JP2016528918A - セタリア属(Setaria)ユビキチン遺伝子由来の調節エレメントを用いて導入遺伝子を発現させるための構築物 - Google Patents

セタリア属(Setaria)ユビキチン遺伝子由来の調節エレメントを用いて導入遺伝子を発現させるための構築物 Download PDF

Info

Publication number
JP2016528918A
JP2016528918A JP2016537883A JP2016537883A JP2016528918A JP 2016528918 A JP2016528918 A JP 2016528918A JP 2016537883 A JP2016537883 A JP 2016537883A JP 2016537883 A JP2016537883 A JP 2016537883A JP 2016528918 A JP2016528918 A JP 2016528918A
Authority
JP
Japan
Prior art keywords
seq
sequence
transgene
promoter
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2016537883A
Other languages
English (en)
Other versions
JP2016528918A5 (ja
Inventor
クマー,サンディープ
アスベリー,アンドリュー
Original Assignee
ダウ アグロサイエンシィズ エルエルシー
ダウ アグロサイエンシィズ エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダウ アグロサイエンシィズ エルエルシー, ダウ アグロサイエンシィズ エルエルシー filed Critical ダウ アグロサイエンシィズ エルエルシー
Publication of JP2016528918A publication Critical patent/JP2016528918A/ja
Publication of JP2016528918A5 publication Critical patent/JP2016528918A5/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/14Asteraceae or Compositae, e.g. safflower, sunflower, artichoke or lettuce
    • A01H6/1464Helianthus annuus [sunflower]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/46Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
    • A01H6/4636Oryza sp. [rice]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/46Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
    • A01H6/4666Sorghum, e.g. sudangrass
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/46Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
    • A01H6/4678Triticum sp. [wheat]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/54Leguminosae or Fabaceae, e.g. soybean, alfalfa or peanut
    • A01H6/542Glycine max [soybean]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/60Malvaceae, e.g. cotton or hibiscus
    • A01H6/604Gossypium [cotton]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance

Abstract

アワ(Setaria italica)ユビキチン遺伝子から単離されたプロモーターおよび/または3’−UTRを含む調節エレメントを用いて、植物細胞および/または植物組織中で導入遺伝子を発現させるための構築物および方法が提供される。一実施形態では、ユビキチン遺伝子の調節エレメントがポリリンカー配列と作動可能に連結している発現ベクターが提供される。一実施形態によると、非ユビキチン導入遺伝子と作動可能に連結しているプロモーターを含む植物、植物組織または植物細胞が提供される。

Description

関連出願の相互参照
本出願は、その全体が参照により本明細書に組み込まれる、2013年8月30日出願の米国仮特許出願第61/872134号に基づく優先権を主張するものである。
電子的に提出される材料の参照による組み込み
本明細書と同時に提出され、以下のように特定されるコンピュータ可読ヌクレオチド/アミノ酸配列表は、その全体が参照により組み込まれる:2014年8月15日に作成された「Setaria_UBI_SEQ_LIST_ST25」という名前付きの68KB ACII(テキスト)の1ファイル。
植物の形質転換は、農学的に望ましい形質または特性を異なる作物植物種に導入するのに使用するための魅力的な技術である。特定の望ましい形質を有するよう植物種が開発および/または改変されている。一般的に、望ましい形質には、例えば、栄養価の改善、収量増加、耐有害生物性または耐病性の付与、耐乾燥性およびストレス耐性の増加、園芸品質(例えば、着色および成長)の改善、除草剤耐性の付与、植物からの産業的に有用な化合物および/または材料の製造の可能化、ならびに/あるいは医薬品の製造の可能化が含まれる。
単一ゲノム遺伝子座に積み重なった複数の導入遺伝子を含むトランスジェニック植物は、植物の形質転換技術を介して作製される。植物の形質転換技術によって、導入遺伝子の植物細胞への導入、植物ゲノム中に安定に組み込まれた導入遺伝子のコピーを含む繁殖性トランスジェニック植物の回収がもたらされ、導入遺伝子(複数可)の転写および翻訳を介したその後の導入遺伝子発現によって、望ましい形質および表現型を有するトランスジェニック植物が得られる。スタック中の各導入遺伝子は、典型的には遺伝子発現のために独立したプロモーターを要するので、複数のプロモーターが導入遺伝子スタックに使用される。
同じ形質を調節するために複数の導入遺伝子の同時発現が必要となることにより、しばしば複数の導入遺伝子の発現を駆動するために同じプロモーターを繰り返し使用することになる。しかしながら、高レベルの配列同一性を共有する配列を含むプロモーターを繰り返し使用することは、相同性ベースの遺伝子サイレンシング(homology-based gene silencing)(HBGS)をもたらし得る。反復DNA配列を導入遺伝子内で使用すると、HBGSがトランスジェニック植物で頻繁に起こることが確認された(Peremarti et al., 2010)。さらに、導入遺伝子構築物に類似DNA配列を繰り返し使用することは、プラスミドの組換えおよび不安定性のために、アグロバクテリウム(Agrobacterium)では困難と分かった。
トウモロコシユビキチン1プロモーターと低レベルの配列同一性または相同性を共有するユビキチン調節エレメント(例えば、プロモーターおよび3’−UTR)が本明細書で記載される。さらに、ユビキチン調節エレメントを利用する構築物および方法が記載される。
植物細胞および/または植物組織中で導入遺伝子を発現させるための構築物および方法が本明細書で開示される。一実施形態では、ユビキチン遺伝子の調節エレメントを、パニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)ゲノムから精製し、前記調節エレメントと天然では連結していない配列と組み換えて、ユビキチン調節配列に生まれつき備わっていない導入遺伝子を植物細胞中で発現させるための発現ベクターを創製する。一実施形態では、ユビキチン遺伝子の調節エレメントがポリリンカー配列と作動可能に連結している発現ベクターが提供される。このような発現ベクターは、ユビキチン遺伝子調節配列と作動可能に連結した状態で遺伝子または遺伝子カセットをベクターに挿入することを容易にする。
実施形態では、パニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)ユビキチンプロモーターを含む構築物が提供される。実施形態では、導入遺伝子と作動可能に連結しているパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチンプロモーターを含む遺伝子発現カセットが提供される。実施形態では、遺伝子発現カセットが、導入遺伝子と作動可能に連結しているパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチン5’−UTRを含む。実施形態では、遺伝子発現カセットが、プロモーターと作動可能に連結しているパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチン5’−UTRを含む。実施形態では、遺伝子発現カセットが、導入遺伝子と作動可能に連結しているパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチンイントロンを含む。実施形態では、遺伝子発現カセットが、プロモーターと作動可能に連結しているパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチンイントロンを含む。実施形態では、構築物が、パニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチン3’−UTRを含む遺伝子発現カセットを含む。実施形態では、遺伝子発現カセットが、導入遺伝子と作動可能に連結しているパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)ユビキチン3’−UTRを含む。実施形態では、遺伝子発現カセットが、少なくとも1、2、3、5、6、7、8、9、10個またはそれ以上の導入遺伝子を含む。
実施形態では、遺伝子発現カセットが、独立に、a)パニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチンプロモーター、b)パニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチンイントロン、c)パニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチン5’−UTR、およびd)パニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチン3’−UTRを含む。
一実施形態によると、非ユビキチン導入遺伝子と作動可能に連結しているプロモーターを含む核酸ベクターであって、プロモーターが配列番号17もしくは41、または配列番号17もしくは41と90%の配列同一性を有する配列からなる、核酸ベクターが提供される。さらなる実施形態では、核酸ベクターが遺伝子カセットを含み、遺伝子カセットがプロモーター、非ユビキチン導入遺伝子および3’非翻訳領域を含み、プロモーターが導入遺伝子の第1の末端と作動可能に連結している配列番号17または41からなり、導入遺伝子の第2の末端が配列番号6からなる3’非翻訳配列と作動可能に連結している。
パニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のプロモーター、5’−UTR、イントロンおよび3’−UTRを用いて導入遺伝子を発現する植物を育てる方法が本明細書で開示される。パニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のプロモーター、5’−UTR、イントロンおよび3’−UTRを用いて導入遺伝子を発現する植物組織および細胞を培養する方法も本明細書で開示される。
一実施形態によると、非ユビキチン導入遺伝子と作動可能に連結しているプロモーターを含む植物、植物組織または植物細胞であって、プロモーターが配列番号3を含む、植物、植物組織または植物細胞が提供される。一実施形態によると、導入遺伝子と作動可能に連結している配列番号3または配列番号3と90%の配列同一性を有する配列を含む非セタリア属(Setaria)植物または植物細胞が提供される。一実施形態では、植物がトウモロコシ変種である。一実施形態では、非ユビキチン導入遺伝子と作動可能に連結しているプロモーターを含む植物、植物組織または植物細胞であって、プロモーターが配列番号17、40、41または42からなる、植物、植物組織または植物細胞が提供される。一実施形態では、遺伝子カセットを含む非セタリア属(Setaria)植物または植物細胞であって、遺伝子カセットが導入遺伝子と作動可能に連結しているプロモーターを含み、さらにプロモーターが配列番号17からなる、非セタリア属(Setaria)植物または植物細胞が提供される。一実施形態では、遺伝子カセットを含む非セタリア属(Setaria)植物または植物細胞であって、遺伝子カセットが導入遺伝子と作動可能に連結しているプロモーターを含み、さらにプロモーターが配列番号41からなる非セタリア属(Setaria)植物または植物細胞が提供される。さらなる実施形態では、プロモーターが導入遺伝子の第1の末端と作動可能に連結しており、導入遺伝子の第2の末端が配列番号6からなる3’非翻訳配列と作動可能に連結している。
プロモーター同定に使用されるミナトカモジグサ(Brachypodium distachyon)およびアワ(Setaria italica)ユビキチン配列に対するトウモロコシ(Zea mays)ユビキチン(ZM Ubi1)タンパク質配列のタンパク質アラインメントを示す図である。Zm Ubi1タンパク質配列は、配列番号22として本明細書で開示される。アワ(S. italica)Ubi2タンパク質配列は、配列番号23として本明細書で開示される。ミナトカモジグサ(B. distachyon)Ubi1プロモーター配列は、配列番号24として本明細書で開示される。ミナトカモジグサ(B. distachyon)Ubi1Cタンパク質配列は、配列番号25として本明細書で開示される。コンセンサス配列は、配列番号26として本明細書で開示される。 (図1−1の続き) 本明細書で同定されるミナトカモジグサ(Brachypodium distachyon)およびアワ(Setaria italica)ユビキチンプロモーターポリヌクレオチドに対するトウモロコシ(Zea mays)ユビキチン(ZM Ubi1)プロモーターポリヌクレオチド配列のアラインメントを示す図である。トウモロコシ(Zea may)ユビキチン1(Zm−Ubi)プロモーター配列は、配列番号27として本明細書で開示される。ミナトカモジグサ(B. distachyon)Ubi1プロモーター配列は、配列番号16として本明細書で開示される。ミナトカモジグサ(B. distachyon)Ubi1−Cプロモーター配列は、配列番号15として本明細書で開示される。アワ(S. italica)Ubi2プロモーター配列は、配列番号17として本明細書で開示される。 (図2−1の続き) (図2−2の続き) (図2−3の続き) (図2−4の続き) (図2−5の続き) 合成したアワ(Setaria italica)ユビキチン2プロモーター遺伝エレメントを示すプラスミドマップを示す図である。 合成したミナトカモジグサ(Brachypodium distachyon)ユビキチン1Cプロモーター遺伝エレメントおよび隣接するシームレスクローニングオーバーハング(seamless cloning overhang)の場所を示すプラスミドマップを示す図である。 合成したミナトカモジグサ(Brachypodium distachyon)ユビキチン1プロモーター遺伝エレメントおよび隣接するシームレスクローニングオーバーハングの場所を示すプラスミドマップを示す図である。 PhiYFPレポーター遺伝子と融合したアワ(Setaria italica)ユビキチン2(SI−Ubi2)プロモーターを含む発現ベクターを示すプラスミドマップを示す図である。 PhiYFPレポーター遺伝子と融合したミナトカモジグサ(Brachypodium distachyon)ユビキチン1Cプロモーターを含む発現ベクターを示すプラスミドマップを示す図である。 PhiYFPレポーター遺伝子と融合したミナトカモジグサ(Brachypodium distachyon)ユビキチン1プロモーターを含む発現ベクターを示すプラスミドマップを示す図である。 PhiYFPレポーター遺伝子と融合したOS Act1(イネアクチン1)プロモーターを含む発現ベクターを示すプラスミドマップを示す図である。 PhiYFPレポーター遺伝子と融合したZM Ubi1プロモーターを含む発現ベクターを示すプラスミドマップを示す図である。 Gatewayテクノロジーを用いてバイナリー発現ベクターを構築するために使用されるバイナリーデスティネーションベクター(binary destination vector)を示すプラスミドマップを示す図である。 ST−LS1イントロンを含む黄色蛍光タンパク質(Phi YFP)マーカー遺伝子コード領域と融合したアワ(Setaria italica)ユビキチン2(SI−Ubi2)プロモーター、引き続いてジャガイモ由来のStPinII 3’UTRを含むフラグメントを含むバイナリー発現ベクターを示すプラスミドマップを示す図である。 ST−LS1イントロンを含む黄色蛍光タンパク質(Phi YFP)マーカー遺伝子コード領域と融合したミナトカモジグサ(Brachypodium distachyon)ユビキチン1Cプロモーター、引き続いてジャガイモ由来のStPinII 3’UTRを含むフラグメントを含むバイナリー発現ベクターを示すプラスミドマップを示す図である。 ST−LS1イントロンを含む黄色蛍光タンパク質(Phi YFP)マーカー遺伝子コード領域と融合したミナトカモジグサ(Brachypodium distachyon)ユビキチン1プロモーター、引き続いてジャガイモ由来のStPinII 3’UTRを含むフラグメントを含むバイナリー発現ベクターを示すプラスミドマップを示す図である。 ST−LS1イントロンを含む黄色蛍光タンパク質(Phi YFP)マーカー遺伝子コード領域と融合したOS Act1プロモーター、引き続いてジャガイモ由来のStPinII 3’UTRを含むフラグメントを含むバイナリー発現ベクターを示すプラスミドマップを示す図である。 ST−LS1イントロンを含む黄色蛍光タンパク質(Phi YFP)マーカー遺伝子コード領域と融合したZM Ubi1プロモーター、引き続いてジャガイモ由来のStPinII 3’UTRを含むフラグメントを含むバイナリー発現ベクターを示すプラスミドマップを示す図である。 図12、図13、図14、図15および図16に示されるように、YFPが異種間ユビキチンプロモーターおよびOs Act1プロモーターによって駆動される、T葉におけるYFP発現を示す図である。 図12、図13、図14、図15および図16に示されるように、AAD1がZm Ubi1プロモーターによって駆動される、T葉におけるAAD1発現を示す図である。 ZM Ubi1プロモーターおよびOS Act1プロモーターによって駆動されるYFP発現と比べた、ミナトカモジグサ(Brachypodium distachyon)およびアワ(Setaria italica)の新規なプロモーターによって駆動される一過性YFP発現を示す図である。 ZM Ubi1プロモーターおよびOS Act1プロモーターによって駆動されるYFP発現と比べた、新規なミナトカモジグサ(Brachypodium distachyon)およびアワ(Setaria italica)のプロモーターによって駆動されるカルス組織中のYFP発現を示す図である。 ZM Ubi1プロモーターおよびOS Act1プロモーターによって駆動されるYFP発現と比べた、新規なミナトカモジグサ(Brachypodium distachyon)およびアワ(Setaria italica)のプロモーターによって駆動される根組織中のYFP発現を示す図である。 合成したパニクム・ヴィルガツム(Panicum virgatum)ユビキチン1プロモーター遺伝エレメントおよび隣接するシームレスクローニングオーバーハングの場所を示すプラスミドマップを示す図である。 合成したパニクム・ヴィルガツム(Panicum virgatum)ユビキチン1 3’UTR遺伝エレメントおよび隣接するシームレスクローニングオーバーハングの場所を示すプラスミドマップを示す図である。 合成したミナトカモジグサ(Brachypodium distachyon)ユビキチン1C 3’UTR遺伝エレメントおよび隣接するシームレスクローニングオーバーハングの場所を示すプラスミドマップを示す図である。 合成したミナトカモジグサ(Brachypodium distachyon)ユビキチン1 3’UTR遺伝エレメントおよび隣接するシームレスクローニングオーバーハングの場所を示すプラスミドマップを示す図である。 合成したアワ(Setaria italica)ユビキチン2(SI−Ubi2) 3’UTR遺伝エレメントおよび隣接するシームレスクローニングオーバーハングの場所を示すプラスミドマップを示す図である。 PhiYFPレポーター遺伝子と融合したパニクム・ヴィルガツム(Panicum virgatum)ユビキチン1プロモーター3’UTRを含む発現ベクターを示すプラスミドマップを示す図である。 PhiYFPレポーター遺伝子と融合したミナトカモジグサ(Brachypodium distachyon)ユビキチン1Cプロモーターおよび3’UTRを含む発現ベクターを示すプラスミドマップを示す図である。 PhiYFPレポーター遺伝子と融合したアワ(Setaria italica)ユビキチン2プロモーターおよび3’UTRを含む発現ベクターを示すプラスミドマップを示す図である。 PhiYFPレポーター遺伝子と融合したミナトカモジグサ(Brachypodium distachyon)ユビキチン1プロモーターおよび3’UTRを含む発現ベクターを示すプラスミドマップを示す図である。 ST−LS1イントロンを含む黄色蛍光タンパク質(Phi YFP)マーカー遺伝子コード領域と融合したミナトカモジグサ(Brachypodium distachyon)ユビキチン1Cプロモーター、引き続いてミナトカモジグサ(Brachypodium distachyon)ユビキチン1C 3’UTRを含むフラグメントを含むバイナリー発現ベクターを示すプラスミドマップを示す図である。 ST−LS1イントロンを含む黄色蛍光タンパク質(Phi YFP)マーカー遺伝子コード領域と融合したパニクム・ヴィルガツム(Panicum virgatum)ユビキチン1プロモーター、引き続いてパニクム・ヴィルガツム(Panicum virgatum)ユビキチン1 3’UTRを含むフラグメントを含むバイナリー発現ベクターを示すプラスミドマップを示す図である。 ST−LS1イントロンを含む黄色蛍光タンパク質(Phi YFP)マーカー遺伝子コード領域と融合したアワ(Setaria italica)ユビキチン2プロモーター、引き続いてアワ(Setaria italica)ユビキチン2 3’UTRを含むフラグメントを含むバイナリー発現ベクターを示すプラスミドマップを示す図である。 ST−LS1イントロンを含む黄色蛍光タンパク質(Phi YFP)マーカー遺伝子コード領域と融合したミナトカモジグサ(Brachypodium distachyon)ユビキチン1プロモーター、引き続いてミナトカモジグサ(Brachypodium distachyon)ユビキチン1 3’UTRを含むフラグメントを含むバイナリー発現ベクターを示すプラスミドマップを示す図である。 ミナトカモジグサ(Brachypodium distachyon)ユビキチン1Cコード配列および推定プロモーター(ATGの上流配列)を表す図である。上流プロモーター配列に下線を施し、5’−UTR配列を大文字で示し、イントロンを枠で囲み、Ubi1 CDSをイタリックで示し、3’−UTR(下線)および転写終結配列はTAA(翻訳終止コドン)の下流にある。 (図35−1の続き) ミナトカモジグサ(Brachypodium distachyon)ユビキチン1コード配列および推定プロモーターを表す図である。上流プロモーター配列に下線を施し、5’UTR配列を大文字で示し、イントロンを枠で囲み、CDSをイタリックで示し、3’−UTR(下線)および転写終結配列はTAA(翻訳終止コドン)の下流にある。 (図36−1の続き) アワ(Setaria italica)ユビキチン2コード配列および推定プロモーターを表す図である。上流プロモーターに下線を施し、5’UTR配列を大文字で示し、イントロンを枠で囲み、CDSをイタリックで示し、3’−UTR(下線)および転写終結配列はTAA(翻訳終止コドン)の下流にある。 (図37−1の続き) パニクム・ヴィルガツム(Panicum virgatum)(スイッチグラス)ユビキチン1コード配列および推定プロモーターを表す図である。上流プロモーターに下線を施し、5’UTR配列を大文字で示し、イントロンを枠で囲み、CDSをイタリックで示し、3’−UTR(下線)および転写終結配列はTAA(翻訳終止コドン)の下流にある。 (図38−1の続き)
定義
本発明を記載および主張する際、以下に示される定義にしたがって以下の専門用語を使用する。
本明細書で使用される「約」という用語は、表示されている値または値の範囲より10%大きいまたは小さいことを意味するが、値または値の範囲をこのより広い定義のみに指定することを意図していない。「約」という用語が前にある各値または値の範囲は、表示されている絶対値または値の範囲の実施形態を包含することも意図している。
本明細書で使用する場合、「戻し交配」という用語は、育種家が雑種子孫を親の片方と交配する、例えば、第一世代雑種F1をF1雑種の親遺伝子型の片方と交配する過程を指す。
「プロモーター」は、細胞内のRNAポリメラーゼと結合し、下流(3’方向)コード配列の転写を開始することができるDNA調節領域である。プロモーターは、転写因子によって認識される特異的配列を含み得る。これらの因子は、プロモーターDNA配列に結合することができ、これによってRNAポリメラーゼの動員がもたらされる。本発明を定義する目的で、プロモーター配列は、転写開始部位によってその3’末端で境界付けられ、バックグラウンドより上の検出可能なレベルで転写を開始するために必要な最小数の塩基またはエレメントを含むよう上流(5’方向)に広がる。プロモーター配列中には、転写開始部位(例えば、ヌクレアーゼS1によるマッピングによって好都合に定義される)ならびにRNAポリメラーゼの結合を担うタンパク質結合ドメイン(コンセンサス配列)が見られる。プロモーターは、エンハンサーおよびリプレッサー配列を含む他の発現制御配列と作動可能に結合していてもよい。
本開示の目的で、「遺伝子」は、遺伝子産物(下記参照)をコードするDNA領域、ならびに遺伝子産物の産生を調節する全てのDNA領域を含み、このような調節配列がコード配列および/または転写配列に隣接するかどうかは問わない。したがって、遺伝子は、必ずしもこれに限定されないが、プロモーター配列、ターミネーター、翻訳調節配列、例えば、リボソーム結合部位および配列内リボソーム進入部位、エンハンサー、サイレンサー、インスレーター、境界エレメント、複製起点、マトリックス結合部位および遺伝子座制御領域を含む。
本明細書で使用する場合、「天然」または「自然」という用語は、天然に見られる状態を定義する。「天然DNA配列」は、自然な手段または伝統的な育種技術によって作製され、(例えば、分子生物学/形質転換技術を用いて)遺伝子工学によって生成されていない自然に存在するDNA配列である。
本明細書で使用する場合、「導入遺伝子」は、例えば、それだけに限らないが、mRNAを含む遺伝子産物をコードする核酸配列と定義される。一実施形態では、導入遺伝子が外因性核酸であり、ここでは導入遺伝子配列が、遺伝子工学によって、導入遺伝子が通常では見られない宿主細胞(またはその子孫)に導入されている。一例では、導入遺伝子が、産業的もしくは薬学的に有用な化合物、または所望の農業形質をコードする遺伝子(例えば、除草剤耐性遺伝子)をコードしている。さらに別の例では、導入遺伝子がアンチセンス核酸配列であり、アンチセンス核酸配列の発現によって標的核酸配列の発現が阻害される。一実施形態では、導入遺伝子が、内因性核酸の追加のゲノムコピーが望まれる内因性核酸、または宿主生物中の標的核酸の配列に対してアンチセンスの配向にある核酸である。
本明細書で使用する場合、「非ユビキチン導入遺伝子」という用語は、トウモロコシ(Zea may)ユビキチン1コード配列(配列番号27)と80%未満の配列同一性を有する任意の導入遺伝子である。
本明細書で定義される「遺伝子発現」は、遺伝子に含まれる情報の遺伝子産物への変換である。
本明細書で定義される「遺伝子産物」は、遺伝子によって産生される任意の産物である。例えば、遺伝子産物は、遺伝子の直接転写産物(例えば、mRNA、tRNA、rRNA、アンチセンスRNA、干渉RNA、リボザイム、構造RNAもしくは任意の他の型のRNA)またはmRNAの翻訳によって生成されるタンパク質であり得る。遺伝子産物はまた、キャップ形成、ポリアデニル化、メチル化および編集などの工程によって修飾されたRNA、ならびに例えば、メチル化、アセチル化、リン酸化、ユビキチン化、ADP−リボシル化、ミリスチル化およびグリコシル化によって修飾されたタンパク質も含む。遺伝子発現は、外部シグナル、例えば、細胞、組織または生物の、遺伝子発現を増加または低下させる因子への曝露によって影響を受け得る。遺伝子の発現はまた、DNAからRNA、タンパク質までの経路のどこでも調節され得る。遺伝子発現の調節は、例えば、転写、翻訳、RNA輸送およびプロセシングに作用する制御、mRNAなどの中間分子の分解、または特定のタンパク質分子が作製された後のその分子の活性化、不活性化、区画化もしくは分解、あるいはこれらの組み合わせによって起こる。遺伝子発現は、限定されないが、ノーザンブロット、RT−PCR、ウエスタンブロット、またはインビトロ、インサイチュもしくはインビボタンパク質活性アッセイ(複数可)を含む当技術分野で既知の任意の方法によってRNAレベルまたはタンパク質レベルで測定することができる。
本明細書で使用する場合、「イントロン」という用語は、転写されるが翻訳されない遺伝子(または対象となる発現したヌクレオチド配列)中に含まれる任意の核酸配列と定義される。イントロンは、DNAの発現した配列中の非翻訳核酸配列、ならびにそこから転写されたRNA分子の対応する配列を含む。本明細書に記載される構築物は、イントロンなどの翻訳および/またはmRNA安定性を増強する配列も含むことができる。1つのこのようなイントロンの例には、シロイヌナズナ(Arabidopsis thaliana)のヒストンH3変異体の遺伝子IIの第1のイントロンまたは任意の他の一般的に知られているイントロン配列がある。イントロンをプロモーター配列と組み合わせて使用して翻訳および/またはmRNA安定性を増強することができる。
本明細書で使用する場合、「5’非翻訳領域」または「5’−UTR」という用語は、プレmRNAまたは成熟mRNAの5’末端の非翻訳セグメントと定義される。例えば、成熟mRNAでは、5’−UTRは、典型的にはその5’末端に7−メチルグアノシンキャップを持ち、スプライシング、ポリアデニル化、細胞質に向けたmRNA輸送、翻訳装置によるmRNAの5’末端の同定、および分解からのmRNAの保護などの多くの過程に関与している。
本明細書で使用する場合、「転写ターミネーター」という用語は、プレmRNAまたは成熟mRNAの3’末端の転写セグメントと定義される。例えば、「ポリアデニル化シグナル」部位を越えたより長い長さのDNAがプレmRNAとして転写される。このDNA配列は通常、プレmRNAの成熟mRNAへの適切なプロセシングのための1つまたは複数の転写終結シグナルを含む。
本明細書で使用する場合、「3’非翻訳領域」または「3’−UTR」という用語は、プレmRNAまたは成熟mRNAの3’末端の非翻訳セグメントと定義される。例えば、成熟mRNAでは、この領域はポリ(A)テールを持ち、mRNA安定性、翻訳開始およびmRNA輸送において多くの役割を有することが知られている。
本明細書で使用する場合、「ポリアデニル化シグナル」という用語は、ポリ(A)ポリメラーゼが存在する場合、転写産物が、例えば、ポリ(A)シグナルの10〜30塩基下流に位置するポリアデニル化部位でポリアデニル化されることを可能にする、mRNA転写産物中に存在する核酸配列を示す。多くのポリアデニル化シグナルが当技術分野で知られており、本発明に有用である。例示的な配列には、Loke J., et al.,(2005) Plant Physiology 138 (3); 1457-1468に記載されているAAUAAAおよびその変異形が含まれる。
本明細書で使用される「単離された」という用語は、自然環境から取り出されたまたは化合物が最初に形成された時に存在する他の化合物から取り出されたことを意味する。「単離された」という用語は、自然源から単離された材料ならびに宿主細胞中での組換え発現による調製後に回収された材料(例えば、核酸およびタンパク質)または核酸分子、タンパク質およびペプチドなどの化学的に合成された化合物を包含する。
本明細書で使用される「精製された」という用語は、天然または自然環境で分子または化合物と通常は会合している夾雑物を実質的に含まない形態、あるいは化合物が最初に形成された際に存在する他の化合物に対して実質的に高濃度にされる形態の分子または化合物の単離に関し、元の組成物の他の成分から分離された結果として純度が増加していることを意味する。「精製された核酸」という用語は、本明細書において、成分中の化学的または機能的変化をもたらしながら、それだけに限らないが、ポリペプチド、脂質および炭水化物を含む他の生物学的化合物から分離された、それとは別に生成された、またはそれから離れて精製された核酸配列を記載するために使用される(例えば、核酸は、タンパク質夾雑物を除去し、核酸と染色体中に残っているDNAとを結合している化学結合を破壊することによって、染色体から精製され得る)。
本明細書で使用する場合、「相同性ベースの遺伝子サイレンシング」または「HBGS」は、転写型遺伝子サイレンシングと転写後遺伝子サイレンシングの両方を含む総称用語である。非連結のサイレンシング遺伝子座による標的遺伝子座のサイレンシングは、それぞれ、プロモーターまたは転写配列に対応する二本鎖RNA(dsRNA)の生成による転写阻害(転写型遺伝子サイレンシング;TGS)またはmRNA分解(転写後遺伝子サイレンシング;PTGS)から生じ得る。各工程に別個の細胞成分が関与していることは、dsRNA誘導TGSおよびPTGSがおそらく古代の共通の機構の多様化から生じていることを示唆している。しかしながら、TGSとPTGSの厳密な比較は、概して別個のサイレンシング遺伝子座の分析に依存するので、達成が困難であった。単一の導入遺伝子座が、異なる標的遺伝子のプロモーターおよび転写配列に対応するdsRNAの生成に起因して、TGSとPTGSの両方を誘因すると記載され得る。
本明細書で使用する場合、「核酸分子」、「核酸」または「ポリヌクレオチド」という用語(全3つの用語は互いに同義である)は、RNA、cDNA、ゲノムDNAおよび合成型ならびにこれらの混合ポリマーのセンス鎖とアンチセンス鎖の両方を含み得るヌクレオチドのポリマー型を指す。「ヌクレオチド」は、リボヌクレオチド、デオキシリボヌクレオチドまたはいずれかの型のヌクレオチドの修飾型を指し得る。核酸分子は、特に指定しない限り、通常少なくとも10塩基長である。これらの用語は不定の長さのRNAまたはDNAの分子を指し得る。これらの用語はDNAの一本鎖型および二本鎖型を含む。核酸分子は、天然および/または非天然ヌクレオチド連結によって連結した天然および修飾ヌクレオチドのいずれかまたは両方を含み得る。
核酸分子は、当業者によって容易に認識されるように、化学的もしくは生化学的に修飾されていてもよく、または非天然もしくは誘導体化ヌクレオチド塩基を含んでいてもよい。このような修飾には、例えば、標識、メチル化、天然ヌクレオチドの1個または複数の類似体による置換、ヌクレオチド間修飾(例えば、非荷電連結:例えば、メチルホスホン酸、ホスホトリエステル、ホスホロアミド酸、カルバメート(carbamate)等;荷電連結:例えば、ホスホロチオエート(phosphorothioate)、ホスホロジチオエート(phosphorodithioate)等;ペンダント部分:例えばペプチド;インターカレーター:例えば、アクリジン、ソラレン等;キレート剤;アルキル化剤;および修飾連結:例えば、αアノマー核酸等)が含まれる。「核酸分子」という用語はまた、一本鎖、二本鎖、部分二重鎖、三重鎖、ヘアピン型、円形、およびパドロック型(padlocked)立体配座を含む任意のトポロジー立体配座が挙げられる。
転写はDNA鎖に沿って5’から3’への様式で進行する。これは、(ピロリン酸の必須の除去とともに)リボヌクレオチド−5’−三リン酸が成長している鎖の3’末端に逐次付加することによってRNAが作製されることを意味する。鎖状または環状核酸分子のいずれにおいても、別個のエレメント(例えば、特定のヌクレオチド配列)が、さらなるエレメントから5’方向にある同一の核酸に結合しているかまたは結合することになる場合、別個のエレメントをさらなるエレメントに対して「上流」にあると呼ぶことができる。同様に、別個のエレメントが、さらなるエレメントから3’方向にある同一の核酸に結合しているまたは結合する場合に、さらなるエレメントに対して「下流」となり得る。
本明細書で使用する場合、「塩基位置」という用語は、指定された核酸中の所与の塩基またはヌクレオチド残基の場所を指す。指定された核酸は、参照の核酸とのアラインメントによって定義され得る。
本明細書で使用する場合、「ハイブリダイゼーション」という用語は、相補的塩基間のワトソン−クリック、フーグスティーン型または逆フーグスティーン型水素結合を含む水素結合によってオリゴヌクレオチドおよびその類似体がハイブリダイズする過程を指す。一般的に、核酸分子は、ピリミジン(シトシン(C)、ウラシル(U)およびチミン(T))またはプリン(アデニン(A)およびグアニン(G))のいずれかの窒素塩基からなる。これらの窒素塩基は、ピリミジンとプリンとの間で水素結合を形成し、ピリミジンとプリンの結合を「塩基対形成」と呼ぶ。より具体的には、AはTまたはUと水素結合し、GはCと結合する。「相補的」とは、2つの別個の核酸配列または同じ核酸配列の2つの別個の領域間で生じる塩基対形成を指す。
本明細書で使用する場合、「特異的にハイブリダイズ可能」および「特異的に相補的」という用語は、オリゴヌクレオチドとDNAまたはRNA標的との間で、安定で特異的な結合が起こるような十分な程度の相補性を指す。オリゴヌクレオチドは、特異的にハイブリダイズするためにその標的配列と100%相補的である必要はない。オリゴヌクレオチドと標的DNAまたはRNA分子の結合が標的DNAまたはRNAの正常な機能を妨害し、特異的結合が望まれる条件下、例えば、インビボアッセイまたは系の場合に生理学的条件下で、オリゴヌクレオチドと非標的配列の非特異的結合を回避するのに十分な程度の相補性がある場合に、オリゴヌクレオチドは特異的にハイブリダイズ可能である。このような結合を特異的ハイブリダイゼーションと呼ぶ。特定の程度のストリンジェンシーをもたらすハイブリダイゼーション条件は、選択されるハイブリダイゼーション法の性質ならびにハイブリダイズする核酸配列の組成および長さに応じて変化する。一般的に、ハイブリダイゼーションの温度およびハイブリダイゼーション緩衝液のイオン強度(特に、Naおよび/またはMg2+濃度)がハイブリダイゼーションのストリンジェンシーに寄与するが、洗浄時間もストリンジェンシーに影響を及ぼす。特定の程度のストリンジェンシーを達成するのに要するハイブリダイゼーション条件に関する計算は、Sambrook et al. (ed.), Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989, chs. 9 and 11に論じられている。
本明細書で使用する場合、「ストリンジェントな条件」という用語は、ハイブリダイゼーション分子とDNA標的との間でのミスマッチが50%未満である場合にのみハイブリダイゼーションが起こる条件を包含する。「ストリンジェントな条件」は、さらなる特定のレベルのストリンジェンシーを含む。したがって、本明細書で使用する場合、「中等度のストリンジェンシー」条件とは、50%超の配列ミスマッチを有する分子がハイブリダイズしない条件であり、「高いストリンジェンシー」の条件とは、20%超のミスマッチを有する配列がハイブリダイズしない条件であり、「極めて高いストリンジェンシー」の条件とは、10%超のミスマッチを有する配列がハイブリダイズしない条件である。特定の実施形態では、ストリンジェントな条件が、65℃でのハイブリダイゼーション、引き続いて65℃で0.1×SSC/0.1%SDSによる40分間の洗浄を含むことができる。以下が代表的で、非限定的なハイブリダイゼーション条件である。
・極めて高いストリンジェンシー:5×SSC緩衝液中65℃で16時間のハイブリダイゼーション;2×SSC緩衝液中室温でそれぞれ15分間の2回の洗浄;および0.5×SSC緩衝液中65℃でそれぞれ20分間の2回の洗浄。
・高いストリンジェンシー:5〜6×SSC緩衝液中65〜70℃で16〜20時間のハイブリダイゼーション;2×SSC緩衝液中室温でそれぞれ5〜20分間の2回の洗浄;および1×SSC緩衝液中55〜70℃でそれぞれ30分間の2回の洗浄。
・中等度のストリンジェンシー:6×SSC緩衝液中室温〜55℃で16〜20時間のハイブリダイゼーション;2×〜3×SSC緩衝液中室温〜55℃でそれぞれ20〜30分間の少なくとも2回の洗浄。
実施形態では、特異的にハイブリダイズ可能な核酸分子が、極めて高いストリンジェンシーハイブリダイゼーション条件下で結合したままであることができる。実施形態では、特異的にハイブリダイズ可能な核酸分子が、高いストリンジェンシーハイブリダイゼーション条件下で結合したままであることができる。実施形態では、特異的にハイブリダイズ可能な核酸分子が、中等度のストリンジェンシーハイブリダイゼーション条件下で結合したままであることができる。
本明細書で使用する場合、「オリゴヌクレオチド」という用語は、短い核酸ポリマーを指す。オリゴヌクレオチドは、より長い核酸セグメントの切断によって、または個々のヌクレオチド前駆体を重合することによって形成され得る。自動化合成装置によって、最大数百塩基対長のオリゴヌクレオチドの合成が可能になる。オリゴヌクレオチドは相補的ヌクレオチド配列に結合することができるので、DNAまたはRNAを検出するためのプローブとして使用することができる。DNAで構成されたオリゴヌクレオチド(オリゴデオキシリボヌクレオチド)を、PCR、すなわち小型DNA配列の増幅のための技術に使用することができる。PCRでは、オリゴヌクレオチドを典型的には「プライマー」と呼び、プライマーによってDNAポリメラーゼがオリゴヌクレオチドを伸長し、相補鎖を複製することが可能になる。
本明細書で使用する場合、「ポリメラーゼ連鎖反応」または「PCR」という用語は、1987年7月28日に付与された米国特許第4683195号に記載されているように、微量の核酸、RNAおよび/またはDNAを増幅する手順または技術を定義する。一般的に、オリゴヌクレオチドプライマーを設計することができるように、対象となる領域の末端からのまたはこれを超えた配列情報が入手可能である必要があり、これらのプライマーは増幅される鋳型の逆ストランドと配列が同一または類似である。2つのプライマーの5’末端ヌクレオチドは増幅される材料の末端と一致し得る。PCRを使用して特異的RNA配列、全ゲノムDNAからの特異的DNA配列および全細胞RNAから転写されたcDNA、バクテリオファージまたはプラスミド配列等を増幅することができる。一般的に、Mullis et al., Cold Spring Harbor Symp. Quant. Biol., 51: 263 (1987); Erlich, ed., PCR Technology, (Stockton Press, NY, 1989) を参照されたい。
本明細書で使用する場合、「プライマー」という用語は、条件がプライマー伸長産物の合成に適している場合に、相補鎖に沿って合成の開始点として作用することができるオリゴヌクレオチドを指す。合成条件は、4つの異なるデオキシリボヌクレオチド三リン酸と逆転写酵素またはDNAポリメラーゼなどの少なくとも1種の重合誘導剤の存在を含む。これらは、補助因子である構成成分または種々の適当な温度でpHなどの条件に影響を及ぼす構成成分を含んでもよい適当な緩衝液中に存在する。プライマーは、好ましくは増幅効率が最適化されるような一本鎖配列であるが、二本鎖配列を利用することもできる。
本明細書で使用する場合、「プローブ」という用語は、標的配列とハイブリダイズするオリゴヌクレオチドを指す。TaqMan(登録商標)またはTaqMan(登録商標)−スタイルアッセイ手順では、プローブが2つのプライマーのアニーリング部位間に位置する標的の部分にハイブリダイズする。プローブは、約8個のヌクレオチド、約10個のヌクレオチド、約15個のヌクレオチド、約20個のヌクレオチド、約30個のヌクレオチド、約40個のヌクレオチドまたは約50個のヌクレオチドを含む。いくつかの実施形態では、プローブが約8個のヌクレオチド〜約15個のヌクレオチドを含む。プローブは、検出可能な標識、例えば、蛍光体(Texas−Red(登録商標)、フルオレセインイソチオシアネート等)をさらに含むことができる。検出可能な標識は、例えば、プローブの5’末端またはプローブの3’末端に位置するプローブオリゴヌクレオチドに直接共有結合することができる。蛍光体を含むプローブは、消光剤、例えば、Black Hole Quencher(商標)、Iowa Black(商標)等をさらに含んでもよい。
本明細書で使用する場合、「配列同一性」または「同一性」という用語は、互換的に使用され、指定された比較窓にわたって最大の一致で整列させる場合に同一である2つの配列中の核酸残基を指すことができる。
本明細書で使用する場合、「配列同一性の百分率」という用語は、比較窓にわたって2つの最適に整列された配列(例えば、核酸配列またはアミノ酸配列)を比較することによって決定される値を指し、比較窓中の配列の部分は、2つの配列の最適アラインメントのために、参照配列(付加または欠失を含まない)と比べて付加または欠失(すなわち、ギャップ)を含んでもよい。百分率は、同一の核酸またはアミノ酸残基が両配列中で生じる位置の数を決定して一致した位置の数を得て、一致した位置の数を比較窓中の位置の総数で割り、結果に100を掛けて配列同一性の百分率を得ることによって計算される。比較のために配列を整列する方法は周知である。種々のプログラムおよびアラインメントアルゴリズムが、例えば、Smith and Waterman (1981) Adv. Appl. Math. 2: 482; Needleman and Wunsch (1970) J. Mol. Biol. 48: 443; Pearson and Lipman (1988) Proc. Natl. Acad. Sci. U.S.A. 85: 2444; Higgins and Sharp (1988) Gene 73: 237-44; Higgins and Sharp (1989) CABIOS 5: 151-3; Corpet et al. (1988) Nucleic Acids Res. 16:10881-90; Huang et al. (1992) Comp. Appl. Biosci. 8: 155-65; Pearson et al. (1994) Methods Mol. Biol. 24: 307-31; Tatiana et al. (1999) FEMS Microbiol. Lett. 174: 247-50に記載されている。
国立生物工学情報センター(NCBI)Basic Local Alignment Search Tool(BLAST(商標);Altschul et al. (1990) J. Mol. Biol. 215: 403-10)は、いくつかの配列解析プログラムと合わせて使用するために、国立生物工学情報センター(Bethesda、MD)を含むいくつかの供給源からおよびインターネットで入手可能である。このプログラムを用いてどのように配列同一性を決定するのかについての説明は、BLAST(商標)の「ヘルプ」節においてインターネット上で入手可能である。核酸配列を比較するために、デフォルトパラメータを用いてBLAST(商標)(Blastn)プログラムの「Blast2配列」関数を使用することができる。参照配列に対してさらに大きな類似性を有する核酸配列は、この方法で評価する場合に増加性の同一性百分率を示す。
本明細書で使用する場合、「作動可能に連結している」という用語は、互いに機能的関係になっている2つの成分を指す。調節配列およびコード配列に関して使用する場合、「作動可能に連結している」という用語は、調節配列が、連結しているコード配列の発現に影響を及ぼすことを意味する。「調節配列」、「調節エレメント」または「制御エレメント」は、関連するコード配列の転写、RNAプロセシングもしくは安定性、または翻訳のタイミングおよびレベル/量に影響を及ぼす核酸配列を指す。調節配列には、プロモーター;翻訳リーダー配列;5’および3’非翻訳領域、イントロン;エンハンサー;ステム−ループ構造;リプレッサー結合配列;終結配列;ポリアデニル化認識配列等が含まれ得る。特定の調節配列は、これと作動可能に連結しているコード配列の上流および/または下流に位置し得る。また、コード配列と作動可能に連結している特定の調節配列は、二本鎖核酸分子の関連する相補鎖上に位置し得る。連結は、好都合な制限部位でのライゲーションによって達成され得る。このような部位が存在しない場合、合成オリゴヌクレオチドアダプターまたはリンカーを慣用的実務にしたがって使用する。しかしながら、エレメントが作動可能に連結するように連続している必要はない。
本明細書で使用する場合、「形質転換」という用語は、核酸分子をこのような細胞に導入することができる全ての技術を包含する。例としては、それだけに限らないが、ウイルスベクターによるトランスフェクション;プラスミドベクターによる形質転換;電気穿孔;リポフェクション;微量注入(Mueller et al. (1978) Cell 15: 579-85);アグロバクテリウム(Agrobacterium)媒介移入;直接DNA取り込み;ウィスカー媒介形質転換;および微粒子銃が挙げられる。
本明細書で使用する場合、「形質導入する」という用語は、ウイルスが核酸を細胞内に移入する過程を指す。
本明細書で使用される「ポリリンカー」または「マルチクローニング部位」という用語は、核酸配列上の互いに10ヌクレオチド以内に位置する3つ以上の2型制限酵素部位のクラスターを定義する。ポリリンカーを含む構築物は、遺伝子のコード領域などの核酸配列の挿入および/または切除に利用される。
本明細書で使用する場合、「制限エンドヌクレアーゼ」および「制限酵素」という用語は、その各々が特異的ヌクレオチド配列でまたはその近くで二本鎖DNAを切断する細菌酵素を指す。2型制限酵素は、同部位でDNAを認識および切断し、これらの酵素には、それだけに限らないが、XbaI、BamHI、HindIII、EcoRI、XhoI、SalI、KpnI、AvaI、PstIおよびSmaIが含まれる。
「ベクター」という用語は、「構築物」、「クローニングベクター」および「発現ベクター」という用語と互換的に使用され、宿主を形質転換し、導入配列の発現(例えば、転写および翻訳)を促進するために、DNAまたはRNA配列(例えば、外来遺伝子)を宿主細胞に導入することができる運搬体(vehicle)を意味する。「非ウイルスベクター」は、ウイルスまたはレトロウイルスを含まないベクターを意味することを意図している。いくつかの実施形態では、「ベクター」が、少なくとも1つのDNA複製起点と少なくとも1つの選択可能なマーカー遺伝子とを含むDNAの配列である。例としては、それだけに限らないが、外因性DNAを細胞内に運ぶプラスミド、コスミド、バクテリオファージ、細菌人工染色体(BAC)またはウイルスが挙げられる。ベクターは1つまたは複数の遺伝子、アンチセンス分子、および/または選択マーカー遺伝子ならびに当技術分野で既知の他の遺伝エレメントを含むこともできる。ベクターは、細胞に形質導入、細胞を形質転換または細胞に感染し、それによってその細胞に、ベクターによってコードされた核酸分子および/またはタンパク質を発現させることができる。
「プラスミド」という用語は、原核または真核宿主細胞中のいずれかで常染色体複製が可能な核酸の環状鎖を定義する。この用語は、DNAまたはRNAのいずれであってもよく、一本鎖または二本鎖のいずれであってもよい核酸を含む。定義のプラスミドは、細菌複製起点に相当する配列も含み得る。
本明細書で使用される「選択マーカー遺伝子」という用語は、選択マーカー遺伝子が挿入された細胞の同定を容易にするタンパク質をコードする遺伝子または他の発現カセットを定義する。例えば、「選択マーカー遺伝子」は、レポーター遺伝子ならびに例えば、植物細胞を選択剤から保護するまたは選択剤に対する耐性/許容性を与えるために植物形質転換に使用される遺伝子を包含する。一実施形態では、機能的な選択マーカーを受容している細胞または植物のみが、選択剤を有する条件下で分裂または成長することができる。選択剤の例としては、例えば、スペクチノマイシン、ネオマイシン、カナマイシン、パロモマイシン、ゲンタマイシンおよびハイグロマイシンを含む抗生物質が挙げられる。これらの選択マーカーには、抗生物質カナマイシンに対する耐性を与える酵素を発現するネオマイシンホスホトランスフェラーゼ(npt II)、ならびに関連抗生物質ネオマイシン、パロモマイシン、ゲンタマイシンおよびG418に関する遺伝子、またはハイグロマイシンに対する耐性を与える酵素を発現するハイグロマイシントランスフェラーゼ(hpt)の遺伝子が挙げられる。他の選択マーカー遺伝子には、barまたはpatを含む除草剤耐性(グルホシネートアンモニウムまたはホスフィノトリシンに対する耐性)、アセト乳酸シンターゼ(ALS、スルホニル尿素(SU)、イミダゾリノン(IMI)、トリアゾロピリミジン(TP)、ピリミジニルオキシベンゾエート(POB)および分岐鎖アミノ酸の合成の最初のステップを妨げるスルホニルアミノカルボニルトリアゾリノンなどの阻害剤に対する耐性)、グリホサート、2,4−Dおよび金属耐性または感受性をコードする遺伝子が含まれ得る。選択マーカー遺伝子として使用することができる「レポーター遺伝子」の例としては、β−グルクロニダーゼ(GUS)、ルシフェラーゼ、緑色蛍光タンパク質(GFP)、黄色蛍光タンパク質(YFP)、DsRed、β−ガラクトシダーゼ、クロラムフェニコールアセチルトランスフェラーゼ(CAT)、アルカリホスファターゼなどをコードするタンパク質などの発現したレポーター遺伝子タンパク質の目視観察が挙げられる。「マーカー陽性」という句は、選択マーカー遺伝子を含むよう形質転換された植物を指す。
本明細書で使用する場合、「検出可能なマーカー」という用語は、例えば、放射性同位体、蛍光化合物、生物発光化合物、化学発光化合物、金属キレート剤または酵素などの検出を可能にする標識を指す。検出可能なマーカーの例としては、それだけに限らないが、以下が挙げられる:蛍光標識(例えば、FITC、ローダミン、ランタニド蛍光体)、酵素標識(例えば、西洋ワサビペルオキシダーゼ、β−ガラクトシダーゼ、ルシフェラーゼ、アルカリホスファターゼ)、化学発光体、ビオチニル基、二次レポーターによって認識される所定のポリペプチドエピトープ(例えば、ロイシンジッパー対配列、二次抗体の結合部位、金属結合ドメイン、エピトープタグ)。実施形態では、検出可能なマーカーを種々の長さのスペーサーアームによって結合して潜在的な立体障害を減少させることができる。
本明細書で使用する場合、「検出する」という用語は、特異的分子の定性的測定と定量的測定の両方、例えば、特異的ポリペプチドの測定を含むよう最も広義に使用される。
本明細書で使用する場合、「カセット」、「発現カセット」および「遺伝子発現カセット」という用語は、特異的制限部位でまたは相同組換えによって核酸またはポリヌクレオチドに挿入することができるDNAのセグメントを指す。本明細書で使用する場合、DNAのセグメントは、対象となるポリペプチドをコードするポリヌクレオチドを含み、カセットおよび制限部位が、確実にカセットを転写および翻訳のための適切な読み枠に挿入するよう設計される。実施形態では、発現カセットが、対象となるポリペプチドをコードするポリヌクレオチドを含み、ポリヌクレオチドに加えて、特定の宿主細胞の形質転換を促進するエレメントを有することができる。実施形態では、遺伝子発現カセットが、宿主細胞中での対象となるポリペプチドをコードするポリヌクレオチドの発現増強を可能にするエレメントも含み得る。これらのエレメントには、それだけに限らないが、プロモーター、ミニマルプロモーター、エンハンサー、応答エレメント、ターミネーター配列、ポリアデニル化配列などが含まれ得る。
本明細書で使用する場合、「リンカー」または「スペーサー」は、2つの別々の実体を互いに結合する結合、分子または分子の群である。リンカーおよびスペーサーは、2つの実体の最適間隔を提供する、または2つの実体が互いに離れていることを可能にする不安定な連結をさらに提供することができる。不安定な連結には、光切断基、酸不安定部分、塩基不安定部分および酵素切断可能な基が含まれる。
本明細書で使用する場合、「対照」という用語は、比較目的で分析手順に使用される試料を指す。対照は「陽性」であっても「陰性」であってもよい。例えば、分析手順の目的が、細胞または組織中で差次的に発現した転写産物またはポリペプチドを検出することである場合、所望の発現を示している既知の植物からの試料などの陽性対照、および所望の発現を欠いている既知の植物からの試料などの陰性対照を含めることが一般的に好ましい。
本明細書で使用する場合、「植物」という用語は、全植物および植物の任意の子孫、細胞、組織または部分を含む。本発明に使用することができる植物のクラスは、一般的に被子植物(単子葉および双子葉植物)、裸子植物、シダおよび多細胞藻類を含む、突然変異誘発で修正可能な高等植物および下等植物のクラスと同じくらい広い。したがって、「植物」には双子葉および単子葉植物が含まれる。「植物部分」という用語には、例えば、限定されないが、種子(成熟種子および未成熟種子を含む);植物挿穂;植物細胞;植物細胞培養物;植物器官(例えば、花粉、胚、花、果実、シュート、葉、根、茎および外植片)を含む植物の任意の部分(複数可)が含まれる。植物組織または植物器官は、種子、プロトプラスト、カルス、または構造もしくは機能単位に組織化される植物細胞の任意の他の群であり得る。植物細胞または組織培養物は、細胞または組織を得た植物の生理学的および形態学的特徴を有する植物を再生することができ、その植物と実質的に同じ遺伝子型を有する植物を再生することができるだろう。対照的に、いくつかの植物細胞は、植物を作製するために再生することができない。植物細胞または組織培養物に再生可能な細胞は、胚、プロトプラスト、分裂組織細胞、カルス、花粉、葉、葯、根、根端、ひげ、花、仁、穂、穂軸、殻または柄であり得る。
植物部分には、収穫可能な部分および子孫植物の繁殖に有用な部分が含まれる。繁殖に有用な植物部分には、例えば、限定されないが、種子;果実;挿穂;実生;塊茎および根茎が含まれる。植物の収穫可能な部分は、例えば、限定されないが、花;花粉;実生;塊茎;葉;茎;果実;種子;および根を含む植物の任意の有用な部分であり得る。
植物細胞は、プロトプラストおよび細胞壁を含む、植物の構造的および生理学的単位である。植物細胞は、単離された単一細胞であってもまたは細胞の集合体(例えば、もろいカルスおよび培養細胞)であってもよく、高次組織単位(例えば、植物組織、植物器官および植物)の一部であってもよい。したがって、植物細胞は、プロトプラスト、配偶子産生細胞、または完全な植物に再生することができる細胞もしくは細胞の集合であり得る。したがって、複数の植物細胞を含み、完全な植物に再生することができる種子は、本明細書の実施形態では「植物細胞」とみなされる。
本明細書で使用される「プロトプラスト」という用語は、その細胞壁が完全にまたは部分的に除去され、その脂質二重層膜がむき出しになっている植物細胞を指し、したがって、その細胞壁が完全に除去されたプロトプラスト、およびその細胞壁が部分的にのみ除去されたスフェロプラストを含むが、これらに限定されない。典型的には、プロトプラストは、細胞培養物または完全な植物に再生する能力を有する、細胞壁を有さない単離植物細胞である。
具体的に説明しない限り、本明細書で使用される全ての技術的および科学的用語は、本開示が属する技術分野の当業者によって一般的に理解されるのと同じ意味を有する。分子生物学の共通語の定義は、例えば、Lewin, Genes V, Oxford University Press, 1994 (ISBN 0-19-854287-9);Kendrew et al. (eds.), The Encyclopedia of Molecular Biology, Blackwell Science Ltd., 1994 (ISBN 0-632-02182-9);およびMeyers (ed.), Molecular Biology and Biotechnology: A Comprehensive Desk Reference, VCH Publishers, Inc., 1995 (ISBN 1-56081-569-8) に見出すことができる。
実施形態
本明細書で開示されるように、パニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)由来のユビキチン遺伝子の調節配列を用いて非ユビキチン導入遺伝子を発現させるための新規な組換え構築物が提供される。これらの構築物を使用して植物細胞を含む細胞を形質転換し、その細胞内で導入遺伝子産物を発現する完全な生物を作製することができる。
調節エレメント
基礎研究または生物工学用途に使用される植物プロモーターは、一般的に一方向性であり、その3’末端(下流)に融合されている1つの遺伝子のみを管理する。代謝工学および形質スタッキングのためには、通常、複数の遺伝子を植物に導入することが必要であるので、複数の遺伝子の発現を駆動するために、典型的には、複数のプロモーターがトランスジェニック作物に必要である。
トランスジェニック産物の開発は、ますます複雑になっており、複数の導入遺伝子を単一遺伝子座に積み重ねることが要求されている。伝統的には、各導入遺伝子が通常は発現のためのプロモーターを要し、1つの遺伝子スタック内で異なる導入遺伝子を発現させるために複数のプロモーターが要求される。これは、しばしば単一のポリジーン形質の発現のために異なる遺伝子の類似レベルの発現パターンを得るために1つの導入遺伝子スタック内で同じプロモーターを繰り返し使用することにつながる。同じプロモーターによって駆動される多重遺伝子構築物は、この分野であまり有効でないトランスジェニック産物をもたらす遺伝子サイレンシングを引き起こすことが知られている。プロモーター反復による過剰な転写因子(TF)−結合部位のために、転写不活性化につながる内因性TFの欠乏が引き起こされ得る。導入遺伝子のサイレンシングは、導入遺伝子を発現させるために作製されたトランスジェニック植物の性能におそらく望ましくない影響を及ぼす。導入遺伝子中の反復配列は、ポリヌクレオチド再配列をもたらす遺伝子の遺伝子座内相同組換えにつながり得る。
遺伝子スタック内での異なる導入遺伝子の発現に様々なプロモーターを使用することが望ましい。実施形態では、異なる植物種から得られた様々な構成的ユビキチンが、RNAi、人工miRNAまたはヘアピン−ループRNA配列を含む複数の転写単位の転写を駆動することができる。
植物中で非ユビキチン導入遺伝子を発現させるために構成的ユビキチン(Ubi1)プロモーターを使用する方法および構築物が提供される。実施形態では、プロモーターがミナトカモジグサ(Brachypodium distachyon)ユビキチン1C(Ubi1C)プロモーターであり得る。
CTGCTCGTTCAGCCCACAGTAACACGCCGTGCGACATGCAGATGCCCTCCACCACGCCGACCAACCCCAAGTCCGCCGCGCTCGTCCACGGCGCCATCCGCATCCGCGCGTCAACGTCATCCGGAGGAGGCGAGCGCGATGTCGACGGCCACGGCGGCGGCGGACACGACGGCGACGCCCCGACTCCGCGCGCGCGTCAAGGCTGCAGTGGCGTCGTGGTGGCCGTCCGCCTGCACGAGATCCCCGCGTGGACGAGCGCCGCCTCCACCCAGCCCCTATATCGAGAAATCAACGGTGGGCTCGAGCTCCTCAGCAACCTCCCCACCCCCCCTTCCGACCACGCTCCCTTCCCCCGTGCCCCTCTTCTCCGTAAACCCGAGCCGCCGAGAACAACACCAACGAAAGGGCGAAGAGAATCGCCATAGAGAGGAGATGGGCGGAGGCGGATAGTTTCAGCCATTCACGGAGAAATGGGGAGGAGAGAACACGACATCATACGGACGCGACCCTCTAGCTGGCTGGCTGTCCTAAAGAATCGAACGGAATCGCTGCGCCAGGAGAAAACGAACGGTCCTGAAGCATGTGCGCCCGGTTCTTCCAAAACACTTATCTTTAAGATTGAAGTAGTATATATGACTGAAATTTTTACAAGGTTTTTCCCCATAAAACAGGTGAGCTTATCTCATCCTTTTGTTTAGGATGTACGTATTATATATGACTGAATATTTTTTATTTTCATTGAATGAAGATTTTCGACCCCCCAAAAATAAAAAACGGAGGGAGTACCTTTGTGCCGTGTATATGGACTAGAGCCATCGGGACGTTTCCGGAGACTGCGTGGTGGGGGCGATGGACGCACAACGACCGCATTTTCGGTTGCCGACTCGCCGTTCGCATCTGGTAGGCACGACTCGTCGGGTTCGGCTCTTGCGTGAGCCGTGACGTAACAGACCCGTTCTCTTCCCCCGTCTGGCCATCCATAAATCCCCCCTCCATCGGCTTCCCTTTCCTCAATCCAGCACCCTGATT(配列番号1)
実施形態では、プロモーターがミナトカモジグサ(Brachypodium distachyon)ユビキチン1(Ubi1)プロモーターであり得る。
GGCGTCAGGACTGGCGAAGTCTGGACTCTGCAGGGCCGAACTGCTGAAGACGAAGCAGAGGAAGAGAAAGGGAAGTGTTCGACTTGTAATTTGTAGGGGTTTTTTTTAGAGGAACTTGTAATTTGTAGGTGGGCTGGCCTCGTTGGAAAAACGATGCTGGCTGGTTGGGCTGGGCCGATGTACGCTTGCAAACAACTTGTGGCGGCCCGTTCTGGACGAGCAGGAGTTTCTTTTTTGTTCTCACTTTTCTGGTCTTCTTTAGTTACGGAGTACCTTTTGTTTTTTAAAGGAGTTACCTTTTTTTTAGGAATTCTTTAGTTACCTTTCGCTTGCTCTCAAAAAATATTTAACTTTCGCTTTTTTTCATTTTAATTTTTGCAACTATTTACGAGTTTCATGAATGCTTATTTTCCAGCATATCATTATTTGCAAGTATTTTTATGCCGTATGTATTGGACGAGAGCCATCGGGACTGTTCCAGAGACTGCGTGGTGGGGACGGCTCCCAACCGCCTTTTCTATCTCTGTTCGCATCCGGTGGCCGACTTGGCTCGCGCGTGAGCCGTGACGTAACAGACTTGGTCTCTTCCCCATCTGGCCATCTATAAATTCCCCCATCGATCGACCCTCCCTTTCC(配列番号2)
実施形態では、プロモーターがアワ(Setaria italica)ユビキチン2(Ubi2)プロモーターであり得る。
TGCGTCTGGACGCACAAGTCATAGCATTATCGGCTAAAATTTCTTAATTTCTAAATTAGTCATATCGGCTAAGAAAGTGGGGAGCACTATCATTTCGTAGAACAAGAACAAGGTATCATATATATATATATATATAATATTTAAACTTTGTTAAGTGGAATCAAAGTGCTAGTATTAATGGAGTTTCATGTGCATTAAATTTTATGTCACATCAGCAATTTTGTTGACTTGGCAAGGTCATTTAGGGTGTGTTTGGAAGACAGGGGCTATTAGGAGTATTAAACATAGTCTAATTACAAAACTAATTGCACAACCGCTAAGCTGAATCGCGAGATGGATCTATTAAGCTTAATTAGTCCATGATTTGACAATGTGGTGCTACAATAACCATTTGCTAATGATGGATTACTTAGGTTTAATAGATTCGTCTCGTGATTTAGCCTATGGGTTCTGCTATTAATTTTGTAATTAGCTCATATTTAGTTCTTATAATTAGTATCCGAACATCCAATGTGACATGCTAAAGTTTAACCCTGGTATCCAAATGAAGTCTTATGAGAGTTTCATCACTCCGGTGGTATATGTACTTAGGCTCCGTTTTCTTCCACCGACTTATTTTTAGCACCCGTCACATTGAATGTTTAGATACTAATTAGAAGTATTAAACGTAGACTATTTACAAAATCCATTACATAAGACGAATCTAAACGGCGAGACGAATCTATTAAACCTAATTAGTCCATGATTTGACAATGTGTTGCTACAGTAAACATTTGCTAATGATGGATTAATTAGGCTTAATAGATTCGTCTCGCCGTTTAGCCTCCACTTATGTAATGGGTTTTCTAAACAATCTACGTTTAATACTCCTAATTAGTATCTAAATATTCAATGTGACACGTGCTAAAAATAAGTCAGTGGAAGGAAGAGAACGTCCCCTTAGTTTTCCATCTTATTAATTGTACGATGAAACTGTGCAGCCAGATGATTGACAATCGCAATACTTCAACTAGTGGGCCATGCACATCAGCGACGTGTAACGTCGTGAGTTGCTGTTCCCGTAG(配列番号3)
実施形態では、プロモーターがパニクム・ヴィルガツム(Panicum virgatum)(スイッチグラス)ユビキチン1プロモーターであり得る。
TTGAATTTTAATTTCAAATTTTGCAGGGTAGTAGTGGACATCACAATACATATTTAGAAAAAGTTTTATAATTTTCCTCCGTTAGTTTTCATATAATTTTGAACTCCAACGATTAATCTATTATTAAATATCCCGATCTATCAAAATAATGATAAAAATTTATGATTAATTTTTCTAACATGTGTTATGGTGTGTACTATCGTCTTATAAAATTTCAACTTAAAACTCCACCTATACATGGAGAAATGAAAAAGACGAATTACAGTAGGGAGTAATTTGAACCAAATGGAATAGTTTGAGGGTAAAATGAACTAAACAATAGTTTAGGAGGTTATTCAGATTTTAGTTATAGTTGAGAGGAGTAATTTAGACTTTTTCCTATCTTGAATTGTTGACGGCTCTCCTATCGGATATCGGATGGAGTCTTTCAGCCCAACATAACTTCATTCGGGCCCAAACGTTCGTCCATCCAGCCTAGGGAGAACATTTTGCCCATGATATCTGTTTTTCTTTTTTTCTATTTTCACTGGTATTATAGGAGGGAAATATACAACGTGTTCACCTTTGGTTTCATTCTTGTTCCATCTGAATTTATCTAAAACTGTGTTTGAACTTCGTAAGAATTTTGTTCGATCTGTCCGGTACATCGTGTTGATAGGTGGCCTCCGAGATTCTTCTTTTTAACCGGCAAAGTAAAATAATCTCAGCTCCAGCCTAACGTCAATTATCAGAGAGAGAAAAAAATATTTTTTTATGATTGATCGGAAACCAACCGCCTTACGTGTCGATCCTGGTTCCTGGCCGGCACGGCGGAGGAAAGCGACCGACCTCGCAACGCCGGCGCACGGCGCCGCCGTGTTGGACTTGGTCTCCCGCGACTCCGTGGGCCTCGGCTTATCGCCGCCGCTCCATCTCAACCGTCCGCTTGGACACGTGGAAGTTGATCCGTCGCGCACCAGCCTCGGAGGTAACCTAACTGCCCGTACTATAAATCCGGGATCCGGCCTCTCCAATCCCCATCGCCA(配列番号35)
実施形態では、ユビキチンプロモーターを含む核酸構築物が提供される。実施形態では、ユビキチンプロモーターがパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチンプロモーターである。実施形態では、配列番号1、配列番号2、配列番号3または配列番号35と少なくとも80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%または100%同一であるプロモーターを含む核酸構築物が提供される。実施形態では、ポリリンカーと作動可能に連結しているユビキチンプロモーターを含む核酸構築物が提供される。実施形態では、非ユビキチン導入遺伝子と作動可能に連結しているユビキチンプロモーターを含む遺伝子発現カセットが提供される。一実施形態では、プロモーターが配列番号1、配列番号2、配列番号3または配列番号35からなる。例示的実施形態では、遺伝子発現カセットが導入遺伝子の5’末端と作動可能に連結しているユビキチンプロモーターを含み、導入遺伝子が殺虫剤耐性導入遺伝子、除草剤耐性導入遺伝子、窒素利用効率導入遺伝子、水利用効率導入遺伝子(water us efficacy transgene)、栄養価導入遺伝子、DNA結合導入遺伝子、選択マーカー導入遺伝子またはこれらの組み合わせであり得る。
転写終結およびmRNAのポリアデニル化のために、プロモーターに加えて、3’−非翻訳遺伝子領域(すなわち、3’UTR)またはターミネーターが必要である。適切な転写終結およびmRNAのポリアデニル化が導入遺伝子の安定な発現にとって重要である。多重遺伝子スタックが次の導入遺伝子への転写リードスルーを回避するために、転写終結がより重要となる。同様に、非ポリアデニル化異常RNA(aRNA)は、小型RNA産生および導入遺伝子サイレンシングにつながる二本鎖RNA(dsRNA)にaRNAを変換する植物RNA依存性RNAポリメラーゼ(RdRP)にとっての基質となる。そのため、強い転写ターミネーターが、単一遺伝子と複数遺伝子スタックの両方にとって極めて有用である。転写を駆動するためにプロモーターが必要である一方で、3’−UTR遺伝子領域が転写を終結し、翻訳およびタンパク質合成のための得られたmRNA転写産物のポリアデニル化を開始することができる。3’−UTR遺伝子領域は、導入遺伝子の安定な発現を助ける。
一実施形態によると、ユビキチン転写ターミネーターを含む核酸構築物が提供される。実施形態では、ユビキチン転写ターミネーターがパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチン転写ターミネーターである。実施形態では、配列番号4、配列番号5、配列番号6または配列番号36と少なくとも80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%または100%同一である転写ターミネーターを含む核酸構築物が提供される。実施形態では、ポリリンカーと作動可能に連結しているユビキチン転写ターミネーターを含む核酸構築物が提供される。実施形態では、非ユビキチン導入遺伝子の3’末端と作動可能に連結しているユビキチン転写ターミネーターを含む遺伝子発現カセットが提供される。一実施形態では、転写ターミネーターが配列番号4、配列番号5、配列番号6または配列番号36からなる。例示的実施形態では、遺伝子発現カセットが導入遺伝子と作動可能に連結しているユビキチン転写ターミネーターを含み、導入遺伝子が殺虫剤耐性導入遺伝子、除草剤耐性導入遺伝子、窒素利用効率導入遺伝子、水利用効率導入遺伝子、栄養価導入遺伝子、DNA結合導入遺伝子、選択マーカー導入遺伝子またはこれらの組み合わせであり得る。一実施形態では、ポリリンカー配列、非ユビキチン導入遺伝子、または両方の組み合わせのいずれかと作動可能に連結している転写ターミネーターを含む核酸ベクターであって、転写ターミネーターが配列番号6または配列番号6と90%の配列同一性を有する配列を含む核酸ベクターが提供される。一実施形態では、転写ターミネーターが長さ1kb未満であり、さらなる実施形態では、転写ターミネーターが配列番号6の3’UTR配列からなる。
実施形態では、本明細書に記載されるユビキチンプロモーターと3’−UTRとを含む核酸構築物が提供される。実施形態では、核酸構築物がユビキチン3’−UTRを含む。実施形態では、ユビキチン3’−UTRがパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチン3’−UTRである。実施形態では、3’−UTRがミナトカモジグサ(Brachypodium distachyon)ユビキチン1C(Ubi1C)3’−UTRであり得る。
GTTTGTCAAAAACTGGCCTACAGTCTGCTGCCCCTGTTGGTCTGCCCCTTGGAAGTAGTCGTGTCTATGGTTATGTGAGAAGTCGTTGTGTTCTTTCTAATCCCGTACTGTTTGTGTGAACATCTGCTGCTGTCGTATTGCATCGTGAAGAATCCTGTTATGAATAAGTGAACATGAACCTTGTTCTGTGATTACGGCTTCGTGGTTATGCGAACGTTCTTACAAACGCAATTGCACCTGATGTAAAATCGTTTTTGCTAGCTGTATGGAACAAGTGCTCATGATGTTCATGCAAGATGCAATTCCAGCTTTTGTTGGTTTGTCATCTTTGTACTGTGCTTACCGCACATAAAGATTGCATCTTGCTTATTGCTTTGTTGCTTTGGTGCTCGTCCGCTTCTCCTTGCACCTTATCAAACCTTTGTTTAGATTCTCTTCTTATAGCACTTGGTAACTCTCAGCTTTACAACGCCAGTACTGTTTCTGAAATTTCATGACTGATAAAGCTGATAGATGGAGTACTAATATATGACATCTTTCCATAAATGTTCGGGTGCAGAGATATGGAGGCCCCAGGATCCTATTTACAGGATGAACCTACCTGGGCCGCTGTACGCATGACATCCGCGAGCAAGTCTGAGGTTCTCAATGTACACATGAAATTGATTTTTGCTGCGTTTGGCTTGGCTGATCGTTGCATTTGTTCTGATTCATCAGAGTTAAATAACGGATATATCAGCAAATATCCGCAGCATCCACACCGACCACACGTCCGGTTAACAGAGTCCCCCTGCCTTGCTTTAATTATTACGGAGTACTCCGCTATTAATCCTTAGATATGTTTCGAAGGAACTCAAACCTTCCTCCATCTGCAAATCTCAGTGCTTCAAAACTGGAATTAGATAATTGAAACCTTCATTCGGTTGCAATTCACAACTGCAAATTGAACAGCACTGTCAATTTCAATTTCGGGTTCACGATTCCACCGATAGGTTGACATGATCCATGATCCACCCATTGTACAAC(配列番号4)
実施形態では、3’−UTRがミナトカモジグサ(Brachypodium distachyon)ユビキチン1(Ubi1)3’−UTRであり得る。
GCTTCTGCCGAACTGGTTCACAGTCTGCTGCCCTTGGTGGTCTGCCCCTTAGTGGTCATGCCTTTTGTTATGTGTCTTGCGTCCCAATCCTGTATCGTTTGTGTGAACATCTCTGCTGCTGTATAGCAGCTTGAATCCTGTTATGAATTTGTGAACCTGAACCTTGTTCCGTGAATCATGTTATGAATAAGTGAACCTGAACCTTGTTCCGTGATTATTGTTACAATCTGTTGTGCCGTATGGTTGGTCGTGTGTGATTTATGTTGAACTGGAGAACCAAGTTCGTTCCAGGACATATTGCAACCTAAGCTAAACCATGTAGAACTACTTGTTCTGGGAGACATAAAACGTCATTTTTATGCATTCGTAACATTTAAGCATACTACAATAATTGTATTGTCCTTTTCCTACTCATCCTTGAAACCATATGCCTCTTCTCAGCGCCTCTACATGCAGTGTGCTCAGAACAAACAGGCCCTGCCAGCTGCTTTTCAATTTTCCAATTAATAACCACAATAGTCGGACTATGGCATCTGTGGGTGACTATGCAAGATGTTGCTGTCAGGTCTCTGAAACTTTTCCCATGTATCTGTTGAAATTACCCAGTAAATTCATGCCTCTATTTAATCTGGCATGGTTGATTTTCAAACAGAATGTGTTTTTTTTTGTTCTGGAAGCTATATTGGTAAATAAATACAAAGCTGGAGTGTGATTATATTTCCAACAGATATTCAAGAAAATCTCAGTTGATTTATTTACTACTGTAGTATATATATATATCTTACAGTTGACTTCTCATATTTCAAACGACATGTGAGCACATTGTTCAGTTTCTTAGGATGTGTTGTGTGCTCAAAGGTGTAATTTTGCATTCTGCCCTCCGAGTAAACACTACACGTATTTTTTTGAGTGGCAGTGCATTTGATTACAAGGCAACAACAACAAAAACCTATGGCAAGATATCCTTCTTAGAGGCTGCCAGGATCATTTTGACTGAACTATGTAAGGCTGAAGAAAAGG(配列番号5)
実施形態では、3’−UTRがアワ(Setaria italica)ユビキチン2(Ubi2)3’−UTRであり得る。
GCCCATCGGTCATGGATGCTTCTACTGTACCTGGGTCGTCTGGTCTCTGCCTGTGTCACCTTTGAAGTACCTGTGTCGGGATTGTGTTTGGTCATGAACTGCAGTTTGTCTTTGATGTTCTTTTGTCTGGTCTTATGAACTGGTTGTATCTGTATGTTTACTGTAAACTGTTGTTGCGGTGCAGCAGTATGGCATCCGAATGAATAAATGATGTTTGGACTTAAATCTGTACTCTGTTTGTTTTCGGTTATGCCAGTTCTATATTGCCTGAGATCAGAATGTTTAGCTTTTGAGTTCTGTTTGGCTTGTGGTCGACTCCTGTTTCTTACTTGAGGCGTAACTCTGTTCTGGCAAACTCAAATGTCTAACTGAATGTTTTAGGACTTAATTGTTGGACAGATTAACGTGTTTGGTTTGTTTCTAGATTGTGATTCGGAAGGCTTGTTAGTTGTGGAATCAAGGAGAGCAGCTAGGTCTGTGCAGAACGTTATTTTGGATTTAAGCCTTCTCAGATTATGCCATTACTCTAAACCTAATGATATCATATTTCACTCGGGGATGTTGGAGTAGTCTTTTCTTTCTCCTGCAGACAAAATGATTTTGCTTTCGTGTGTGTACATGATTTTGTGCAACTGTTGCAACAACTGAAGTAGACAAGTTTTGACCTCACCAGAAGAATGAAAAAGATTTTGGAATTTGTTACATCGACAAACCATTGTAACTTGGCCCATCAGAATGCACAGAAGAGCGGCTACAAATTGACATGCGTTGCAAACTTTGCAATAGTTGATGCACATGTTTGCCATTGCCTGCCAGTCTTAGGAAAAGTGTGTGGTTCGAGAAATCTAAGCATATGTGCTCTGCTCACATTGCGTGGAACCCACACAGCTTTGTCACACTCTTGTCCACTCCAGAAGTCATTCCTGGCGCTGTTTACCCCTGGTAAAAGGTAACCGAAAACTTCTCAAGGCTGTACCCAAAACTGGAAGGAAATTTGGAGGAAATCTTTGCTTTTGATCGGCTCACTCTTTC(配列番号6)
実施形態では、3’−UTRがパニクム・ヴィルガツム(Panicum virgatum)(スイッチグラス)ユビキチン1 3’−UTRであり得る。
GCCTAGTGCTCCTGAGTTGCCTTTTGTCGTTATGGTCAACCTCTGGTTTAAGTCGTGTGAACTCTCTGCATTGCGTTGCTAGTGTCTGGTTGTGGTTGTAATAAGAACATGAAGAACATGTTGCTGTGGATCACATGACTTTTTTTTTTGAACCGGAAGATCACATGACTTTCATGGCTTTAAGTTCCTGAACTCTGAAATCTGGACCCCTTTTTAAGCTCTGAACTCATCATTCTTGCATTTACATCTGGTGTTGATCTTATTGATGTGATGCAGTCCTGCTGAAATAGTCAATGTAGATTCATGACTGACTGATTGCGTTTATGGTGTGTATGTTGTTAACAAGCTGAAGGTCGTGTGGTGTCTTTCCAGTTAGACGAAGTGTGCTTTATTGTAGCGTGTAGTGCTGCTGGATGATTGATGAACTGAAACATTCTGCATTTAGCAACTAGCGAGCCAAAGGTGATGACTGAGTTTCTGTAGACCTGTTTTTTTATGCCCATGGTCGTTCTTCAATTGCACTTGATTTTCACATTAGCTGGATCATAATCTGAGCAGACTACTCAAAAGTACAAAGTTCATCTTCGCTATGACGCTTTGCCACTAGGATTTTCTTTGTATGATTTGTTTACAAATCCTGTAATCTAGTCAAAAGAAAAGCCAAAATTTTTCTTTGTATGATTTGTTTACAAATCCTCTAATCTAGTCAAAGAAAAGCCAAATTTATCCCTCCTGGTCCCCTACATCACGTAGCTATGTGGCCCGCAAGCAGATGAAAGCAGCCCCGTCAGCCGACGCCGACGCCGACGCCAACACATCCTGCTCCTCCCTCGCCGGCGCCGGCGCCGGCGAGGCCGCACCGCCGCTGCCCCGTGGCCGCAGGCACACGGTGCCGCACTGCCGCCGCCCCGTGGCCGCAGGCACACGGTGCCGCACTGCCGCCGCCTCCCCTTCCGGCATTGCCGGACGGCTGGGCTACTGTCCCCGCCGCCTTCCCAAT(配列番号36)
実施形態では、本明細書に記載されるユビキチンプロモーターと、配列番号4、配列番号5、配列番号6または配列番号36と少なくとも80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%または100%同一である3’−UTRとを含む核酸構築物が提供される。実施形態では、本明細書に記載されるユビキチンプロモーターと、3’−UTRとを含む核酸構築物であって、ユビキチンプロモーターおよび3’−UTRが共にポリリンカーの逆末端と作動可能に連結している、核酸構築物が提供される。実施形態では、本明細書に記載されるユビキチンプロモーターと、3’−UTRとを含む遺伝子発現カセットであって、ユビキチンプロモーターおよび3’−UTRが共に非ユビキチン導入遺伝子の逆末端と作動可能に連結している、遺伝子発現カセットが提供される。一実施形態では、3’−UTRが配列番号4、配列番号5、配列番号6または配列番号36からなる。一実施形態では、本明細書に記載されるユビキチンプロモーターと、3’−UTRとを含む遺伝子発現カセットであって、ユビキチンプロモーターが配列番号3を含み、3’−UTRが配列番号6を含み、プロモーターおよび3’−UTRが非ユビキチン導入遺伝子の逆末端と作動可能に連結している、遺伝子発現カセットが提供される。一実施形態では、3’−UTRが配列番号4、配列番号5、配列番号6または配列番号36からなる。一実施形態では、プロモーターが配列番号3、17または40からなり、3’−UTRが配列番号6からなる。例示的実施形態では、遺伝子発現カセットが導入遺伝子と作動可能に連結しているユビキチン3’−UTRを含み、導入遺伝子が殺虫剤耐性導入遺伝子、除草剤耐性導入遺伝子、窒素利用効率導入遺伝子、水利用効率導入遺伝子、栄養価導入遺伝子、DNA結合導入遺伝子、選択マーカー導入遺伝子またはこれらの組み合わせであり得る。さらなる実施形態では、導入遺伝子が、パニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)から単離された同じユビキチン遺伝子からのユビキチンプロモーターおよび3’−UTRと作動可能に連結している。
一実施形態では、第1の導入遺伝子および/またはポリリンカーと、第2の導入遺伝子および/またはポリリンカーとを含むベクターであって、第1の導入遺伝子および/またはポリリンカーが配列番号1、配列番号2、配列番号3および配列番号35からなる群から選択される配列を含むプロモーターと作動可能に連結しており、配列番号4、配列番号5、配列番号6または配列番号36からなる群から選択される配列を含む3’−UTRと作動可能に連結しており、第2の導入遺伝子および/またはポリリンカーが配列番号1、配列番号2、配列番号3および配列番号35からなる群から選択される配列を含むプロモーターと作動可能に連結しており、配列番号4、配列番号5、配列番号6または配列番号36からなる群から選択される配列を含む3’−UTRと作動可能に連結しており、さらに第1の導入遺伝子および/またはポリリンカーならびに第2の導入遺伝子および/またはポリリンカーのプロモーターが異なる植物種のUbi遺伝子に由来する、ベクターが提供される。さらなる実施形態では、第3の導入遺伝子および/またはポリリンカーを含むベクターであって、第3の導入遺伝子および/またはポリリンカーが配列番号1、配列番号2、配列番号3および配列番号35からなる群から選択される配列を含むプロモーターと作動可能に連結しており、配列番号4、配列番号5、配列番号6または配列番号36からなる群から選択される配列を含む3’−UTRと作動可能に連結しており、さらに第3の導入遺伝子および/またはポリリンカーのプロモーターが、第1および第2の導入遺伝子および/またはポリリンカーのプロモーターとは異なる植物種のUbi遺伝子に由来する、ベクターが提供される。
導入遺伝子発現を、プロモーター配列の下流に位置するイントロン領域によって調節することもできる。プロモーターとイントロンの両方が導入遺伝子発現を調節することができる。転写を駆動するためにプロモーターが必要である一方で、イントロンの存在によって、発現レベルを増加させて翻訳およびタンパク質合成のためのmRNA転写産物をもたらすことができる。イントロン遺伝子領域は導入遺伝子の安定な発現を助ける。
実施形態では、本明細書に記載されるユビキチンプロモーターと、イントロンとを含む核酸構築物が提供される。一実施形態では、イントロンがプロモーターの3’末端と作動可能に連結している。実施形態では、パニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)もしくはアワ(Setaria italica)から単離したユビキチンプロモーターまたはこのようなプロモーター配列の誘導体の3’末端と作動可能に連結しているユビキチンイントロンを含む核酸構築物が提供される。実施形態では、ユビキチンイントロンがパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)もしくはアワ(Setaria italica)のユビキチンイントロン、またはこのようなイントロン配列の誘導体である。
実施形態では、イントロンがミナトカモジグサ(Brachypodium distachyon)ユビキチン1Cイントロンであり得る。
GTATGCAGCCTCGCTTCCTCCTCGCTACCGTTTCAATTCTGGAGTAGGTCGTAGAGGATACCATGTTGATTTGACAGAGGGAGTAGATTAGATACTTGTAGATCGAAGTGCGGATGTTCCATGGTAGATGATACCATGTTGATTTCGATTAGATCGGATTAAATCTTTGTAGATCGAAGTGCGCATGTTCCATGAATTGCCTGTTACCAGTAGATTCAAGTTTTTCTGTGTTATAGAGGTGGGATCTACTCGTTGAGATGATTAGCTCCTAGAGGACACCATGCCGTTTTGGAAAATAGATCAGAACCGTGTAGATCGATGTGAGCATGTGTTCCTGTAGATCCAAGTTCTTTCGCATGTTACTAGTTGTGATCTATTGTTTGTGTAATACGCTCTCGATCTATCCGTGTAGATTTCACTCGATTACTGTTACTGTGGCTTGATCGTTCATAGTTGTTCGTTAGGTTTGATCGAACAGTGTCTGAACCTAATTGGATATGTATTCTTGATCTATCAACGTGTAGGTTTCAGTCATGTATTTATGTACTCCCTCCGTCCCAAATTAACTGACGTGGATTTTGTATAAGAATCTATACAAATCCATGTCAGTTAATTCGGGATGGAGTACCATATTCAATAATTTGTTTATTGCTGTCCACTTATGTACCATATGTTTGTTGTTCCTCATGTGGATTCTACTAATTATCATTGATTGGTGATCTTCTATTTTGCTAGTTTCCTAGCTCAATCTGGTTATTCATGTAGATGTGTTGTTGAAATCGGAGACCATGCTTGTTATTAGATAGTTTATTGCTTATCAGTTTCATGTTCTGGTTGATGCAACACATATTCATGTTCGCTATCTGGTTGCTGCTTGATATTCTCTGATTTACATTCATTATAAGAATATATTCTGCTCTGGTTGTTGCTTCTCATGACTTTACCTACTCGGTAGGTGACTTACCTTTTGGTTTACAATTGTCAACTATGCAG(配列番号7)
実施形態では、イントロンがミナトカモジグサ(Brachypodium distachyon)ユビキチン1(Ubi1)イントロンであり得る。
GTATGTAGCCTCTCGATTCCTCCTCAGCCCTGCCCTCGATTTGGTGTACGCGTTGAGATGATGATCTCGTAGATGTCTAGATGACACCATGTCGATTTGAAATAGATCAGATCCGTGTAGATCGATGAGCTCCTGTGTACCTGTGGATTCAAGTTATTTTCGCATGCTATTGTTGTGATCTACTAGATCTAGTGTGTGTATTCTATGCTATCGATTTCTCCGTGTAGATTTCACTCGATTACTGTTACTGTGGCTTGATCGGCCATAGATGTTGGTTAAGGTTTGATCGGTTAGTGTTTGAACCTGCGTGGATATCTAGCATCCATCTATTATCGTGTAGGTTTCGAACAAACAAGCACTATTATTGTACTGATGGTTCGTCTATGGTTGGTTTTGACCGTTTTAGTGTTGAACGAGCCTTCTGTATTTGTTTATTGCTGTCCAGTGATGTACCATGTTCGTTGAGTGTCGGATTATACTAATTATTGTTGATTGATAATCTTGTAGTTTGCTTTTCCTAATTTATTTATCGTAGTCCTGATTTGCCTCAGCTGTGCCTCACCCGTGCGATGGTCAATCAACTTGTTAGCCCAATCTGCTTAATCATGTACATTTGTTGTTAGAATCAGAGATCAAGCCAATTAGCTATCTTATTGCTTATCTGTTCCATGTTCTGATCGATGTAACAGTCTACACTTTTGCTCTGTGCTACTTGATTAAAACATTCTGACTTAAATTCATGATTGGAAGTTTCAGATCTGATTGTTGCCTTACTTGACTAATATCTATTCATGTGACACCTCTCTGTCTTGGTAACTTACCGCTGTTTGTTTGTAATTTCTGACTATGCAG(配列番号8)
実施形態では、イントロンがアワ(Setaria italica)ユビキチン2(Ubi2)イントロン1であり得る。
GTCACGGGTTCCTTCCCCACCTCTCCTCTTCCCCACCGCCATAAATAG(配列番号9)
実施形態では、イントロンがアワ(Setaria italica)ユビキチン2(Ubi2)イントロン2であり得る。
GTACGGCGATCGTCTTCCTCCTCTAGATCGGCGTGATCTGCAAGTAGTTGATTTGGTAGATGGTTAGGATCTGTGCACTGAAGAAATCATGTTAGATCCGCGATGTTTCTGTTCGTAGATGGCTGGGAGGTGGAATTTTTGTGTAGATCTGATATGTTCTCCTGTTTATCTTGTCACGCTCCTGCGATTTGTGGGGATTTTAGGTCGTTGATCTGGGAATCGTGGGGTTGCTTCTAGGCTGTTCGTAGATGAGGTCGTTCTCACGGTTTACTGGATCATTGCCTAGTAGATCAGCTCGGGCTTTCGTCTTTGTATATGGTGCCCATACTTGCATCTATGATCTGGTTCCGTGGTGTTACCTAGGTTTCTGCGCCTGATTCGTCCGATCGATTTTGTTAGCATGTGGTAAACGTTTGGTCATGGTCTGATTTAGATTAGAGTCGAATAGGATGATCTCGATCTAGCTCTTGGGATTAATATGCATGTGTCACCAATCTGTTCCGTGGTTAAGATGATGAATCTATGCTTAGTTAATGGGTGTAGATATATATGCTGCTGTTCCTCAATGATGCCGTAGCTTTTACCTGAGCAGCATGGATCCTCCTGTTACTTAGGTAGATGCACATGCTTATAGATCAAGATATGTACTGCTACTGTTGGAATTCTTTAGTATACCTGATGATCATCCATGCTCTTGTTACTTGTTTTGGTATACTTGGATGATGGCATGCTGCTGCTTTTTGTTGATTTGAGCCCATCCATATCTGCATATGTCACATGATTAAGATGATTACGCTGTTTCTGTATGATGCCATAGCTTTTATGTGAGCAACATGCATCCTCCTGGTTATATGCATTAATAGATGGAAGATATCTATTGCTACAATTTGATGATTATTTTGTACATACGATGATCAAGCATGCTCTTCATACTTTGTTGATATACTTGGATAATGAAATGCTGCTGCACGTTCATTCTATAGCACTAATGATGTGATGAACACGCACGACCTGTTTGTGGCATCTGTTTGAATGTGTTGTTGCTGTTCACTAGAGACTGTTTTATTAACCTACTGCTAGATACTTACCCTTCTGTCTGTTTATTCTTTTGCAG(配列番号10)
実施形態では、イントロンがパニクム・ヴィルガツム(Panicum virgatum)(スイッチグラス)ユビキチンイントロンであり得る。
GTACTCCTACCTAATCCTCCTTAACTGATCTCTCCTCTATCACGTTGGTAATCTTCGAATGATCTGCTGCCTGGCTCGCTGTTCCCCCTCGTTATGCACTGTTTCCATCACGAGTTTTTTTTTTCATCATCTAATCTATGCGGTTGCGGAAGAATTGTGGCTAGTGGAGTAGTTTTCTGTGCTTGATCGGTAGATTCGATGTGTGGGTGTATGGATGTTTTCTGAAAAGTTGCTGGATTAGTTTACGCTTTCAGGCCGCAGGTCTGTTCGAAATTGATTATGAAGTCTATATGCTTTGGATCTATCGATTTCCAGTTTTATTCAGATGTAGGCCAAAAAATTGTCGGCATTTGTGTGGAATTAGTTGGCCTTTAGGTCTGCACATTCATGGTGACGGCACAGTTGCTGCTGGCTGTTGCGTGGGACGAGTTATTATAGTTGTTTTTGTTTTTCCCTGATTGATTCACATTTTCAATGATAACTAGCCTTTGTCACCTAACCAAGTCCAGGTTGATCCTATCTGTGTTCTTCAGCTACCAGTTTGCATAGATGATGGTGTATTCGATTGCTTTAGTAGGCCTTCTGATTTCACATCTAATTCTGTCATGAATATAGATAACTTTACATGCTTTTGATATACTTTATATTTGAACTGTTCACTGTCCAGCCTATTTTGGATAATTGAGTGCATTGGCTTTTGATGCCTGAATTATTCACATGTTCCTGGATAATTGACCTGTGTCACCTAGTTGACTGTTTTTTGAGGTGCCACCCGTCTGTTCAGCTGATTTGTGTATTCGATTGCTCTAGTTAATCTTTTGATTATGCAGCTAGTGCTTTGTCATATGTAGCTTTATAGGCTTCTGATGTCCTTGGATATAGTTCAGTCTACTTGTCAAGTTGCTTTACAAGTAGTAGCTCTGATTCTATTTGGCTTCCTGAGTCAGAGCTTTGCAAATTGCTTGTTGTTACATTACATCATATTACTTGAATTGCAGTTATTTAATGGTTGGATTGTTGCTGTTTACTTCTACATTTTTTGCTGTTTTATATTATACTAAAATGTTTGTGTTGCTGCTTTTCAG(配列番号37)
実施形態では、本明細書に記載されるユビキチンプロモーターと、配列番号7、配列番号8、配列番号9、配列番号10または配列番号37と少なくとも80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%または100%同一であるイントロンとを含む核酸構築物が提供される。実施形態では、本明細書に記載されるユビキチンプロモーターと、イントロン配列と、ポリリンカーとを含む核酸構築物であって、プロモーターおよびイントロンがポリリンカーと作動可能に連結している、核酸構築物が提供される。実施形態では、本明細書に記載されるユビキチンプロモーターと、イントロン配列と、非ユビキチン導入遺伝子とを含む遺伝子発現カセットであって、プロモーターおよびイントロンが導入遺伝子の5’末端と作動可能に連結している、遺伝子発現カセットが提供される。場合により、構築物が非ユビキチン導入遺伝子の3’末端またはポリリンカーと作動可能に連結している3’−UTRをさらに含む。一実施形態では、プロモーターおよび3’−UTR配列が本明細書に記載されるものから選択され、イントロン配列が配列番号7、配列番号8、配列番号9、配列番号10または配列番号37からなる。実施形態では、遺伝子発現カセットがプロモーターと作動可能に連結しているユビキチンイントロンを含み、プロモーターがパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)もしくはアワ(Setaria italica)のユビキチンプロモーター、または植物(例えば、トウモロコシ(Zea mays)ユビキチン1プロモーター)、ウイルス(例えば、キャッサバ葉脈モザイクウイルスプロモーター)もしくは細菌(例えば、アグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens)delta mas)に由来するプロモーターである。例示的実施形態では、遺伝子発現カセットが導入遺伝子と作動可能に連結しているユビキチンイントロンを含み、導入遺伝子が殺虫剤耐性導入遺伝子、除草剤耐性導入遺伝子、窒素利用効率導入遺伝子、水利用効率導入遺伝子、栄養価導入遺伝子、DNA結合導入遺伝子、選択マーカー導入遺伝子またはこれらの組み合わせであり得る。
導入遺伝子発現を、プロモーター配列の下流に位置する5’−UTR領域によって調節することもできる。プロモーターと5’−UTRの両方が導入遺伝子発現を調節することができる。転写を駆動するためにプロモーターが必要である一方で、5’−UTRの存在によって、発現レベルを増加させて翻訳およびタンパク質合成のためのmRNA転写産物をもたらすことができる。5’−UTR遺伝子領域は導入遺伝子の安定な発現を助ける。
実施形態では、本明細書に記載されるユビキチンプロモーターと、5’−UTRとを含む核酸構築物が提供される。一実施形態では、5’−UTRがプロモーターの3’末端と作動可能に連結している。実施形態では、パニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)もしくはアワ(Setaria italica)から単離されたユビキチンプロモーターまたはこのようなプロモーター配列の誘導体の3’末端と作動可能に連結しているユビキチン5’−UTRを含む核酸構築物が提供される。さらなる実施形態では、5’−UTRの3’末端が、本明細書に記載されるパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチンイントロンの5’末端と作動可能に連結している。
実施形態では、5’−UTRがミナトカモジグサ(Brachypodium distachyon)ユビキチン1C(Ubi1C)5’−UTRであり得る。
CCGATCGAAAAGTCCCCGCAAGAGCAAGCGACCGATCTCGTGAATCTCCGTCAAG(配列番号11)
実施形態では、5’−UTRがミナトカモジグサ(Brachypodium distachyon)ユビキチン1(Ubi1)5’−UTRであり得る。
CCAATCCAGCACCCCCGATCCCGATCGAAAATTCTCCGCAACAGCAAGCGATCGATCTAGCGAATCCCCGTCAAG(配列番号12)
実施形態では、5’−UTRがアワ(Setaria italica)ユビキチン2(Ubi2)5’−UTR1であり得る。
AGAAATATCAACTGGTGGGCCACGCACATCAGCGTCGTGTAACGTGGACGGAGGAGCCCCGTGACGGCGTCGACATCGAACGGCCACCAACCACGGAACCACCCGTCCCCACCTCTCGGAAGCTCCGCTCCACGGCGTCGACATCTAACGGCTACCAGCAGGCGTACGGGTTGGAGTGGACTCCTTGCCTCTTTGCGCTGGCGGCTTCCGGAAATTGCGTGGCGGAGACGAGGCGGGCTCGTCTCACACGGCACGGAAGAC(配列番号13)
実施形態では、5’−UTRがアワ(Setaria italica)ユビキチン2(Ubi2)5’−UTR2であり得る。
CCGACCCCCTCGCCTTTCTCCCCAATCTCATCTCGTCTCGTGTTGTTCGGAGCACACCACCCGCCCCAAATCGTTCTTCCCGCAAGCCTCGGCGATCCTTCACCCGCTTCAAG(配列番号14)
実施形態では、5’−UTRがパニクム・ヴィルガツム(Panicum virgatum)(スイッチグラス)ユビキチン5’−UTRであり得る。
CAAGTTCGCGATCTCTCGATTTCACAAATCGCCGAGAAGACCCGAGCAGAGAAGTTCCCTCCGATCGCCTTGCCAAG(配列番号38)。
実施形態では、本明細書に開示されるユビキチンプロモーターと、配列番号11、配列番号12、配列番号13、配列番号14または配列番号38と少なくとも80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%または100%同一である5’−UTRとを含む核酸構築物が提供される。実施形態では、配列番号1、配列番号2、配列番号3または配列番号35と少なくとも80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%または100%同一であるユビキチンプロモーターと、ポリリンカーと作動可能に連結している5’−UTRとを含む核酸構築物が提供される。実施形態では、配列番号1、配列番号2、配列番号3または配列番号35と少なくとも80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%または100%同一であるユビキチンプロモーターと、非ユビキチン導入遺伝子と作動可能に連結している5’−UTRとを含む遺伝子発現カセットが提供される。場合により、構築物が5’−UTRの3’末端および非ユビキチン導入遺伝子の5’末端と作動可能に連結している本明細書に開示されるユビキチンイントロンであって、場合によりさらに非ユビキチン導入遺伝子の3’末端と作動可能に連結している3’−UTRを含むユビキチンイントロンをさらに含むことができる。一実施形態では、プロモーター、イントロンおよび3’−UTR配列が本明細書に記載されるものから選択され、5’−UTR配列が配列番号11、配列番号12、配列番号13、配列番号14または配列番号38からなる。一実施形態では、3’−UTRが配列番号13または配列番号14からなる。
実施形態では、遺伝子発現カセットがプロモーターと作動可能に連結しているユビキチン5’−UTRを含み、プロモーターがパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)もしくはアワ(Setaria italica)ユビキチンプロモーター、または植物(例えば、トウモロコシ(Zea mays)のユビキチン1プロモーター)、ウイルス(例えば、キャッサバ葉脈モザイクウイルスプロモーター)もしくは細菌(例えば、アグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens)delta mas)に由来するプロモーターである。例示的実施形態では、遺伝子発現カセットが導入遺伝子と作動可能に連結しているユビキチン5’−UTRを含み、導入遺伝子が殺虫剤耐性導入遺伝子、除草剤耐性導入遺伝子、窒素利用効率導入遺伝子、水利用効率導入遺伝子、栄養価導入遺伝子、DNA結合導入遺伝子、選択マーカー導入遺伝子またはこれらの組み合わせであり得る。
一実施形態では、プロモーターと、ポリリンカーと、場合により、以下のエレメント:
a)5’非翻訳領域;
b)イントロン;および
c)3’非翻訳領域
の1つまたは複数とを含む核酸構築物であって、
プロモーターが配列番号1、配列番号2、配列番号3もしくは配列番号35または配列番号1、配列番号2、配列番号3もしくは配列番号35と98%の配列同一性を有する配列からなり;
5’非翻訳領域が配列番号11、配列番号12、配列番号13、配列番号14もしくは配列番号38または配列番号11、配列番号12、配列番号13、配列番号14もしくは配列番号38と98%の配列同一性を有する配列からなり;
イントロンが配列番号7、配列番号8、配列番号9、配列番号10もしくは配列番号37または配列番号7、配列番号8、配列番号9、配列番号10もしくは配列番号37と98%の配列同一性を有する配列からなり;
3’非翻訳領域が配列番号4、配列番号5、配列番号6もしくは配列番号36または配列番号4、配列番号5、配列番号6もしくは配列番号36と98%の配列同一性を有する配列からなり;
さらに前記プロモーターが前記ポリリンカーと作動可能に連結しており、存在する場合、各任意のエレメントもプロモーターとポリリンカーの両方と作動可能に連結している、核酸構築物が提供される。
一実施形態では、プロモーターと、非ユビキチン導入遺伝子と、場合により、以下のエレメント:
a)5’非翻訳領域;
b)イントロン;および
c)3’非翻訳領域
の1つまたは複数とを含む核酸構築物であって、
プロモーターが配列番号1、配列番号2、配列番号3もしくは配列番号35または配列番号1、配列番号2、配列番号3もしくは配列番号35と98%の配列同一性を有する配列からなり;
5’非翻訳領域が配列番号11、配列番号12、配列番号13、配列番号14もしくは配列番号38または配列番号11、配列番号12、配列番号13、配列番号14もしくは配列番号38と98%の配列同一性を有する配列からなり;
イントロンが配列番号7、配列番号8、配列番号9、配列番号10もしくは配列番号37または配列番号7、配列番号8、配列番号9、配列番号10もしくは配列番号37と98%の配列同一性を有する配列からなり;
3’非翻訳領域が配列番号4、配列番号5、配列番号6もしくは配列番号36または配列番号4、配列番号5、配列番号6もしくは配列番号36と98%の配列同一性を有する配列からなり;
さらに前記プロモーターが前記導入遺伝子と作動可能に連結しており、存在する場合、各任意のエレメントもプロモーターと導入遺伝子の両方と作動可能に連結している、核酸構築物が提供される。さらなる実施形態では、直前に開示される核酸構築物を含むトランスジェニック細胞が提供される。一実施形態では、トランスジェニック細胞が植物細胞であり、さらなる実施形態では、前記トランスジェニック細胞を含む植物が提供される。
一実施形態によると、導入遺伝子発現が、イントロンおよび5’−UTR領域と作動可能に連結しているプロモーターによって調節され、イントロンおよび5’−UTR領域がプロモーター配列の下流に位置している。イントロンおよび5’−UTR領域と作動可能に連結しているプロモーターを使用して導入遺伝子発現を駆動することができる。転写を駆動するためにプロモーターが必要である一方で、イントロンおよび5’−UTRの存在によって、発現レベルを増加させて翻訳およびタンパク質合成のためのmRNA転写産物をもたらすことができる。
実施形態では、遺伝子発現カセットが、5’−UTRおよびイントロン領域と作動可能に連結しているプロモーターを含む。実施形態では、遺伝子発現カセットが、ユビキチン5’−UTRおよびユビキチンイントロンと作動可能に連結しているユビキチンプロモーターを含む。実施形態では、5’−UTRおよびイントロン領域と作動可能に連結しているユビキチンプロモーターが、イントロンおよび5’−UTRと作動可能に連結しているパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチンプロモーターである。
実施形態では、5’−UTRおよびイントロンと作動可能に連結しているプロモーターが、イントロンおよび5’−UTRと作動可能に連結しているミナトカモジグサ(Brachypodium distachyon)ユビキチン1C(Ubi1C)プロモーターであり得る。一実施形態では、プロモーターが配列番号15:
CTGCTCGTTCAGCCCACAGTAACACGCCGTGCGACATGCAGATGCCCTCCACCACGCCGACCAACCCCAAGTCCGCCGCGCTCGTCCACGGCGCCATCCGCATCCGCGCGTCAACGTCATCCGGAGGAGGCGAGCGCGATGTCGACGGCCACGGCGGCGGCGGACACGACGGCGACGCCCCGACTCCGCGCGCGCGTCAAGGCTGCAGTGGCGTCGTGGTGGCCGTCCGCCTGCACGAGATCCCCGCGTGGACGAGCGCCGCCTCCACCCAGCCCCTATATCGAGAAATCAACGGTGGGCTCGAGCTCCTCAGCAACCTCCCCACCCCCCCTTCCGACCACGCTCCCTTCCCCCGTGCCCCTCTTCTCCGTAAACCCGAGCCGCCGAGAACAACACCAACGAAAGGGCGAAGAGAATCGCCATAGAGAGGAGATGGGCGGAGGCGGATAGTTTCAGCCATTCACGGAGAAATGGGGAGGAGAGAACACGACATCATACGGACGCGACCCTCTAGCTGGCTGGCTGTCCTAAAGAATCGAACGGAATCGCTGCGCCAGGAGAAAACGAACGGTCCTGAAGCATGTGCGCCCGGTTCTTCCAAAACACTTATCTTTAAGATTGAAGTAGTATATATGACTGAAATTTTTACAAGGTTTTTCCCCATAAAACAGGTGAGCTTATCTCATCCTTTTGTTTAGGATGTACGTATTATATATGACTGAATATTTTTTATTTTCATTGAATGAAGATTTTCGACCCCCCAAAAATAAAAAACGGAGGGAGTACCTTTGTGCCGTGTATATGGACTAGAGCCATCGGGACGTTTCCGGAGACTGCGTGGTGGGGGCGATGGACGCACAACGACCGCATTTTCGGTTGCCGACTCGCCGTTCGCATCTGGTAGGCACGACTCGTCGGGTTCGGCTCTTGCGTGAGCCGTGACGTAACAGACCCGTTCTCTTCCCCCGTCTGGCCATCCATAAATCCCCCCTCCATCGGCTTCCCTTTCCTCAATCCAGCACCCTGATTCCGATCGAAAAGTCCCCGCAAGAGCAAGCGACCGATCTCGTGAATCTCCGTCAAGGTATGCAGCCTCGCTTCCTCCTCGCTACCGTTTCAATTCTGGAGTAGGTCGTAGAGGATACCATGTTGATTTGACAGAGGGAGTAGATTAGATACTTGTAGATCGAAGTGCGGATGTTCCATGGTAGATGATACCATGTTGATTTCGATTAGATCGGATTAAATCTTTGTAGATCGAAGTGCGCATGTTCCATGAATTGCCTGTTACCAGTAGATTCAAGTTTTTCTGTGTTATAGAGGTGGGATCTACTCGTTGAGATGATTAGCTCCTAGAGGACACCATGCCGTTTTGGAAAATAGATCAGAACCGTGTAGATCGATGTGAGCATGTGTTCCTGTAGATCCAAGTTCTTTCGCATGTTACTAGTTGTGATCTATTGTTTGTGTAATACGCTCTCGATCTATCCGTGTAGATTTCACTCGATTACTGTTACTGTGGCTTGATCGTTCATAGTTGTTCGTTAGGTTTGATCGAACAGTGTCTGAACCTAATTGGATATGTATTCTTGATCTATCAACGTGTAGGTTTCAGTCATGTATTTATGTACTCCCTCCGTCCCAAATTAACTGACGTGGATTTTGTATAAGAATCTATACAAATCCATGTCAGTTAATTCGGGATGGAGTACCATATTCAATAATTTGTTTATTGCTGTCCACTTATGTACCATATGTTTGTTGTTCCTCATGTGGATTCTACTAATTATCATTGATTGGTGATCTTCTATTTTGCTAGTTTCCTAGCTCAATCTGGTTATTCATGTAGATGTGTTGTTGAAATCGGAGACCATGCTTGTTATTAGATAGTTTATTGCTTATCAGTTTCATGTTCTGGTTGATGCAACACATATTCATGTTCGCTATCTGGTTGCTGCTTGATATTCTCTGATTTACATTCATTATAAGAATATATTCTGCTCTGGTTGTTGCTTCTCATGACTTTACCTACTCGGTAGGTGACTTACCTTTTGGTTTACAATTGTCAACTATGCAG(配列番号15)
の配列を含むまたはその配列からなる。
実施形態では、5’−UTRおよびイントロンと作動可能に連結しているプロモーターが、5’−UTRおよびイントロンと作動可能に連結しているミナトカモジグサ(Brachypodium distachyon)ユビキチン1(Ubi1)プロモーターであり得る。一実施形態では、プロモーターが配列番号16:
GGCGTCAGGACTGGCGAAGTCTGGACTCTGCAGGGCCGAACTGCTGAAGACGAAGCAGAGGAAGAGAAAGGGAAGTGTTCGACTTGTAATTTGTAGGGGTTTTTTTTAGAGGAACTTGTAATTTGTAGGTGGGCTGGCCTCGTTGGAAAAACGATGCTGGCTGGTTGGGCTGGGCCGATGTACGCTTGCAAACAACTTGTGGCGGCCCGTTCTGGACGAGCAGGAGTTTCTTTTTTGTTCTCACTTTTCTGGTCTTCTTTAGTTACGGAGTACCTTTTGTTTTTTAAAGGAGTTACCTTTTTTTTAGGAATTCTTTAGTTACCTTTCGCTTGCTCTCAAAAAATATTTAACTTTCGCTTTTTTTCATTTTAATTTTTGCAACTATTTACGAGTTTCATGAATGCTTATTTTCCAGCATATCATTATTTGCAAGTATTTTTATGCCGTATGTATTGGACGAGAGCCATCGGGACTGTTCCAGAGACTGCGTGGTGGGGACGGCTCCCAACCGCCTTTTCTATCTCTGTTCGCATCCGGTGGCCGACTTGGCTCGCGCGTGAGCCGTGACGTAACAGACTTGGTCTCTTCCCCATCTGGCCATCTATAAATTCCCCCATCGATCGACCCTCCCTTTCCCCAATCCAGCACCCCCGATCCCGATCGAAAATTCTCCGCAACAGCAAGCGATCGATCTAGCGAATCCCCGTCAAGGTATGTAGCCTCTCGATTCCTCCTCAGCCCTGCCCTCGATTTGGTGTACGCGTTGAGATGATGATCTCGTAGATGTCTAGATGACACCATGTCGATTTGAAATAGATCAGATCCGTGTAGATCGATGAGCTCCTGTGTACCTGTGGATTCAAGTTATTTTCGCATGCTATTGTTGTGATCTACTAGATCTAGTGTGTGTATTCTATGCTATCGATTTCTCCGTGTAGATTTCACTCGATTACTGTTACTGTGGCTTGATCGGCCATAGATGTTGGTTAAGGTTTGATCGGTTAGTGTTTGAACCTGCGTGGATATCTAGCATCCATCTATTATCGTGTAGGTTTCGAACAAACAAGCACTATTATTGTACTGATGGTTCGTCTATGGTTGGTTTTGACCGTTTTAGTGTTGAACGAGCCTTCTGTATTTGTTTATTGCTGTCCAGTGATGTACCATGTTCGTTGAGTGTCGGATTATACTAATTATTGTTGATTGATAATCTTGTAGTTTGCTTTTCCTAATTTATTTATCGTAGTCCTGATTTGCCTCAGCTGTGCCTCACCCGTGCGATGGTCAATCAACTTGTTAGCCCAATCTGCTTAATCATGTACATTTGTTGTTAGAATCAGAGATCAAGCCAATTAGCTATCTTATTGCTTATCTGTTCCATGTTCTGATCGATGTAACAGTCTACACTTTTGCTCTGTGCTACTTGATTAAAACATTCTGACTTAAATTCATGATTGGAAGTTTCAGATCTGATTGTTGCCTTACTTGACTAATATCTATTCATGTGACACCTCTCTGTCTTGGTAACTTACCGCTGTTTGTTTGTAATTTCTGACTATGCAG(配列番号16)
の配列を含むまたはこの配列からなる。
実施形態では、5’−UTRおよびイントロンと作動可能に連結しているプロモーターが、5’−UTRおよびイントロンと作動可能に連結しているアワ(Setaria italica)ユビキチン2(Ubi2)プロモーターであり得る。一実施形態では、プロモーターが配列番号17:
TGCGTCTGGACGCACAAGTCATAGCATTATCGGCTAAAATTTCTTAATTTCTAAATTAGTCATATCGGCTAAGAAAGTGGGGAGCACTATCATTTCGTAGAACAAGAACAAGGTATCATATATATATATATATATAATATTTAAACTTTGTTAAGTGGAATCAAAGTGCTAGTATTAATGGAGTTTCATGTGCATTAAATTTTATGTCACATCAGCAATTTTGTTGACTTGGCAAGGTCATTTAGGGTGTGTTTGGAAGACAGGGGCTATTAGGAGTATTAAACATAGTCTAATTACAAAACTAATTGCACAACCGCTAAGCTGAATCGCGAGATGGATCTATTAAGCTTAATTAGTCCATGATTTGACAATGTGGTGCTACAATAACCATTTGCTAATGATGGATTACTTAGGTTTAATAGATTCGTCTCGTGATTTAGCCTATGGGTTCTGCTATTAATTTTGTAATTAGCTCATATTTAGTTCTTATAATTAGTATCCGAACATCCAATGTGACATGCTAAAGTTTAACCCTGGTATCCAAATGAAGTCTTATGAGAGTTTCATCACTCCGGTGGTATATGTACTTAGGCTCCGTTTTCTTCCACCGACTTATTTTTAGCACCCGTCACATTGAATGTTTAGATACTAATTAGAAGTATTAAACGTAGACTATTTACAAAATCCATTACATAAGACGAATCTAAACGGCGAGACGAATCTATTAAACCTAATTAGTCCATGATTTGACAATGTGTTGCTACAGTAAACATTTGCTAATGATGGATTAATTAGGCTTAATAGATTCGTCTCGCCGTTTAGCCTCCACTTATGTAATGGGTTTTCTAAACAATCTACGTTTAATACTCCTAATTAGTATCTAAATATTCAATGTGACACGTGCTAAAAATAAGTCAGTGGAAGGAAGAGAACGTCCCCTTAGTTTTCCATCTTATTAATTGTACGATGAAACTGTGCAGCCAGATGATTGACAATCGCAATACTTCAACTAGTGGGCCATGCACATCAGCGACGTGTAACGTCGTGAGTTGCTGTTCCCGTAGAGAAATATCAACTGGTGGGCCACGCACATCAGCGTCGTGTAACGTGGACGGAGGAGCCCCGTGACGGCGTCGACATCGAACGGCCACCAACCACGGAACCACCCGTCCCCACCTCTCGGAAGCTCCGCTCCACGGCGTCGACATCTAACGGCTACCAGCAGGCGTACGGGTTGGAGTGGACTCCTTGCCTCTTTGCGCTGGCGGCTTCCGGAAATTGCGTGGCGGAGACGAGGCGGGCTCGTCTCACACGGCACGGAAGACGTCACGGGTTCCTTCCCCACCTCTCCTCTTCCCCACCGCCATAAATAGCCGACCCCCTCGCCTTTCTCCCCAATCTCATCTCGTCTCGTGTTGTTCGGAGCACACCACCCGCCCCAAATCGTTCTTCCCGCAAGCCTCGGCGATCCTTCACCCGCTTCAAGGTACGGCGATCGTCTTCCTCCTCTAGATCGGCGTGATCTGCAAGTAGTTGATTTGGTAGATGGTTAGGATCTGTGCACTGAAGAAATCATGTTAGATCCGCGATGTTTCTGTTCGTAGATGGCTGGGAGGTGGAATTTTTGTGTAGATCTGATATGTTCTCCTGTTTATCTTGTCACGCTCCTGCGATTTGTGGGGATTTTAGGTCGTTGATCTGGGAATCGTGGGGTTGCTTCTAGGCTGTTCGTAGATGAGGTCGTTCTCACGGTTTACTGGATCATTGCCTAGTAGATCAGCTCGGGCTTTCGTCTTTGTATATGGTGCCCATACTTGCATCTATGATCTGGTTCCGTGGTGTTACCTAGGTTTCTGCGCCTGATTCGTCCGATCGATTTTGTTAGCATGTGGTAAACGTTTGGTCATGGTCTGATTTAGATTAGAGTCGAATAGGATGATCTCGATCTAGCTCTTGGGATTAATATGCATGTGTCACCAATCTGTTCCGTGGTTAAGATGATGAATCTATGCTTAGTTAATGGGTGTAGATATATATGCTGCTGTTCCTCAATGATGCCGTAGCTTTTACCTGAGCAGCATGGATCCTCCTGTTACTTAGGTAGATGCACATGCTTATAGATCAAGATATGTACTGCTACTGTTGGAATTCTTTAGTATACCTGATGATCATCCATGCTCTTGTTACTTGTTTTGGTATACTTGGATGATGGCATGCTGCTGCTTTTTGTTGATTTGAGCCCATCCATATCTGCATATGTCACATGATTAAGATGATTACGCTGTTTCTGTATGATGCCATAGCTTTTATGTGAGCAACATGCATCCTCCTGGTTATATGCATTAATAGATGGAAGATATCTATTGCTACAATTTGATGATTATTTTGTACATACGATGATCAAGCATGCTCTTCATACTTTGTTGATATACTTGGATAATGAAATGCTGCTGCACGTTCATTCTATAGCACTAATGATGTGATGAACACGCACGACCTGTTTGTGGCATCTGTTTGAATGTGTTGTTGCTGTTCACTAGAGACTGTTTTATTAACCTACTGCTAGATACTTACCCTTCTGTCTGTTTATTCTTTTGCAG(配列番号17)
の配列を含むまたはこの配列からなる。
実施形態では、5’−utrおよびイントロンと作動可能に連結しているプロモーターが、5’−utrおよびイントロンと作動可能に連結しているアワ(Setaria italica)ユビキチン2(ubi2)プロモーターであり得る。一実施形態では、プロモーターが配列番号41:
TGCGTCTGGACGCACAAGTCATAGCATTATCGGCTAAAATTTCTTAATTTCTAAATTAGTCATATCGGCTAAGAAAGTGGGGAGCACTATCATTTCGTAGAACAAGAACAAGGTATCATATATATATATATATATAATATTTAAACTTTGTTAAGTGGAATCAAAGTGCTAGTATTAATGGAGTTTCATGTGCATTAAATTTTATGTCACATCAGCAATTTTGTTGACTTGGCAAGGTCATTTAGGGTGTGTTTGGAAGACAGGGGCTATTAGGAGTATTAAACATAGTCTAATTACAAAACTAATTGCACAACCGCTAAGCTGAATCGCGAGATGGATCTATTAAGCTTAATTAGTCCATGATTTGACAATGTGGTGCTACAATAACCATTTGCTAATGATGGATTACTTAGGTTTAATAGATTCGTCTCGTGATTTAGCCTATGGGTTCTGCTATTAATTTTGTAATTAGCTCATATTTAGTTCTTATAATTAGTATCCGAACATCCAATGTGACATGCTAAAGTTTAACCCTGGTATCCAAATGAAGTCTTATGAGAGTTTCATCACTCCGGTGGTATATGTACTTAGGCTCCGTTTTCTTCCACCGACTTATTTTTAGCACCCGTCACATTGAATGTTTAGATACTAATTAGAAGTATTAAACGTAGACTATTTACAAAATCCATTACATAAGACGAATCTAAACGGCGAGACGAATCTATTAAACCTAATTAGTCCATGATTTGACAATGTGTTGCTACAGTAAACATTTGCTAATGATGGATTAATTAGGCTTAATAGATTCGTCTCGCCGTTTAGCCTCCACTTATGTAATGGGTTTTCTAAACAATCTACGTTTAATACTCCTAATTAGTATCTAAATATTCAATGTGACACGTGCTAAAAATAAGTCAGTGGAAGGAAGAGAACGTCCCCTTAGTTTTCCATCTTATTAATTGTACGATGAAACTGTGCAGCCAGATGATTGACAATCGCAATACTTCAACTAGTGGGCCATGCACATCAGCGACGTGTAACGTCGTGAGTTGCTGTTCCCGTAGAGAAATATCAACTGGTGGGCCACGCACATCAGCGTCGTGTAACGTGGACGGAGGAGCCCCGTGACGGCGTCGACATCGAACGGCCACCAACCACGGAACCACCCGTCCCCACCTCTCGGAAGCTCCGCTCCACGGCGTCGACATCTAACGGCTACCAGCAGGCGTACGGGTTGGAGTGGACTCCTTGCCTCTTTGCGCTGGCGGCTTCCGGAAATTGCGTGGCGGAGACGAGGCGGGCTCGTCTCACACGGCACGGAAGACGTCACGGGTTCCTTCCCCACCTCTCCTCTTCCCCACCGCCATAAATAG(配列番号41)
の配列を含むまたはこの配列からなる。
実施形態では、5’−UTRおよびイントロンと作動可能に連結しているプロモーターが、5’−UTRおよびイントロンと作動可能に連結しているパニクム・ヴィルガツム(Panicum virgatum)(スイッチグラス)ユビキチンプロモーターであり得る。一実施形態では、プロモーターが配列番号39:
TTGAATTTTAATTTCAAATTTTGCAGGGTAGTAGTGGACATCACAATACATATTTAGAAAAAGTTTTATAATTTTCCTCCGTTAGTTTTCATATAATTTTGAACTCCAACGATTAATCTATTATTAAATATCCCGATCTATCAAAATAATGATAAAAATTTATGATTAATTTTTCTAACATGTGTTATGGTGTGTACTATCGTCTTATAAAATTTCAACTTAAAACTCCACCTATACATGGAGAAATGAAAAAGACGAATTACAGTAGGGAGTAATTTGAACCAAATGGAATAGTTTGAGGGTAAAATGAACTAAACAATAGTTTAGGAGGTTATTCAGATTTTAGTTATAGTTGAGAGGAGTAATTTAGACTTTTTCCTATCTTGAATTGTTGACGGCTCTCCTATCGGATATCGGATGGAGTCTTTCAGCCCAACATAACTTCATTCGGGCCCAAACGTTCGTCCATCCAGCCTAGGGAGAACATTTTGCCCATGATATCTGTTTTTCTTTTTTTCTATTTTCACTGGTATTATAGGAGGGAAATATACAACGTGTTCACCTTTGGTTTCATTCTTGTTCCATCTGAATTTATCTAAAACTGTGTTTGAACTTCGTAAGAATTTTGTTCGATCTGTCCGGTACATCGTGTTGATAGGTGGCCTCCGAGATTCTTCTTTTTAACCGGCAAAGTAAAATAATCTCAGCTCCAGCCTAACGTCAATTATCAGAGAGAGAAAAAAATATTTTTTTATGATTGATCGGAAACCAACCGCCTTACGTGTCGATCCTGGTTCCTGGCCGGCACGGCGGAGGAAAGCGACCGACCTCGCAACGCCGGCGCACGGCGCCGCCGTGTTGGACTTGGTCTCCCGCGACTCCGTGGGCCTCGGCTTATCGCCGCCGCTCCATCTCAACCGTCCGCTTGGACACGTGGAAGTTGATCCGTCGCGCACCAGCCTCGGAGGTAACCTAACTGCCCGTACTATAAATCCGGGATCCGGCCTCTCCAATCCCCATCGCCACAAGTTCGCGATCTCTCGATTTCACAAATCGCCGAGAAGACCCGAGCAGAGAAGTTCCCTCCGATCGCCTTGCCAAGGTACTCCTACCTAATCCTCCTTAACTGATCTCTCCTCTATCACGTTGGTAATCTTCGAATGATCTGCTGCCTGGCTCGCTGTTCCCCCTCGTTATGCACTGTTTCCATCACGAGTTTTTTTTTTCATCATCTAATCTATGCGGTTGCGGAAGAATTGTGGCTAGTGGAGTAGTTTTCTGTGCTTGATCGGTAGATTCGATGTGTGGGTGTATGGATGTTTTCTGAAAAGTTGCTGGATTAGTTTACGCTTTCAGGCCGCAGGTCTGTTCGAAATTGATTATGAAGTCTATATGCTTTGGATCTATCGATTTCCAGTTTTATTCAGATGTAGGCCAAAAAATTGTCGGCATTTGTGTGGAATTAGTTGGCCTTTAGGTCTGCACATTCATGGTGACGGCACAGTTGCTGCTGGCTGTTGCGTGGGACGAGTTATTATAGTTGTTTTTGTTTTTCCCTGATTGATTCACATTTTCAATGATAACTAGCCTTTGTCACCTAACCAAGTCCAGGTTGATCCTATCTGTGTTCTTCAGCTACCAGTTTGCATAGATGATGGTGTATTCGATTGCTTTAGTAGGCCTTCTGATTTCACATCTAATTCTGTCATGAATATAGATAACTTTACATGCTTTTGATATACTTTATATTTGAACTGTTCACTGTCCAGCCTATTTTGGATAATTGAGTGCATTGGCTTTTGATGCCTGAATTATTCACATGTTCCTGGATAATTGACCTGTGTCACCTAGTTGACTGTTTTTTGAGGTGCCACCCGTCTGTTCAGCTGATTTGTGTATTCGATTGCTCTAGTTAATCTTTTGATTATGCAGCTAGTGCTTTGTCATATGTAGCTTTATAGGCTTCTGATGTCCTTGGATATAGTTCAGTCTACTTGTCAAGTTGCTTTACAAGTAGTAGCTCTGATTCTATTTGGCTTCCTGAGTCAGAGCTTTGCAAATTGCTTGTTGTTACATTACATCATATTACTTGAATTGCAGTTATTTAATGGTTGGATTGTTGCTGTTTACTTCTACATTTTTTGCTGTTTTATATTATACTAAAATGTTTGTGTTGCTGCTTTTCAG(配列番号39)
の配列を含むまたはこの配列からなる。
実施形態では、イントロンおよび5’−UTRと作動可能に連結しているプロモーターを含む核酸構築物が提供される。一実施形態では、構築物が、配列番号15、配列番号16、配列番号17、配列番号41または配列番号39と少なくとも80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%または100%同一である配列を含む。一実施形態では、ポリリンカーと作動可能に連結している配列番号15、配列番号16、配列番号17または配列番号39と少なくとも80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%または100%同一である配列を含むまたはこの配列からなるユビキチンプロモーター配列を含む核酸構築物が提供される。場合により、構築物がポリリンカーの3’末端と作動可能に連結している3’−UTRをさらに含むことができる。実施形態では、非ユビキチン導入遺伝子と作動可能に連結している配列番号15、配列番号16、配列番号17、配列番号41または配列番号39と少なくとも80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%または100%同一である配列を含むまたはからなるユビキチンプロモーター配列を含む遺伝子発現カセットが提供される。場合により、構築物が非ユビキチン導入遺伝子の3’末端と作動可能に連結している3’−UTRをさらに含むことができる。一実施形態では、3’−UTR配列が配列番号4、配列番号5、配列番号6または配列番号36からなる。例示的実施形態では、導入遺伝子が殺虫剤耐性導入遺伝子、除草剤耐性導入遺伝子、窒素利用効率導入遺伝子、水利用効率導入遺伝子、栄養価導入遺伝子、DNA結合導入遺伝子、選択マーカー導入遺伝子またはこれらの組み合わせであり得る。一実施形態では、導入遺伝子が除草剤耐性遺伝子である。一実施形態では、配列番号4、配列番号5、配列番号6または配列番号36からなる群から独立に選択される1個、2個、3個または4個のプロモーター配列を含むベクターが提供される。
実施形態では、遺伝子発現カセットがユビキチンプロモーターと、ユビキチン5’−UTRと、ユビキチンイントロンと、ユビキチン3’−UTRとを含む。実施形態では、ユビキチンプロモーター、ユビキチン5’−UTR、ユビキチンイントロンおよびユビキチン3’−UTRがそれぞれ独立に、パニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチンプロモーター;パニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)ユビキチン5’−UTR;パニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)ユビキチンイントロン;およびパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチン3’−UTRであり得る。実施形態では、遺伝子発現カセットがa)配列番号1、配列番号2、配列番号3または配列番号36と少なくとも80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%または100%同一であるプロモーターと;b)配列番号4、配列番号5、配列番号6または配列番号37と少なくとも80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%または100%同一である3’−UTRと;c)配列番号11、配列番号12、配列番号13、配列番号14または配列番号38と少なくとも80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%または100%同一である5’−UTRと;d)配列番号15、配列番号16、配列番号17、配列番号41または配列番号39と少なくとも80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%または100%同一であるイントロンとを含む。
例えば、遺伝子発現カセットがプロモーター、イントロンおよび5’−UTRのいずれも含んでもよく、プロモーターが配列番号3のポリヌクレオチドであり、イントロンが配列番号9または10のポリヌクレオチドであり、5’−UTRが配列番号13または14のポリヌクレオチドである。同様に、遺伝子発現カセットがプロモーター、イントロンおよび5’−UTRのいずれも含んでもよく、プロモーターが配列番号2のポリヌクレオチドであり、イントロンが配列番号8のポリヌクレオチドであり、5’−UTRが配列番号12のポリヌクレオチドである。さらに、遺伝子発現カセットがプロモーター、イントロンおよび5’−UTRのいずれも含んでもよく、プロモーターが配列番号3のポリヌクレオチドであり、イントロンが配列番号9および/または配列番号10のポリヌクレオチドであり、5’−UTRが配列番号13または14のポリヌクレオチドである。さらに、遺伝子発現カセットがプロモーター、イントロンおよび5’−UTRのいずれも含んでもよく、プロモーターが配列番号3のポリヌクレオチドであり、イントロンが配列番号9または10のポリヌクレオチドであり、5’−UTRが配列番号13のポリヌクレオチドである。
例えば、遺伝子発現カセットがプロモーター、イントロン、5’−UTRおよび3’−UTRのいずれも含んでもよく、プロモーターが配列番号3のポリヌクレオチドであり、イントロンが配列番号9または10のポリヌクレオチドであり、5’−UTRが配列番号13または14のポリヌクレオチドであり、3’−UTRが配列番号6のポリヌクレオチドである。同様に、遺伝子発現カセットがプロモーター、イントロン、5’−UTRおよび3’−UTRのいずれも含んでもよく、プロモーターが配列番号3のポリヌクレオチドであり、イントロンが配列番号9または10のポリヌクレオチドであり、5’−UTRが配列番号13または14のポリヌクレオチドであり、3’−UTRが配列番号6のポリヌクレオチドである。さらに、遺伝子発現カセットがプロモーター、イントロン、5’−UTRおよび3’−UTRのいずれも含んでもよく、プロモーターが配列番号3のポリヌクレオチドであり、イントロンが配列番号9および/または配列番号10のポリヌクレオチドであり、5’−UTRが配列番号13または14のポリヌクレオチドであり、3’−UTRが配列番号6のポリヌクレオチドである。さらに、遺伝子発現カセットがプロモーター、イントロン、5’−UTRおよび3’−UTRのいずれも含んでもよく、プロモーターが配列番号35のポリヌクレオチドであり、イントロンが配列番号37のポリヌクレオチドであり、5’−UTRが配列番号38のポリヌクレオチドであり、3’−UTRが配列番号36のポリヌクレオチドである。
さらに、遺伝子発現カセットがプロモーターと3’−UTRの両方を含んでもよく、プロモーターが配列番号3のポリヌクレオチドであり、3’−UTRが配列番号6のポリヌクレオチドである。実施形態では、遺伝子発現カセットがプロモーターと3’−UTRの両方を含んでもよく、プロモーターが配列番号3のポリヌクレオチドであり、3’−UTRが配列番号5のポリヌクレオチドである。実施形態では、遺伝子発現カセットがプロモーターと3’−UTRの両方を含んでもよく、プロモーターが配列番号3のポリヌクレオチドであり、3’−UTRが配列番号6のポリヌクレオチドである。実施形態では、遺伝子発現カセットがプロモーターと3’−UTRの両方を含んでもよく、プロモーターが配列番号35のポリヌクレオチドであり、3’−UTRが配列番号36のポリヌクレオチドである。
実施形態では、遺伝子発現カセットが、非ユビキチン導入遺伝子と作動可能に連結しているユビキチンプロモーター、ユビキチン5’−UTRおよびユビキチン3’−UTRを含む。実施形態では、遺伝子発現カセットが、非ユビキチン導入遺伝子と作動可能に連結しているユビキチンプロモーター、ユビキチンイントロン、ユビキチン5’−UTRおよびユビキチン3’−UTRを含む。
遺伝子発現カセットが1つまたは複数の導入遺伝子を含む場合、プロモーター、イントロン、5’−UTRおよび3’−UTRが遺伝子発現カセット内の異なる導入遺伝子と作動可能に連結していてもよい。例示的実施形態では、遺伝子発現カセットが導入遺伝子と作動可能に連結しているユビキチンプロモーターを含み、導入遺伝子が殺虫剤耐性導入遺伝子、除草剤耐性導入遺伝子、窒素利用効率導入遺伝子、水利用効率導入遺伝子、栄養価導入遺伝子、DNA結合導入遺伝子、選択マーカー導入遺伝子またはこれらの組み合わせであり得る。例示的実施形態では、遺伝子発現カセットが導入遺伝子と作動可能に連結しているユビキチンプロモーター、イントロンおよび5’−UTRを含み、導入遺伝子が殺虫剤耐性導入遺伝子、除草剤耐性導入遺伝子、窒素利用効率導入遺伝子、水利用効率導入遺伝子、栄養価導入遺伝子、DNA結合導入遺伝子、選択マーカー導入遺伝子またはこれらの組み合わせであり得る。例示的実施形態では、遺伝子発現カセットが導入遺伝子と作動可能に連結しているユビキチン3’−UTRを含み、導入遺伝子が殺虫剤耐性、除草剤耐性、窒素利用効率、水利用効率、栄養価またはこれらの組み合わせを増強する遺伝子産物をコードする。
ユビキチンイントロンおよび5’−UTRが遺伝子発現カセット内の異なるプロモーターと作動可能に連結していてもよい。例示的実施形態では、プロモーターが植物(例えば、トウモロコシ(Zea mays)ユビキチン1プロモーター)、ウイルス(例えば、キャッサバ葉脈モザイクウイルスプロモーター)または細菌(例えば、アグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens)delta mas)に由来する。例示的実施形態では、遺伝子発現カセットが導入遺伝子と作動可能に連結しているユビキチンプロモーターを含み、導入遺伝子が殺虫剤耐性導入遺伝子、除草剤耐性導入遺伝子、窒素利用効率導入遺伝子、水利用効率導入遺伝子、栄養価導入遺伝子、DNA結合導入遺伝子、選択マーカー導入遺伝子またはこれらの組み合わせであり得る。
実施形態では、ベクターが本明細書に開示される遺伝子発現カセットを含む。実施形態では、ベクターがプラスミド、コスミド、細菌人工染色体(BAC)、バクテリオファージ、ウイルス、またはドナーDNAなどの直接形質転換もしくは遺伝子標的化に使用するための切除ポリヌクレオチドフラグメントであり得る。
一実施形態によると、組換え遺伝子カセットを含む核酸ベクターであって、組換え遺伝子カセットがポリリンカー配列、非ユビキチン導入遺伝子またはこれらの組み合わせと作動可能に連結しているユビキチンベースプロモーターを含む、核酸ベクターが提供される。一実施形態では、組換え遺伝子カセットが非ユビキチン導入遺伝子と作動可能に連結しているユビキチンベースプロモーターを含む。一実施形態では、組換え遺伝子カセットがポリリンカー配列と作動可能に連結している本明細書に開示されるユビキチンベースプロモーターを含む。コード配列をポリリンカーの制限部位の1つに挿入することによって、コード配列を作動可能に連結して、ベクターを宿主細胞にトランスフェクトした場合にコード配列の発現を可能にするように、ポリリンカーがユビキチンベースプロモーターと作動可能に連結している。
一実施形態によると、ユビキチンベースプロモーターが配列番号3または配列番号3と90、95もしくは99%の配列同一性を有する配列を含む。一実施形態によると、プロモーター配列が1.5、2、2.5、3または4kb以下の全長を有する。一実施形態によると、ユビキチンベースプロモーターが配列番号3または配列番号3と90、95もしくは99%の配列同一性を有する1064bp配列からなる。
一実施形態によると、配列番号17と、非ユビキチン導入遺伝子と、3’−UTRとからなる遺伝子カセットを含む核酸ベクターであって、配列番号17が非ユビキチン導入遺伝子の5’末端と作動可能に連結しており、3’−UTRが非ユビキチン導入遺伝子の3’末端と作動可能に連結している、核酸ベクターが提供される。さらなる実施形態では、3’非翻訳配列が配列番号6または配列番号6と90、95、99もしくは100%の配列同一性を有する配列を含む。一実施形態によると、配列番号17または配列番号17と90、95もしくは99%の配列同一性を有する2600bp配列と、非ユビキチン導入遺伝子と、3’−UTRとからなる遺伝子カセットを含む核酸ベクターであって、配列番号17が非ユビキチン導入遺伝子の5’末端と作動可能に連結しており、3’−UTRが非ユビキチン導入遺伝子の3’末端と作動可能に連結している、核酸ベクターが提供される。さらなる実施形態では、3’非翻訳配列が配列番号6または配列番号6と90、95、99もしくは100%の配列同一性を有する配列を含む。さらなる実施形態では、3’非翻訳配列が配列番号6または配列番号6と90、95もしくは99%の配列同一性を有する1032bp配列からなる。
一実施形態によると、核酸ベクターが、選択マーカーをコードする配列をさらに含む。一実施形態によると、組換え遺伝子カセットがアグロバクテリウム(Agrobacterium)T−DNA境界と作動可能に連結している。一実施形態によると、組換え遺伝子カセットが第1および第2のT−DNA境界をさらに含み、第1のT−DNA境界が遺伝子構築物の一端と作動可能に連結しており、前記第2のT−DNA境界が遺伝子構築物の他端と作動可能に連結している。第1および第2のアグロバクテリウム(Agrobacterium)T−DNA境界は、ノパリン合成アグロバクテリウム(Agrobacterium)T−DNA境界、オクトピン合成アグロバクテリウム(Agrobacterium)T−DNA境界、スクシナモピン合成アグロバクテリウム(Agrobacterium)T−DNA境界またはこれらの任意の組み合わせからなる群から選択される細菌株に由来するT−DNA境界配列から独立に選択され得る。一実施形態では、ノパリン合成株、マンノピン合成株、スクシナモピン合成株またはオクトピン合成株からなる群から選択されるアグロバクテリウム(Agrobacterium)株であって、配列番号3、配列番号17、または配列番号3もしくは配列番号17と90、95%もしくは99%の配列同一性を有する配列から選択される配列と作動可能に連結している導入遺伝子を含むプラスミドを含む株が提供される。
対象となるおよび本開示の構築物に使用するのに適した導入遺伝子には、それだけに限らないが、(1)耐有害生物性または耐病性、(2)除草剤耐性、ならびに(3)その開示が本明細書に組み込まれるWO2013116700(DGT−28)、US20110107455(DSM−2)、米国特許第8283522号(AAD−12);第7838733号(AAD−1);第5188960号;第5691308号;第6096708号;および第6573240号(Cry1F);米国特許第6114138号;第5710020号;および第6251656号(Cry1Ac);米国特許第6127180号;第6624145号および第6340593号(Cry34Ab1);米国特許第6083499号;第6548291号および第6340593号(Cry35Ab1)に開示されている価値付加形質を付与するコード配列が含まれる。一実施形態によると、導入遺伝子が殺虫剤耐性、除草剤耐性、窒素利用効率、水利用効率または栄養価を付与する選択マーカーまたは遺伝子産物をコードする。
一実施形態によると、遺伝子カセットを含む核酸ベクターであって、遺伝子カセットが導入遺伝子の5’末端と作動可能に連結しているプロモーター領域を含み、導入遺伝子の3’末端が3’非翻訳領域と連結している、核酸ベクターが提供される。一実施形態では、プロモーター領域が配列番号3または配列番号3と90、95もしくは99%の配列同一性を有する配列を含む。一実施形態によると、プロモーター領域が配列番号3または配列番号17からなる。一実施形態では、3’非翻訳配列が配列番号6または配列番号6と90、95もしくは99%の配列同一性を有する配列を含み、一実施形態では、3’非翻訳配列が配列番号6または配列番号6と90、95もしくは99%の配列同一性を有する1032bp配列からなる。
一実施形態によると、遺伝子カセットを含む核酸ベクターであって、遺伝子カセットが5’非翻訳配列の5’末端と作動可能に連結しているプロモーター領域を含み、5’非翻訳配列の3’末端が導入遺伝子の5’末端と作動可能に連結しており、導入遺伝子の3’末端が3’非翻訳領域と連結している、核酸ベクターが提供される。一実施形態では、プロモーター領域が配列番号3または配列番号3と90、95もしくは99%の配列同一性を有する配列を含むまたはからなる。一実施形態では、プロモーター領域が配列番号3または配列番号3と90、95もしくは99%の配列同一性を有する1032bp配列からなる。一実施形態によると、5’非翻訳配列が配列番号13または配列番号13と90%の配列同一性を有する配列を含むまたはからなる。一実施形態によると、5’非翻訳配列が配列番号14または配列番号14と90%の配列同一性を有する配列を含むまたはからなる。一実施形態によると、5’非翻訳配列が配列番号13または配列番号13と90%の配列同一性を有する261bp配列からなる。一実施形態によると、5’非翻訳配列が配列番号14または配列番号14と90%の配列同一性を有する113bp配列からなる。一実施形態では、3’非翻訳配列が配列番号6または配列番号6と90、95もしくは99%の配列同一性を有する配列を含むまたはからなる。一実施形態では、3’非翻訳配列が配列番号6または配列番号6と90、95もしくは99%の配列同一性を有する1032bp配列からなる。さらなる実施形態では、核酸ベクターが、5’非翻訳領域と導入遺伝子との間に挿入され、プロモーターおよび導入遺伝子と作動可能に連結しているユビキチンイントロンをさらに含む。一実施形態では、ユビキチンイントロンが配列番号9もしくは10、または配列番号9もしくは10と90、95もしくは99%の配列同一性を有する配列を含むまたはからなる。一実施形態では、ユビキチンイントロンが配列番号9または配列番号9と90、95もしくは99%の配列同一性を有する48bp配列からなる。一実施形態では、ユビキチンイントロンが配列番号10または配列番号10と90、95もしくは99%の配列同一性を有する1114bp配列からなる。
一実施形態によると、遺伝子カセットを含む核酸ベクターであって、遺伝子カセットが導入遺伝子の5’末端と作動可能に連結しているプロモーター領域を含み、導入遺伝子の3’末端が3’非翻訳領域と連結している、核酸ベクターが提供される。一実施形態では、プロモーター領域が配列番号40または配列番号40と90、95もしくは99%の配列同一性を有する配列を含む。
TGCGTCTGGACGCACAAGTCATAGCATTATCGGCTAAAATTTCTTAATTTCTAAATTAGTCATATCGGCTAAGAAAGTGGGGAGCACTATCATTTCGTAGAACAAGAACAAGGTATCATATATATATATATATATAATATTTAAACTTTGTTAAGTGGAATCAAAGTGCTAGTATTAATGGAGTTTCATGTGCATTAAATTTTATGTCACATCAGCAATTTTGTTGACTTGGCAAGGTCATTTAGGGTGTGTTTGGAAGACAGGGGCTATTAGGAGTATTAAACATAGTCTAATTACAAAACTAATTGCACAACCGCTAAGCTGAATCGCGAGATGGATCTATTAAGCTTAATTAGTCCATGATTTGACAATGTGGTGCTACAATAACCATTTGCTAATGATGGATTACTTAGGTTTAATAGATTCGTCTCGTGATTTAGCCTATGGGTTCTGCTATTAATTTTGTAATTAGCTCATATTTAGTTCTTATAATTAGTATCCGAACATCCAATGTGACATGCTAAAGTTTAACCCTGGTATCCAAATGAAGTCTTATGAGAGTTTCATCACTCCGGTGGTATATGTACTTAGGCTCCGTTTTCTTCCACCGACTTATTTTTAGCACCCGTCACATTGAATGTTTAGATACTAATTAGAAGTATTAAACGTAGACTATTTACAAAATCCATTACATAAGACGAATCTAAACGGCGAGACGAATCTATTAAACCTAATTAGTCCATGATTTGACAATGTGTTGCTACAGTAAACATTTGCTAATGATGGATTAATTAGGCTTAATAGATTCGTCTCGCCGTTTAGCCTCCACTTATGTAATGGGTTTTCTAAACAATCTACGTTTAATACTCCTAATTAGTATCTAAATATTCAATGTGACACGTGCTAAAAATAAGTCAGTGGAAGGAAGAGAACGTCCCCTTAGTTTTCCATCTTATTAATTGTACGATGAAACTGTGCAGCCAGATGATTGACAATCGCAATACTTCAACTAGTGGGCCATGCACATCAGCGACGTGTAACGTCGTGAGTTGCTGTTCCCGTAGCCGACCCCCTCGCCTTTCTCCCCAATCTCATCTCGTCTCGTGTTGTTCGGAGCACACCACCCGCCCCAAATCGTTCTTCCCGCAAGCCTCGGCGATCCTTCACCCGCTTCAAG(配列番号40)。
一実施形態では、プロモーター領域が配列番号42または配列番号42と90、95もしくは99%の配列同一性を有する配列を含む。
TGCGTCTGGACGCACAAGTCATAGCATTATCGGCTAAAATTTCTTAATTTCTAAATTAGTCATATCGGCTAAGAAAGTGGGGAGCACTATCATTTCGTAGAACAAGAACAAGGTATCATATATATATATATATATAATATTTAAACTTTGTTAAGTGGAATCAAAGTGCTAGTATTAATGGAGTTTCATGTGCATTAAATTTTATGTCACATCAGCAATTTTGTTGACTTGGCAAGGTCATTTAGGGTGTGTTTGGAAGACAGGGGCTATTAGGAGTATTAAACATAGTCTAATTACAAAACTAATTGCACAACCGCTAAGCTGAATCGCGAGATGGATCTATTAAGCTTAATTAGTCCATGATTTGACAATGTGGTGCTACAATAACCATTTGCTAATGATGGATTACTTAGGTTTAATAGATTCGTCTCGTGATTTAGCCTATGGGTTCTGCTATTAATTTTGTAATTAGCTCATATTTAGTTCTTATAATTAGTATCCGAACATCCAATGTGACATGCTAAAGTTTAACCCTGGTATCCAAATGAAGTCTTATGAGAGTTTCATCACTCCGGTGGTATATGTACTTAGGCTCCGTTTTCTTCCACCGACTTATTTTTAGCACCCGTCACATTGAATGTTTAGATACTAATTAGAAGTATTAAACGTAGACTATTTACAAAATCCATTACATAAGACGAATCTAAACGGCGAGACGAATCTATTAAACCTAATTAGTCCATGATTTGACAATGTGTTGCTACAGTAAACATTTGCTAATGATGGATTAATTAGGCTTAATAGATTCGTCTCGCCGTTTAGCCTCCACTTATGTAATGGGTTTTCTAAACAATCTACGTTTAATACTCCTAATTAGTATCTAAATATTCAATGTGACACGTGCTAAAAATAAGTCAGTGGAAGGAAGAGAACGTCCCCTTAGTTTTCCATCTTATTAATTGTACGATGAAACTGTGCAGCCAGATGATTGACAATCGCAATACTTCAACTAGTGGGCCATGCACATCAGCGACGTGTAACGTCGTGAGTTGCTGTTCCCGTAGAGAAATATCAACTGGTGGGCCACGCACATCAGCGTCGTGTAACGTGGACGGAGGAGCCCCGTGACGGCGTCGACATCGAACGGCCACCAACCACGGAACCACCCGTCCCCACCTCTCGGAAGCTCCGCTCCACGGCGTCGACATCTAACGGCTACCAGCAGGCGTACGGGTTGGAGTGGACTCCTTGCCTCTTTGCGCTGGCGGCTTCCGGAAATTGCGTGGCGGAGACGAGGCGGGCTCGTCTCACACGGCACGGAAGAC(配列番号42)
一実施形態によると、プロモーター領域が配列番号40または配列番号40と90、95もしくは99%の配列同一性を有する1177bp配列からなる。一実施形態によると、プロモーター領域が配列番号40からなる。一実施形態によると、プロモーター領域が配列番号42または配列番号42と90、95もしくは99%の配列同一性を有する1325bp配列からなる。一実施形態によると、プロモーター領域が配列番号42からなる。一実施形態によると、3’非翻訳配列が配列番号6または配列番号6と90、95もしくは99%の配列同一性を有する1032bp配列からなり、一実施形態では、3’非翻訳配列が配列番号6からなる。
実施形態では、本明細書に開示される遺伝子発現カセットを含む細胞または植物が提供される。実施形態では、細胞または植物が本明細書に開示される遺伝子発現カセットを含むベクターを含む。実施形態では、ベクターがプラスミド、コスミド、細菌人工染色体(BAC)、バクテリオファージまたはウイルスであり得る。それによって、本明細書に開示される遺伝子発現カセットを含む細胞または植物がそれぞれ、トランスジェニック細胞またはトランスジェニック植物となる。実施形態では、トランスジェニック植物が単子葉植物であり得る。実施形態では、トランスジェニック単子葉植物が、それだけに限らないが、トウモロコシ、コムギ、イネ、ソルガム、エンバク、ライムギ、バナナ、サトウキビおよびキビであり得る。実施形態では、トランスジェニック植物が双子葉植物であり得る。実施形態では、トランスジェニック双子葉植物が、それだけに限らないが、ダイズ、ワタ、ヒマワリおよびセイヨウアブラナであり得る。実施形態には、本明細書に開示されるトランスジェニック植物のトランスジェニック種子も含まれる。
実施形態では、遺伝子発現カセットが2つ以上の導入遺伝子を含む。2つ以上の導入遺伝子は、本明細書に開示される同じプロモーター、イントロンまたは5’−UTRまたは3’−UTRと作動可能に連結していなくてもよい。実施形態では、遺伝子発現カセットが1つまたは複数の導入遺伝子を含む。1つまたは複数の導入遺伝子の実施形態では、少なくとも1つの導入遺伝子がプロモーター、イントロン、5’−UTRもしくは3’−UTRまたは本開示と作動可能に連結している。
選択マーカー
レポーター遺伝子としても記載されている種々の選択マーカーを、選択された発現ベクターに組み込んで形質転換した植物(「形質転換体」)の同定および選択を可能にすることができる。例えば、DNA配列決定およびPCR(ポリメラーゼ連鎖反応)、サザンブロット法、RNAブロット法、ベクターから発現したタンパク質、例えば、ホスフィノトリシン耐性を媒介する沈殿タンパク質を検出するための免疫学的方法、またはβ−グルクロニダーゼ(GUS)、ルシフェラーゼ、緑色蛍光タンパク質(GFP)、黄色蛍光タンパク質(YFP)、DsRed、β−ガラクトシダーゼ、クロラムフェニコールアセチルトランスフェラーゼ(CAT)、アルカリホスファターゼなどをコードするレポーター遺伝子などの他のタンパク質の目視観察を含む多くの方法が、形質転換した植物中の選択マーカーの発現を確認するために利用可能である(その内容全体が参照により本明細書に組み込まれる、Sambrook, et al., Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Press, N. Y., 2001参照)。
選択マーカー遺伝子は、形質転換細胞または組織の選択に利用される。選択マーカー遺伝子には、抗生物質耐性をコードする遺伝子、例えば、ネオマイシンホスホトランスフェラーゼII(NEO)およびハイグロマイシンホスホトランスフェラーゼ(HPT)をコードするもの、ならびに除草剤化合物に対する耐性を付与する遺伝子が含まれる。除草剤耐性遺伝子は、一般的に除草剤に非感受性の修飾標的タンパク質または除草剤が作用し得る前に植物中の除草剤を分解もしくは解毒する酵素をコードする。例えば、グリホサート耐性は、変異標的酵素、5−エノールピルビルシキメート−3−ホスフェートシンターゼ(5-enolpyruvylshikimate-3-phosphate synthase)(EPSPS)をコードする遺伝子を用いることによって得られた。EPSPSについての遺伝子および変異体は周知であり、以下にさらに記載される。グルホシネートアンモニウム、ブロモキシニルおよび2,4−ジクロロフェノキシアセテート(2,4−D)耐性は、それぞれの除草剤を解毒するpatもしくはDSM−2をコードする細菌遺伝子、ニトリラーゼ、aad−1またはaad−12遺伝子を用いることによって得られた。
実施形態では、イミダゾリノンまたはスルホニル尿素を含む除草剤が成長点または分裂組織を阻害することができ、これらの除草剤のためのアセトヒドロキシ酸シンターゼ(AHAS)およびアセト乳酸シンターゼ(ALS)の耐性/許容性の遺伝子は周知である。グリホサート耐性遺伝子には、変異5−エノールピルビルシキメート−3−ホスフェートシンターゼ(5-enolpyruvylshikimate-3-phosphate synthase)(EPSP)およびdgt−28遺伝子(組換え核酸の導入および/または天然EPSP遺伝子のインビボ突然変異誘発の種々の形態を介して)、aroA遺伝子およびグリホサートアセチルトランスフェラーゼ(GAT)遺伝子がそれぞれ含まれる。他のホスホノ化合物の耐性遺伝子には、ストレプトマイセス・ハイグロスコピクス(Streptomyces hygroscopicus)およびストレプトマイセス・ビリドクロモゲネス(Streptomyces viridichromogenes)を含むストレプトマイセス属(Streptomyces)の種のbar遺伝子、ならびにピリジノキシまたはフェノキシプロピオン酸およびシクロヘキソン(ACCase阻害剤コード遺伝子)が含まれる。シクロヘキサンジオンおよび/またはアリールオキシフェノキシプロパン酸(Haloxyfop、Diclofop、Fenoxyprop、Fluazifop、Quizalofopを含む)に対する耐性を付与する例示的な遺伝子には、アセチル補酵素Aカルボキシラーゼ(ACCase)−−Acc1−S1、Acc1−S2およびAcc1−S3の遺伝子が含まれる。実施形態では、トリアジン(psbAおよび1s+遺伝子)またはベンゾニトリル(ニトリラーゼ遺伝子)を含む除草剤が光合成を阻害することができる。
実施形態では、選択マーカー遺伝子には、それだけに限らないが、ネオマイシンホスホトランスフェラーゼII;シアナミドヒドラターゼ;アスパラギン酸キナーゼ;ジヒドロジピコリン酸シンターゼ;トリプロファンデカルボキシラーゼ;ジヒドロジピコリン酸シンターゼおよび脱感作アスパラギン酸キナーゼ;bar遺伝子;トリプトファンデカルボキシラーゼ;ネオマイシンホスホトランスフェラーゼ(NEO);ハイグロマイシンホスホトランスフェラーゼ(HPTまたはHYG);ジヒドロ葉酸レダクターゼ(DHFR);ホスフィノトリシンアセチルトランスフェラーゼ;2,2−ジクロロプロピオン酸デハロゲナーゼ;アセトヒドロキシ酸シンターゼ;5−エノールピルビル−シキメート−ホスフェートシンターゼ(aroA);ハロアリールニトリラーゼ;アセチル補酵素Aカルボキシラーゼ;ジヒドロプテロイン酸シンターゼ(sulI);および32kD光化学系IIポリペプチド(psbA)をコードする遺伝子が含まれる。
実施形態には、クロラムフェニコール;メトトレキサート;ハイグロマイシン;スペクチノマイシン;ブロモキシニル;グリホサート;およびホスフィノトリシンに対する耐性をコードする遺伝子も含まれる。
選択マーカー遺伝子の上記リストは限定的であることを意図していない。いずれのレポーターまたは選択マーカー遺伝子も本発明に包含される。
選択マーカー遺伝子は、植物中での最適発現のために合成される。例えば、実施形態では、遺伝子のコード配列が、植物中での発現を増強するためのコドン最適化によって改変されている。選択マーカー遺伝子を、特定の植物種中での発現のために最適化することができる、あるいは双子葉または単子葉植物中での最適発現のために改変することができる。植物の優先コドンは、対象となる特定の植物種中で、最大量で発現しているタンパク質中の最高頻度のコドンから決定することができる。実施形態では、選択マーカー遺伝子を、植物中最高レベルで発現してより高い形質転換効率をもたらすよう設計する。植物遺伝子最適化の方法は周知である。合成DNA配列の最適化および作製に関する手引きは、例えば、参照により本明細書に組み込まれるWO2013016546、WO2011146524、WO1997013402、米国特許第6166302号および米国特許第5380831号に見出すことができる。
形質転換
植物の適当な形質転換方法には、DNAを細胞に導入することができる任意の方法、例えば、限定されないが、電気穿孔(例えば、米国特許第5384253号参照);微粒子銃(例えば、米国特許第5015580号、第5550318号、第5538880号、第6160208号、第6399861号および第6403865号参照);アグロバクテリウム(Agrobacterium)媒介形質転換(例えば、米国特許第5635055号、第5824877号、第5591616号、第5981840号および第6384301号参照);およびプロトプラスト形質転換(例えば、米国特許第5508184号参照)が含まれる。
DNA構築物を、炭化ケイ素繊維による攪拌などの技術を用いて植物細胞のゲノムDNAに直接導入することができる(例えば、米国特許第5302523号および第5464765号参照)、またはDNA構築物を、DNA粒子銃などの微粒子銃法を用いて植物組織に直接導入することができる(例えば、Klein et al. (1987) Nature 327: 70-73参照)。あるいは、DNA構築物を、ナノ粒子形質転換を介して植物に導入することができる(例えば、その全体が参照により本明細書に組み込まれる米国特許公開第20090104700号参照)。
さらに、根粒菌属(Rhizobium)の種NGR234、アルファルファ根粒菌(Sinorhizoboium meliloti)、メソリゾビウム・ロティ(Mesorhizobium loti)、ジャガイモウイルスX、カリフラワーモザイクウイルスおよびキャッサバ葉脈モザイクウイルスおよび/またはタバコモザイクウイルスなどの非アグロバクテリウム属(Agrobacterium)細菌またはウイルスを用いて遺伝子導入を達成することができる。例えば、Chung et al. (2006) Trends Plant Sci. 11 (1): 1-4を参照されたい。
形質転換技術の適用を通して、事実上いかなる植物種の細胞も安定に形質転換することができ、これらの細胞を周知の技術によってトランスジェニック植物に発達させることができる。例えば、ワタ形質転換の文脈で特に有用となり得る技術は、米国特許第5846797号、第5159135号、第5004863号および第6624344号に記載されており;アブラナ属(Brassica)植物を形質転換するための技術は特に、例えば、米国特許第5750871号に記載されており;ダイズを形質転換するための技術は、例えば、米国特許第6384301号に記載されており;トウモロコシを形質転換するための技術は、例えば、米国特許第7060876号および第5591616号ならびにPCT公開WO95/06722に記載されている。
外因性核酸のレシピエント細胞への送達を行った後、一般的には形質転換細胞をさらなる培養および植物再生のために同定する。形質転換を同定する能力を改善するために、形質転換体を生成するために使用した形質転換ベクターと共に選択マーカー遺伝子を使用することが望むことができる。例示的実施形態では、形質転換細胞集団を選択剤(複数可)に曝露することによってアッセイすることができる、または細胞を所望のマーカー遺伝子形質についてスクリーニングすることができる。
選択剤への曝露に生き延びた細胞、またはスクリーニングアッセイで陽性とスコア化された細胞を、植物の再生を支持する培地で培養することができる。実施形態では、成長調節剤などのさらなる物質を含めることによって任意の適当な植物組織培養培地を修飾することができる。組織を、植物再生の努力を開始するために十分な組織が利用可能となるまで成長調節剤を含めた基礎培地で維持し、または組織の形態が再生に適するまで(例えば、少なくとも2週間)の繰り返しの手動選択後、シュート形成を招く培地に移すことができる。十分なシュート形成が起こるまで、培養物を定期的に移す。いったんシュートが形成したら、これらを、根形成を招く培地に移す。いったん十分な根が形成したら、植物をさらなる成長および成熟のために土壌に移すことができる。
再生植物中に提供される構築物を含む所望の核酸の存在を確認するために、種々のアッセイを行うことができる。このようなアッセイには、分子生物学的アッセイ、例えば、サザンブロットおよびノーザンブロット法ならびにPCR;生化学的アッセイ、例えば、免疫学的手段(ELISA、ウエスタンブロット法および/またはLC−MS MS分光光度法)または酵素機能によって、タンパク質産物の存在を検出する;植物部分アッセイ、例えば、葉または根アッセイ;ならびに/あるいは全再生植物の表現型の分析が含まれ得る。
トランスジェニックイベントを、例えば、対象となる核酸分子に特異的なオリゴヌクレオチドプライマーを用いたPCR増幅によってスクリーニングすることができる。PCR遺伝子型判定は、それだけに限らないが、ゲノムに組み込まれる対象となる核酸分子を含むことが予想される単離宿主細胞カルス組織に由来するゲノムDNAのポリメラーゼ連鎖反応(PCR)増幅、引き続いてPCR増幅産物の標準的なクローニングおよび配列解析を含むと理解される。PCR遺伝子型判定の方法は十分に記載されており(例えば、Rios et al. (2002) Plant J. 32: 243-53参照)、細胞培養物を含む、任意の植物種または組織型に由来するゲノムDNAに適用することができる。標的配列と導入配列の両方に結合するオリゴヌクレオチドプライマーの組み合わせを順次使用する、またはPCR増幅反応で多重化することができる。標的部位、導入された核酸配列および/または2つの組み合わせにアニーリングするよう設計したオリゴヌクレオチドプライマーを作製することができる。したがって、PCR遺伝子型判定戦略は、例えば、限定されないが、植物ゲノム中の特異的配列の増幅;植物ゲノム中の複数の特異的配列の増幅;植物ゲノム中の非特異的配列の増幅;および前記のいずれかの組み合わせを含み得る。当業者であれば、ゲノムを調べるためのプライマーおよび増幅反応のさらなる組み合わせを考案することができるだろう。例えば、順方向および逆方向オリゴヌクレオチドプライマーのセットを、導入された核酸配列の境界の外側の標的に特異的な核酸配列(複数可能)にアニーリングするように設計することができる。
順方向および逆方向オリゴヌクレオチドプライマーを、導入された核酸分子に、例えば、そこに含まれる対象となるヌクレオチド配列中のコード領域に相当する配列で、または核酸分子の他の部分に特異的にアニーリングするよう設計することができる。プライマーを本明細書に記載されるプライマーと合わせて使用することができる。オリゴヌクレオチドプライマーは、所望の配列にしたがって合成することができ、商業的に入手可能である(例えば、Integrated DNA Technologies,Inc.、Coralville、IA製)。増幅に、クローニングもしくは配列決定、または増幅産物の直接配列解析が続くことができる。実施形態では、遺伝子標的に特異的なオリゴヌクレオチドプライマーをPCR増幅に使用する。
導入遺伝子を発現させる方法
実施形態では、植物中で少なくとも1つの導入遺伝子を発現させる方法が、少なくとも1つの導入遺伝子と作動可能に連結しているユビキチンプロモーターを含む植物を成長させるステップを含む。実施形態では、植物中で少なくとも1つの導入遺伝子を発現させる方法が、少なくとも1つの導入遺伝子と作動可能に連結しているユビキチン5’−UTRを含む植物を成長させるステップを含む。実施形態では、植物中で少なくとも1つの導入遺伝子を発現させる方法が、少なくとも1つの導入遺伝子と作動可能に連結しているユビキチンイントロンを含む植物を成長させるステップを含む。実施形態では、植物中で少なくとも1つの導入遺伝子を発現させる方法が、少なくとも1つの導入遺伝子と作動可能に連結しているユビキチンプロモーター、ユビキチン5’−UTRおよびユビキチンイントロンを含む植物を成長させるステップを含む。実施形態では、植物中で少なくとも1つの導入遺伝子を発現させる方法が、少なくとも1つの導入遺伝子と作動可能に連結しているユビキチン3’−UTRを含む植物を成長させるステップを含む。実施形態では、植物組織または植物細胞中で少なくとも1つの導入遺伝子を発現させる方法が、少なくとも1つの導入遺伝子と作動可能に連結しているユビキチンプロモーターを含む植物組織または植物細胞を培養するステップを含む。実施形態では、植物組織または植物細胞中で少なくとも1つの導入遺伝子を発現させる方法が、少なくとも1つの導入遺伝子と作動可能に連結しているユビキチン5’−UTRを含む植物組織または植物細胞を培養するステップを含む。実施形態では、植物組織または植物細胞中で少なくとも1つの導入遺伝子を発現させる方法が、少なくとも1つの導入遺伝子と作動可能に連結しているユビキチンイントロンを含む植物組織または植物細胞を培養するステップを含む。実施形態では、植物組織または植物細胞中で少なくとも1つの導入遺伝子を発現させる方法が、少なくとも1つの導入遺伝子と作動可能に連結しているユビキチンプロモーター、ユビキチン5’−UTRおよびユビキチンイントロンを含む植物組織または植物細胞を培養するステップを含む。実施形態では、植物組織または植物細胞中で少なくとも1つの導入遺伝子を発現させる方法が、少なくとも1つの導入遺伝子と作動可能に連結しているユビキチン3’−UTRを含む植物組織または植物細胞を培養するステップを含む。
実施形態では、植物中で少なくとも1つの導入遺伝子を発現させる方法が、少なくとも1つの導入遺伝子と作動可能に連結しているユビキチンプロモーターを含む遺伝子発現カセットを含む植物を成長させるステップを含む。一実施形態では、ユビキチンプロモーターが、配列番号1、配列番号2、配列番号3、配列番号35、配列番号15、配列番号16、配列番号17および配列番号39から選択される配列、または配列番号1、配列番号2、配列番号3、配列番号35、配列番号15、配列番号16、配列番号17および配列番号39から選択される配列と90、95もしくは99.5%の配列同一性を有する配列からなる。実施形態では、植物中で少なくとも1つの導入遺伝子を発現させる方法が、少なくとも1つの導入遺伝子と作動可能に連結しているユビキチンイントロンを含む遺伝子発現カセットを含む植物を成長させるステップを含む。実施形態では、植物中で少なくとも1つの導入遺伝子を発現させる方法が、少なくとも1つの導入遺伝子と作動可能に連結しているユビキチン5’−UTRを含む遺伝子発現カセットを含む植物を成長させるステップを含む。実施形態では、植物中で少なくとも1つの導入遺伝子を発現させる方法が、少なくとも1つの導入遺伝子と作動可能に連結しているユビキチンプロモーター、ユビキチン5’−UTRおよびユビキチンイントロンを含む遺伝子発現カセットを含む植物を成長させるステップを含む。実施形態では、植物中で少なくとも1つの導入遺伝子を発現させる方法が、少なくとも1つの導入遺伝子と作動可能に連結しているユビキチン3’−UTRを含む遺伝子発現カセットを含む植物を成長させるステップを含む。実施形態では、植物組織または植物細胞中で少なくとも1つの導入遺伝子を発現させる方法が、少なくとも1つの導入遺伝子と作動可能に連結しているユビキチンプロモーターを含む遺伝子発現カセットを含む植物組織または植物細胞を培養するステップを含む。実施形態では、植物組織または植物細胞中で少なくとも1つの導入遺伝子を発現させる方法が、少なくとも1つの導入遺伝子と作動可能に連結しているユビキチンイントロンを含む遺伝子発現カセットを含む植物組織または植物細胞を培養するステップを含む。実施形態では、植物組織または植物細胞中で少なくとも1つの導入遺伝子を発現させる方法が、少なくとも1つの導入遺伝子と作動可能に連結しているユビキチン5’−UTRを含む遺伝子発現カセットを含む植物組織または植物細胞を培養するステップを含む。実施形態では、植物組織または植物細胞中で少なくとも1つの導入遺伝子を発現させる方法が、少なくとも1つの導入遺伝子と作動可能に連結しているユビキチンプロモーター、ユビキチン5’−UTRおよびユビキチンイントロンを含む遺伝子発現カセットを含む植物組織または植物細胞を培養するステップを含む。実施形態では、植物組織または植物細胞中で少なくとも1つの導入遺伝子を発現させる方法が、少なくとも1つの導入遺伝子と作動可能に連結しているユビキチン3’−UTRを含む遺伝子発現カセットを含む植物組織または植物細胞を培養するステップを含む。
トランスジェニック植物
実施形態では、植物、植物組織または植物細胞がユビキチンプロモーターを含む。実施形態では、ユビキチンプロモーターがパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチンプロモーターであり得る。実施形態では、植物、植物組織または植物細胞がプロモーターを含む遺伝子発現カセットを含み、プロモーターが配列番号1、配列番号2、配列番号3または配列番号35と少なくとも80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%または100%同一であり、プロモーターが非ユビキチン導入遺伝子と作動可能に連結している。実施形態では、植物、植物組織または植物細胞が、非ユビキチン導入遺伝子と作動可能に連結している配列番号1、配列番号2、配列番号3、配列番号35、配列番号15、配列番号16、配列番号17および配列番号39から選択される配列、または配列番号1、配列番号2、配列番号3、配列番号35、配列番号15、配列番号16、配列番号17および配列番号39から選択される配列と90、95もしくは99.5%の配列同一性を有する配列を含む遺伝子発現カセットを含む。例示的実施形態では、植物、植物組織または植物細胞が導入遺伝子と作動可能に連結しているユビキチンプロモーターを含む遺伝子発現カセットを含み、導入遺伝子が殺虫剤耐性導入遺伝子、除草剤耐性導入遺伝子、窒素利用効率導入遺伝子、水利用効率導入遺伝子、栄養価導入遺伝子、DNA結合導入遺伝子、選択マーカー導入遺伝子またはこれらの組み合わせであり得る。
実施形態では、植物、植物組織または植物細胞が3’−UTRを含む遺伝子発現カセットを含む。実施形態では、植物、植物組織または植物細胞がユビキチン3’−UTRを含む遺伝子発現カセットを含む。実施形態では、ユビキチン3’−UTRがパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)ユビキチン3’−UTRである。実施形態では、3’−UTRがミナトカモジグサ(Brachypodium distachyon)ユビキチン1C(Ubi1C)3’−UTR、ミナトカモジグサ(Brachypodium distachyon)ユビキチン1 3’−UTRまたはアワ(Setaria italica)ユビキチン3’−UTRであり得る。
実施形態では、植物、植物組織または植物細胞がイントロンを含む遺伝子発現カセットを含み、イントロンが配列番号7、配列番号8、配列番号9、配列番号10または配列番号37と少なくとも80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%または100%同一である。実施形態では、遺伝子発現カセットがプロモーターと作動可能に連結しているユビキチンイントロンを含み、プロモーターがパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)もしくはアワ(Setaria italica)ユビキチンプロモーター、または植物(例えば、トウモロコシ(Zea mays)ユビキチン1プロモーター)、ウイルス(例えば、キャッサバ葉脈モザイクウイルスプロモーター)もしくは細菌(例えば、アグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens)delta mas)に由来するプロモーターである。実施形態では、植物、植物組織または植物細胞が導入遺伝子と作動可能に連結しているユビキチンイントロンを含む遺伝子発現カセットを含む。例示的実施形態では、植物、植物組織または植物細胞が導入遺伝子と作動可能に連結しているユビキチンイントロンを含む遺伝子発現カセットを含み、導入遺伝子が殺虫剤耐性導入遺伝子、除草剤耐性導入遺伝子、窒素利用効率導入遺伝子、水利用効率導入遺伝子、栄養価導入遺伝子、DNA結合導入遺伝子、選択マーカー導入遺伝子またはこれらの組み合わせであり得る。
実施形態では、植物、植物組織または植物細胞が5’−UTRを含む遺伝子発現カセットを含み、5’−UTRが配列番号11、配列番号12、配列番号13、配列番号14または配列番号38と少なくとも80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%または100%同一である。実施形態では、遺伝子発現カセットがプロモーターと作動可能に連結しているユビキチンイントロンを含み、プロモーターがパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)もしくはアワ(Setaria italica)ユビキチンプロモーター、または植物(例えば、トウモロコシ(Zea mays)ユビキチン1プロモーター)、ウイルス(例えば、キャッサバ葉脈モザイクウイルスプロモーター)もしくは細菌(例えば、アグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens)delta mas)に由来するプロモーターである。実施形態では、植物、植物組織または植物細胞が導入遺伝子と作動可能に連結しているユビキチン5’−UTRを含む遺伝子発現カセットを含む。例示的実施形態では、植物、植物組織または植物細胞が導入遺伝子と作動可能に連結しているユビキチン5’−UTRを含む遺伝子発現カセットを含み、導入遺伝子が殺虫剤耐性導入遺伝子、除草剤耐性導入遺伝子、窒素利用効率導入遺伝子、水利用効率導入遺伝子、栄養価導入遺伝子、DNA結合導入遺伝子、選択マーカー導入遺伝子またはこれらの組み合わせであり得る。
実施形態では、植物、植物組織または植物細胞がユビキチンプロモーターおよびユビキチン3’−UTRを含む遺伝子発現カセットを含む。実施形態では、植物、植物組織または植物細胞が、それぞれ独立に、パニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)もしくはアワ(Setaria italica)のユビキチンプロモーターおよびパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)もしくはアワ(Setaria italica)ユビキチンプロモーターであり得るユビキチンプロモーターおよび3’−UTRを含む。実施形態では、植物、植物組織または植物細胞が、a)配列番号1、配列番号2、配列番号3または配列番号35と少なくとも80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%または100%同一であるプロモーターと、b)配列番号4、配列番号5、配列番号6または配列番号36と少なくとも80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%または100%同一である3’−UTRとを含む遺伝子発現カセットを含む。
実施形態では、植物、植物組織または植物細胞が、導入遺伝子と作動可能に連結しているユビキチンプロモーター、ユビキチン5’−UTR、ユビキチンイントロンおよびユビキチン3’−UTRを含む遺伝子発現カセットを含む。遺伝子発現カセットが2つ以上の導入遺伝子を含む場合、プロモーター、イントロン、5’−UTRおよび3’−UTRが遺伝子発現カセット内の異なる導入遺伝子と作動可能に連結していてもよい。例示的実施形態では、遺伝子発現カセットが導入遺伝子と作動可能に連結しているユビキチンプロモーターを含み、導入遺伝子が殺虫剤耐性導入遺伝子、除草剤耐性導入遺伝子、窒素利用効率導入遺伝子、水利用効率導入遺伝子、栄養価導入遺伝子、DNA結合導入遺伝子、選択マーカー導入遺伝子またはこれらの組み合わせであり得る。例示的実施形態では、遺伝子発現カセットが導入遺伝子と作動可能に連結しているユビキチンイントロンを含み、導入遺伝子が殺虫剤耐性導入遺伝子、除草剤耐性導入遺伝子、窒素利用効率導入遺伝子、水利用効率導入遺伝子、栄養価導入遺伝子、DNA結合導入遺伝子、選択マーカー導入遺伝子またはこれらの組み合わせであり得る。実施形態では、遺伝子発現カセットがプロモーターと作動可能に連結しているユビキチンイントロンを含み、プロモーターがパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)もしくはアワ(Setaria italica)のユビキチンプロモーター、または植物(例えば、トウモロコシ(Zea mays)ユビキチン1プロモーター)、ウイルス(例えば、キャッサバ葉脈モザイクウイルスプロモーター)もしくは細菌(例えば、アグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens)delta mas)に由来するプロモーターである。例示的実施形態では、遺伝子発現カセットが導入遺伝子と作動可能に連結しているユビキチン5’−UTRを含み、導入遺伝子が殺虫剤耐性導入遺伝子、除草剤耐性導入遺伝子、窒素利用効率導入遺伝子、水利用効率導入遺伝子、栄養価導入遺伝子、DNA結合導入遺伝子、選択マーカー導入遺伝子またはこれらの組み合わせであり得る。実施形態では、遺伝子発現カセットがプロモーターと作動可能に連結しているユビキチン5’−UTRを含み、プロモーターがパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)もしくはアワ(Setaria italica)ユビキチンプロモーター、または植物(例えば、トウモロコシ(Zea mays)ユビキチン1プロモーター)、ウイルス(例えば、キャッサバ葉脈モザイクウイルスプロモーター)もしくは細菌(例えば、アグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens)delta mas)に由来するプロモーターである。例示的実施形態では、遺伝子発現カセットが導入遺伝子と作動可能に連結しているユビキチン3’−UTRを含み、3’−UTRが殺虫剤耐性導入遺伝子、除草剤耐性導入遺伝子、窒素利用効率導入遺伝子、水利用効率導入遺伝子、栄養価導入遺伝子、DNA結合導入遺伝子、選択マーカー導入遺伝子またはこれらの組み合わせであり得る。
実施形態では、植物、植物組織または植物細胞が、本明細書に開示されるユビキチンプロモーター、5’−UTR、イントロンおよび/または3’−UTRを含むベクターを含む。実施形態では、植物、植物組織または植物細胞が、非ユビキチン導入遺伝子と作動可能に連結している本明細書に開示されるユビキチンプロモーター、5’−UTR、イントロンおよび/または3’−UTRを含むベクターを含む。実施形態では、植物、植物組織または植物細胞が、本明細書に開示される遺伝子発現カセットを含むベクターを含む。実施形態では、ベクターがプラスミド、コスミド、細菌人工染色体(BAC)、バクテリオファージまたはウイルスであり得る。
一実施形態によると、導入遺伝子と作動可能に連結している非内因性ユビキチン由来プロモーター配列を含む植物、植物組織または植物細胞であって、ユビキチン由来プロモーター配列が配列番号1、配列番号2、配列番号3もしくは配列番号35の配列、または配列番号1、配列番号2、配列番号3もしくは配列番号35と90、95、98もしくは99%の配列同一性を有する配列を含む、植物、植物組織または植物細胞が提供される。一実施形態では、非ユビキチン導入遺伝子と作動可能に連結している配列番号3または配列番号3と90%の配列同一性を有する配列を含む植物、植物組織または植物細胞が提供される。一実施形態では、植物、植物組織または植物細胞が双子葉もしくは単子葉植物、または双子葉もしくは単子葉植物に由来する細胞もしくは組織である。一実施形態では、植物がトウモロコシ、コムギ、イネ、ソルガム、エンバク、ライムギ、バナナ、サトウキビ、ダイズ、ワタ、ヒマワリおよびセイヨウアブラナからなる群から選択される。一実施形態では、植物がトウモロコシ(Zea mays)である。一実施形態によると、植物、植物組織または植物細胞が、非ユビキチン導入遺伝子と作動可能に連結している配列番号3、配列番号17、または配列番号3もしくは配列番号17と90、95、98もしくは99%の配列同一性を有する配列を含む。一実施形態では、植物、植物組織または植物細胞が導入遺伝子と作動可能に連結しているプロモーターを含み、プロモーターが配列番号3、配列番号17、または配列番号3もしくは配列番号17と90、95、98もしくは99%の配列同一性を有する配列からなる。一実施形態によると、導入遺伝子と作動可能に連結している非内因性ユビキチン由来プロモーター配列を含む遺伝子構築物が植物、植物組織または植物細胞のゲノムに組み込まれる。
一実施形態では、導入遺伝子と作動可能に連結している配列番号3、または配列番号3と90、95、98もしくは99%の配列同一性を有する配列を含む非セタリア属(Setaria)植物、植物組織または植物細胞が提供される。一実施形態によると、非セタリア属(Setaria)植物、植物組織または植物細胞が双子葉もしくは単子葉植物、または双子葉もしくは単子葉植物に由来する植物細胞もしくは組織である。一実施形態では、植物がトウモロコシ、コムギ、イネ、ソルガム、エンバク、ライムギ、バナナ、サトウキビ、ダイズ、ワタ、ヒマワリおよびセイヨウアブラナからなる群から選択される。一実施形態では、植物がトウモロコシ(Zea mays)である。一実施形態によると、導入遺伝子と作動可能に連結しているプロモーター配列が植物、植物組織または植物細胞のゲノムに組み込まれる。一実施形態では、植物、植物組織または植物細胞が、配列番号13または配列番号13と90%の配列同一性を有する配列を含む5’非翻訳配列をさらに含み、5’非翻訳配列が前記プロモーターと前記導入遺伝子との間に挿入されており、これらと作動可能に連結している。一実施形態では、植物、植物組織または植物細胞が、配列番号14または配列番号14と90%の配列同一性を有する配列を含む5’非翻訳配列をさらに含み、5’非翻訳配列が前記プロモーターと前記導入遺伝子との間に挿入されており、これらと作動可能に連結している。さらなる実施形態では、植物、植物組織または植物細胞が、5’非翻訳配列の後に挿入されたイントロン配列をさらに含む。一実施形態では、イントロン配列がパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチン遺伝子から単離されたイントロン配列である。一実施形態では、配列が配列番号9を含むまたはからなる。一実施形態では、配列が配列番号10を含むまたはからなる。
一実施形態では、導入遺伝子の5’末端と作動可能に連結している配列番号3、または配列番号3と90、95、98もしくは99%の配列同一性を有する配列と、配列番号6または配列番号6と90%の配列同一性を有する配列を含む3’非翻訳配列とを含む非セタリア属(Setaria)植物、植物組織または植物細胞であって、3’非翻訳配列が前記導入遺伝子と作動可能に連結している植物、植物組織または植物細胞が提供される。一実施形態によると、非セタリア属(Setaria)植物、植物組織または植物細胞が双子葉もしくは単子葉植物である、または双子葉もしくは単子葉植物に由来する植物組織もしくは細胞である。一実施形態では、植物がトウモロコシ、コムギ、イネ、ソルガム、エンバク、ライムギ、バナナ、サトウキビ、ダイズ、ワタ、ヒマワリおよびセイヨウアブラナからなる群から選択される。一実施形態では、植物がトウモロコシ(Zea mays)である。一実施形態によると、導入遺伝子と作動可能に連結しているプロモーター配列が植物、植物組織または植物細胞のゲノムに組み込まれる。一実施形態では、植物、植物組織または植物細胞が、配列番号13もしくは14または配列番号13もしくは14と90%の配列同一性を有する配列を含む5’非翻訳配列をさらに含み、5’非翻訳配列が前記プロモーターと前記導入遺伝子との間に挿入されており、これらと作動可能に連結している。さらなる実施形態では、植物、植物組織または植物細胞が5’非翻訳配列の後に挿入されたイントロン配列をさらに含む。一実施形態では、イントロン配列がパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチン遺伝子から単離されたイントロン配列である。一実施形態では、5’非翻訳配列が配列番号13からなる。一実施形態では、5’非翻訳配列が配列番号13からなる。
一実施形態では、導入遺伝子と作動可能に連結している配列番号17または配列番号17と90%の配列同一性を有する配列を含む非セタリア属(Setaria)植物、植物組織または植物細胞が提供される。一実施形態では、導入遺伝子と作動可能に連結している配列番号40または配列番号40と90%の配列同一性を有する配列を含む非セタリア属(Setaria)植物、植物組織または植物細胞が提供される。一実施形態では、導入遺伝子と作動可能に連結している配列番号41または配列番号41と90%の配列同一性を有する配列を含む非セタリア属(Setaria)植物、植物組織または植物細胞が提供される。一実施形態では、導入遺伝子と作動可能に連結している配列番号42または配列番号42と90%の配列同一性を有する配列を含む非セタリア属(Setaria)植物、植物組織または植物細胞が提供される。一実施形態では、導入遺伝子と作動可能に連結しているプロモーターを含む非セタリア属(Setaria)植物、植物組織または植物細胞であって、プロモーターが配列番号17または配列番号17と90%の配列同一性を有する配列からなる植物、植物組織または植物細胞が提供される。さらなる実施形態では、非セタリア属(Setaria)植物、植物組織または植物細胞がパニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)またはアワ(Setaria italica)のユビキチン遺伝子の3’非翻訳配列をさらに含む。一実施形態では、3’非翻訳配列が、配列番号6または配列番号6と90%の配列同一性を有する配列を含むまたはからなり、3’非翻訳配列が導入遺伝子の3’末端と作動可能に連結している。
実施形態では、本明細書に開示される方法による植物、植物組織または植物細胞が単子葉植物であり得る。単子葉植物、植物組織または植物細胞は、それだけに限らないが、イネ、コムギ、サトウキビ、オオムギ、ライムギ、ソルガム、ラン、タケ、バナナ、ガマ、ユリ、エンバク、タマネギ、キビおよびライコムギであり得る。
実施形態では、本明細書に開示される方法による植物、植物組織または植物細胞が双子葉植物であり得る。双子葉植物、植物組織または植物細胞は、それだけに限らないが、ナタネ、セイヨウアブラナ、カラシナ、エチオピアマスタード(ethiopian mustard)、ダイズ、ヒマワリおよびワタであり得る。
遺伝子組換え植物の作製に関しては、植物の遺伝子工学の方法が当技術分野で周知である。例えば、双子葉植物ならびに単子葉植物のための生物学的および物理学的形質転換プロトコルを含む多数の植物形質転換方法が開発されている(例えば、Goto-Fumiyuki et al., Nature Biotech 17: 282-286 (1999); Miki et al., Methods in Plant Molecular Biology and Biotechnology, Glick, B. R. and Thompson, J. E. Eds., CRC Press, Inc., Boca Raton, pp. 67-88 (1993) 参照)。さらに、植物細胞もしくは組織の形質転換および植物の再生のためのベクターおよびインビトロ培養法は、例えば、Gruber et al., Methods in Plant Molecular Biology and Biotechnology, Glick, B. R. and Thompson, J. E. Eds., CRC Press, Inc., Boca Raton, pp. 89-119 (1993) で入手可能である。
当業者であれば、外因性配列がトランスジェニック植物に安定に組み込まれ、作動可能であることが確認された後、これを有性交雑によって他の植物に導入することができることを認識するだろう。交雑する種に応じて、いくつかの標準的な育種技術のいずれかを使用することができる。
形質転換した植物細胞、カルス、組織または植物は、形質転換DNA上に存在するマーカー遺伝子によってコードされる形質について操作した植物材料を選択またはスクリーニングすることによって同定および単離することができる。例えば、操作した植物材料を、形質転換遺伝子構築物が耐性を付与する阻害量の抗生物質または除草剤を含む培地で成長させることによって、選択を行うことができる。さらに、組換え核酸構築物上に存在し得る任意の目に見えるマーカー遺伝子(例えば、yfp、gfp、β−グルクロニダーゼ、ルシフェラーゼまたはBもしくはC1遺伝子)の活性についてスクリーニングすることによって、形質転換細胞を同定することもできる。このような選択およびスクリーニング方法論は当業者に周知である。
物理的および生化学的方法を使用して挿入された遺伝子構築物を含む植物または植物細胞形質転換体を同定することもできる。これらの方法には、それだけに限らないが、1)組換えDNAインサートの構造を検出および決定するためのサザン解析またはPCR増幅;2)遺伝子構築物のRNA転写産物を検出および調査するためのノーザンブロット法、S1 RNアーゼ保護、プライマー伸長または逆転写酵素PCR増幅;3)酵素またはリボザイム活性(このような遺伝子産物が遺伝子構築物によってコードされている)を検出するための酵素的アッセイ;4)次世代シーケンシング解析;5)遺伝子構築物産物がタンパク質である、タンパク質ゲル電気泳動、ウエスタンブロット技術、免疫沈降法または酵素結合免疫測定法(ELISA)が含まれる。インサイチュハイブリダイゼーション、酵素染色および免疫染色などのさらなる技術を使用して、特定の植物器官および組織中の組換え構築物の存在または発現を検出することもできる。これら全てのアッセイを行う方法は当業者に周知である。
本明細書に開示される方法を用いた遺伝子操作の効果は、例えば、対象となる組織から単離したRNA(例えば、mRNA)のノーザンブロット法によって観察することができる。典型的には、mRNAが存在するまたはmRNAの量が増加した場合、対応する導入遺伝子が発現していると仮定することができる。遺伝子および/またはコードされるポリペプチド活性を測定する他の方法を使用することができる。使用する基質、および反応産物もしくは副産物の増加もしくは減少を検出する方法に応じて、異なる種類の酵素的アッセイを使用することができる。さらに、発現しているポリペプチドのレベルを、免疫化学的に、すなわち、ELISA、RIA、EIAおよび当業者に周知の他の抗体ベースのアッセイ、例えば、電気泳動検出アッセイ(染色またはウエスタンブロット法のいずれかを用いる)によって測定することができる。1つの非限定的な例として、ELISAアッセイを用いたAAD−1(アリールオキシアルカノエートジオキシゲナーゼ;WO2005/107437参照)およびPAT(ホスフィノトリシン−N−アセチル−トランスフェラーゼ)、EC2.3.1.183)タンパク質の検出が、その全体が参照により本明細書に組み込まれる米国特許公開第20090093366号に記載されている。導入遺伝子は植物のいくつかの細胞型もしくは組織中でまたはいくつかの発育段階で選択的に発現され得る、または導入遺伝子は実質的にその全ての生活環に沿って実質的に全ての植物組織中で発現され得る。しかしながら、いずれの組み合わせ発現様式も適用可能である。
本開示は、上記トランスジェニック植物の種子であって、導入遺伝子または遺伝子構築物を有する種子も包含する。本開示は、上記トランスジェニック植物の子孫、クローン、細胞株または細胞であって、導入遺伝子または遺伝子構築物を有する子孫、クローン、細胞株または細胞をさらに包含する。
本発明を具体的な方法および実施形態を参照して記載してきたが、本発明から逸脱することなく種々の修正および変更を行うことができることが認識されるだろう。
アグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens)の形質転換
バイナリー発現ベクターを、アグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens)菌株DAt13192(RecAマイナス三元菌株)(国際特許公開番号WO2012016222)に形質転換した。細菌コロニーを単離し、バイナリープラスミドDNAを単離し、制限酵素消化を介して確認した。
トウモロコシの形質転換
アグロバクテリウム(Agrobacterium)培養開始。アグロバクテリウム(Agrobacterium)培養液をグリセロールストックからアグロバクテリウム(AB)最少培地(その開示が参照により本明細書に組み込まれるWO2013090734に開示されている)上に面線接種し、暗所中20℃で3日間インキュベートした。次いで、アグロバクテリウム(Agrobacterium)培養液をYEP(WO2013090734参照)培地のプレート上に面線接種し、暗所中20℃で1日間インキュベートした。
実験日に、接種培地(WO2013090734参照)とアセトシリンゴンの混合物を、実験において植物形質転換構築物を含む細菌株の数に適した体積で調製した。接種培地を滅菌使い捨て250mlフラスコにピペットで入れた。次に、アセトシリンゴンの100%ジメチルスルホキシド中1Mストック溶液を、200μMの最終アセトシリンゴン濃度を作るのに適した体積で接種培地を含むフラスコに添加した。接種培地および1Mアセトシリンゴンストック溶液の要求される体積を表1に列挙する。
各構築物について、YEPプレートからの1〜2ループのアグロバクテリウム(Agrobacterium)を滅菌使い捨て50ml遠心管の内側の接種培地/アセトシリンゴン混合物15mlに懸濁し、600nmでの溶液の光学濃度(OD600)を分光光度計で測定した。次いで、追加の接種培地/アセトシリンゴン混合物を用いて、懸濁液を0.25〜0.35OD600に希釈した。次いで、アグロバクテリウム(Agrobacterium)懸濁液の管を室温で約75rpmに設定したプラットホームシェーカー上に水平に置き、使用前に1〜4時間の間インキュベートした。
穂殺菌および胚単離。トウモロコシ(Zea mays)栽培品種B104の穂を受粉10〜12日後に収穫した。収穫した穂から殻を取り(de-husk)、市販の漂白剤(Ultra Clorox(登録商標)Germicidal Bleach、6.15%次亜塩素酸ナトリウム)の20%溶液およびTween(登録商標)20 2滴に20分間浸漬し、引き続いてラミナーフローフード中滅菌脱イオン水で3回すすいで表面殺菌した。未熟な接合体胚(1.8〜2.2mm長)を各穂から無菌的に切除し、10%Break−Thru(登録商標)S233界面活性剤2μlを添加したアグロバクテリウム(Agrobacterium)懸濁液2.0mlを含む1本または複数の微量遠心管に分配した。
アグロバクテリウム(Agrobacterium)共培養。胚単離活動が完了したら、胚の管を閉じて、ロッカープラットホームに5分間置いた。次いで、管の内容物を共培養培地のプレートに注ぎ出し、液体アグロバクテリウム(Agrobacterium)懸濁液を滅菌使い捨てホールピペットで取り出した。胚を含む共培養プレートを30分間、蓋を半開きにしてラミナーフローフードの後ろに置き、この時間の後、顕微鏡を用いて、胚を胚盤が上を向くように配向した。次いで、胚を含む共培養プレートをさらに15分間、蓋を半開きにしてラミナーフローフードの後ろに戻した。次いで、プレートを閉じ、3M(登録商標)Micropore(登録商標)テープで密閉し、24時間/昼光の約60μmolm−2−1光強度を用いる25℃のインキュベーターに入れた。
トランスジェニックイベントのカルス選択および再生。共培養期間後、胚を静止培地(WO2013090734参照)に移した。36個以下の胚を各プレートに移動させた。プレートを透明な箱に入れ、24時間/昼光の約50μmolm−2−1光強度を用いて27℃で7〜10日間インキュベートした。次いで、カルス化した胚を選択I培地(WO2013090734参照)に移した。18個以下のカルス化した胚を選択Iの各プレートに移動させた。プレートを透明な箱に入れ、24時間/昼光の約50μmolm−2−1光強度を用いて27℃で7日間インキュベートした。次いで、カルス化した胚を選択II培地(WO2013090734参照)に移した。12個以下のカルス化した胚を選択II培地の各プレートに移動させた。プレートを透明な箱に入れ、24時間/昼光の約50μmolm−2−1光強度を用いて27℃で14日間インキュベートした。
この段階で、耐性カルスをプレ再生培地(WO2013090734参照)に移動させた。9個以下のカルスをプレ再生培地の各プレートに移動させた。プレートを透明な箱に入れ、24時間/昼光の約50μmolm−2−1光強度を用いて27℃で7日間インキュベートした。次いで、再生カルスをPhytatrays(商標)中の再生培地に移し(WO2013090734参照)、1日当たり16時間光/8時間暗の約150μmolm−2−1光強度を用いて28℃で7〜14日間またはシュートが発達するまでインキュベートした。5個以下のカルスを各Phytatrays(商標)に入れた。次いで、一次根を有する小さなシュートを単離し、シュート伸長培地(WO2013090734参照)に移した。約6cm以上の根づいた小植物を土壌に移植し、慣れさせるために生育チャンバーに移転させた。
YFP一過性発現。一過性YFP発現が、形質転換胚およびグロバクテリウム(Agrobacterium)との共培養の3日後で観察された。胚をYFPフィルタおよび500nm光源を用いて実体顕微鏡(Leica Microsystems、Buffalo Grove、IL)で観察した。
温室内でのT植物の移動および確立。トランスジェニック植物を温室に定期的に移した。植物を、Phytatrays(商標)から成長培地(Premier Tech Horticulture、ProMix BX、0581P)を充填した小型ポット(T.O.Plastics、3.5’’SVD、700022C)へ移植し、ヒュミドーム(humidome)で覆って植物を順応させるのを助けた。植物を、V3〜V4期に達するまで、Conviron生育チャンバー(28℃/24℃、16時間光周期、50〜70%相対湿度、200μmolm−2−1光強度)に入れた。これは、植物を土壌およびより厳しい温度に順応させるのを助けた。次いで、植物を温室(露光型:光または同化;ハイライト限界:1200μmolm−2−1光合成有効放射(PAR);16時間日長;27℃昼/24℃夜)に移動させ、小型ポットから5.5インチのポットへ移植した。大きなポットに移植した約1〜2週間後、植物をバイオアッセイのためにサンプリングした。1イベント当たり1つの植物を分析した。
プロモーターの同定
トウモロコシユビキチンコード配列を、標的ゲノムとしてミナトカモジグサ(Brachypodium distachyon)およびアワ(Setaria italica)を用いて、Phytozome(Goodstein et al., 2012)データベースでBLASTx検索した。
トウモロコシユビキチン(ZM Ubi1)コード配列
タンパク質アラインメントを図1に示す。トウモロコシ(Zea mays)ユビキチン1タンパク質と整列した2つの配列をミナトカモジグサ(Brachypodium distachyon)から同定した。トウモロコシ(Zea mays)ユビキチン1タンパク質と整列したただ1つの配列をアワ(Setaria italica)およびパニクム・ヴィルガツム(Panicum virgatum)からそれぞれ同定した。予想された翻訳開始部位(ATG)から上流の約2kb DNA配列を推定プロモーター配列の始まりと決定し、発現特性評価に使用した。パニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)およびアワ(Setaria italica)から単離された新規なプロモーターのポリヌクレオチド配列アラインメントを、ZM Ubi1プロモーターに整列し、2kb DNA領域にわたって低レベルの配列類似性を共有していることを見出した(図2A〜図2C)。
パニクム・ヴィルガツム(Panicum virgatum)、ミナトカモジグサ(Brachypodium distachyon)およびアワ(Setaria italica)ユビキチン遺伝子についてのUBIコード配列および推定プロモーターを図35〜図38に示す。
ベクター構築
4つのプロモーター配列を商業的に合成し、図3(pDAB113091)、図4(pDAB113092)、図5(pDAB113066)および図22(pDAB118238)に示されるプラスミドベクターに組み込んだ。同様に、4つの3’UTR/転写終結配列を商業的に合成し、図23(pDAB118237)、図24(pDAB118207)、図25(pDAB118208)および図26(pDAB118209)に示されるプラスミドベクターに組み込んだ。配列に、シームレスクローニング(seamless cloning)(GeneArt(登録商標)Seamless Cloning and Assembly Kit、Invitrogen、Carlsbad、CA)およびプロモーターフラグメントの単離用に挿入されるII型制限酵素部位のために、両端に15〜18個のヌクレオチド相同フラグメントを隣接させた。シームレスクローニング適合性トウモロコシ(Zea mays)Ubi1プロモーター(Christensen and Quail (1996) Transgenic Research. 5; 213-218; Christensen et al., (1992) Plant Molecular Biology. 18; 675-689)またはイネ(Oryzae sativa)アクチンプロモーター(McElroy et al., (1990) Plant Cell. 2; 163-71)、およびST−LS1イントロン(Vancanneyt et al., (1990) Mol Gen Genet. 220; 245-50)を含むPhiYFP(Shagin et al., (2004) Mol Biol Evol. 21; 841-50)コード配列、およびStPinIIまたは天然3’−UTR(An et al., 1989 Plant Cell. 1; 115-22.)フラグメントを、PCRまたはII型制限酵素を用いて得た。最後に、プロモーター::PhiYFP::StPinII 3’−UTRフラグメントを、シームレスクローニングを用いて組み立てて、一過性発現試験のための一過性発現ベクター(図6、pDAB113103;図7、pDAB113104;図8、pDAB113105;図9、pDAB113106;および図10、pDAB113107;図27、pDAB12043;図28、pDAB118234、図29、pDAB118235;および図30、pDAB118236)を創製した。これらの一過性発現ベクターを、Zm Ubi1プロモーターおよびAAD−1コード配列(国際特許公開第2005107437号)ならびにZm Lip 3’UTR(Paek et al., (1998) Molecules and Cells, 8(3): 336-342)を含むバイナリーベクターに組み込んだ。得られたバイナリーを、制限酵素消化および配列決定反応を介して確認した(図12、pDAB113117;図13、pDAB113118;図14、pDAB113119;図15、pDAB113120;図16、pDAB113121;図31、pDAB120400;図32、pDAB120404;図33、pDAB120401;および図34、pDAB120402)。
一過性発現試験
未成熟トウモロコシ(B104)胚の微粒子銃を用いて一過性発現を試験した。銃のために、ペトリ皿で1処理当たり、40個の胚を使用した。微粒子銃の一晩のインキュベーションの後、YFP像分析を行った。図19は、新規なプロモーターから得られたYFP発現レベルを示している。データは、新規なプロモーター(pDAB113103、pDAB113104およびpDAB113105)から得られたYFP発現レベルが、顕微鏡下で目視により観察されるようにZM Ubi1プロモーター(pDAB113106)およびOS Act1プロモーター(pDAB113107)から得られたYFP発現レベルに匹敵することを示している。植物組織をLeica EL6000−水銀メタルハライド(商標)顕微鏡で画像化した。共焦点および微分干渉(DIC)像をChroma 42003−ZsYellow 1(商標)フィルタを用いて取り込んだ。
リアルタイムTaqMan(登録商標)PCRを用いた導入遺伝子コピー数推定
加水分解プローブアッセイを介して、トランスジェニックトウモロコシ(Z. mays)植物のゲノム内へのyfp導入遺伝子の安定な取り込みを確認した。カルスから発達した安定に形質転換されたトランスジェニックトウモロコシ(Z. mays)小植物を得て、分析して低コピー数(1〜2コピー)の全長T鎖インサートを含むイベントを同定した。同定した小植物を温室に進め、成長させた。
Roche Light Cycler480(商標)システムを使用して導入遺伝子コピー数を測定した。この方法は、単一アッセイでyfp遺伝子および内因性トウモロコシ(Z. mays)参照遺伝子、インベルターゼ(GenBank登録番号U16123.1)に特異的なオリゴヌクレオチドを使用する二重TaqMan(登録商標)反応を利用した。既知のコピー数標準物質と比べて、インベルターゼ特異的蛍光に対するyfp特異的蛍光の強度を測定することによって、コピー数および接合状態を決定した。
yfp遺伝子特異的DNAフラグメントを、FAM(商標)蛍光色素で標識したプローブを含む1つのTaqMan(登録商標)プライマー/プローブセットを用いて増幅し、インベルターゼを、HEX(商標)蛍光で標識したプローブを含む第2のTaqMan(登録商標)プライマー/プローブセットを用いて増幅した(表2)。PCR反応混合物を表3に示されるように調製し、遺伝子特異的DNAフラグメントを表4に示される条件にしたがって増幅した。既知のコピー数標準物質と比べて、参照遺伝子、インベルターゼに特異的な蛍光に対するレポーター遺伝子、yfpに特異的な蛍光の相対強度を測定することによって、試料のコピー数および接合状態を決定した。
ベクター、pDAB108706をトウモロコシ(Z. mays)B104ゲノムDNA(gDNA)に希釈して既知の関係のpDAB108706:gDNAを有する標準物質を得ることによって標準物質を創製した。例えば、トウモロコシ(Z. mays)B104 gDNA1コピー当たり1、2および4コピーのベクターDNAを有する試料を調製した。トウモロコシ(Z. mays)B104 gDNA標準物質と混合したpDAB108706の1および2コピー希釈を、半接合性であることが知られている対照トウモロコシ(Z. mays)イベントおよびホモ接合性であることが知られている対照トウモロコシ(Z. mays)イベント(トウモロコシ(Z. mays)イベント278;PCT国際特許公開番号WO2011/022469A2参照)に対して検証した。AAD1についてはFAM蛍光色素で標識したプローブを含む1つのTaqMan(登録商標)プライマー/プローブセットを用いて遺伝子特異的DNAフラグメントを増幅および検出することによって、またインベルターゼについてはHEX(商標)蛍光で標識したプローブを含む第2のTaqMan(登録商標)プライマー/プローブセットを用いて遺伝子特異的DNAフラグメントを増幅および検出することによって、AAD1遺伝子に特異的なオリゴヌクレオチドおよび内因性トウモロコシ(Z. mays)参照遺伝子、インベルターゼに特異的なオリゴヌクレオチドを利用するTaqMan(登録商標)二重アッセイを行った(表2)。AAD1 TaqMan(登録商標)反応混合物を表3に示されるように調製し、特異的フラグメントを表4に示される条件にしたがって増幅した。
各反応について生成した蛍光レベルを、製造業者の指示にしたがってRoche LightCycler(登録商標)480サーモサイクラーを用いて分析した。FAM(商標)蛍光部分を465/510nmの光学濃度で励起し、HEX(商標)蛍光部分を533/580nmの光学濃度で励起した。未知の試料についての標的/基準値(LightCycler(登録商標)480による出力)を、4つの既知のコピー数標準物質の標的/基準値(ゼロ、1コピー(半)、2コピー(ホモ)および4コピー)と比較することによって、コピー数を決定した。異なるプロモーター構築物による形質転換を介して得られたトランスジェニック植物の導入遺伝子コピー数分析の結果を表5に示す。1〜2コピーのyfp導入遺伝子を有する植物のみをさらなる発現解析のために温室に移した。
ユビキチンプロモーターと作動可能に連結している遺伝子の発現
タンパク質抽出
葉ELISAアッセイを用いて、T植物をV4〜5でサンプリングした。試料を96ウェル収集管プレートに回収し、4枚の葉ディスク(紙の穴あけ器のサイズ)を各試料について取った。2つの4.5mm BBおよび200μL抽出緩衝液[0.05%Tween(登録商標)−20および0.05%BSA(Millipore Probumin(登録商標)、EMD Millipore Corp.、Billerica、MA)を補充した1×PBS]を各管に添加した。AAD1抽出のために、BSAの濃度を0.5%に増加させた。プレートを、全速力で3分間、KLECOビーズミルで処理した。抽出緩衝液をさらに200μLを各管に添加し、引き続いて反転させて混合した。プレートを3000rpmで5分間回転させた。上清を氷上で保管したディープウェル96の対応するウェルに移した。
YFPおよびAAD1 ELISA手順
Nunc(登録商標)96ウェルMaxi−Sorp Plate(Thermo Fisher Scientific Inc.、Rockford、IL)をELISAに使用した。プレートをマウスモノクローナル抗YFP捕捉抗体(OriGene Technologies Inc.、Rockville、MD)で被覆した。抗体をPBSに希釈し(1μg/mL)、1ウェル当たり希釈PBS 150μLを添加した。プレートを4℃で一晩インキュベートした。洗浄緩衝液[0.05%Tween(登録商標)−20(Sigma−Aldrich、St.Louis、MO)を補充した1×PBS]350μLで4回洗浄する前に、一晩プレートを室温で20〜30分間維持した。プレートを1ウェル当たりブロッキング緩衝液[0.05%Tween(登録商標)−20+0.5%BSA(Millipore Probumin(登録商標))を補充した1×PBS]200μLを用いて+37℃で最小1時間ブロッキングし、引き続いて洗浄緩衝液(Tomtec QuadraWash(商標)2、Tomec,Inc.、Hamden、CT)350μLで4回洗浄した。
YFP ELISAのために、Evrogen組換えPhi−YFP 1mg/mL(Axxora LLC、Farmingdale、NY)を標準物質として使用した。5パラメータ当てはめ標準曲線(1ng/ml〜0.125ng/mlの間の標準物質)を使用して全てのデータが曲線の直線部に入ることを保証した。標準物質または試料100μLをウェルに添加した。試料のアッセイ緩衝液への最小1:4希釈を使用した。プレートをプレートシェーカー(250rpm;Titer Plateシェーカー)上室温で1時間インキュベートし、引き続いて洗浄緩衝液(Tomtec QuadraWash(商標)2)350μLで4回洗浄した。1μg/mLのEvrogenウサギポリクローナル抗PhiYFP一次抗体(Axxora)約100μLを各ウェルに添加した。プレートを250rpmのプレートシェーカー上室温で1時間インキュベートし、引き続いて洗浄緩衝液(Tomtec QuadraWash(商標)2)350μLで4回洗浄した。次に、ブロッキング/アッセイ緩衝液に1:5000希釈した抗ウサギIgG HRP二次抗体(Thermo Scientific)100μLを各ウェルに添加した。プレートを250rpmのプレートシェーカー上室温で1時間インキュベートし、引き続いて洗浄緩衝液(Tomtec QuadraWash(商標)2)350μLで4回洗浄した。Pierce1ステップUltra TMB ELISA(Thermo Scientific)基質100μLを穏やかに振盪しながら10分間ウェルに添加した。0.4N HSO 50μLを添加することによって、反応を停止した。650nm基準フィルタを用いて450nmで吸光度を読み取った。
Acadia BioSciences(Portland、ME)のキットを用いて、ELISAによってAAD1発現レベルを測定した。抽出物の複数希釈を用いて、また供給業者によって提供される試薬および指示を用いて、ELISAを行った。Thermo Scientificによって供給された660nmタンパク質アッセイ試薬を用いておよび供給業者の指示にしたがって行った全可溶性タンパク質アッセイを用いて、タンパク質レベルを正規化した。
ユビキチンプロモーターと作動可能に連結している遺伝子の安定発現を例示する全植物YFP画像解析
低コピー数のバイナリープラスミドを含む全植物を温室で育てた。植物組織をLeica EL6000−水銀メタルハライド(商標)顕微鏡で画像化した。共焦点および微分干渉(DIC)像をChroma 42003−ZsYellow 1(商標)フィルタを用いて取り込んだ。本明細書に記載されるミナトカモジグサ(Brachypodium distachyon)ユビキチン1C、ミナトカモジグサ(Brachypodium distachyon)ユビキチン1およびアワ(Setaria italica)ユビキチン2プロモーターで形質転換したトウモロコシ(Z. mays)胚から得たトランスジェニックTトウモロコシ植物のカルスおよび根組織中でのYFPの安定な発現の代表的な例を、図20および図21にそれぞれ提示する。プロモーターは、カルス(図20)と根(図21)植物組織の両方でyfpコード配列の強い発現を駆動した。
ユビキチンプロモーターと作動可能に連結している遺伝子の全植物T安定発現
発現したYFPタンパク質のELISA解析から、追加のデータを作成した。ELISA解析により、新規なプロモーターが導入遺伝子の強い発現を駆動することがさらに確認された。新規なプロモーター構築物を含むトランスジェニック植物から得られたYFPタンパク質の定量的測定を図17および表6に示す。データは、新規なプロモーター(pDAB113117、pDAB113118およびpDAB113119)を含む植物中でのYFPタンパク質の発現が、Os Act1(イネアクチン1)プロモーター(pDAB113120)から得られたYFP発現よりも数倍高いことを示している。比較してみると、図18および表7は、類似のレベルのAAD1発現が全ての構築物から得られたことを示している。これは、AAD1が構築物の全てについてZm Ubi1プロモーターによって駆動されているためと予想される。
ユビキチンプロモーターおよび3’UTRと作動可能に連結している遺伝子の全植物T安定発現
単一導入遺伝子コピー植物を、野生型B104トウモロコシ植物と戻し交雑してT種子を得た。半接合性T植物を分析に使用した。V4およびV12葉発現について1構築物当たり5つのイベントおよび1イベント当たり5〜10個の植物を使用した。他の組織型発現については、1構築物当たり3つのイベントおよび1イベント当たり3個の植物を使用した。接合状態分析をAAD1/YFPについて行った。
新規なプロモーター構築物を含むTトランスジェニック植物の葉組織から得られたYFPタンパク質の定量的測定を表8に示す。データにより、T葉発現結果が確認され、YFPタンパク質の一貫して高い発現が新規なプロモーター(pDAB113117、pDAB113118およびpDAB113119)を含む植物のV4、V12およびR3葉組織で得られることがさらに示された。表8はまた、この新規なプロモーターを、PinII 3’UTR(pDAB113117、pDAB113118およびpDAB113119)の代わりに、その天然3’UTR(pDAB120400、pDAB12401およびpDAB120402)と組み合わせて使用すると、YFPタンパク質の発現が数倍増加したことを示している。YFPタンパク質発現は、構築物pDAB120404を含む植物から検出され、この構築物に使用されている新規なプロモーターおよび3’UTRが導入遺伝子の発現を駆動することを確認している。
YFPを駆動する新規なユビキチンプロモーターを含むトランスジェニックトウモロコシ植物から採取した穂軸、殻、仁、花粉、根、ひげおよび茎を含む種々の組織型で、高いYFPタンパク質発現が見られた(表9)。これらのデータは、ここで請求される新規なプロモーターおよび3’UTRが植物における導入遺伝子の高い構成的発現を駆動し、生物工学用途に有用となることを証明している。
本明細書で引用される刊行物、特許および特許出願を含む全ての参考文献は、本開示の明示的詳細と矛盾しない程度に参照により本明細書に組み込まれ、そのため、あたかも各参考文献が個別的かつ具体的に参照により組み込まれることが示されており、本明細書に全体が示されているのと同程度に組み込まれる。本明細書に論じられる参考文献は、本出願の出願日前より前のその開示についてのみ提供される。本明細書中のいずれも、本発明者らが先行発明によってこのような開示に先立つ権利がないことの自認と解釈すべきでない。以下の実施例は、特定の特徴および/または実施形態を例示するために提供されるものである。実施例は、本開示を例示される特定の特徴または実施形態に限定するものと解釈されるべきでない。

Claims (30)

  1. i)ポリリンカー配列;
    ii)非ユビキチンの導入遺伝子または
    iii)i)とii)の組み合わせ
    と作動可能に連結しているプロモーターを含む核酸ベクターであって、前記プロモーターは配列番号3または配列番号3と90%の配列同一性を有する配列を含む、核酸ベクター。
  2. 前記プロモーターが長さ3kb未満である、請求項1に記載の核酸ベクター。
  3. 前記プロモーターが配列番号3または配列番号3と90%の配列同一性を有する配列からなる、請求項1に記載の核酸ベクター。
  4. 選択マーカーをコードする配列をさらに含む、請求項1から3のいずれか一項に記載の核酸ベクター。
  5. 前記プロモーターが導入遺伝子と作動可能に連結している、請求項4に記載の核酸ベクター。
  6. 前記導入遺伝子が殺虫剤耐性、除草剤耐性、窒素利用効率、水利用効率または栄養価を付与する選択マーカーまたは遺伝子産物をコードする、請求項5に記載の核酸ベクター。
  7. 配列番号6または配列番号6と90%の配列同一性を有する配列を含む3’非翻訳配列をさらに含み、前記3’非翻訳配列が前記ポリリンカーまたは前記導入遺伝子と作動可能に連結している、請求項1から3または5のいずれかに記載の核酸ベクター。
  8. 配列番号13または配列番号13と90%の配列同一性を有する配列を含む5’非翻訳配列をさらに含み、前記5’非翻訳配列が前記プロモーター配列と前記ポリリンカーまたは導入遺伝子との間に挿入されており、これらと作動可能に連結している、請求項1から3または5のいずれかに記載の核酸ベクター。
  9. 配列番号14または配列番号14と90%の配列同一性を有する配列を含む5’非翻訳配列をさらに含み、前記5’非翻訳配列が前記プロモーター配列と前記ポリリンカーまたは導入遺伝子との間に挿入されており、これらと作動可能に連結している、請求項1から3または5のいずれかに記載の核酸ベクター。
  10. 前記5’非翻訳配列の後に挿入されたイントロン配列をさらに含む、請求項8または9に記載の核酸ベクター。
  11. 前記イントロン配列が配列番号9または配列番号10を含む、請求項10に記載の核酸ベクター。
  12. 前記プロモーターが配列番号17、配列番号40、配列番号41および配列番号42ならびに配列番号17、配列番号40、配列番号41および配列番号42と90%の配列同一性を有する配列からなる群から選択される配列からなり、前記プロモーターが導入遺伝子と作動可能に連結している、請求項1に記載の核酸ベクター。
  13. 前記プロモーターが配列番号40または配列番号42の配列からなり、前記プロモーターが導入遺伝子と作動可能に連結している、請求項1に記載の核酸ベクター。
  14. 前記プロモーターが配列番号17または配列番号17と90%の配列同一性を有する配列からなり、前記プロモーターが導入遺伝子と作動可能に連結している、請求項1に記載の核酸ベクター。
  15. 配列番号6または配列番号6と90%の配列同一性を有する配列を含む3’非翻訳配列をさらに含み、前記3’非翻訳配列が前記導入遺伝子と作動可能に連結している、請求項12、13または14に記載の核酸ベクター。
  16. 導入遺伝子と作動可能に連結している配列番号3または配列番号3と90%の配列同一性を有する配列を含む非セタリア属(Setaria)植物。
  17. トウモロコシ、コムギ、イネ、ソルガム、エンバク、ライムギ、バナナ、サトウキビ、ダイズ、ワタ、ヒマワリおよびセイヨウアブラナからなる群から選択される、請求項16に記載の植物。
  18. トウモロコシ(Zea mays)である、請求項16に記載の植物。
  19. 前記導入遺伝子が前記植物のゲノムに挿入されている、請求項16から18のいずれか一項に記載の植物。
  20. 配列番号13または配列番号13と90%の配列同一性を有する配列を含む5’非翻訳配列をさらに含み、前記5’非翻訳配列が前記プロモーターと前記導入遺伝子との間に挿入されており、これらと作動可能に連結している、請求項16に記載の植物。
  21. 配列番号14または配列番号14と90%の配列同一性を有する配列を含む5’非翻訳配列をさらに含み、前記5’非翻訳配列が前記プロモーターと前記導入遺伝子との間に挿入されており、これらと作動可能に連結している、請求項16に記載の植物。
  22. 前記5’非翻訳配列の後に挿入されたイントロン配列をさらに含む、請求項20または21に記載の植物。
  23. 前記イントロン配列が配列番号9または配列番号10を含む、請求項22に記載の植物。
  24. 配列番号6または配列番号6と90%の配列同一性を有する配列を含む3’非翻訳配列をさらに含み、前記3’非翻訳配列が前記導入遺伝子と作動可能に連結している、請求項20に記載の植物。
  25. 前記プロモーターが配列番号40、配列番号42、または配列番号40もしくは配列番号42と90%の配列同一性を有する配列からなり、前記プロモーターが導入遺伝子と作動可能に連結している、請求項16に記載の植物。
  26. 前記プロモーターが配列番号17、配列番号41、または配列番号17もしくは配列番号41と90%の配列同一性を有する配列からなり、前記プロモーターが導入遺伝子と作動可能に連結している、請求項16に記載の植物。
  27. 配列番号6または配列番号6と90%の配列同一性を有する配列を含む3’非翻訳配列をさらに含み、前記3’非翻訳配列が前記導入遺伝子と作動可能に連結している、請求項25または26に記載の植物。
  28. i)ポリリンカー配列;
    ii)非ユビキチンの導入遺伝子または
    iii)i)とii)の組み合わせ
    と作動可能に連結している転写ターミネーターを含む核酸ベクターであって、前記転写ターミネーターは配列番号6または配列番号6と90%の配列同一性を有する配列を含む、核酸ベクター。
  29. 前記転写ターミネーターが長さ1kb未満である、請求項28に記載の核酸ベクター。
  30. 前記転写ターミネーターが配列番号6の3’UTR配列からなる、請求項29に記載の核酸ベクター。
JP2016537883A 2013-08-30 2014-08-29 セタリア属(Setaria)ユビキチン遺伝子由来の調節エレメントを用いて導入遺伝子を発現させるための構築物 Withdrawn JP2016528918A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361872134P 2013-08-30 2013-08-30
US61/872,134 2013-08-30
PCT/US2014/053364 WO2015031731A1 (en) 2013-08-30 2014-08-29 Constructs for expressing transgenes using regulatory elements from setaria ubiquitin genes

Publications (2)

Publication Number Publication Date
JP2016528918A true JP2016528918A (ja) 2016-09-23
JP2016528918A5 JP2016528918A5 (ja) 2017-10-05

Family

ID=52585274

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2016537885A Withdrawn JP2016528919A (ja) 2013-08-30 2014-08-29 ブラキポディウム属(Brachypodium)ユビキチン1C遺伝子由来の調節エレメントを用いて導入遺伝子を発現させるための構築物
JP2016537874A Withdrawn JP2016531575A (ja) 2013-08-30 2014-08-29 キビ属(Panicum)ユビキチン遺伝子の調節エレメントを用いて導入遺伝子を発現させるための構築物
JP2016537875A Withdrawn JP2016528916A (ja) 2013-08-30 2014-08-29 ブラキポディウム属(Brachypodium)ユビキチン遺伝子由来の調節エレメントを用いて導入遺伝子を発現させるための構築物
JP2016537883A Withdrawn JP2016528918A (ja) 2013-08-30 2014-08-29 セタリア属(Setaria)ユビキチン遺伝子由来の調節エレメントを用いて導入遺伝子を発現させるための構築物

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2016537885A Withdrawn JP2016528919A (ja) 2013-08-30 2014-08-29 ブラキポディウム属(Brachypodium)ユビキチン1C遺伝子由来の調節エレメントを用いて導入遺伝子を発現させるための構築物
JP2016537874A Withdrawn JP2016531575A (ja) 2013-08-30 2014-08-29 キビ属(Panicum)ユビキチン遺伝子の調節エレメントを用いて導入遺伝子を発現させるための構築物
JP2016537875A Withdrawn JP2016528916A (ja) 2013-08-30 2014-08-29 ブラキポディウム属(Brachypodium)ユビキチン遺伝子由来の調節エレメントを用いて導入遺伝子を発現させるための構築物

Country Status (15)

Country Link
US (4) US9650640B2 (ja)
EP (4) EP3039143A4 (ja)
JP (4) JP2016528919A (ja)
KR (4) KR20160046900A (ja)
CN (4) CN105683381A (ja)
AP (4) AP2016009110A0 (ja)
AR (4) AR097494A1 (ja)
AU (8) AU2014312166B2 (ja)
BR (4) BR102014021330A2 (ja)
CA (4) CA2922697A1 (ja)
IL (4) IL244330A0 (ja)
RU (4) RU2016111632A (ja)
UY (4) UY35724A (ja)
WO (4) WO2015031706A1 (ja)
ZA (1) ZA201601478B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7422140B2 (ja) 2019-01-10 2024-01-25 モンサント テクノロジー エルエルシー 植物の調節エレメント及びその使用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013362921B2 (en) * 2012-12-19 2018-03-01 Monsanto Technology Llc Plant regulatory elements and uses thereof
MX2017012936A (es) 2015-04-15 2018-02-01 Dow Agrosciences Llc Promotor de plantas para la expresion transgenica.
US10443065B2 (en) 2015-08-17 2019-10-15 Dow Agrosciences Llc Plant promotor and 3′ UTR for transgene expression
AU2017260655B2 (en) * 2016-05-02 2022-11-03 Corteva Agriscience Llc Plant promoter and 3'UTR for transgene expression
CA3020563A1 (en) * 2016-05-02 2017-11-09 Dow Agrosciences Llc Plant promoter and 3'utr for transgene expression
CA3024452A1 (en) * 2016-05-24 2017-11-30 Monsanto Technology Llc Plant regulatory elements and uses thereof
TW201805425A (zh) * 2016-06-16 2018-02-16 艾格里遺傳學股份有限公司 用於轉殖基因表現之植物啟動子與3’utr
CN107881172B (zh) * 2016-09-30 2021-06-08 江汉大学 一种逆境诱导型启动子、逆境诱导型启动子植物表达载体及诱导目标基因表达方法
EP3518657B1 (en) * 2016-10-03 2022-07-13 Corteva Agriscience LLC Plant promoter for transgene expression
WO2019005183A1 (en) * 2017-06-28 2019-01-03 Dow Agrosciences Llc PLANT PROMOTER FOR TRANSGENIC EXPRESSION
CN109486818B (zh) * 2018-11-14 2021-06-01 中国热带农业科学院三亚研究院 狗尾草u6启动子基因及应用
IL301396A (en) 2020-09-30 2023-05-01 Nobell Foods Inc Recombinant milk proteins and food compositions containing them
US10894812B1 (en) 2020-09-30 2021-01-19 Alpine Roads, Inc. Recombinant milk proteins
US10947552B1 (en) 2020-09-30 2021-03-16 Alpine Roads, Inc. Recombinant fusion proteins for producing milk proteins in plants

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279983A (ja) * 1988-05-17 1990-03-20 Lubrizol Genetics Inc 植物のユビキチンプロモーター系
US20080250529A1 (en) * 2007-04-03 2008-10-09 Ms Technologies, Llc Ubiquitin regulatory nucleic acids, vectors, and methods of using same
WO2012134921A2 (en) * 2011-03-25 2012-10-04 Monsanto Technology Llc Plant regulatory elements and uses thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706948B1 (en) * 1998-03-19 2004-03-16 The United States Of America As Represented By The Secretary Of Agriculture Sugarcane UBI9 gene promoter and methods of use thereof
AU2001275433A1 (en) * 2000-06-09 2001-12-17 Prodigene, Inc. Plant ubiquitin promoter sequences and methods of use
WO2006013072A2 (en) 2004-08-02 2006-02-09 Basf Plant Science Gmbh Method for isolation of transcription termination sequences
BRPI0515302A (pt) * 2004-09-14 2008-07-15 Monsanto Technology Llc moléculas promotoras para uso em plantas
EP2166100B1 (en) * 2005-03-08 2012-07-18 BASF Plant Science GmbH Expression enhancing intron sequences
AU2006236392B2 (en) * 2005-04-15 2011-07-21 Del Monte Fresh Produce Company Plant promoters, terminators, genes, vectors and related transformed plants
CA2717818A1 (en) 2008-03-07 2009-09-11 The Governors Of The University Of Alberta Diacylglycerol acyltransferases from flax
US8168859B2 (en) * 2008-08-27 2012-05-01 Pioneer Hi Bred International Inc Ubiquitin regulatory elements
WO2010146046A1 (en) 2009-06-15 2010-12-23 Basf Plant Science Company Gmbh Hydroponic systems for generating transgenic plants
WO2012159891A1 (en) 2011-05-20 2012-11-29 Syngenta Participations Ag Endosperm-specific plant promoters and uses therefor
CA2855902C (en) * 2011-12-30 2022-06-21 Dow Agrosciences Llc Construct and method for synthetic bidirectional plant promoter ubi1
UA119135C2 (uk) 2012-09-07 2019-05-10 ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі Спосіб отримання трансгенної рослини

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279983A (ja) * 1988-05-17 1990-03-20 Lubrizol Genetics Inc 植物のユビキチンプロモーター系
US20080250529A1 (en) * 2007-04-03 2008-10-09 Ms Technologies, Llc Ubiquitin regulatory nucleic acids, vectors, and methods of using same
WO2012134921A2 (en) * 2011-03-25 2012-10-04 Monsanto Technology Llc Plant regulatory elements and uses thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PLANT AND CELL PHYSIOLOGY, vol. 51, no. 2, JPN6018024640, 2010, pages 328 - 332 *
PLANT BIOTECHNOLOGY JOURNAL, vol. Vol.8, Issue 7, JPN6018024642, 2010, pages 772 - 782 *
PLANT CELL REPORTS, vol. Vol.32, Issue 8, JPN6018024639, March 2013 (2013-03-01), pages 1199 - 1210 *
THE PLANT GENOME, vol. 6, no. 2, JPN6018024641, July 2013 (2013-07-01), pages 1 - 7 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7422140B2 (ja) 2019-01-10 2024-01-25 モンサント テクノロジー エルエルシー 植物の調節エレメント及びその使用

Also Published As

Publication number Publication date
IL244333A0 (en) 2016-04-21
US20150067924A1 (en) 2015-03-05
WO2015031733A1 (en) 2015-03-05
RU2016111662A (ru) 2017-10-05
CA2922697A1 (en) 2015-03-05
RU2016111674A3 (ja) 2018-05-11
CN105683382A (zh) 2016-06-15
RU2016111608A (ru) 2017-10-05
AU2014312166B2 (en) 2017-06-08
JP2016531575A (ja) 2016-10-13
CA2922659A1 (en) 2015-03-05
AP2016009100A0 (en) 2016-03-31
AU2017203177B2 (en) 2019-06-20
US9758789B2 (en) 2017-09-12
BR102014021335A2 (pt) 2015-09-22
AU2017203180A1 (en) 2017-06-01
EP3039144A1 (en) 2016-07-06
RU2016111608A3 (ja) 2018-04-25
AU2014312223A1 (en) 2016-03-17
AU2017203182B2 (en) 2019-06-20
AP2016009110A0 (en) 2016-03-31
BR102014021309A2 (pt) 2015-09-22
AR097493A1 (es) 2016-03-16
AU2014312164B2 (en) 2017-06-08
AU2017203177A1 (en) 2017-06-01
AR097495A1 (es) 2016-03-16
EP3039143A4 (en) 2017-01-18
UY35724A (es) 2015-03-27
EP3039141A4 (en) 2017-03-08
EP3039143A1 (en) 2016-07-06
JP2016528919A (ja) 2016-09-23
CN106414746A (zh) 2017-02-15
EP3039142A4 (en) 2017-03-08
AU2014312222B2 (en) 2017-06-08
IL244331A0 (en) 2016-04-21
EP3039142A1 (en) 2016-07-06
US9708618B2 (en) 2017-07-18
AU2017203178A1 (en) 2017-06-01
CA2922656A1 (en) 2015-03-05
WO2015031705A1 (en) 2015-03-05
JP2016528916A (ja) 2016-09-23
RU2016111674A (ru) 2017-10-05
UY35725A (es) 2015-03-27
AR097492A1 (es) 2016-03-16
US20150067926A1 (en) 2015-03-05
WO2015031731A1 (en) 2015-03-05
UY35726A (es) 2015-03-27
EP3039144A4 (en) 2017-03-08
KR20160046901A (ko) 2016-04-29
KR20160048887A (ko) 2016-05-04
AP2016009109A0 (en) 2016-03-31
BR102014021330A2 (pt) 2015-09-22
AU2014312164A1 (en) 2016-03-17
US20150067925A1 (en) 2015-03-05
AP2016009098A0 (en) 2016-03-31
AU2017203178B2 (en) 2019-06-20
KR20160046900A (ko) 2016-04-29
US9752155B2 (en) 2017-09-05
UY35727A (es) 2015-03-27
BR102014021564A2 (pt) 2016-02-16
EP3039141A1 (en) 2016-07-06
US9650640B2 (en) 2017-05-16
CN105705644A (zh) 2016-06-22
AR097494A1 (es) 2016-03-16
IL244332A0 (en) 2016-04-21
ZA201601478B (en) 2018-05-30
WO2015031706A1 (en) 2015-03-05
AU2014312166A1 (en) 2016-03-17
RU2016111632A (ru) 2017-10-05
AU2017203182A1 (en) 2017-06-01
CA2922695A1 (en) 2015-03-05
IL244330A0 (en) 2016-04-21
US20150067927A1 (en) 2015-03-05
RU2016111662A3 (ja) 2018-04-25
KR20160046899A (ko) 2016-04-29
AU2017203180B2 (en) 2019-06-20
CN105683381A (zh) 2016-06-15
AU2014312223B2 (en) 2017-06-08
AU2014312222A1 (en) 2016-03-17

Similar Documents

Publication Publication Date Title
AU2017203180B2 (en) Constructs for expressing transgenes using regulatory elements from Brachypodium ubiquitin genes
US10047367B2 (en) Zea mays regulatory elements and uses thereof
US10047368B2 (en) Zea mays regulatory elements and uses thereof
JP2016536978A (ja) トウモロコシ(Zea mays)メタロチオネイン様調節エレメントおよびその使用

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180620

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20180702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703