrix for bonding diamond particles that are abrasive grains. The metal can form a brittle bond, and self-generated blades can be promoted. The metals that make up the metal matrix that serves as a bonding material for polishing tools include Cu-Sn alloys, Cu-P alloys, Ni-Sn alloys, Cu alloys, Ni alloys, Co alloys, and Fe alloys. Can be mentioned. These may use only 1 type and can mix and use 2 or more types. Among these, Cu—Sn alloys are preferable from the viewpoint of high effect of the present invention. The Cu—Sn alloy here is an alloy of Cu and Su, and may further contain one or more other subelements other than Cu and Sn. Examples of subelements other than Cu and Sn in the Cu-Sn alloy include nickel, phosphorus, cobalt, titanium, chromium, vanadium, and the like. These subelements may be contained in one kind or two or more kinds. Moreover, inevitable impurities may be contained in the Cu-Sn alloy.

Cu−Sn系合金としては、Sn含量が20質量%超であるものが好ましい。これはSn含量が20質量%超であるCu-Sn系合金は硬く且つ脆いという好ましい特性が高いためである。金属マトリックスの脆性が高いことは、ダイヤモンド粒子の自生発刃を良好に促進するため好ましい。また金属マトリックスの硬性が高いことは、硬脆材料を加工したときに、ダイヤモンド粒子の硬脆材料に対する食い込みを良好とすることができるため好ましい。従って、金属マトリックスとしてSn含量が20質量%超であるCu−Sn系合金からなるマトリックスを用いた場合、本発明の研磨工具を、より一層安定的に且つ効率的に硬脆材料を加工可能なものとすることができる。またCu−Sn系合金としては、Sn含量が60質量%以下であるものが、研磨工具が脆くなりすぎるのを抑制する観点から好ましい。これらの観点から、Cu−Sn系合金中のSn含量は、30質量%以上58質量%以下であることがより好ましく、45質量%以上55質量%以下であることが特に好ましい。   As the Cu-Sn alloy, one having an Sn content of more than 20% by mass is preferable. This is because a Cu—Sn alloy having an Sn content of more than 20% by mass has high desirable characteristics of being hard and brittle. It is preferable that the metal matrix is highly brittle because it facilitates the spontaneous generation of diamond particles. Moreover, it is preferable that the metal matrix has high hardness because when the hard and brittle material is processed, the bite of the diamond particles into the hard and brittle material can be improved. Therefore, when a matrix made of a Cu-Sn alloy having a Sn content of more than 20% by mass is used as the metal matrix, the polishing tool of the present invention can be processed into a hard and brittle material more stably and efficiently. Can be. Moreover, as a Cu-Sn type-alloy, that whose Sn content is 60 mass% or less is preferable from a viewpoint of suppressing that a polishing tool becomes too brittle. From these viewpoints, the Sn content in the Cu-Sn alloy is more preferably 30% by mass or more and 58% by mass or less, and particularly preferably 45% by mass or more and 55% by mass or less.

Cu−Sn系合金におけるCu含量は、40質量%以上80質量%未満であることが好ましく、45質量%以上55質量%以下であることがより好ましく、48質量%以上52質量%以下であることが特に好ましい。Cu−Sn系合金中のSn含量及びCu含量は、例えば、ICP発光分析装置により測定することができる。   The Cu content in the Cu-Sn alloy is preferably 40% by mass or more and less than 80% by mass, more preferably 45% by mass or more and 55% by mass or less, and 48% by mass or more and 52% by mass or less. Is particularly preferred. The Sn content and Cu content in the Cu-Sn alloy can be measured by, for example, an ICP emission spectrometer.

本発明の研磨工具中、金属マトリックスを構成する金属の含有量は、70質量%以上であることが、ダイヤモンド粒子を保持する観点から好ましい。また、本発明の研磨工具中、金属マトリックスを構成する金属の含有量は、98質量%以下であることが、ダイヤモンドや水素化物を形成可能な金属を一定量確保する観点から好ましい。これらの観点から、研磨工具中、金属マトリックスを構成する金属の含有量は75質量%以上96質量%以下であることがより好ましく、80質量%以上92質量%以下であることが特に好ましい。なお、ここでいう金属マトリックスを構成する金属の含有量とは、金属マトリックスが上述した各種合金からなるときは、この合金の含有量であり、また当該合金が上記副元素を含む時には、その副元素を含む量である。但しここでいう金属マトリックスを構成する金属の含有量には、金属水素化物を構成する金属の含有量は含めないものとする。研磨工具中の金属マトリックスを構成する金属の含有量は、研磨工具を硝酸等の酸で溶解し、溶解物中のSn、Cu等の金属の濃度をICP発光分析装置等で定量する方法等によって測定すればよい。   In the polishing tool of the present invention, the metal content constituting the metal matrix is preferably 70% by mass or more from the viewpoint of retaining diamond particles. In the polishing tool of the present invention, the metal content of the metal matrix is preferably 98% by mass or less from the viewpoint of securing a certain amount of metal capable of forming diamond or hydride. From these viewpoints, the content of the metal constituting the metal matrix in the polishing tool is more preferably 75% by mass or more and 96% by mass or less, and particularly preferably 80% by mass or more and 92% by mass or less. Here, the content of the metal constituting the metal matrix is the content of the alloy when the metal matrix is made of the above-described various alloys, and when the alloy contains the subelement, This is the amount that contains the element. However, the metal content constituting the metal matrix here does not include the metal content constituting the metal hydride. The content of the metal constituting the metal matrix in the polishing tool is determined by, for example, a method in which the polishing tool is dissolved with an acid such as nitric acid, and the concentration of metal such as Sn or Cu in the dissolved material is quantified with an ICP emission spectrometer or the like. Just measure.

本発明の研磨工具は、ニッケルを含有することが研磨工具の成形性を向上させる観点から好ましい。ニッケルは、本発明の研磨工具の金属マトリックスに分散しているか、或は、マトリックスを構成する金属と合金を形成していてもよい。成形性を高める観点及び本発明の効果を損なわない観点から、研磨工具中のニッケルの含有量は、1質量%以上10質量%以下であることが好ましく、2質量%以上6質量%以下であることがより好ましい。研磨工具中のニッケルの含有量は、研磨工具を硝酸等の酸で溶解し、溶解物中のNiの濃度をICP発光分析装置等で定量する方法等によって測定すればよい。   The polishing tool of the present invention preferably contains nickel from the viewpoint of improving the moldability of the polishing tool. Nickel may be dispersed in the metal matrix of the polishing tool of the present invention, or may form an alloy with the metal constituting the matrix. From the viewpoint of improving the formability and the viewpoint of not impairing the effects of the present invention, the content of nickel in the polishing tool is preferably 1% by mass or more and 10% by mass or less, and preferably 2% by mass or more and 6% by mass or less. It is more preferable. The nickel content in the polishing tool may be measured by, for example, a method in which the polishing tool is dissolved with an acid such as nitric acid and the concentration of Ni in the dissolved material is quantified with an ICP emission analyzer or the like.

本発明の研磨工具は、水素化物の形成が可能な金属を含有するものである。水素化物の形成が可能な金属としては、大気中で取扱い容易なものが好ましく、水素化チタン(TiH)を形成可能な金属であるチタン(Ti)が挙げられるほか、リチウム(Li)、ナトリウム(Na)が挙げられ、チタンが好ましい。このような金属は従来のダイヤモンド砥粒固定型研磨工具では用いられていなかった。本発明の発明者らは、ダイヤモンド固定砥粒型の研磨工具に用いる結合材マトリックスとして、自生発刃が可能であって、しかも砥粒の保持力が良い結合材マトリックスを鋭意研究したところ、金属マトリックス中に水素化物の形成が可能な金属を含有した結合材マトリックスは、このような特性を有することを見出した。本発明で用いる水素化物の形成が可能な金属は、通常、研磨工具製造時における焼成に伴う金属水素化物の分解反応により得られたものである。本発明の効果は、金属マトリックスがSn含量20質量%超60質量%以下のCu-Sn系合金からなる場合に特に高いものである。本発明の研磨工具において水素化物の形成が可能な金属を含有させるためには、後述する本発明の研磨工具の製造方法のように、研磨工具を製造する際に用いる、金属マトリックスを構成するか又はその原料となる金属粉末中に金属水素化物を含有させればよい。水素化物の形成が可能な金属は、金属マトリックス中に略均一に分散していてもよいし、金属マトリックス中の一部、例えばダイヤモンド粒子周辺に偏在していていてもよい。本発明の研磨工具において、水素化物の形成が可能な金属の存在形態は限定されず、例えばメタルであってもよく、炭化物であってもよい。炭化物の形態は、ダイヤモンドと反応することによるとみられる。 The polishing tool of the present invention contains a metal capable of forming a hydride. The metal capable of forming a hydride is preferably a metal that can be easily handled in the atmosphere, and includes titanium (Ti), which is a metal capable of forming titanium hydride (TiH 2 ), as well as lithium (Li) and sodium. (Na) is mentioned, and titanium is preferable. Such metals have not been used in conventional diamond abrasive fixed polishing tools. The inventors of the present invention have intensively studied a binder matrix that is capable of self-developing as a binder matrix used in a diamond fixed abrasive type polishing tool and has a good holding power of abrasive grains. It has been found that a binder matrix containing a metal capable of hydride formation in the matrix has such properties. The metal capable of forming a hydride used in the present invention is usually obtained by a decomposition reaction of a metal hydride that accompanies firing during the production of an abrasive tool. The effect of the present invention is particularly high when the metal matrix is made of a Cu—Sn alloy having an Sn content of more than 20% by mass and not more than 60% by mass. In order to include a metal capable of forming a hydride in the polishing tool of the present invention, is a metal matrix used in manufacturing the polishing tool as in the manufacturing method of the polishing tool of the present invention described later? Alternatively, a metal hydride may be contained in the metal powder as the raw material. The metal capable of forming a hydride may be dispersed substantially uniformly in the metal matrix, or may be unevenly distributed around a part of the metal matrix, for example, around the diamond particles. In the polishing tool of the present invention, the form of the metal capable of forming a hydride is not limited, and may be, for example, a metal or a carbide. The carbide form appears to be due to reaction with diamond.

本発明の研磨工具中、水素化物の形成が可能な金属は、1質量%以上含有されていることが、砥粒の保持力を高める観点から好ましい。また研磨工具中の水素化物の形成が可能な金属の含有量は、10質量%以下であることが、工具のプレス成形性の観点から好ましい。これらの観点から、研磨工具中の水素化物の形成が可能な金属な金属の含有量は1質量%以上10質量%以下であることがより好ましく、3質量%以上8質量%以下であることが特に好ましい。研磨工具中の水素化物の形成が可能な金属の含有量は、研磨工具を適当な酸で溶解し、溶解物中のTi、Li、Na等の濃度をICP発光分析装置等で定量する方法等によって測定すればよい。ここでいう水素化物の形成が可能な金属の量とはメタル換算の量である。   In the polishing tool of the present invention, the metal capable of forming a hydride is preferably contained in an amount of 1% by mass or more from the viewpoint of increasing the holding power of the abrasive grains. Moreover, it is preferable from a viewpoint of the press moldability of a tool that content of the metal which can form the hydride in an abrasive tool is 10 mass% or less. From these viewpoints, the content of a metallic metal capable of forming a hydride in the polishing tool is more preferably 1% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 8% by mass or less. Particularly preferred. The metal content capable of forming a hydride in the polishing tool is a method in which the polishing tool is dissolved with an appropriate acid, and the concentration of Ti, Li, Na, etc. in the dissolved material is quantified with an ICP emission analyzer, etc. It can be measured by. The amount of metal capable of forming a hydride here is an amount in terms of metal.

本発明の研磨工具は、本発明の効果を損なわない限度において、ダイヤモンド、金属マトリックスを構成する金属及び水素化物の形成が可能な金属以外の任意の成分を含有してもよい。そのようなその他の任意の成分としては、例えばカーボン、タルク、hBN等が挙げられ、これらのその他任意の成分の合計量は、例えば研磨工具中、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。   The polishing tool of the present invention may contain any component other than diamond, a metal constituting the metal matrix, and a metal capable of forming a hydride as long as the effects of the present invention are not impaired. Examples of such other optional components include carbon, talc, and hBN. The total amount of these other optional components is preferably 10% by mass or less in the polishing tool, for example, and 5% by mass. % Or less is more preferable.

特に研削比を高める観点から本発明の研磨工具中のダイヤモンド以外のカーボン量が少ないことが好ましく、研磨工具中10質量%以下であることが好ましく、5質量%以下であることがより好ましい。カーボン量は少なければ少ないほど好ましく、カーボンを含有していないことが最も好ましい。研磨工具中のダイヤモンド以外のカーボン量は、例えば、赤外線吸収法を用いて測定することができる。   In particular, from the viewpoint of increasing the grinding ratio, the amount of carbon other than diamond in the polishing tool of the present invention is preferably small, and is preferably 10% by mass or less, more preferably 5% by mass or less in the polishing tool. The smaller the amount of carbon, the better. The most preferred is that it does not contain carbon. The amount of carbon other than diamond in the polishing tool can be measured using, for example, an infrared absorption method.

本発明の研磨工具の形状は、特に限定されず、従来のラッピング盤に使用されてきた研磨工具と同様の形状が採用される。ラッピング盤(回転定盤)に使用される研磨工具の形状としては、例えば、ラッピング盤のタイプにより異なり、例えば、ラッピング盤がすり合わせ面に小型のペレットを多数固定するペレット植設タイプの場合は、チップ状、セグメント状、立方体状、円柱状等が挙げられる。また例えばラッピング盤がすり合わせ面自体を研磨体で構成した総型タイプの場合は、円環状や円盤状等が挙げられる。本発明の研磨工具は、いずれのタイプのラッピング盤に用いられても良く、研磨工具の形状も上記のいずれであってもよい。   The shape of the polishing tool of the present invention is not particularly limited, and the same shape as that of the polishing tool used in a conventional lapping machine is employed. The shape of the polishing tool used for the lapping machine (rotating surface plate) varies depending on, for example, the type of the lapping machine. For example, in the case of a pellet planting type in which the lapping machine fixes a large number of small pellets on the mating surface, A chip shape, a segment shape, a cube shape, a columnar shape, and the like can be given. Further, for example, when the lapping machine is a general type in which the rubbing surface itself is composed of an abrasive body, an annular shape or a disk shape may be mentioned. The polishing tool of the present invention may be used for any type of lapping machine, and the shape of the polishing tool may be any of the above.

次いで本発明の研磨工具の好ましい製造方法について説明する。
本発明の製造方法は以下の(1)及び(2)の何れであってもよい。
(1)ダイヤモンド粒子と、金属マトリックスを構成するか又はその原料である金属粉末と金属水素化物とを混合する工程(以下A工程ともいう)と、該工程により得られた混合粉を成形加圧成形し、次いで、加圧成形された成形物を、非酸化性雰囲気下に焼成する工程(以下B1工程ともいう)とを有する、研磨工具の製造方法。
(2)上記A工程と、A成形物工程により得られた混合粉を加圧しながら非酸化性雰囲気下に焼成する工程(以下B2工程ともいう)とを有する、研磨工具の製造方法。
Next, a preferred method for producing the polishing tool of the present invention will be described.
The production method of the present invention may be any of the following (1) and (2).
(1) A step of mixing diamond particles and a metal powder constituting a metal matrix or a raw material thereof and a metal hydride (hereinafter also referred to as A step), and molding and pressing the mixed powder obtained by the step A method for producing a polishing tool, comprising: a step of molding and then firing the pressure-molded molded product in a non-oxidizing atmosphere (hereinafter also referred to as B1 step).
(2) A method for producing a polishing tool, which comprises the step A and a step (hereinafter also referred to as a step B2) of firing in a non-oxidizing atmosphere while pressing the mixed powder obtained in the A molded product step.

まずA工程について説明する。A工程で用いるダイヤモンドの好ましい粒径としては、上述した粒径が挙げられる。混合粉中のダイヤモンド粒子の好ましい配合量としては、上記で上げた研磨工具中の好ましいダイヤモンド粒子の含有量と同様の量を挙げられ、具体的には、混合粉中0.1質量%以上10質量%以下が好ましく、1質量%以上5質量%以下がより好ましい。   First, step A will be described. As a preferable particle diameter of the diamond used in the step A, the above-described particle diameter can be mentioned. Examples of the preferable blending amount of the diamond particles in the mixed powder include the same amount as the preferable diamond particle content in the above-described polishing tool, and specifically, 0.1% by mass or more and 10% by weight in the mixed powder. % By mass or less is preferable, and 1% by mass to 5% by mass is more preferable.

A工程で用いる金属マトリックスを構成するか又はその原料である金属粉末における、金属マトリックスを構成する金属の例としては、上記で金属マトリックスを構成する金属の例として挙げたものと同様のものを挙げることができる。金属マトリックスを構成する金属の原料である金属粉末としては、金属マトリックスを構成する金属が例えばCu−Sn系合金である場合のCu粉、Sn粉或はその他の副材料の粉末を挙げることができる。本発明の製造方法では、金属マトリックスを構成するか又はその原料である金属粉末が、金属マトリックスを構成する金属を含有していることが好ましい。A工程で用いる混合粉中の金属マトリックスを構成するか又はその原料である金属粉末の好ましい配合量としては、研磨工具中の金属マトリックスを構成する金属の好ましい配合量と同様の量が挙げられ、具体的には、混合粉中70質量%以上98質量%以下が好ましく、80質量%以上92質量%以下がより好ましい。   Examples of the metal constituting the metal matrix in the metal powder constituting the metal matrix used in Step A or the raw material thereof are the same as those mentioned above as examples of the metal constituting the metal matrix. be able to. Examples of the metal powder that is a raw material of the metal constituting the metal matrix include Cu powder, Sn powder, and other sub-material powders when the metal constituting the metal matrix is a Cu-Sn alloy, for example. . In the manufacturing method of this invention, it is preferable that the metal powder which comprises a metal matrix or is the raw material contains the metal which comprises a metal matrix. The preferred blending amount of the metal powder that constitutes the metal matrix in the mixed powder used in the step A or the raw material thereof includes the same amount as the preferred blending amount of the metal constituting the metal matrix in the polishing tool, Specifically, 70 mass% or more and 98 mass% or less are preferable in mixed powder, and 80 mass% or more and 92 mass% or less are more preferable.

研磨工具における金属マトリックスをCu−Sn系合金からなるものとする場合、本発明の製造方法において、混合粉における金属マトリックスを構成するか又はその原料である金属粉末の合計量におけるSn含量の好ましい範囲は、Cu−Sn系合金における好ましいSn含量として上記で挙げた範囲と同様であり、20質量%超60質量%以下が好ましく、45質量%以上55質量%以下がより好ましく、48質量%以上52質量%以下が特に好ましい。   When the metal matrix in the polishing tool is made of a Cu-Sn alloy, in the production method of the present invention, the preferred range of the Sn content in the total amount of the metal powder constituting the metal matrix in the mixed powder or the raw material thereof Is the same as the above-mentioned range as the preferable Sn content in the Cu-Sn alloy, preferably more than 20 mass% and 60 mass% or less, more preferably 45 mass% or more and 55 mass% or less, and more preferably 48 mass% or more and 52 mass%. A mass% or less is particularly preferred.

例えば、本発明の研磨工具中の金属マトリックスをSn20質量%超60質量%以下含むCu-Sn系合金からなるものとする場合、A工程で用いる金属マトリックスを構成するか又はその原料である金属粉末としては、Sn量が20質量%超60質量%以下のCu−Sn系合金粉を用いるか、或はSn粉とCu粉とをSn量が20質量%超60質量%以下となるように混合した混合物を用いるか、或はCu−Sn系合金粉とSn粉及び/又はCu粉とをSn量が20質量%超60質量%以下となるように混合した混合物を用いればよい。本発明の研磨工具中の金属マトリックスをSn20質量%超、60質量%以下含むCu−Sn系合金からなるものとする場合の、A工程で用いる金属マトリックスを構成するか又はその原料である金属粉末の好ましい配合としては、Cu−Sn系合金粉(特にSn量が20質量%超60質量%以下のCu−Sn系合金粉)100質量部に対して、Sn粉及びCu粉の合計を20質量部以上98質量部以下とすることが、成形性等の観点から好ましく、25質量部以上92質量部以下とすることがより好ましい。   For example, in the case where the metal matrix in the polishing tool of the present invention is made of a Cu-Sn alloy containing Sn more than 20% by mass and not more than 60% by mass, the metal matrix constituting the metal matrix used in Step A or the raw material thereof is used. For example, Cu-Sn alloy powder having an Sn content of more than 20% by mass and not more than 60% by mass is used, or Sn powder and Cu powder are mixed so that the Sn content is more than 20% by mass and less than 60% by mass. What is necessary is just to use the mixture which mixed Cu-Sn type alloy powder, Sn powder, and / or Cu powder so that Sn amount might be more than 20 mass% and 60 mass% or less. The metal powder constituting the metal matrix used in step A or the raw material thereof when the metal matrix in the polishing tool of the present invention is made of a Cu-Sn alloy containing more than 20% by mass and less than 60% by mass of Sn As a preferable blending, the total amount of Sn powder and Cu powder is 20 mass per 100 mass parts of Cu-Sn based alloy powder (especially Cu-Sn based alloy powder having an Sn content of more than 20 mass% and 60 mass% or less). From the viewpoint of moldability and the like, it is preferably 25 parts by mass or more and 92 parts by mass or less.

また、上述の理由から研磨工具にNiを含有させる場合、本発明の製造方法において、混合粉中にNi粉を1質量%以上10質量%以下含有させることが好ましく、2質量%以上6質量%以下含有させることがより好ましい。   In addition, when Ni is contained in the polishing tool for the reasons described above, in the production method of the present invention, the Ni powder is preferably contained in an amount of 1% by mass or more and 10% by mass or less, and preferably 2% by mass or more and 6% by mass. It is more preferable to make it contain below.

A工程における金属水素化物としては、上述した水素化チタン(TiH)や水素化リチウム(LiH)等を挙げることができる。このような金属水素化物を、金属マトリックスを構成するか又はその原料である金属粉末と混合して焼成することで、金属マトリックスの脆さに基づく自生発刃能力を維持しつつ砥粒保持力が向上した本発明の研磨工具を容易に得ることができる。本発明の研磨工具の砥粒保持力をより高める観点から、A工程における混合粉中の金属水素化物の量は1質量%以上が好ましい。一方、金属水素化物の量を一定以下に抑制することは工具のプレス成形性の観点から好ましく、そのため、A工程における混合粉中の金属水素化物の量は10質量%以下が好ましい。これらの観点からA工程における混合粉中の金属水素化物の量は1質量%以上10質量%以下がより好ましく、3質量%以上8質量%以下が特に好ましい。 Examples of the metal hydride in the step A include titanium hydride (TiH 2 ) and lithium hydride (LiH) described above. Such a metal hydride constitutes the metal matrix or is mixed with the metal powder as the raw material and fired to maintain the self-generated blade ability based on the brittleness of the metal matrix, while retaining the abrasive grains. An improved polishing tool of the present invention can be easily obtained. From the viewpoint of further increasing the abrasive grain holding power of the polishing tool of the present invention, the amount of the metal hydride in the mixed powder in the step A is preferably 1% by mass or more. On the other hand, it is preferable to suppress the amount of metal hydride below a certain level from the viewpoint of press formability of the tool, and therefore the amount of metal hydride in the mixed powder in step A is preferably 10% by mass or less. From these viewpoints, the amount of the metal hydride in the mixed powder in the step A is more preferably 1% by mass to 10% by mass, and particularly preferably 3% by mass to 8% by mass.

また、B1工程における加圧成形の成形法としては、金型プレス成型法、ラバープレス法(静水圧成形法)や抵抗焼結法が挙げられる。加圧成形時の加圧圧力としては、4000kgf/cm以上5000kgf/cm以下が好ましく、4200kgf/cm以上4800kgf/cm以下がより好ましい。 Further, examples of the pressure molding method in the B1 process include a die press molding method, a rubber press method (hydrostatic pressure molding method), and a resistance sintering method. The applied pressure at the time of press molding, preferably 4000 kgf / cm 2 or more 5000 kgf / cm 2 or less, 4200kgf / cm 2 or more 4800kgf / cm 2 or less being more preferred.

B1工程ではその後、加圧成形された成形物を、非酸化性雰囲気下に焼成する。非酸化性雰囲気で焼成することにより、ダイヤモンドや金属マトリックスの構成金属が酸化することを防止できる。非酸化性雰囲気としては、窒素希釈水素ガス、アンモニア分解ガスのような還元性雰囲気のほか、アルゴンガス、窒素ガス等の非活性雰囲気が挙げられる。焼成の保持温度としては合金化の観点から640℃以上が好ましく、また、焼結後の工具形状の観点から690℃以下が好ましい。これらの観点から焼成の保持温度は640℃以上690℃以下がより好ましく、645℃以上660℃以下が特に好ましい。また当該保持温度の保持時間は0.5時間以上8時間以下が好ましく、2時間以上7時間以下がより好ましい。   Thereafter, in the step B1, the pressure-molded molded product is fired in a non-oxidizing atmosphere. By firing in a non-oxidizing atmosphere, it is possible to prevent diamond and the constituent metals of the metal matrix from being oxidized. Examples of the non-oxidizing atmosphere include a reducing atmosphere such as nitrogen-diluted hydrogen gas and ammonia decomposition gas, and an inert atmosphere such as argon gas and nitrogen gas. The holding temperature for firing is preferably 640 ° C. or higher from the viewpoint of alloying, and is preferably 690 ° C. or lower from the viewpoint of the tool shape after sintering. From these viewpoints, the firing holding temperature is more preferably 640 ° C. or more and 690 ° C. or less, and particularly preferably 645 ° C. or more and 660 ° C. or less. The holding time at the holding temperature is preferably 0.5 hours or more and 8 hours or less, and more preferably 2 hours or more and 7 hours or less.

上記の(1)の方法は、研磨工具の生産能力が高く、量産が容易なために好ましいものの、上記(2)の方法のように、A工程により得られた混合粉を加圧成形後に焼成する代わりに、加圧しながら非酸化性雰囲気下に焼成する(B2工程)ことによっても本発明の研磨工具を製造することが可能である。B2工程における焼成はホットプレス法等により行うことができる。   The method (1) is preferable because the production capacity of the polishing tool is high and mass production is easy. However, as in the method (2), the mixed powder obtained in the step A is fired after pressure forming. Instead, the polishing tool of the present invention can also be manufactured by firing in a non-oxidizing atmosphere while applying pressure (step B2). Firing in step B2 can be performed by a hot press method or the like.

続いて本発明の研磨工具による好ましい研磨物の製造方法の一実施態様について、図1ないし図3を参照して説明する。本発明の製造方法は、修正モース硬度8以上の硬脆材料である被研磨物の表面に本発明の研磨工具を摺接させて研磨する工程を備えた研磨物の製造方法である。   Subsequently, an embodiment of a preferred method for producing an abrasive with the polishing tool of the present invention will be described with reference to FIGS. The production method of the present invention is a method for producing an abrasive comprising a step of polishing the surface of an object to be polished, which is a hard and brittle material having a modified Mohs hardness of 8 or more, by bringing the polishing tool of the present invention into sliding contact.

図1に、本発明の研磨工具を用いたラッピング工程で使用される加工機の一例を示す。図1に示す両面加工機1は、下定盤2と、該下定盤2の上方に配設される上定盤3と、該上定盤3に接して該上定盤3を支持する定盤支持部4とを具備して構成されている。   FIG. 1 shows an example of a processing machine used in a lapping process using the polishing tool of the present invention. A double-sided processing machine 1 shown in FIG. 1 includes a lower surface plate 2, an upper surface plate 3 disposed above the lower surface plate 2, and a surface plate that contacts the upper surface plate 3 and supports the upper surface plate 3. And a support portion 4.

図1に示すように、上定盤3は、エアシリンダ11の出力ロッド11aの先端部にブラケット12を介して回転可能に取り付けられている。該上定盤3は該エアシリンダ11により昇降可能になされていると共に、下降時にはベース5側で図2に示す矢印D方向に回転するロータ13の溝に係合して同方向に回転するようになされている。また、上記上定盤3の下面には、本発明の研磨工具20が配設されている。これらの図に示す例では、定盤3は、ペレット植設タイプであり研磨工具20は例えば図3に示すような円柱状の小型のペレットであって図2に示すように、上定盤3の下面に所定間隔で多数固定されている。しかしながら、上述したように研磨工具の形状及び定盤への設置の態様はこれに限定されない。該上定盤3は、上記定盤支持部4にボルト(図示せず)によって緊結固定されており、該定盤支持部4と共に回転自在に設けられている。   As shown in FIG. 1, the upper surface plate 3 is rotatably attached to the distal end portion of the output rod 11 a of the air cylinder 11 via a bracket 12. The upper surface plate 3 can be moved up and down by the air cylinder 11 and, when lowered, engages with a groove of a rotor 13 that rotates in the direction of arrow D shown in FIG. Has been made. The polishing tool 20 of the present invention is disposed on the lower surface of the upper surface plate 3. In the examples shown in these drawings, the surface plate 3 is a pellet planting type, and the polishing tool 20 is a small cylindrical pellet as shown in FIG. 3, for example, and as shown in FIG. A large number are fixed at a predetermined interval to the lower surface of the. However, as described above, the shape of the polishing tool and the manner of installation on the surface plate are not limited to this. The upper surface plate 3 is fastened and fixed to the surface plate support portion 4 with bolts (not shown), and is rotatably provided with the surface plate support portion 4.

図2に示すように、下定盤2は、上記ベース5上に矢印A方向に回転自在に設けられていて、その上面には、上記上定盤3と同様の態様で、本発明の研磨工具20が配設されている。また、該下定盤2には、中央の矢印B方向に回転する太陽歯車7と外周側の矢印C方向に回転する内歯歯車8とに噛み合って、公転しつつ自転する遊星歯車状のキャリア9が4機配設されていている。そして、各キャリア9に設けられた8個の穴内にそれぞれ板状体である硬脆材料からなる被研磨物10がセットされるようになっている。   As shown in FIG. 2, the lower surface plate 2 is provided on the base 5 so as to be rotatable in the direction of arrow A, and the upper surface of the lower surface plate 2 is the same as the upper surface plate 3 in the same manner as the polishing tool of the present invention. 20 is arranged. The lower surface plate 2 meshes with a sun gear 7 that rotates in the direction of arrow B at the center and an internal gear 8 that rotates in the direction of arrow C on the outer peripheral side, and is a planetary gear carrier 9 that rotates while revolving. There are four machines. And the to-be-polished object 10 which consists of a hard-brittle material which is a plate-shaped body is set in eight holes provided in each carrier 9, respectively.

上記上定盤3と上記下定盤2との間には、上定盤に設けられた穴、或はスラリー供給パイプ(いずれも図示せず)により冷却液又は遊離砥粒を含有する研磨液が所定の量で供給可能になっている。そして、上記エアシリンダ11によって上記上定盤3を下降させることにより、上記キャリア9と一体に動く上記被研磨物10は、上記下定盤2と上記上定盤3とに挟まれてラッピング研磨される。   Between the upper surface plate 3 and the lower surface plate 2, a polishing liquid containing a cooling liquid or free abrasive grains is provided by a hole provided in the upper surface plate or a slurry supply pipe (both not shown). A predetermined amount can be supplied. Then, by lowering the upper surface plate 3 by the air cylinder 11, the workpiece 10 that moves together with the carrier 9 is sandwiched between the lower surface plate 2 and the upper surface plate 3 and lapped and polished. The

本実施形態におけるラッピング工程の条件は、一般的には下記の通りである。即ち、加工圧力は、好ましくは0.05kgf/cm以上0.3kgf/cm以下であり、より好ましくは0.15kgf/cm以上0.25kgf/cmである。上記両面加工機の下定盤回転数は加工機サイズに依存するが、例えばHAMAI社製の9B機という両面加工機を用いた場合であれば、好ましくは10rpm以上30rpm以下であり、更に好ましくは15rpm以上25rpm以下である。 The conditions of the lapping process in the present embodiment are generally as follows. That is, the processing pressure is preferably at 0.05 kgf / cm 2 or more 0.3 kgf / cm 2 or less, and more preferably from 0.15kgf / cm 2 or more 0.25 kgf / cm 2. The lower surface plate rotation speed of the above-mentioned double-sided processing machine depends on the size of the processing machine. For example, when a double-sided processing machine called 9B machine manufactured by HAMAI is used, it is preferably 10 rpm to 30 rpm, more preferably 15 rpm. More than 25 rpm.

本発明の研磨工具20による硬脆材料の研磨は、乾式によるものであってもよく、或は、冷却液や遊離砥粒を含む研磨液を供給しながら行う湿式によるものであってもよい。遊離砥粒を含む研磨液を供給しながら、本発明の研磨工具20を被研磨物10に摺接させて研磨すると、研磨工具中のダイヤモンド粒子の自生発刃を良好に促して硬脆材料の安定的な加工がより一層容易になるため好ましい。本発明の研磨物の製造方法においては、研磨の主体はダイヤモンド固定砥粒を用いた本発明の研磨工具であり、遊離砥粒は研磨効率を向上させるための助剤である。遊離砥粒との併用は、特に、本発明の研磨工具の金属マトリックスがCu-Sn系合金からなる場合、研磨工具による加工レートの短縮の促進に高い効果を奏する。   The polishing of the hard and brittle material by the polishing tool 20 of the present invention may be performed by a dry method, or may be performed by a wet method performed while supplying a polishing liquid containing a cooling liquid or free abrasive grains. When the polishing tool 20 of the present invention is slidably brought into contact with the object to be polished 10 while supplying the polishing liquid containing free abrasive grains, the self-generated blades of the diamond particles in the polishing tool are favorably promoted and the brittle material This is preferable because stable processing becomes even easier. In the method for producing a polished article of the present invention, the main subject of polishing is the polishing tool of the present invention using diamond fixed abrasive grains, and the loose abrasive grains are auxiliary agents for improving the polishing efficiency. The combined use with the loose abrasive is highly effective in promoting the reduction of the processing rate by the polishing tool, particularly when the metal matrix of the polishing tool of the present invention is made of a Cu—Sn alloy.

遊離砥粒としては、ダイヤモンド以外のものであって、修正モース硬度が6以上のものが通常用いられ、修正モース硬度12以上のものが好ましい。遊離砥粒は自生発刃作用の観点から、炭化ケイ素(修正モース硬度13)、酸化アルミナ(修正モース硬度12)が好ましく、炭化ケイ素がより好ましい。遊離砥粒の平均粒径が小さい、特に、研磨工具のダイヤモンド粒子の平均粒径よりも小さいと、被研磨物に傷がつくことを防止しやすいため好ましい。また、遊離砥粒の平均粒径が一定の大きさ以上であることは加工の持続性の観点から好ましい。これらの観点から、遊離砥粒の平均粒径としては0.1μm以上20μm以下のものが好ましく、1μm以上8μm以下のものがより好ましく、2μm以上4μm以下のものが特に好ましい。この平均粒径はレーザー式粒度分布計により測定することができる。研磨液としては、通常、該遊離砥粒の濃度が40質量%以下のものが用いられる。研磨液における遊離砥粒の濃度は特に20質量%以下に低いものを用いることが製造コストの低減や破棄コストの低減の観点から好ましい。また研磨液における遊離砥粒の濃度は2質量%以上であることが研磨工具中のダイヤモンド粒子の自生発刃を良好に促す観点から好ましい。これらの観点から、研磨液中の遊離砥粒の濃度は5質量%以上20質量%以下であることがより好ましく、5質量%以上10質量%以下であることが特に好ましい。研磨液の供給流量は、加工機サイズに依存するが、例えばHAMAI社製の9B機という両面加工機を用いた場合であれば、好ましくは1000cc/min以上10000cc/min以下であり、更に好ましくは3000cc/min以上5000cc/min以下である。   As the free abrasive grains, those other than diamond and having a modified Mohs hardness of 6 or more are usually used, and those having a modified Mohs hardness of 12 or more are preferable. The free abrasive grains are preferably silicon carbide (corrected Mohs hardness 13) and alumina oxide (corrected Mohs hardness 12), and more preferably silicon carbide, from the viewpoint of self-generated blade action. It is preferable that the average particle size of the loose abrasive grains is small, particularly when it is smaller than the average particle size of the diamond particles of the polishing tool, since it is easy to prevent the object to be polished from being damaged. Moreover, it is preferable from a viewpoint of the sustainability of a process that the average particle diameter of a loose abrasive grain is more than fixed size. From these viewpoints, the average particle size of the free abrasive grains is preferably from 0.1 μm to 20 μm, more preferably from 1 μm to 8 μm, and particularly preferably from 2 μm to 4 μm. This average particle diameter can be measured with a laser particle size distribution meter. As the polishing liquid, one having a concentration of the free abrasive grains of 40% by mass or less is usually used. The concentration of the free abrasive grains in the polishing liquid is particularly preferably as low as 20% by mass or less from the viewpoint of reducing the manufacturing cost and the discarding cost. Further, the concentration of the free abrasive grains in the polishing liquid is preferably 2% by mass or more from the viewpoint of favorably promoting the spontaneous generation of diamond particles in the polishing tool. From these viewpoints, the concentration of the free abrasive grains in the polishing liquid is more preferably 5% by mass or more and 20% by mass or less, and particularly preferably 5% by mass or more and 10% by mass or less. Although the supply flow rate of the polishing liquid depends on the size of the processing machine, for example, when a double-sided processing machine called 9B machine manufactured by HAMAI is used, it is preferably 1000 cc / min to 10000 cc / min, and more preferably It is 3000 cc / min or more and 5000 cc / min or less.

研磨液における遊離砥粒の分散媒としては、水及び水と有機溶媒との混合物等を特に制限なく用いることができる。有機溶媒としては、水性のものが好ましく、例えば、ソリューブル系やエマルジョン系等の各種の水溶性研削用油剤(クーラント)を用いることができる。   As a dispersion medium for the free abrasive grains in the polishing liquid, water, a mixture of water and an organic solvent, or the like can be used without particular limitation. The organic solvent is preferably an aqueous solvent. For example, various water-soluble grinding oils (coolants) such as a soluble type and an emulsion type can be used.

本実施形態の研磨工具を用いた研磨は、例えば従来ダイヤモンドスラリー及びCu−Sn系合金を用いたラップ定盤を用いたラッピングの最終工程(L2工程)の一部又は全部を代替することにより、硬脆材料の加工時間を大幅に短縮し、製造コストを低減し、得られる硬脆材料の被研磨物の幾何精度を向上させて歩留りを向上させることができる。   Polishing using the polishing tool of the present embodiment, for example, by replacing part or all of the final process (L2 process) of lapping using a conventional lapping plate using diamond slurry and Cu-Sn alloy, The processing time of the hard and brittle material can be greatly shortened, the manufacturing cost can be reduced, the geometric accuracy of the obtained hard and brittle material to be polished can be improved, and the yield can be improved.

本発明の研磨工具を用いて製造される硬脆材料の研磨物としては、半導体デバイスや光デバイスに用いられる各種の基板や光学レンズが挙げられる。例えば、硬脆材料がサファイヤである場合は、窒化ガリウム(GaN)に代表される窒化物系化合物半導体のエピタキシャル成長用基板、Siを成膜したSOS基板、液晶プロジェクタ用偏光子保持板、カバーガラス等を挙げることができる。   Examples of the hard and brittle material polished using the polishing tool of the present invention include various substrates and optical lenses used in semiconductor devices and optical devices. For example, when the hard and brittle material is sapphire, a substrate for epitaxial growth of a nitride compound semiconductor typified by gallium nitride (GaN), a SOS substrate with a Si film formed thereon, a polarizer holding plate for a liquid crystal projector, a cover glass, etc. Can be mentioned.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」及び「部」はそれぞれ「質量%」及び「質量部」を意味する。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, “%” and “part” mean “% by mass” and “part by mass”, respectively.

〔実施例1〕
(1)研磨工具の製造
金属マトリックスを構成するか又はその原料である金属粉末としてCu−Sn粉72部、Sn粉10部及びCu粉10部と、砥粒として平均粒径9μmのダイヤモンド粒子3部と、Ni粉3部と、TiH 5部とを混合して混合粉を得た。Cu−Sn粉はCuとSnとを質量比1:1でアトマイズして得られた合金粉であった。得られた混合粉を加圧成形した。加圧成形は、原料の密度が6.0g/cmとなるように、直径7mm×高さ10mmの円柱状の金型に型込めした後、4600kgf/cmの圧力でプレスして行った。その後、加圧成形された成形物を、非酸化性雰囲気下に焼成した。非酸化性雰囲気としては、窒素希釈水素ガス(水素濃度:30容量%)を用いた。焼成時の保持温度は645℃、当該温度の保持時間は3時間であった。以上の工程により、実施例1の研磨工具を得た。得られた研磨工具は、Cu量50%Sn量50%のCu−Sn系合金粉を89質量%含有していることをICP発光分析装置により確認した。また、TiHに由来するTiは研磨工具中においてTiCの形態で検出された。
得られた研磨工具をダイヤモンドブレードにより切断し、得られた断面に金をスパッタ蒸着させた。次に、断面を加速電圧:2.5kV、倍率5000倍の条件で走査型電子顕微鏡(HITACHI社製S-4700)で撮影した。
(2)研磨による評価
実施例1の研磨工具を、図1及び図2に示す両面加工機1(HAMAI社製9B機)を用いて、上記上定盤3と上記下定盤2に設けられたクーラント穴から、遊離砥粒を含む研磨液を供給しつつ研磨工具20を被研磨物10に摺接させて研磨した。以下の条件によるラッピング工程に供し60分間研磨を行った。被削物の加工レートを表1に示す。ここで言う加工レートとは、1分間当たりの被削材の除去量を表す。
<研磨条件>
被研磨物10:円板状のサファイヤウエハー(厚み1mm、直径50mm)
加工圧力:0.18kgf/cm
両面加工機の上下定盤回転数:20rpm
遊離砥粒:炭化ケイ素(修正モース硬度13)、平均粒径4μm
研磨液中の遊離砥粒の濃度:10質量%
研磨液の供給流量:5000cc/min
研磨液中の分散媒:水溶性研削用油剤(八千代マイクロサイエンス株式会社製「ダイヤカットW」)を水で容量比10倍に希釈したもの
[Example 1]
(1) Production of polishing tool 72 parts of Cu-Sn powder, 10 parts of Sn powder and 10 parts of Cu powder as the metal powder constituting the metal matrix or the raw material, and diamond particles 3 having an average particle diameter of 9 μm as abrasive grains Part, Ni powder 3 parts, and TiH 2 5 parts were mixed to obtain a mixed powder. Cu-Sn powder was an alloy powder obtained by atomizing Cu and Sn at a mass ratio of 1: 1. The obtained mixed powder was pressure-molded. The pressure molding was carried out by pressing into a cylindrical mold having a diameter of 7 mm and a height of 10 mm so that the raw material density was 6.0 g / cm 3 and then pressing at a pressure of 4600 kgf / cm 2 . . Thereafter, the pressure-molded molded product was fired in a non-oxidizing atmosphere. Nitrogen diluted hydrogen gas (hydrogen concentration: 30% by volume) was used as the non-oxidizing atmosphere. The holding temperature during firing was 645 ° C., and the holding time at the temperature was 3 hours. The polishing tool of Example 1 was obtained through the above steps. It was confirmed by an ICP emission spectrometer that the obtained polishing tool contained 89% by mass of Cu—Sn alloy powder having a Cu content of 50% and a Sn content of 50%. Ti derived from TiH 2 was detected in the form of TiC in the polishing tool.
The obtained polishing tool was cut with a diamond blade, and gold was sputter-deposited on the obtained cross section. Next, the cross section was photographed with a scanning electron microscope (HITACHI S-4700) under the conditions of an acceleration voltage of 2.5 kV and a magnification of 5000 times.
(2) Evaluation by polishing The polishing tool of Example 1 was provided on the upper surface plate 3 and the lower surface plate 2 using the double-sided processing machine 1 (HAMAI 9B machine) shown in FIGS. 1 and 2. The polishing tool 20 was slidably brought into contact with the object to be polished 10 while supplying a polishing liquid containing loose abrasive grains from the coolant hole. Polishing was performed for 60 minutes in a lapping process under the following conditions. Table 1 shows the machining rate of the workpiece. The processing rate here refers to the amount of work material removed per minute.
<Polishing conditions>
Object to be polished 10: disk-shaped sapphire wafer (thickness 1 mm, diameter 50 mm)
Processing pressure: 0.18 kgf / cm 2
Double-side processing machine upper and lower surface plate rotation speed: 20rpm
Free abrasive grains: Silicon carbide (modified Mohs hardness 13), average particle size 4μm
Concentration of free abrasive grains in polishing liquid: 10% by mass
Polishing fluid supply flow rate: 5000cc / min
Dispersion medium in polishing liquid: Water-soluble grinding oil ("Diacut W" manufactured by Yachiyo Microscience Corporation) diluted 10 times with water

〔比較例1〕
実施例1の「(1)研磨工具の製造」において、TiH2を添加していない以外は、実施例1と同様にして比較例1の研磨工具を製造した。比較例1の研磨工具の断面のSEM写真を、実施例1と同一条件で得た。得られたSEM写真を図5として示す。また、得られた比較例1の研磨工具を、実施例1の「(2)研磨による評価」と同様の評価に供した。その結果を表1に示す。
[Comparative Example 1]
A polishing tool of Comparative Example 1 was manufactured in the same manner as in Example 1 except that TiH 2 was not added in “(1) Manufacturing of polishing tool” in Example 1. A SEM photograph of the cross section of the polishing tool of Comparative Example 1 was obtained under the same conditions as in Example 1. The obtained SEM photograph is shown as FIG. Moreover, the obtained polishing tool of Comparative Example 1 was subjected to the same evaluation as “(2) Evaluation by polishing” in Example 1. The results are shown in Table 1.

〔比較例2〕
Cu−Sn粉として、CuとSnとを質量比77:23でアトマイズして得られた合金粉を用い、Sn粉の量を23部とし、Cu粉の量を77部とし、TiHを添加しなかった以外は、実施例1と同様にして、比較例2の研磨工具を得た。得られた研磨工具を、実施例1の「(2)研磨による評価」と同様の評価に供した。その結果を表1に示す。
[Comparative Example 2]
An alloy powder obtained by atomizing Cu and Sn at a mass ratio of 77:23 is used as the Cu-Sn powder, the amount of Sn powder is 23 parts, the amount of Cu powder is 77 parts, and TiH 2 is added. A polishing tool of Comparative Example 2 was obtained in the same manner as Example 1 except that it was not performed. The obtained polishing tool was subjected to the same evaluation as “(2) Evaluation by polishing” in Example 1. The results are shown in Table 1.

図4と図5との比較から明らかな通り、図5の比較例1の研磨工具断面を撮影した写真では、ダイヤモンド粒子が白く光って見える。これは、比較例1では、ダイヤモンド粒子の表面が露出していることを示している。一方、図4の実施例1の研磨工具の断面を撮影した写真では、そのような部分が見当たらず、ダイヤモンド粒子に該当する突起物は、金属マトリックスに被覆されている。このことから比較例1では、ダイヤモンド粒子と周囲の金属マトリックスとの濡れ性が悪く、ダイヤモンド粒子が露出して観察されるのに対し、実施例1の研磨工具では、水素化物を形成可能な金属を用いたことにより、ダイヤモンド粒子の金属マトリックスに対する濡れ性が向上し、金属マトリックス中のダイヤモンド粒子の保持力が向上したことが判る。なお、上述したように図4及び図5は断面写真であるが、いずれも研磨工具中の空隙に面した部分を撮影した写真であるため、ダイヤモンド粒子の表面状態の違いが明確に示されている。
そして、上記表1の結果、特に実施例1及び比較例1との比較から、水素化物を形成可能な金属を含有する研磨工具は加工能力が大きく向上し、硬脆材料の加工時間を大幅に短縮できることが判る。このように本発明の研磨工具は硬脆材料の加工能力が高く、硬脆材料の安定加工が可能であり、ラッピングの最終工程(L2工程)の一部又は全部を代替することにより、硬脆材料の加工時間を大幅に短縮し、製造コストを低減し、得られる硬脆材料の研磨物の幾何精度を向・BR>繧ウせて歩留りを向上させることができる。
As is clear from the comparison between FIG. 4 and FIG. 5, in the photograph of the cross section of the polishing tool of Comparative Example 1 in FIG. This indicates that in Comparative Example 1, the surface of the diamond particles is exposed. On the other hand, in the photograph which image | photographed the cross section of the polishing tool of Example 1 of FIG. 4, such a part is not found but the protrusion applicable to a diamond particle is coat | covered with the metal matrix. Therefore, in Comparative Example 1, the wettability between the diamond particles and the surrounding metal matrix is poor and the diamond particles are exposed and observed, whereas the polishing tool of Example 1 is a metal capable of forming a hydride. It can be seen that the use of this improves the wettability of the diamond particles to the metal matrix and improves the retention of the diamond particles in the metal matrix. 4 and 5 are cross-sectional photographs as described above, both of which are photographs of the portion facing the void in the polishing tool, so that the difference in the surface state of the diamond particles is clearly shown. Yes.
As a result of the above Table 1, especially from the comparison with Example 1 and Comparative Example 1, the polishing tool containing a metal capable of forming a hydride greatly improves the processing capability, and greatly reduces the processing time of the hard and brittle material. It can be seen that it can be shortened. As described above, the polishing tool of the present invention has a high processing capability of hard and brittle materials, and can stably process hard and brittle materials. By replacing a part or all of the final step (L2 step) of lapping, hard and brittle materials can be obtained. The processing time of the material can be greatly shortened, the manufacturing cost can be reduced, and the yield can be improved by improving the geometric accuracy of the resulting hard and brittle material.

〔実施例2〕 本実施例では、〔実施例1〕の「(1)研磨工具の製造」で製造した研磨工具をSiCの加工に用いた。被研磨物10として、円板状のSiCウエハー(厚み1mm、直径50mm)を用いた。また加工圧力を、0.20Kgf/cmとした。また研磨液中の遊離砥粒の濃度を5質量%とした。それらの点以外は、実施例1と同条件で同じ方法の研摩を行った。その結果、加工レート1.12μm/分であった。
Example 2 In this example, the polishing tool manufactured in “(1) Manufacturing of polishing tool” in [Example 1] was used for processing SiC. As the object to be polished 10, a disk-shaped SiC wafer (thickness 1 mm, diameter 50 mm) was used. The processing pressure was 0.20 Kgf / cm 2 . The concentration of the free abrasive grains in the polishing liquid was 5% by mass. Except for these points, the same method of polishing was performed under the same conditions as in Example 1. As a result, the processing rate was 1.12 μm / min.

1 両面加工機
2 下定盤
3 上定盤
4 定盤支持部
5 ベース
9 キャリア
10 板状の被研磨物
20 研磨工具
DESCRIPTION OF SYMBOLS 1 Double-sided processing machine 2 Lower surface plate 3 Upper surface plate 4 Surface plate support part 5 Base 9 Carrier 10 Plate-shaped to-be-polished object 20 Polishing tool

Claims (10)

修正モース硬度8以上の硬脆材料のラッピング加工用研磨工具であって、ダイヤモンド粒子が金属マトリックスに分散されてなり、且つ、前記金属マトリックス中に水素化物の形成が可能な金属が含まれている、研磨工具。   A polishing tool for wrapping a hard and brittle material having a modified Mohs hardness of 8 or more, wherein diamond particles are dispersed in a metal matrix, and a metal capable of forming a hydride is contained in the metal matrix. , Polishing tools. 前記金属マトリックスが、Snを20質量%超、60質量%以下含むCu-Sn系合金からなる、請求項1に記載の研磨工具。   The polishing tool according to claim 1, wherein the metal matrix is made of a Cu—Sn alloy containing Sn in an amount of more than 20 mass% and not more than 60 mass%. 遊離砥粒を含む研磨液と併用され、該遊離砥粒がダイヤモンド以外の砥粒である、請求項1又は2に記載の研磨工具。   The polishing tool according to claim 1 or 2, wherein the polishing tool is used in combination with a polishing liquid containing free abrasive grains, and the free abrasive grains are abrasive grains other than diamond. ダイヤモンド粒子の平均粒径が1μm以上20μm以下である、請求項1〜3の何れか1項に記載の研磨工具。   The polishing tool according to any one of claims 1 to 3, wherein an average particle diameter of the diamond particles is 1 µm or more and 20 µm or less. ダイヤモンド粒子を0.1質量%以上10.0質量%以下含有する、請求項1〜4の何れか1項に記載の研磨工具。   The polishing tool according to any one of claims 1 to 4, comprising diamond particles in an amount of 0.1 mass% to 10.0 mass%. 前記金属マトリックスを構成する金属を70質量%以上98質量%以下含有する、請求項1〜5の何れか1項に記載の研磨工具。   The polishing tool according to any one of claims 1 to 5, wherein the metal constituting the metal matrix is contained in an amount of 70% by mass to 98% by mass. 前記水素化物の形成が可能な金属を1質量%以上10質量%以下含有する、請求項1〜6の何れか1項に記載の研磨工具。   The polishing tool according to any one of claims 1 to 6, comprising a metal capable of forming the hydride in an amount of 1% by mass to 10% by mass. 請求項1に記載の研磨工具の製造方法であって、ダイヤモンド粒子と、金属マトリックスを構成するか又はその原料である金属粉末と、金属水素化物とを混合する工程と、該工程により得られた混合粉を加圧成形する工程と、加圧成形された成形物を、非酸化性雰囲気下に焼成する工程とを有する、研磨工具の製造方法。   A method for producing a polishing tool according to claim 1, wherein the diamond particles, a metal powder constituting a metal matrix or a raw material thereof, and a metal hydride are mixed, and obtained by the step. A method for producing an abrasive tool, comprising: a step of pressure-molding mixed powder; and a step of firing the pressure-molded molded article in a non-oxidizing atmosphere. 請求項1に記載の研磨工具の製造方法であって、ダイヤモンド粒子と、金属マトリックスを構成するか又はその原料である金属粉末と、金属水素化物とを混合する工程と、該工程により得られた混合粉を加圧しながら非酸化性雰囲気下に焼成する工程とを有する、研磨工具の製造方法。   A method for producing a polishing tool according to claim 1, wherein the diamond particles, a metal powder constituting a metal matrix or a raw material thereof, and a metal hydride are mixed, and obtained by the step. And a step of firing the mixed powder under pressure in a non-oxidizing atmosphere. 修正モース硬度8以上の硬脆材料である被研磨物の表面に対して遊離砥粒を含む研磨液を供給しつつ請求項1に記載の研磨工具を摺接させて研磨する工程を備えた研磨物の製造方法であって、遊離砥粒として、修正モース硬度が12以上であってダイヤモンド以外の砥粒を用い、研磨液として該遊離砥粒の濃度が2質量%以上40質量%以下であるものを用いる、研磨物の製造方法。   Polishing comprising the step of polishing by sliding the polishing tool according to claim 1 while supplying a polishing liquid containing free abrasive grains to the surface of an object to be polished which is a hard and brittle material having a modified Mohs hardness of 8 or more A method for producing a product, wherein the free abrasive grains have a modified Mohs hardness of 12 or more and abrasive grains other than diamond, and the concentration of the free abrasive grains as a polishing liquid is 2 mass% or more and 40 mass% or less. A method for producing a polished article using an object.
JP2016102736A 2015-07-15 2016-05-23 Polishing tool, method for manufacturing the same, and method for manufacturing an abrasive Active JP6687231B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105118020A TWI597130B (en) 2015-07-15 2016-06-07 Abrasive manufacturing method
KR1020160085360A KR101891189B1 (en) 2015-07-15 2016-07-06 Polishing tool and manufacturing method thereof and manufacturing method of polished article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015141548 2015-07-15
JP2015141548 2015-07-15

Publications (2)

Publication Number Publication Date
JP2017024161A true JP2017024161A (en) 2017-02-02
JP6687231B2 JP6687231B2 (en) 2020-04-22

Family

ID=57944809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016102736A Active JP6687231B2 (en) 2015-07-15 2016-05-23 Polishing tool, method for manufacturing the same, and method for manufacturing an abrasive

Country Status (3)

Country Link
JP (1) JP6687231B2 (en)
KR (1) KR101891189B1 (en)
TW (1) TWI597130B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109967753A (en) * 2019-03-04 2019-07-05 江苏萌达新材料科技有限公司 A kind of production method of 33 alloy powder of copper and tin for glass grinding tool
EP3642295A4 (en) * 2017-06-19 2021-06-30 Saint-Gobain Abrasives, Inc. Abrasive articles and methods of forming the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107457717B (en) * 2017-09-22 2019-07-30 禹州市昆仑模具有限公司 A kind of press device of abrasive tool moulding
KR102432921B1 (en) * 2020-11-18 2022-08-18 주식회사 세한텍 Wheel for grinding glass sheet and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2971764B2 (en) 1994-12-26 1999-11-08 株式会社ノリタケカンパニーリミテド Abrasive fixed type polishing table
RU2422259C2 (en) 2006-12-28 2011-06-27 Сэнт-Гобэн Керамикс Энд Пластикс, Инк. Method of machining sapphire substrate
JP4590513B2 (en) 2008-12-04 2010-12-01 国立大学法人秋田大学 Saw wire and manufacturing method thereof
TWI544064B (en) * 2010-09-03 2016-08-01 聖高拜磨料有限公司 Bonded abrasive article and method of forming
JP2012094559A (en) * 2010-10-22 2012-05-17 Sumco Corp Planarization processing method for hard brittle wafer and pad for planarization processing
SE537723C2 (en) * 2011-07-22 2015-10-06 Slipnaxos Ab A grinding tool for machining brittle materials and a process for making a grinding tool
JP5373171B1 (en) 2012-10-20 2013-12-18 株式会社ナノテム Grinding wheel and grinding / polishing apparatus using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3642295A4 (en) * 2017-06-19 2021-06-30 Saint-Gobain Abrasives, Inc. Abrasive articles and methods of forming the same
CN109967753A (en) * 2019-03-04 2019-07-05 江苏萌达新材料科技有限公司 A kind of production method of 33 alloy powder of copper and tin for glass grinding tool

Also Published As

Publication number Publication date
JP6687231B2 (en) 2020-04-22
TW201702004A (en) 2017-01-16
KR101891189B1 (en) 2018-08-23
TWI597130B (en) 2017-09-01
KR20170009736A (en) 2017-01-25

Similar Documents

Publication Publication Date Title
EP2219824B1 (en) Abrasive processing of hard and/or brittle materials
US8882868B2 (en) Abrasive slicing tool for electronics industry
JP6687231B2 (en) Polishing tool, method for manufacturing the same, and method for manufacturing an abrasive
JP2001246566A (en) Cutting grinding wheel, its manufacturing method and grinding method using it
CN111630213B (en) Seed crystal for growing single crystal 4H-SiC and processing method thereof
JP2003136410A (en) Super-abrasive grains vitrified bond grinding wheel
CN108161773B (en) Ceramic bond grinding tool
JP5640064B2 (en) Vitrified bond superabrasive wheel and method of grinding a wafer using the same
JP4746310B2 (en) Mold
JP2002273661A (en) Porous metal grinding wheel
TW528658B (en) Beveling wheel for processing silicon wafer outer periphery
JP7261246B2 (en) Metal bond grindstone for hard and brittle materials
JP2010076094A (en) Metal bond diamond grinding wheel and method of manufacturing the same
JP2011115867A (en) Thin-edged blade
JPS5894965A (en) Composite lapping tool
JP2019084660A (en) Super abrasive grain wheel
CN113614196B (en) Multimodal diamond abrasive package or slurry for polishing hard substrates
TW202339868A (en) Ceramic bond grinding tool
JP5554052B2 (en) Polishing composition and polishing method
JP3942394B2 (en) Beveling wheel for processing the outer periphery of silicon wafers
CN117300923A (en) Preparation process and application of porous active metal-based diamond abrasive particle tool
JP2019036695A (en) Silicon nitride material processing method
JPS60186375A (en) Abrasive molded body and method of manufacturing thereof
JP2005288551A (en) Machining tool and machining method using the same
JP2002144243A (en) Polishing tool with fluororesin as base

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20181015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200325

R150 Certificate of patent or registration of utility model

Ref document number: 6687231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250