JP2016513017A - 直接チル鋳造のためのプロセスおよび装置 - Google Patents

直接チル鋳造のためのプロセスおよび装置 Download PDF

Info

Publication number
JP2016513017A
JP2016513017A JP2015556239A JP2015556239A JP2016513017A JP 2016513017 A JP2016513017 A JP 2016513017A JP 2015556239 A JP2015556239 A JP 2015556239A JP 2015556239 A JP2015556239 A JP 2015556239A JP 2016513017 A JP2016513017 A JP 2016513017A
Authority
JP
Japan
Prior art keywords
casting
gas
pit
inert gas
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015556239A
Other languages
English (en)
Other versions
JP2016513017A5 (ja
JP6462590B2 (ja
Inventor
ラビンドラ ブイ. ティラク,
ラビンドラ ブイ. ティラク,
ロドニー ダブリュー. ヴァーツ,
ロドニー ダブリュー. ヴァーツ,
ロナルド エム. ストリーグル,
ロナルド エム. ストリーグル,
Original Assignee
アルメックス ユーエスエー, インコーポレイテッド
アルメックス ユーエスエー, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2013/041457 external-priority patent/WO2013173649A2/en
Priority claimed from PCT/US2013/041464 external-priority patent/WO2013173655A2/en
Application filed by アルメックス ユーエスエー, インコーポレイテッド, アルメックス ユーエスエー, インコーポレイテッド filed Critical アルメックス ユーエスエー, インコーポレイテッド
Publication of JP2016513017A publication Critical patent/JP2016513017A/ja
Publication of JP2016513017A5 publication Critical patent/JP2016513017A5/ja
Application granted granted Critical
Publication of JP6462590B2 publication Critical patent/JP6462590B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/049Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for direct chill casting, e.g. electromagnetic casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1248Means for removing cooling agent from the surface of the cast stock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/141Plants for continuous casting for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/148Safety arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Abstract

融液含有容器を含む少なくとも1つの炉と、少なくとも1つの炉に結合され、かつ、溶融金属を少なくとも1つの炉から受け取るように動作可能である中間鋳造生成物ステーションであって、その中間鋳造生成物ステーションは、鋳造ピットと、鋳造ピットに配置された少なくとも1つの移動可能プラテンと、鋳造ピットの少なくとも上部周縁の周囲の排出ポートのアレイと、鋳造ピットの少なくとも上部周縁の周囲のガス導入ポートのアレイとを含む、中間鋳造生成物ステーションと、不活性ガスをガス導入ポートのアレイに供給するように動作可能な不活性ガス源とを備えるシステム。

Description

関連出願への相互参照
本願は、同時継続中の米国特許出願第61/760,323号(2013年2月4日出願)、国際出願番号PCT/US2013/041457号(2013年5月16日出願)、国際出願番号PCT/US2013/041459号(2013年5月16日出願)、国際出願番号PCT/US2013/041464号(2013年5月16日出願)、および、米国特許出願第61/908,065号(2013年11月23日出願)のより早い出願日の利益を主張し、それらの全ては、本明細書で参照によって援用される。
分野
アルミニウムリチウム(Al−Li)合金の直接チル鋳造。
従来の(非リチウム含有)アルミニウム合金は、Aluminum Company of America(現Alcoa)による1938年における直接チル(「DC」)鋳造の発明以来、開放式底部鋳型において半持続的に鋳造されている。このプロセスに対する多くの修正および改変が、それ以来、行われているが、基本のプロセスおよび装置は、同じままである。アルミニウムインゴット鋳造の当業者は、新しい革新がその一般的機能を維持しながらプロセスを改善することを、理解する。
米国特許第4,651,804号は、より現代的なアルミニウム鋳造ピット設計について説明している。金属溶融炉を地表レベルの若干上方に搭載し、鋳造鋳型が地表レベルまたはその近傍にあり、鋳造動作が進むにつれて鋳造インゴットが水含有ピット中に降下させられることが標準的実践となりつつある。直接チルからの冷却水は、ピット内に流動し、そこから持続的に除去される一方で、ピット内に恒久的な深い水溜りを残す。このプロセスは、現在使用されており、世界中で、年間およそ500万トンを超えるアルミニウムおよびその合金が、この方法によって生産されている。
残念ながら、そのようなシステムを使用すると、「滲出(bleed−out)」または「湯漏れ(run−out)」由来の固有のリスクが存在する。「滲出」または「湯漏れ」は、鋳造中のアルミニウムインゴットが、鋳造鋳型において適切に固化されず、液体状態にあるままで、鋳型を予想外かつ時期尚早に残したままにする場合に生じる。溶融アルミニウムは、「滲出」または「湯漏れ」中、水に接触すると、(1)水を>212Fまで加熱するアルミニウムのサーマルマスによる水のスチームへの変換によるか、または、(2)爆発性化学反応を生じさせるほどのエネルギーの放出をもたらす溶融金属と水との化学反応による爆発を生じさせ得る。
このプロセスを使用して、鋳型から現れたインゴットの側面からかつ/または鋳型の境界から溶融金属が逃げ出す「滲出」、「湯漏れ」が生じた場合に、世界中で多くの爆発が生じている。結果、DC鋳造のために最も安全である可能な条件を確立するために、多数の実験研究が実施されている。中でも、初期かつ恐らく最も公知の研究は、Aluminum Company of AmericaのG. Long(「Explosions of Molten Aluminum in Water Cause and Prevention」、Metal Progress、1957年5月、Vol. 71、107〜112ページ))(下記では、「Long」と呼ばれる)によって行われたものであって、その後、さらなる調査が続き、爆発のリスクを最小限にするように設計された業界の「実践規範」が確立された。これらの規範は、概して、世界中の鋳物工場によってフォローされている。規範は、Longの研究に広範に基づき、通常、(1)ピットに恒久的に維持される水の深度は、少なくとも3フィートであるべきであることと、(2)ピット内の水のレベルは、鋳型の下方に少なくとも10フィートであるべきであることと、(3)鋳造機械およびピット表面は、清浄であり、錆がなく、かつ、実証済みの有機材料でコーティングされるべきであることとを必要とする。
彼の実験において、Longは、2インチ以下の深度を有するピットにおける水の貯留がある場合、非常に激しい爆発が生じないことを見出した。しかしながら、代わりに、溶融金属をピットから放出させ、かつ、この溶融金属を危険な様式でピットの外部に分散させるために十分な小規模の爆発を生じさせた。ゆえに、実践規範は、前述のように、少なくとも3フィートの深度を有する水の貯留がピットに恒久的に維持されることを必要とする。Longは、アルミニウム/水爆発が生じる場合、特定の要件が満たされなければならないという結論を導き出した。これらの中でも、溶融金属によってカバーされる場合にはいくつかの種類の誘発作用がピットの底部表面上で生じる必要があり、彼は、この誘因が、流入金属の下方に捕捉された非常に薄い水の層のスチームへの突然の変換に起因する小規模爆発であることを示唆している。グリース、油、または、塗料が、ピット底部上にあるとき、誘発爆発のために必要な水の薄層が、コーティングされていない表面と同一の様式で溶融金属の下に捕捉されないので、爆発は、防止される。
実際は、推奨される少なくとも3フィートの水の深度が、概して、垂直DC鋳造のために採用され、いくつかの鋳物工場(特に、大陸欧州諸国)では、水レベルは、上記の推奨(2)とは対照的に、鋳型の裏側に非常に近接させられる。したがって、DC方法によって鋳造を行っているアルミニウム業界は、ピットに恒久的に維持される深い水の貯留の安全性を選択している。実践規範は実験結果に基づくことが、強調されなければならない。すなわち、種々の種類の溶融金属/水爆発において実際に起こることは、完全には理解されていない。しかしながら、実践規範への注意は、アルミニウム合金による「湯漏れ」の場合、事故を回避する事実上の確実性を保証する
過去数年において、リチウムを含む軽金属合金への関心が高まりつつある。リチウムは、溶融合金をより反応性にする。上記で言及された「Metal Progress」という記事において、Longは、Al−Liを含むいくつかの合金に対するアルミニウム/水反応に関して報告を行ったH. M. Higginsによる以前の研究について言及し、「溶融金属が、何らかの態様で水中に分散されると、Al−Li合金は、強い反応を受ける」と結論付けている。さらに、Aluminum Association Inc.(America)によって、DCプロセスによってそのような合金を鋳造する場合、特定の危険が存在することが、発表されている。Aluminum Company of Americaは、そのような合金が水と混合されると非常に激しく爆発し得ることを実証する試験のビデオ記録を公開している。
米国特許第4,651,804号は、ピットに水の貯留の蓄積が生じないように、鋳造ピットの底部から水を除去する設備を伴う前述の鋳造ピットの使用を教示している。この構成は、Al−Li合金を鋳造するための好ましい方法論である。欧州特許第0−150−922号は、水が鋳造ピットにおいて集まり得ないことを確実にし、したがって、水およびAl−Li合金の直接接触による爆発の発生を減少させる付随のオフセット水収集リザーバ、水ポンプ、および、関連付けられた水レベルセンサを伴う、勾配付きピット底部(好ましくは、3%〜8%傾斜勾配のピット底部)について説明している。水の蓄積が生じ得ないように、インゴット冷却剤水をピットから持続的に除去する能力は、この特許の教示の成功にとって重要である。
他の研究もまた、アルミニウム合金へのリチウムの添加と関連付けられた爆発力が、爆発エネルギーの性質を、リチウムを有さないアルミニウム合金の何倍にも増強させ得ることを実証している。リチウムを含む溶融アルミニウム合金が水と接触する場合、水がLi−OHおよび水素イオン(H)に解離するとき、水素の急発生が生じる。米国特許第5,212,343号は、アルミニウム、リチウム(および、他の元素も同様)の水への添加が、爆発反応を引き起こすことを教示している。水中でのこれらの元素(特に、アルミニウムおよびリチウム)の発熱性反応は、大量の水素ガス、典型的に、アルミニウム−3%リチウム合金1グラムあたり14立方センチメートルの水素ガスを産生する。このデータの実験検証は、米国エネルギー省支援研究契約番号DE−AC09−89SR18035号の下で実施された研究において見出されることができる。第5,212,343号特許の請求項1は、発熱性反応を介した水爆発を産生するようにこのような激しい相互作用を行うための方法について請求していることが、注記される。この特許は、リチウム等の元素の添加が、材料の単位体積あたりの高い反応エネルギーをもたらすプロセスについて説明している。米国特許第5,212,343号および同第5,404,813号に説明されるように、リチウム(または、いくつかの他の化学的に活性な元素)の添加は、爆発を促進する。これらの特許は、爆発反応が望ましい結果であるプロセスを教示する。これらの特許は、リチウムを有さないアルミニウム合金と比較して、「滲出」または「湯漏れ」に対するリチウムの添加の爆発性を強化するものである。
再び、米国特許第4,651,804号を参照すると、従来の(非リチウム担持)アルミニウム合金に対して爆発をもたらす2つの発生は、(1)水のスチームへの変換と、(2)溶融アルミニウムおよび水の化学反応とである。アルミニウム合金へのリチウムの添加は、第3の、水素ガスを産生する水および溶融アルミニウム−リチウム「滲出」または「湯漏れ」の発熱性反応(さらにより激しい爆発力である)を産生する。溶融Al−Li合金が水と接触すると随時、反応が生じる。鋳造ピットに最小限の水レベルを伴って鋳造するときでも、水は、「滲出」または「湯漏れ」中の溶融金属と接触する。これは、発熱性反応の両成分(水および溶融金属)が鋳造ピットに存在するので、回避されることができず、減少させられるのみである。水とアルミニウム接触の量を減少させることは、最初の2つの爆発条件を排除するが、アルミニウム合金中のリチウムの存在は、水素発生をもたらす。水素ガス濃度が、鋳造ピットにおける臨界質量および/または体積に達する場合、爆発が生じる可能性が高い。爆発を誘発するために必要とされる水素ガスの体積濃度は、単位空間におけるガスの混合物の総体積のうちの5%体積の閾値レベルであるとする研究がある。米国特許第4,188,884号は、水中魚雷弾頭の作製について説明しており、4ページの2段落目33行目に、リチウム等の、水と非常に反応する材料の充填材32が添加されることを、図面を参照して記載している。同特許の1段落目25行目には、大量の水素ガスが、水とのこの反応によって放出され、急な爆発を伴って気泡を産生することが記載されている。
米国特許第5,212,343号は、水と、AlおよびLiを含むいくつかの元素および組み合わせとを混合し、大量の水素含有ガスを産生することによって、爆発反応を生じさせることについて説明している。7ページの3段落目には、「反応性混合物が、水との反応および接触に応じて大量の水素が比較的に少量の反応性混合物から産生されるように、選ばれる」ことが記載されている。同段落の39行目および40行目では、アルミニウムおよびリチウムが識別されている。8ページの5段落目21〜23行目では、リチウムと組み合わされたアルミニウムが示されている。同特許の11ページの11段落目28−30行目は、水素ガス爆発について言及している。
DC鋳造を行う別の方法では、水以外のインゴット冷却剤を使用することにより「滲出」または「湯漏れ」による水−リチウム反応を伴わないインゴット冷却を提供するAl−LI合金鋳造関連の特許が、発行されている。米国特許第4,593,745号は、インゴット冷却剤としての、ハロゲン化炭化水素またはハロゲン化アルコールの使用について説明している。米国特許第4,610,295号、同第4,709,740号、および、同第4,724,887号は、インゴット冷却剤としての、エチレングリコールの使用について説明している。これが機能するために、ハロゲン化炭化水素(典型的に、エチレングリコール)は、水および水蒸気がない状態でなければならない。これは、爆発の危険に対する解決策であるが、高い火災の危険を導入し、実装および保守にコストがかかる。消化システムが、潜在的グリコール火災を含むように、鋳造ピット内に必要とされる。グリコール取扱システムを含むグリコールベースのインゴット冷却剤システムと、グリコールを脱水するための熱酸化剤と、鋳造ピット火災保護システムとを実装するための典型的コストは、約$500万ドル〜$800万ドル(今日の金額で)かかる。冷却剤として100%グリコールを用いた鋳造もまた、別の問題をもたらす。グリコールまたは他のハロゲン化炭化水素の冷却能力は、水の冷却能力とは異なるので、異なる鋳造実践ならびに鋳造ツール類が、このタイプの技術を利用するために必要とされる。純粋冷却剤(straight coolant)としてのグリコールの使用に関する別の不利点は、グリコールが水よりも低い熱伝導性および表面熱伝達係数を有するので、冷却剤として100%グリコールを用いた金属鋳造のマイクロ構造が、より粗い望ましくない冶金学的構成要素を有し、鋳造生成物中により多くの量の中心線引け巣(centerline shrinkage porosity)を呈することである。より微細なマイクロ構造の不在、および、より高い引け巣集合の同時存在は、そのような初期ストックから製造された最終生成物の特性に悪影響を及ぼす。
Al−Li合金の鋳造における爆発の危険性を低下させるための試みのさらに別の例では、米国特許第4,237,961号が、DC鋳造中にインゴットから水を除去することを提案している。欧州特許第0−183−563号では、アルミニウム合金の直接チル鋳造中に「漏出」または「湯漏れ」溶融金属を収集するためのデバイスが、説明される。「漏出」または「湯漏れ」溶融金属の収集は、この溶融金属の質量を集中させる。この教示は、水の除去が、水が除去のために収集されるにつれて水の貯留をもたらす、人工的な爆発条件をもたらすので、Al−Li鋳造には使用されることができない。溶融金属の「滲出」または「湯漏れ」中、「滲出」材料もまた、貯留された水エリアに濃縮される。米国特許第5,212,343号に教示されるように、これは、反応性水/Al−Li爆発を生じさせるための好ましい方法となる。
したがって、多数の解決策が、Al−Li合金の鋳造における爆発の潜在的可能性を削減するかまたは最小限にするために、先行技術において提案されている。これらの提案された解決策の各々は、そのような動作におけるさらなる安全保護を提供するが、いずれも、完全に安全であるかまたは商業的にコスト効果的であることが証明されていない。
したがって、Al−Li合金を鋳造するための、より安全であり、保守が少なくて済み、かつ、よりコスト効果的である装置およびプロセスの必要性が残り、その装置およびプロセスは、同時に、より高い品質の鋳造生成物を産生する。
Al−Li合金を鋳造するための装置および方法が、説明される。先行技術教示についての懸念は、水とAl−Li溶融金属の「滲出」または「湯漏れ」材料とが、一緒になり、発熱性反応中に水素を放出することである。勾配付きピット底部、最小限の水レベル等を用いても、水と「滲出」または「湯漏れ」溶融金属とは、依然として、密に接触し、反応が生じることを可能にし得る。先行技術特許に説明されるもの等の、水なしで別の液体を使用する鋳造は、鋳造性、鋳造生成物の品質に影響を及ぼし、実装および保守にコストがかかり、かつ、環境懸念および火災の危険性を生む。
この説明される装置および方法は、爆発が生じるために存在しなければならない構成要素を最小限にするかまたは排除することによって、Al−Li合金のDC鋳造の安全性を改善する。水(あるいは、水蒸気またはスチーム)は、溶融Al−Li合金の存在下で水素ガスを産生することが、理解されるべきである。代表的な化学反応式は、下記であると考えられる。
2LiAl+8HO→2LiOH+2Al(OH)+4H(g)
水素ガスは、空気の密度よりも有意に低い密度を有する。化学反応中に発生する水素ガスは、空気よりも軽く、鋳造鋳型直下の鋳造ピットの上部および鋳造ピットの上部における鋳型支持構造に向かって、上向きに引き寄せられる傾向がある。典型的に封入されたこのエリアは、水素ガスが集まり、爆発雰囲気を生成するために十分に濃縮されることを可能にする。熱、スパーク、または、他の点火源が、濃縮されたままのガスの水素「プルーム」の爆発を誘発させ得る。
溶融「滲出」または「湯漏れ」材料が、(アルミニウムインゴット鋳造の当業者によって実践されるように)DCプロセスにおいて使用されるインゴット冷却水と組み合わせられると、スチームおよび水蒸気を生成することが、理解される。水蒸気およびスチームは、水素ガスを産生する反応にとっての反応促進剤である。スチーム除去システムによるこのスチームおよび水蒸気の除去は、水がAl−LIと結合することによりLi−OHを生成する能力と、Hの駆逐とを取り除くことになる。この説明される装置および方法は、1つの実施形態において、スチーム排出ポートを鋳造ピットの内側周縁の周囲に設置し、「滲出」の発生の検出に応じて、通気口を迅速に起動することによって、鋳造ピットにおける水およびスチーム蒸気の存在の潜在的可能性を最小限にする。
米国特許第4,651,804号明細書 欧州特許第0−150−922号明細書 米国特許第5,212,343号明細書 米国特許第5,404,813号明細書 米国特許第4,188,884号明細書 米国特許第4,610,295号明細書 米国特許第4,709,740号明細書 米国特許第4,724,887号明細書 米国特許第4,237,961号明細書 欧州特許第0−183−563号明細書
G. Long「Explosions of Molten Aluminum in Water Cause and Prevention」、Metal Progress、1957年5月、Vol. 71、107〜112ページ
図1は、直接チル鋳造ピットの実施形態の簡略化された断面側面図である。 図2は、通常動作条件下における冷却剤送給システムのための弁構成を示す、図1の鋳造システムの上部概略図である。 図3は、滲出の検出に応じた冷却剤送給システムのための弁構成を示す、図1の鋳造システムの上部概略図である。 図4は、鋳造動作における「滲出」または「湯漏れ」に対処するプロセスの実施形態のプロセス流れ図である。 図5は、鋳造動作における「滲出」または「湯漏れ」に対処するプロセスの別の実施形態のプロセス流れ図である。 図6は、合金融液と、合金融液由来の1つまたはそれよりも多くの中間鋳造生成物とを形成するように動作可能なシステムの概略側面図である。
1つの実施形態によると、排出ポートは、鋳造ピット内のいくつかのエリア、例えば、鋳造鋳型の下方に約0.3メートル〜約0.5メートル、鋳造鋳型から約1.5メートル〜約2.0メートルの中間エリア、および、鋳造ピットの底部に位置する。参考として、下記でより詳細に説明される添付の図面に示されるように、鋳造鋳型は、典型的に、床レベルから床レベルの上方1メートル程度において、鋳造ピットの上部に設置される。鋳型テーブルの下方の鋳造鋳型の周囲の水平および垂直のエリアは、概して、希釈目的のために外気を取り込んで換気するための設備を除き、ピットスカートおよびLexanガラス覆いとともに閉鎖され、それによって、ピット内に含まれるガスが、所定の様式に従って導入および排出される。
別の実施形態において、不活性ガスが、鋳造ピット内部空間に導入され、臨界質量への水素ガスの一体化を最小限にするかまたは排除する。この場合、不活性ガスは、空気の密度未満の密度を有し、かつ、水素ガスが典型的に存在する鋳造ピットの上部直下の同一の空間を占有する傾向があるガスである。ヘリウムガスは、空気の密度未満の密度を有する好適な不活性ガスの1つのそのような例である。
アルゴンの使用が、Al−Li合金を周囲雰囲気から保護し、空気とのAl−Li合金の反応を防止するためのカバーガスとして、多数の技術報告において記載されている。アルゴンは、完全に不活性であるが、空気の密度よりも高い密度を有し、強力な上向きの通気が維持されない限り、鋳造ピットの上側内部の不活性化を提供しない。基準としての空気(1.3グラム/リットル)と比較して、アルゴンは、密度約1.8グラム/リットルを有するので、鋳造ピットの底部に沈下する傾向があり、鋳造ピットの重要な上部エリア内に望ましい水素変位保護を提供することがない。ヘリウムは、一方で、非可燃性であり、0.2グラム/リットルと低密度を有し、かつ、燃焼を支援しない。鋳造ピットの内側で空気をより低い密度の不活性ガスと交換することによって、鋳造ピットにおける危険な雰囲気が、爆発が支援され得ないレベルまで希釈され得る。さらに、この交換が生じている間、水蒸気およびスチームもまた、鋳造ピットから除去される。1つの実施形態において、定常状態鋳造中、かつ、「滲出」に関しての非緊急条件が経験されていない場合、水蒸気およびスチームが、外部プロセスにおいて、不活性ガスから除去される一方で、「クリーンな」不活性ガスは、鋳造ピットを通して再循環させられることができる。
ここで添付の図面を参照すると、図1は、DC鋳造システムの実施形態の断面を示す。DCシステム5は、典型的に地中に形成される鋳造ピット16を含む。鋳造ピット16内に配置されるのは、例えば油圧パワーユニット(図示せず)を用いて、昇降され得る鋳造シリンダ15である。鋳造シリンダ15の上位または上部部分に取り付けられるのは、鋳造シリンダ15とともに昇降されるプラテン18である。この図におけるプラテン18の上方または上位には、定置鋳造鋳型12がある。鋳造鋳型12は、図示されるように、開放された上部および底部と、鋳型空洞(本体を通した空洞)を画定し、かつ、その中に冷却剤のためのリザーバを含む本体とを有する。1つの実施形態において、冷却剤は、冷却剤ポート11を通して、鋳型12におけるリザーバに導入される。冷却剤ポート11は、導管(例えば、ステンレス鋼導管)を通して、水等の好適な冷却剤を含む冷却剤源17に接続される。ポンプが、冷却剤と流体連通し、冷却剤ポート17および鋳型12のリザーバへの冷却剤の移動を補助してもよい。1つの実施形態において、弁21が、冷却剤源と冷却剤ポート11との間に配置され、リザーバ内への冷却剤の流動を制御する。流量計もまた、導管に存在し、リザーバへの冷却剤の流量率を監視してもよい。弁21は、コントローラ(コントローラ35)によって制御されてもよく、そのようなコントローラはまた、導管を通した冷却剤の流量率を監視することができる。
溶融金属が、鋳造鋳型12に導入され、鋳造鋳型のより低い温度によって、かつ、鋳造鋳型12の基部または底部の周囲にある鋳造鋳型12と関連付けられた冷却剤送給部14を通した冷却剤の導入を通して、冷却され、その冷却剤は、中間鋳造生成物が鋳型空洞から現れた(鋳造鋳型の下方から現れた)後、中間鋳造生成物に作用する。1つの実施形態において、鋳造鋳型におけるリザーバは、冷却剤送給部14と流体連通している。溶融金属(例えば、Al−Li合金)が、鋳型12に導入される。鋳造鋳型12は、1つの実施形態において、冷却剤送給部14を含み、その冷却剤送給部は、冷却剤(例えば、水)が、現れるインゴットの表面上に流動し、金属の直接チル化および固化を提供することを可能にする。鋳造鋳型12を囲繞するのは、鋳造テーブル31である。図1に示されるように、1つの実施形態において、例えば耐高温シリカ材料から加工されるガスケットまたはシール29が、鋳型12およびテーブル31の構造の間に位置する。ガスケット29は、スチームまたは任意の他の雰囲気が、鋳型テーブル31の下方から鋳型テーブルの上方に達することを阻止し、それによって、鋳造作業員が動作させかつ呼吸する空気の汚染を阻止する。
図1に示される実施形態において、システム5は、滲出または湯漏れを検出するために、鋳型12の直下に位置付けられた溶融金属検出器10を含む。溶融金属検出器10は、例えば、米国特許第6,279,645号に説明されるタイプの赤外線検出器、米国特許第7,296,613号に説明されるような「漏出検出器」、または、「滲出」の存在を検出することができる任意の他の好適なデバイスであってもよい。
図1に示される実施形態において、システム5はまた、排出システム19を含む。1つの実施形態において、排出システム19は、この実施形態において、鋳造ピット16に位置付けられた排出ポート20A、20A’、20B、20B’、20C、20C’を含む。排出ポートは、点火源(例えば、H(g))および反応物(例えば、水蒸気またはスチーム)を含む発生させられたガスの、鋳造ピットの内側空洞からの除去を最大限にするように位置付けられる。1つの実施形態において、排出ポート20A、20A’は、鋳型12の下方に約0.3メートル〜約0.5メートルに位置付けられ、排出ポート20B、20B’は、鋳型12の下方に約1.5メートル〜約2.0メートルに位置付けられ、排出ポート20C、20C’は、滲出金属が捕捉されて含まれる鋳造ピット16の基部に位置付けられる。排出ポートは、各レベルにおけるペアで示される。図1におけるように、異なるレベルで排出ポートのアレイが存在する実施形態において、2つよりも多くの排出ポートが各レベルに存在してもよいことが、理解される。例えば、別の実施形態において、3つまたは4つの排出ポートが各レベルに存在してもよい。別の実施形態において、2つ未満(例えば、各レベルに1つ)が存在してもよい。排出システム19はまた、遠隔排出通気口22を含み、その遠隔排出通気口は、鋳造鋳型12から遠隔にあり(例えば、鋳型12から約20〜30メートル離れている)、システムから排出されたガスの流出を可能にする。排出ポート20A、20A’、20B、20B’、20C、20C’は、導管(例えば、亜鉛めっき鋼またはステンレス鋼の導管)を通して、排出通気口22に接続される。1つの実施形態において、排出システム19は、排出ガスを排出通気口22に方向付けるために、排出ファンのアレイをさらに含む。
図1は、この実施形態において、不活性ガス導入ポート(例えば、不活性ガス導入ポート26A、26A’、26B、26B’、26C、26C’)を含むガス導入システム24をさらに示し、それらの不活性ガス導入ポートは、鋳造ピットの周りに配置され、不活性ガス源(単数または複数)27に接続される。1つの実施形態において、ポート26B、26B’、および、ポート26C、26C’の各々の位置に並んで、過剰空気導入ポートが、位置付けられ、発生した水素ガスの通過途中のさらなる希釈を保証する。ガス導入ポートの位置付けは、ガス導入システム24を介して、ピット内のガスおよびスチームを直ちに置換するための大量の不活性ガスを提供するように選択され、そのガス導入システムは、必要である限り(特に、滲出の検出に応じて)、「滲出」条件の検出から所定の時間(例えば、最大約30秒)以内に、不活性ガス導入ポート26を通して鋳造ピット16に不活性ガスを導入する。図1は、鋳造ピット16の上部部分近傍に位置付けられたガス導入ポート26A、26A’と、鋳造ピット16の中間部分に位置付けられたガス導入ポート26B、26B’と、鋳造ピット16の底部部分に位置付けられたガス導入ポート26C、26C’とを示す。圧力調整器または弁が、各ガス導入ポートと関連付けられることにより、不活性ガスの導入を制御してもよい。ガス導入ポートは、各レベルにおけるペアで示される。各レベルにガス導入ポートのアレイが存在する実施形態において、2つよりも多くのガス導入ポートが各レベルに存在してもよいことが、理解される。例えば、別の実施形態において、3つまたは4つのガス導入ポートが各レベルに存在してもよい。別の実施形態において、2つ未満(例えば、1つ)が各レベルに存在してもよい。
図1に示されるように、1つの実施形態において、鋳造ピット16の上部14におけるガス導入ポート26A、26A’を通して導入される不活性ガスは、鋳型12の下方で固化された半固体および液体のアルミニウムリチウム合金に作用するべきであり、このエリアにおける不活性ガス流量率は、1つの実施形態において、「滲出」または「湯漏れ」の存在の検出前の冷却剤の体積流量率に、少なくとも実質的に等しい。別の実施形態において、ガス導入システム24は、鋳型12に補助ガス導入ポート23への導管を含み(例えば、示される実施形態において、鋳型12の本体は、冷却剤源17、冷却剤ポート11、および、冷却剤送給部14と流体連通している冷却剤のためのリザーバと、不活性ガス源27、補助ガス導入ポート23、および、鋳造ピット内への1つまたはそれよりも多くの不活性ガス送給部25と流体連通する不活性ガスのための別個のマニホールドとを有する)、それによって、不活性ガスが、鋳型を通して流動する冷却剤に取って替わるかまたはそれとともに添加されるか(例えば、冷却剤送給部を通して、不活性ガスを冷却剤とともに放出することによって)、あるいは、鋳型を通して別個に流動し得る。代表的に、弁13が、導管に配置され、補助ガス導入ポート23を通した鋳型12内への不活性ガスの流動を制御または調節する。1つの実施形態において、弁13は、非滲出または非湯漏れ条件下では閉鎖または部分的に閉鎖され、滲出または湯漏れに応答して開放される。鋳造ピットの異なるレベルにガス導入ポートが存在する実施形態において、そのようなガス導入ポートを通した流量率は、鋳造ピット16の上部14におけるガス導入ポートを通した流量率と同じであっても、異なってもよい(例えば、鋳造ピット16の上部14におけるガス導入ポートを通した流量率未満)。弁13は、コントローラ(コントローラ35)によって制御されてもよく、補助ガス導入ポート23へ向かう導管における圧力は、例えば導管における圧力ゲージを通して、コントローラによって監視されてもよい。
前述のように、ガス導入ポートを通して導入するために好適な1つの不活性ガスは、ヘリウムである。ヘリウムは、空気の密度未満の密度を有し、アルミニウムまたはリチウムと反応することにより反応性生成物を産生することがなく、比較的に高い熱伝導性(0.15W・m−1・K−1)を有する。滲出または湯漏れの状況等において、不活性ガスが、鋳型12を通した冷却剤の流動に取って替わるために導入される場合、1つの実施形態において、比較的に高い熱伝導性を有するヘリウム等の不活性ガスが、溶融金属による鋳型の変形を阻止するために導入される。別の実施形態において、不活性ガスの混合物が、導入されてもよい。代表的に、不活性ガスの混合物は、ヘリウムガスを含む。1つの実施形態において、不活性ガスの混合物は、ヘリウムガスおよびアルゴンガスを含み、ヘリウムガスを少なくとも約20%含む。別の実施形態において、ヘリウム/アルゴン混合物は、ヘリウムガスを少なくとも約60%含む。さらなる実施形態において、ヘリウム/アルゴン混合物は、少なくとも約80%のヘリウムガスと、対応して、最大約20%のアルゴンガスとを含む。
ガス導入ポートを通して導入される置換不活性ガスは、上側排出システム28によって鋳造ピット16から除去され、その上側排出システムは、持続的ベースではより低い体積で起動を維持されるが、「滲出」の検出に応じて、体積流量率が直ちに向上させられ、鋳造ピットから除去された不活性ガスを排出通気口22に方向付ける。1つの実施形態において、滲出の検出の前に、ピットの上側部分における雰囲気が、(例えば、湿気ストリッピングカラムおよびスチーム乾燥剤の)雰囲気精製システム30を通して持続的に循環させられることによって、ピットの上側領域における雰囲気は、適度に不活性に保たれてもよい。除去されたガスは、循環させられている間、雰囲気精製システム30を通過させられ、いかなる水蒸気も除去され、不活性ガスを含む上側ピット雰囲気を精製する。精製された不活性ガスは、次いで、好適なポンプ32を介して不活性ガス注入システム24に再循環させられてもよい。この実施形態が採用されるとき、不活性ガスカーテンが、ポート20Aと26Aとの間、および、同様にポート20A’と26A’との間に維持され、ピット通気および排出システムを通して、鋳造ピットの上側領域の貴重な不活性ガスの逃げ出しを最小限にする。
排出ポート20A、20A’、20B、20B’、20C、20C’および不活性ガス導入ポート26A、26A’、26B、26B’、26C、26C’の、数および正確な場所は、動作させられる特定の鋳造ピットのサイズおよび構成の関数であり、これらは、空気およびガスの再循環の専門家の協力によって、DC鋳造を実践する当業者によって計算される。図1に示されるように、3セット(例えば、3つのペア)の排出ポートおよび不活性ガス導入ポートを提供することが、最も望ましい。鋳造中の生成物の性質および重量に応じて、ある程度、複雑でなく、安価であるが、等しく効果的な装置が、鋳造ピット16の上部の周縁の周囲にある排出ポートおよび不活性ガス導入ポートの単一アレイを使用して得られ得る。
前述のように、中間鋳造生成物が鋳造鋳型空洞から現れるにつれて、鋳造鋳型の周囲の冷却剤送給部からの冷却剤が、冷却剤が冷却剤送給部14から流出する場所の直下の点に対応する中間鋳造生成物の周縁の周囲に作用する。後者の場所は、一般に、固化ゾーンと呼ばれる。これらの標準的な条件下、水および空気の混合物が、中間鋳造生成物の周縁の周囲の鋳造ピットにおいて産生され、その中に、新しく産生された水蒸気が、鋳造動作が持続しているとき、持続的に導入される。
図2に示されるのは、鋳造鋳型12および鋳造テーブル31を示すシステム5の概略上部平面図である。この実施形態において、システム5は、鋳造鋳型12におえるリザーバ(図2におけるリザーバ50)と、冷却剤送給部(冷却剤送給部14、図1)またはリザーバ50の上流のいずれかとの間の冷却剤送給部に設置された冷却剤送給システムを含む。図2に示されるように、図示される実施形態において、冷却剤送給システム56は、リザーバ50の上流にある。冷却剤送給システム56は、この実施形態において、冷却剤ポート11、弁21、および、冷却剤ポート11と冷却剤源17との間の関連付けられた導管に取って替わる。鋳型12(この実施形態において、丸い鋳型として図示される)は、金属44(例えば、鋳型12に導入される溶融金属)を囲繞する。さらに、図2に見られるように、冷却剤送給システム56は、リザーバ50に送給する導管63または導管67に接続された弁システム58を含む。導管63および導管67ならびに本明細書で論じられる他の導管および弁のための好適な材料は、限定ではないが、ステンレス鋼(例えば、ステンレス鋼管状導管)を含む。弁システム58は、導管63と関連付けられた第1の弁60を含む。第1の弁60は、冷却剤源17からの弁60および導管63を通した冷却剤(概して、水)の導入を可能にする。弁システム58はまた、導管67と関連付けられた第2の弁66を含む。1つの実施形態において、第2の弁66は、不活性流体源64からの第2の弁66および導管67を通した不活性流体の導入を可能にする。導管63および導管67は、それぞれ、冷却剤源17および不活性流体源64をリザーバ12に接続する。
不活性流体源64のための不活性流体は、リチウムまたはアルミニウムと反応することにより反応性(例えば、爆発性)生成物を産生することがなく、同時に、燃焼性ではないかまたは燃焼を支援しない液体またはガスである。1つの実施形態において、不活性流体は、不活性ガスである。好適な不活性ガスは、空気の密度未満の密度を有し、リチウムまたはアルミニウムと反応することにより反応性生成物を産生することがないガスである。対象の実施形態において使用されるべき好適な不活性ガスの別の特性は、ガスが、不活性ガス中または空気および不活性ガス混合物中で通常利用可能であるよりも高い熱伝導性を有するべきであるということである。前述の要件を同時に満たすそのような好適なガスの例は、ヘリウム(He)である。滲出または湯漏れの状態等で、鋳型12を通した冷却剤の流動に取って替わるように不活性ガスが導入される場合、1つの実施形態において、比較的に高い熱伝導性を有するヘリウム等の不活性ガスが導入され、溶融金属による鋳型の変形を阻止する。別の実施形態において、不活性ガスの混合物が、導入されてもよい。代表的に、不活性ガスの混合物は、ヘリウムガスを含む。1つの実施形態において、不活性ガスの混合物は、ヘリウムガスを含み、アルゴンガスが、使用されてもよい。1つの実施形態によると、ヘリウム/アルゴン混合物は、ヘリウムガスを少なくとも約20%含む。別の実施形態によると、ヘリウム/アルゴン混合物は、ヘリウムガスを少なくとも約60%含む。さらなる実施形態において、ヘリウム/アルゴン混合物は、少なくとも約80%のヘリウムガスと、対応して、最大約20%のアルゴンガスとを含む。
通常の鋳造条件を表す図2では、第1の弁60が開放され、第2の弁66が閉鎖される。この弁構成では、冷却剤源17からの冷却剤のみ、導管63に流入させられ、したがって、リザーバ12に流入させられる一方で、不活性流体源64からの不活性流体は、そこに入らないようにされる。弁60の位置(例えば、完全に開放、部分的に開放)は、弁60と関連付けられるかまたは弁60に隣接して別個に位置付けられた流量率モニタ(第1の流量率モニタ68として、弁60の下流に図示される)によって測定される所望の流量率を達成するように選択されてもよい。1つの実施形態によると、所望に応じて、第2の弁66は、不活性流体源64からの不活性流体(例えば、不活性ガス)が、通常の鋳造条件中に、冷却剤源17からの冷却剤とリザーバ12において混合され得るように、部分的に開放されることができる。弁66の位置は、弁66と関連付けられるかまたは弁66に隣接して別個に位置付けられた流量率モニタ(第2の流量率モニタ69として、弁66の下流に図示される)(例えば、不活性流体源のための圧力モニタ)によって測定される所望の流量率を達成するために選択されてもよい。
1つの実施形態において、第1の弁60、第2の弁66、第1の流量率モニタ68、および、第2の流量率モニタ69の各々は、コントローラ35に、電気的にかつ/または論理的に接続される。コントローラ35は、非一時的な機械可読命令を含み、その非一時的な機械可読命令は、実行されると、第1の弁60および第2の弁66の一方または両方を作動させる。例えば、図2に示されるような通常の鋳造動作下、そのような機械可読命令は、第1の弁60を部分的または完全に開放させ、第2の弁66を閉鎖させるかまたは部分的に開放させる。
ここで、図3を参照すると、この図は、「滲出」または「湯漏れ」の発生に応じた構成における弁システム58を示す。これらの状況下では、滲出検出デバイス10(図1参照)による「滲出」または「湯漏れ」の検出に応じて、第1の弁60は、閉鎖され、冷却剤源17からの冷却剤(例えば、水)の流動を停止する。同時に、または、その直後、3〜20秒以内に、第2の弁66が開放され、不活性流体源64からの不活性流体の流入を可能にし、それによって、不活性流体のみが導管67内に流入させられる。不活性流体がヘリウム(He)等の不活性ガスである場合、この条件下、ヘリウムの空気、水、または、水蒸気よりも低い密度を所与として、鋳造ピット16の上部におけるエリア、および、鋳型12の周囲のエリア(図1参照)は、不活性ガスですぐにいっぱいになり、それによって、水および空気の任意の混合物を変位させ、このエリアにおける水素ガスの形成、または、溶融Al/Li合金と冷却剤(例えば、水)との接触を阻止し、それによって、この領域におけるこれらの材料の存在に起因する爆発の可能性を有意に低下させる。1.0フィート/秒〜約6.5フィート/秒、好ましくは約1.5フィート/秒〜約3フィート/秒、最も好ましくは約2.5フィート/秒の速度が、使用される。不活性流体が不活性ガスである1つの実施形態において、不活性ガス源64は、図1を参照して説明されるガス導入システム24に供給する不活性ガス源(単数または複数)27に対応してもよい。
さらに、図2および図3に示されるのは、第1の弁60および第2の弁66とそれぞれ関連付けられた逆止弁70および逆止弁72である。各逆止弁は、滲出および鋳型内への材料流動の変化の検出に応じて、対応する弁60、66内への冷却剤および/または不活性流体(例えば、ガス)の逆流を阻止する。
図2および図3に図式的に示されるように、1つの実施形態において、冷却剤供給ライン63はまた、バイパス弁73を具備し、第1の弁60内への冷却剤の流入の前に、外部「ダンプ(dump)」への冷却剤の流動の即時進路変更を可能にし、それによって、第1の弁60の閉鎖のときの、送給システムへのウォーターハンマリング作用または損傷、あるいは、弁60を通した漏出が、最小限にされる。1つの実施形態において、コントローラ35における機械可読命令は、「滲出」が、例えば赤外線温度計からコントローラ35への信号によって、検出されると、命令が、バイパス弁73を作動させて、冷却剤流動を進路変更するように開放させ、第1の弁60を続けて作動させて閉鎖させ、第2の弁66を作動させて開放させることにより不活性ガスの流入を可能にするような命令を含む。
前述のように、1つの好適な不活性ガスは、ヘリウムである。ヘリウムは、冷却剤流動が中断されると、鋳造鋳型および固化ゾーンからの熱の持続的除去を可能にする比較的に高い熱伝導性を有する。この持続的熱除去は、鋳造中のインゴット/ビレットを冷却する働きをし、それによって、インゴット/ビレットの頭部(head)における残留熱に起因したいかなる追加的な「滲出」または「湯漏れ」の生じる可能性も低下させる。同時に、鋳型は、過剰加熱から保護され、それによって、鋳型への損傷の潜在的可能性を低下させる。比較として、ヘリウム、水、および、グリコールの熱伝導性は、He;0.1513W・m−1・K−1、HO;0.609W・m−1・K−1、および、エチレングリコール;0.258W・m−1・K−1である。
ヘリウムの熱伝導性および前述のガス混合物の熱伝導性は、これらのガスが、固化ゾーンまたはその近傍において、インゴットまたはビレット等の中間鋳造生成物に作用する場合には、水またはグリコールの熱伝導性よりも低いが、別様に表面熱伝達係数を減少させることによって冷却剤の有効熱伝導性を減少させ得る「スチームカーテン」が、産生されない。したがって、単一の不活性ガスまたはガス混合物は、それらの直接的な相対熱伝導性のみを考慮して最初に予測され得るものよりも、水またはグリコールにはるかに近い有効熱伝導性を呈する。
当業者に明白であるように、図2および図3は、鋳造金属のビレットまたは丸い断面の中間鋳造生成物が形成されるように描写するが、説明される装置および方法は、長方形インゴットあるいは他の形状または形態の鋳造にも等しく適用可能である。
1つの実施形態において、プラテン18/鋳造シリンダ15の移動、鋳型12への溶融金属供給入口、および、鋳型への水入口の各々は、コントローラ35によって制御される。溶融金属検出器10もまた、コントローラ35に接続される。コントローラ35は、非一時的有形媒体の形態として、機械可読プログラム命令を含む。1つの実施形態において、プログラム導入は、システム5(図1〜3)を参照する図4の方法に図示される。図4および方法100を参照すると、最初に、Al−Li溶融金属の「滲出」または「湯漏れ」が、溶融金属検出器10によって検出される(ブロック110)。溶融金属検出器10からコントローラ35への、Al−Li溶融金属の「滲出」または「湯漏れ」の信号に応答して、コントローラ35によって実行される機械可読命令は、プラテン18の移動および溶融金属入口供給(図示せず)を停止させ(ブロック120、130)、鋳型12内への冷却剤流動(図示せず)を停止および/または進路変更させ(ブロック140)、同時にまたは約15秒以内に、別の実施形態においては約10秒以内に、高容量排出システム19を起動させ、排出ポート20A、20A’、20B、20B’、20C、20C’を介して、排ガスを含む水蒸気および/または鋳造ピットからの水蒸気を排出通気口22に進路変更させる(ブロック150)。同時に、または、その直後(例えば、約10秒〜約30秒以内に)、コントローラ35によって実行される機械可読命令は、ガス導入システム24(図1)を起動させ、ヘリウム等の空気の密度未満の密度を有する不活性ガスが、ガス導入ポート26A、26A’、26B、26B’、26C、26C’を通して導入される(ブロック160)。補助ガス導入ポートが、鋳造鋳型(鋳造鋳型12、図1)に存在し、かつ、導管を通して不活性ガス源に接続される実施形態において、命令はまた、任意のアクセス弁(例えば、弁13、図1)を開放し、不活性ガスを鋳造鋳型に入れる命令を含む。同時に、または、その直後、1つの実施形態において、機械可読命令の実行は、弁66を作動させて開放し(図3)、不活性流体(例えば、ヘリウムガスまたは不活性ガスの混合物)を冷却剤送給部14に導入する(例えば、導管送給部52を通して不活性流体を鋳型12に導入するための弁66の作動)(ブロック170)。導入される不活性ガスは、続いて、排出システムを介して収集され、次いで、精製されてもよい。導入される不活性ガス(例えば、ガス導入システム24(図1)を通して導入される不活性ガス、および/または、不活性流体源64(図3)から冷却剤送給部14内に導入される不活性ガス)は、続いて、排ガスシステムを介して収集され、次いで、精製されてもよい(ブロック180)。滲出仲介(bleed out mediation)が持続しているとき、コントローラ35による機械可読命令の実行は、例えばポンプ32(図1)を制御することによって、不活性ガスの収集および精製をさらに制御する。
窒素もまた「不活性」ガスであるという一般的業界知識のため、アルミニウム−リチウム合金の溶融および鋳造を除いたアルミニウム合金の溶融および直接チル鋳造の当業者は、ヘリウムの代わりに、窒素ガスを使用したくなり得ることが、注記されるべきである。しかしながら、プロセスの安全性を維持する理由から、窒素が液体アルミニウム−リチウム合金と相互作用することになる場合、窒素は実際には不活性ガスではないと、本明細書では述べる。窒素は、合金と反応してアンモニアを産生し、そして、そのアンモニアは、水と反応し、危険な結果のさらなる反応をもたらし、ゆえに、窒素の使用は、完全に回避されるべきである。別のあり得る不活性ガスである二酸化炭素にも同じことが該当する。その使用は、溶融アルミニウムリチウム合金が二酸化炭素と接触する限られた機会が存在するいかなる適用においても回避されるべきである。
空気よりも軽い不活性ガスの使用を通して得られる有意な利益は、残留ガスが鋳造ピット内に沈降することによりピット自体に非安全環境をもたらすことがないということである。限られた空間に存在する空気ガスよりも重いことにより窒息由来の死をもたらす多数の事例が、存在する。鋳造ピット内の空気は、限られた空間の入口について監視されるが、いかなるプロセスガス関連問題も生成されないことが、予期される。
図5は、方法の別の実施形態を示す。図5および方法200を参照し、図1のDC鋳造システムを使用すると、最初に、溶融金属「滲出」または「湯漏れ」が、溶融金属検出器10によって検出される(ブロック210)。溶融金属検出器10とコントローラ35との間の、「滲出」または「湯漏れ」の信号に応答して、鋳型12内への冷却剤流動が減少させられ(ブロック240)、鋳型内への金属供給が停止させられ(ブロック230)、プラテン18の移動が減少させられる(ブロック220)。冷却剤流動の減少およびプラテン移動の減少に関して、そのような減少は、完全減少(停止または中断)であっても、部分的減少であってもよい。例えば、冷却剤流量率は、流量率ゼロよりも大きいが、現れるインゴット上に流動することにより金属の直接チル化および固化を提供するように選択された所定の流量率未満である率まで減少させられてもよい。1つの実施形態において、流量率は、「滲出」または「湯漏れ」に対処するために実装されたさらなる手段を所与として、容認可能に安全である率(例えば、数リットル/分以下)まで減少させられる。同様に、プラテン18も、容認可能に安全であるが、鋳造金属について所定の選択された率から減少させられた率で、鋳造ピット16を通して持続的に移動することができる。最後に、1つの実施形態において、冷却剤流動およびプラテン移動の減少は、両方とも、完全中止または完全中止よりも大きい率のいずれかまで減少させられるという意味では、関連している必要はない。言い換えると、1つの実施形態において、冷却剤流量率は、「滲出」の検出に続いて、停止または中断されてもよく(すなわち、流量率ゼロまで減少させられる)、プラテン移動は、中断または停止しそうであるが、中断または停止させられない率、すなわち、ゼロよりも大きい移動率まで減少させられてもよい。別の実施形態において、プラテン18の移動は、中断または停止させられる(すなわち、ゼロ率まで減少させられる)一方で、冷却剤流動率は、中断または停止しそうであるが、中断または停止させられない率、すなわち、ゼロよりも大きい流動率まで減少させられてもよい。さらに別の実施形態において、冷却剤流動およびプラテン18の移動は両方とも、中断または停止させられる。
別の実施形態において、「滲出」または「湯漏れ」の検出に応じて、図3の方法を実装する機械可読命令は、図4に関して前述された方法と同様に、鋳造ピット16からの排ガスおよび/または水蒸気の排気を命令し(ブロック250)、不活性ガスをピットに導入し(ブロック260)、不活性流体を冷却剤送給部に導入し(ブロック270)、随意に、ピットから除去された不活性ガスを収集および/または精製する(ブロック280)。
図1を参照して前述された鋳造システムでは、システム5は、「滲出」または「湯漏れ」を検出するように構成された溶融金属検出器10を含む。図4および図5を参照して説明される方法の実施形態は、溶融金属検出器10が「滲出」または「湯漏れ」を検出してその状態をコントローラ35に通信するように、溶融金属検出器10等の検出デバイスが、コントローラ(例えば、図1のシステム5におけるコントローラ35)と通信可能にリンクされる実施形態を含む。別の実施形態において、溶融金属検出器10または検出器10とコントローラ35との間のリンクの有無にかかわらず、「滲出」および「湯漏れ」が、検出されてもよい。方法の1つは、システム5を動作させるオペレータによって、「滲出」または「湯漏れ」を視覚的に観察することである。そのような事例では、オペレータが、コントローラ35と通信し、「滲出」または「湯漏れ」の影響を最小限にするための、コントローラ35による措置を実施してもよい(例えば、発生させられたガスを鋳造ピットから排出する、不活性ガスを鋳造ピットに導入する、金属の流動を停止する、冷却剤の流動を減少または停止させる、プラテンの移動を減少または停止させる等)。そのような通信は、例えば、コントローラ35と関連付けられたキーパッド上のキー(単数または複数)を押し下げることであってもよい。
本明細書に説明されるプロセスおよび装置は、エチレングリコールのようなハロゲン化液体を使用する鋳造等の異質なプロセス方法を利用せずに、商業プロセスが良好に動作させられることができるように、Al−Liの「滲出」または「湯漏れ」を適正に含むための独特の方法を提供し、その異質なプロセス方法は、プロセスを鋳造金属品質にとって最適ではないものにし、鋳造のためのプロセスの安定性を低下させ、同時に、プロセスを非経済的かつ燃焼可能性のあるものにする。インゴット鋳造のいずれの当業者も理解するように、いかなるDCプロセスにおいても「滲出」および「湯漏れ」が生じることが、言明されなければならない。その発生率は、概して、非常に低いが、機械的機器の通常動作中、適切な動作範囲外の何らかのことが生じると、プロセスは、予期されるようには行われない。説明される装置およびプロセスの実装ならびに本装置の使用は、死傷者および物的損害をもたらすAl−Li合金を鋳造している間の「滲出」または「湯漏れ」による水と溶融金属との水素爆発を最小限にする。
1つの実施形態において、説明されるような直接チル鋳造ピットを使用して製造されたAl−Li合金は、約0.1%〜約6%のリチウム、別の実施形態において、約0.1%〜約3%のリチウムを含む。1つの実施形態において、説明されるような装入装置を使用して製造されたAl−Li合金は、0.1%〜6.0%の範囲のリチウム、0.1%〜4.5%の範囲の銅、および、0.1%〜6%の範囲のマグネシウムとともに、少量の添加剤として銀、チタン、ジルコニウムと、バランスアルミニウム(balance aluminum)を伴う微量のアルカリおよびアルカリ土類金属とを含む。代表的Al−Li合金は、限定ではないが、Alloy 2090(銅2.7%、リチウム2.2%、銀0.4%、および、ジルコニウム0.12%)、Alloy 2091(銅2.1%、リチウム2.09%、および、ジルコニウム0.1%)、Alloy 8090(リチウム2.45%、ジルコニウム0.12%、銅1.3%、および、マグネシウム0.95%)、Alloy 2099(銅2.4〜3.0%、リチウム1.6〜2.0%、亜鉛0.4〜1.0%、マグネシウム0.1〜0。5%、マンガン0.1〜0.5%、ジルコニウム0.05〜0.12%、鉄最大0.07%、および、シリコン最大0.05%)、Alloy 2195(1%リチウム、4%銅、0.4%銀、および、0.4%マグネシウム)、および、Alloy 2199(亜鉛0.2〜0.9%、マグネシウム0.05〜0.40%、マンガン0.1〜0.5%、ジルコニウム0.05〜0.12%、鉄最大0.07%、および、シリコン最大0.07%)を含む。代表的Al−Li合金は、100,000ポンド/平方インチ(「psi」)の引張強度および80,000psiの降伏強度の要件を満たす特性を有するAl−Li合金である。
図6は、直接チル鋳造プロセスにおいて、ビレット、スラブ、インゴット、ブルーム、または、他の形態等の1つまたはそれよりも多くの中間鋳造生成物を形成するためのシステムの概略の側面図を表す。図6によると、システム300は、炉容器310を含む誘導炉305と、インダクタコイルが周りに位置する融液含有容器330とを含む。Al−Li合金を作製する1つの実施形態において、アルミニウムおよびリチウム、ならびに、所望の合金のための任意の他の金属の固体装入物が、炉容器310の下側部分および融液含有容器330に導入される。代表的に、アルミニウム金属が、導入され、リチウム金属の導入の前に、最初に溶融されてもよい。アルミニウム金属が溶融されると、リチウム金属が、導入される。他の金属も、アルミニウムの初期導入前またはアルミニウムとともに、あるいは、リチウム金属の前、後、または、リチウム金属とともに導入されてもよい。そのような金属は、装入装置を用いて導入されてもよい。金属は、誘導加熱(誘導コイルを介して)によって溶融され、溶融された金属は、例えば重力送りによって、導管を通して、第1のフィルタ315に輸送され、デガッサ320を通して、第2のフィルタ325および中間鋳造生成物形成ステーション340に輸送される。
システム300における誘導炉305は、融液含有容器330を囲繞する誘導コイルを含む。1つの実施形態において、融液含有容器330の外側表面と誘導コイルの内側表面との間に間隙が存在する。1つの実施形態において、不活性ガスが、間隙において循環させられる。図6における誘導炉305の表現は、代表的に円筒形の融液含有容器の周囲(例えば、容器の外側表面全体の周囲)を循環するガスを示す。図6は、システム300と関連付けられたガス循環サブシステムを示す。1つの実施形態において、不活性ガス(例えば、ヘリウム)等のガスが、ガス源355から、例えばステンレス鋼管を通して、供給される。種々の弁が、ガスの供給を制御する。ガスがガス源355から供給される場合、ガス源355に隣接する弁356が、開放され、そのままで、弁351が、送給ポート345にガスが導入されることを可能にし、弁352が、排出ポート346から循環サブシステムにガスが排出されることを可能にする。1つの実施形態において、ガスは、誘導炉305と関連付けられた送給ポート345に導入される。導入されたガスは、融液含有容器330と誘導コイルとの間の間隙において循環する。循環させられたガスは、次いで、排出ポート346を通して、誘導炉305から流出する。排出ポート346から、ガスが、インライン水素分析器358を通過させられる。水素分析器358は、ガス流中の水素の量(例えば、濃度)を測定する。その量が、例えば、体積あたり0.1%を超える場合、ガスは、通気口弁359を通して、大気に通気される。排出ポート346から循環させられたガスはまた、精製器360を通過させられる。精製器360は、水素および/または湿気を不活性ガスから除去するように動作可能であるかまたは構成される。湿気を除去するための精製器の例は、除湿器である。精製器360から、ガスは、熱交換器370に曝露される。熱交換器370は、熱をガスから除去し、ガス温度を、例えば、120°Fを下回るように調整するように構成される。代表的に、誘導コイルと融液含有容器との間の間隙を通した循環において、ガスは、熱を取り込み/保持し得るので、ガスの温度は、上昇する。熱交換器370は、ガスの温度を低下させ、1つの実施形態においては120°Fを下回り、1つの実施形態においてはほぼ室温である標的温度にそのような温度を戻すように構成される。1つの実施形態において、熱交換器370へのガスの曝露に加え、ガスは、ガスを冷却源375に曝露することによって、冷却されてもよい。このように、ガスの温度は、誘導炉305への流入/再流入の前に、有意に低下させられ得る。図6に示されるように、ガス循環サブシステム350は、送給ポート345の前に、温度モニタ380(例えば、熱電対)を含む。温度モニタ380は、送給ポート345内に送給されているガスの温度を測定するように動作可能である。ガス循環サブシステム350の説明された段階(例えば、水素分析器358、精製器360、熱交換器370、および、冷却源375)を通したガスの循環は、各説明された段階が接続される管、例えば、ステンレス鋼管を通してものであってもよい。加えて、説明される段階の順序は、変動してもよいことが認識される。
別の実施形態において、融液含有容器330と誘導コイルとの間の間隙を通して循環させられるガスは、大気である。そのような実施形態は、前述のように、反応性元素を含有しない合金と併用されてもよい。図6を参照すると、大気が間隙に導入されることになる場合、ガス循環サブシステム350は、汚染を回避するように隔離されてもよい。したがって、1つの実施形態において、弁351、352、356は、閉鎖される。送給ポート345への空気の導入を可能にするためには、空気送給弁353が、開放される。排出ポート346からの排出を可能にするためには、空気排出弁357が、開放される。空気送給弁353および空気排出弁357は、ガス循環サブシステム350が使用され、かつ、ガスがガス源355から供給されるときは、閉鎖される。空気送給弁353および空気排出弁357が開放されると、大気が、送風機358(例えば、供給ファン)によって、間隙に供給される。送風機358は、代表的に約12,000cfmの体積において、空気を(例えば、管類を通して)送給弁345に供給する空気流動を生成する。空気は、間隙を通して循環し、排出ポート346を通して大気に排出される。
前述のように、誘導炉305から、溶融された合金が、フィルタ315およびフィルタ325を通して流動する。各フィルタは、不純物を融液から濾過するように設計される。融液はまた、インラインデガッサ320を通過させられる。1つの実施形態において、デガッサ320は、望ましくないガス種(例えば、水素ガス)を融液から除去するように構成される。融液の濾過および脱ガスに続いて、融液は、中間鋳造生成物形成ステーション340に導入され、1つまたはそれよりも多くの中間鋳造生成物(例えば、ビレット、スラブ)が、例えば直接チル鋳造プロセスにおいて、形成されてもよい。中間鋳造生成物形成ステーション340は、1つの実施形態において、図1および付随するテキストにおけるシステム5と同様に、直接チル鋳造システムを含む。そのようなシステムは、代表的に、限定ではないが、滲出または湯漏れを検出するように動作可能な溶融金属検出器と、発火源および反応物を含む発生させられたガスを鋳造ピットから除去するように動作可能な排出システムと、不活性ガスを鋳造ピットに提供するように動作可能な不活性ガス源を含むガス導入システムと、空気を鋳造ピットに導入するように動作可能な空気導入ポートと、鋳造ピットから流出する不活性ガスを収集し(例えば、排出システムを通して)、成分(例えば、スチーム)を不活性ガスから除去するように動作可能な収集システムと、収集された不活性ガスを再循環させるための再循環システムとを含む。
前述のシステムは、コントローラによって制御されてもよい。1つの実施形態において、コントローラ390は、システム300の動作を制御するように構成される。したがって、誘導炉305、第1のフィルタ315、デガッサ320、第2のフィルタ325、および、中間鋳造生成物形成ステーション340等の種々のユニットは、ワイヤを通して、または、ワイヤレスのいずれかで、コントローラ390に電気的に接続される。1つの実施形態において、コントローラ390は、非一時的媒体の形態として、機械可読プログラム命令を含む。1つの実施形態において、プログラム命令は、誘導炉305における装入物を溶融し、融液を中間鋳造生成物形成ステーション340に送達する方法を行う。装入物の溶融に関して、プログラム命令は、例えば、融液を撹拌し、誘導コイルを動作させ、誘導コイルと融液含有容器330との間の間隙を通してガスを循環させるための命令を含む。ある実施形態において、装入装置が、撹拌手段または混合手段を含む場合、そのようなプログラム命令は、融液を撹拌または掻き混ぜるための命令を含む。中間鋳造生成物形成ステーション340への融液の送達に関して、そのような命令は、誘導炉305からフィラ(filler)およびデガッサを通して融液の流動を確立するための命令を含む。中間鋳造生成物形成ステーション340では、命令は、1つまたはそれよりも多くのビレットまたはスラブの形成を命令する。1つまたはそれよりも多くのビレットの形成に関して、プログラム命令は、例えば、1つまたはそれよりも多くの鋳造シリンダ395を降下させ、冷却剤397を噴霧し、金属合金鋳造物を固化させるための命令を含む。
1つの実施形態において、コントローラ390はまた、システムを調整および監視する。そのような調整および監視は、信号をコントローラ390に送信するか、または、コントローラ390によってクエリされるかのいずれかである、システム全体を通したいくつかのセンサによって達成されてもよい。例えば、誘導炉305を参照すると、そのようなモニタは、融液含有容器330および/または上側炉容器310と関連付けられた1つまたはそれよりも多くの温度ゲージ/熱電対を含んでもよい。他のモニタは、融液含有容器330と誘導コイルの内側表面との間の間隙に導入されるガス(例えば、不活性ガス)の温度を提供するガス循環サブシステム350と関連付けられた温度モニタ380を含む。循環ガスの温度を監視することによって、融液含有容器330と関連付けられた凍結平面(freeze plane)は、所望の位置に維持され得る。1つの実施形態において、融液含有容器の外部表面の温度もまた、融液含有容器330の外部表面に隣接して熱電対(熱電対344)を設置することによって、コントローラ390によって測定および監視されてもよい。ガス循環サブシステム350と関連付けられた別のモニタは、水素分析器358と関連付けられる。水素分析器358がガス中に過剰量の水素を検出すると、信号が、コントローラ390に送信されるか、または、そのコントローラによって検出され、コントローラ390は、通気口弁359を開放する。1つの実施形態において、コントローラ390はまた、例えば、コントローラ390が弁を開放する程度によって制御されるガスの流量率を用いて、ガスがガス源355から供給される(弁の各々が、開放される)とき、ガス循環サブシステム350と関連付けられた弁351、352、356の開閉を制御し、周囲空気が送風機358から供給されるとき、弁の各々は、閉鎖され、空気送給弁353および空気排出弁357が、開放される。1つの実施形態において、空気が間隙を通して循環させられる場合、コントローラ390は、送風機358の速度および/または送給弁353が開放される量を調整し、例えば融液含有容器330の外部に隣接する熱電対344からの温度測定に基づいて、融液含有容器330の外部表面の温度を調整してもよい。さらなるモニタは、例えば、誘導炉305と関連付けられた滲出検出サブシステムと関連付けられたプローブを含む。全体的システム300に関して、さらなるモニタが提供され、例えば、溶融金属の滲出または湯漏れについて、システムを監視してもよい。中間鋳造生成物形成ステーション340における滲出または湯漏れの監視および制御に関して、1つの実施形態において、コントローラ390は、少なくとも、鋳造鋳型への冷却剤の流動、鋳造ピットにおけるプラテンの移動、排出システム、ガス(例えば、不活性ガス)導入システム、および、再循環システムを監視および/または制御する。
前述のシステムは、限定されないが、自動車、スポーツ、航空機、および、航空宇宙産業を含む種々の産業において使用され得るビレットまたはスラブ、あるいは、他の中間鋳造生成物形態を形成するために使用されてもよい。図示されるシステムは、直接チル鋳造プロセスによって、ビレットまたはスラブを形成するためのシステムを示す。スラブ、あるいは、丸形または長方形以外も、代替として、類似システムにおいて形成されてもよい。形成されたビレットは、例えば、航空機、自動車、または、押出成形された金属部品を利用する任意の産業のための所望の構成要素を押出成形または鍛造するために使用されてもよい。同様に、スラブまたは他の形態の鋳造物は、圧延または鍛造等によって、自動車、航空機、または、航空宇宙産業のための構成要素等の構成要素を形成するために使用されてもよい。
前述のシステムは、1つの誘導炉送給中間鋳造生成物形成ステーション340を図示する。別の実施形態において、システムは、複数の誘導炉と、代表的に、複数の源ガス、複数のフィルタ、および、デガッサを含む複数のガス循環サブシステムを含んでもよい。
上に述べたように、Al−Li合金の直接チル鋳造における爆発の潜在的可能性を最小限にするために、商業上有用な方法および装置が説明された。Al−Li合金に関して説明されたが、この方法および装置は、他の金属および合金の鋳造において使用されることもできることが、理解される。
上記で開示されたもののうちのいくつか、または、他の特徴および機能、あるいは、その代替または変形例が、望ましくは、多くの他の異なるシステムまたは適用に組み合わせられてもよいことが、理解される。さらに、本明細書における種々の代替、修正、変形例、または、改良が、その後、当業者によって行われてもよく、これらはまた、下記の特許請求の範囲によって包含されることが意図される。
好ましい実施形態において、本発明は、下記の項目を提供する。
(項目1)
システムであって、前記システムは、
融液含有容器を備える少なくとも1つの炉と、
前記少なくとも1つの炉に結合され、前記少なくとも1つの炉から溶融金属を受け取るように動作可能である中間鋳造生成物ステーションであって、前記中間鋳造生成物ステーションは、
鋳造ピットと、
本体を備える鋳造鋳型であって、前記本体は、前記本体を通る空洞を有する、鋳造鋳型と、
前記鋳造鋳型と関連付けられた冷却剤送給部と、
前記鋳造ピットに配置された少なくとも1つの移動可能プラテンと、
前記鋳造ピットの少なくとも上部周縁の周囲の排出ポートのアレイと、
前記鋳造ピットの少なくとも前記上部周縁の周囲のガス導入ポートのアレイと
を備える、中間鋳造生成物ステーションと、
前記冷却剤送給部への冷却剤または不活性流体の選択的流入を可能にする弁システムと、
不活性ガスを前記ガス導入ポートのアレイに供給するように動作可能な不活性ガス源と
を備える、システム。
(項目2)
前記少なくとも1つの炉と前記融液含有容器との間に配置された少なくとも1つのフィルタをさらに備える、項目1に記載のシステム。
(項目3)
前記鋳造鋳型の前記本体は、前記冷却剤送給部と流体連通しているリザーバを備える、項目1に記載のシステム。
(項目4)
前記排出ポートのアレイは、前記鋳造ピットの中間部分の周縁、または、前記鋳造ピットの底部部分の周縁のうちの少なくとも一方の周囲の排出ポートのアレイをさらに備える、項目1に記載のシステム。
(項目5)
前記不活性ガス導入ポートのアレイは、前記鋳造ピットの中間部分、または、前記鋳造ピットの底部部分のうちの少なくとも一方の周囲の不活性ガス導入ポートのアレイをさらに備える、項目1に記載のシステム。
(項目6)
前記ガス導入ポートのアレイは、前記鋳造ピットの中間部分の周囲にあり、かつ、前記鋳造ピットの底部部分の周囲にある、項目5に記載のシステム。
(項目7)
前記ガス導入ポートのアレイは、前記鋳造鋳型におけるポートを含む、項目1に記載のシステム。
(項目8)
前記システムは、
前記滲出の発生を検出するための機構と、
前記滲出の検出に応じて、冷却剤の流動を修正するための機構と、
前記滲出の検出に応じて、前記プラテンの下向き移動を修正するための機構と
をさらに備える、項目1に記載のシステム。
(項目9)
前記鋳造ピットから流出する不活性ガスを収集し、前記収集された不活性ガスから水蒸気を除去し、かつ、前記不活性ガスを前記鋳造ピットに再循環させるための機構をさらに備える、項目1に記載のシステム。
(項目10)
前記排出ポートのアレイは、
前記鋳型の約0.3〜約0.5メートル下方に位置する第1のアレイと、
前記鋳型から約1.5〜約2.0メートルに位置する第2のアレイと、
前記鋳造ピットの底部に位置する第3のアレイと
を備える、項目1に記載のシステム。
(項目11)
前記システムは、
前記鋳造ピットから前記排出ポートを通して、発生させられたガスを持続的に除去するための機構と、
前記鋳造ピットの前記上部部分から水蒸気および任意の他のガスを吸引し、そのような混合物から水を持続的に除去し、かつ、滲出が検出されない場合には前記鋳造ピットの前記上部部分に任意の他のガスを再循環させるが、滲出が検出される場合には前記上側エリアから水蒸気および他のガスを完全に排出するための機構と
をさらに備える、項目1に記載のシステム。
(項目12)
前記不活性流体は、ヘリウムガスである、項目1に記載のシステム。
(項目13)
前記不活性流体は、ヘリウムガスおよびアルゴンガスの混合物である、項目1に記載のシステム。
(項目14)
前記不活性流体は、ヘリウムガスおよびアルゴンガスの混合物であり、前記混合物は、ヘリウムガスを少なくとも約20%含む、項目1に記載のシステム。
(項目15)
前記不活性流体は、ヘリウムガスおよびアルゴンガスの混合物であり、前記混合物は、ヘリウムガスを少なくとも約60%含む、項目1に記載のシステム。
(項目16)
項目1に記載のシステムを使用して作製されたリチウム−アルミニウム合金を含む中間鋳造生成物。
(項目17)
前記合金は、リチウムを約0.1%〜6%含む、項目16に記載の中間鋳造生成物。
(項目18)
前記合金は、100,000ポンド/平方インチ(「psi」)の引張強度、および、80,000psiの降伏強度の要件を満たす特性を備える、項目16に記載の中間鋳造生成物。
(項目19)
項目1に記載のシステムを使用して作製されたリチウム−アルミニウム合金を含む押出成形された生成物。
(項目20)
項目1に記載のシステムを使用して作製されたリチウム−アルミニウム合金を含む生成物であって、前記生成物は、航空機または自動車のための構成要素である、生成物。
(項目21)
溶融金属検出器を備えるシステムで生産されたアルミニウム−リチウム合金であって、前記溶融金属検出器は、直接チル鋳造と関連付けられた滲出または湯漏れを検出するように動作可能であり、そのような検出に応じて、(1)鋳造鋳型内への液体冷却剤の流動を減少させ、かつ、(2)不活性ガスを前記鋳造ピットに導入するように動作可能である、アルミニウム−リチウム合金。
(項目22)
前記鋳造鋳型内への前記液体冷却剤の流動の減少は、流量率ゼロまでの減少を含む、項目21に記載のアルミニウム−リチウム合金。
(項目23)
前記滲出または湯漏れの検出に応じて、前記システムは、前記鋳造鋳型と関連付けられた鋳造ピットにおけるプラテンの任意の移動を減少させるようにさらに動作可能である、項目21に記載のアルミニウム−リチウム合金。
(項目24)
前記滲出または湯漏れの検出に応じて、前記システムは、不活性ガスを前記鋳造鋳型に導入するように動作可能である、項目21に記載のアルミニウム−リチウム合金。
(項目25)
前記不活性ガスは、不活性ガスの混合物である、項目21に記載のアルミニウム−リチウム合金。

Claims (23)

  1. システムであって、前記システムは、
    融液含有容器を備える少なくとも1つの炉と、
    前記少なくとも1つの炉に結合され、前記少なくとも1つの炉から溶融金属を受け取るように動作可能である中間鋳造生成物ステーションであって、前記中間鋳造生成物ステーションは、
    鋳造ピットと、
    本体を備える鋳造鋳型であって、前記本体は、前記本体を通る空洞を有し、リザーバを画定する、鋳造鋳型と、
    前記鋳造鋳型と関連付けられ、前記リザーバと流体連通している冷却剤送給部と、
    前記鋳造ピットに配置された少なくとも1つの移動可能プラテンと、
    前記鋳造ピットの少なくとも上部周縁の周囲の排出ポートのアレイと、
    前記鋳造ピットの少なくとも前記上部周縁の周囲のガス導入ポートのアレイと
    を備える、中間鋳造生成物ステーションと、
    前記冷却剤送給部への冷却剤または不活性流体の選択的流入を可能にする弁システムと、
    不活性ガスを前記ガス導入ポートのアレイに供給するように動作可能な不活性ガス源と、
    前記鋳造ピットから流出する不活性ガスを収集し、前記収集された不活性ガスから水蒸気を除去し、かつ、前記不活性ガスを前記鋳造ピットに再循環させるための機構と
    を備える、システム。
  2. 前記少なくとも1つの炉と前記融液含有容器との間に配置された少なくとも1つのフィルタをさらに備える、請求項1に記載のシステム。
  3. 前記排出ポートのアレイは、前記鋳造ピットの中間部分の周縁、または、前記鋳造ピットの底部部分の周縁のうちの少なくとも一方の周囲の排出ポートのアレイをさらに備える、請求項1に記載のシステム。
  4. 前記不活性ガス導入ポートのアレイは、前記鋳造ピットの中間部分、または、前記鋳造ピットの底部部分のうちの少なくとも一方の周囲の不活性ガス導入ポートのアレイをさらに備える、請求項1に記載のシステム。
  5. 前記ガス導入ポートのアレイは、前記鋳造ピットの中間部分の周囲にあり、かつ、前記鋳造ピットの底部部分の周囲にある、請求項4に記載のシステム。
  6. 前記ガス導入ポートのアレイは、前記鋳造鋳型におけるポートを含む、請求項1に記載のシステム。
  7. 前記システムは、
    前記滲出の発生を検出するための機構と、
    前記滲出の検出に応じて、冷却剤の流動を修正するための機構と、
    前記滲出の検出に応じて、前記プラテンの下向き移動を修正するための機構と
    をさらに備える、請求項1に記載のシステム。
  8. 前記排出ポートのアレイは、
    前記鋳型の約0.3〜約0.5メートル下方に位置する第1のアレイと、
    前記鋳型から約1.5〜約2.0メートルに位置する第2のアレイと、
    前記鋳造ピットの底部に位置する第3のアレイと
    を備える、請求項1に記載のシステム。
  9. 前記システムは、
    前記鋳造ピットから前記排出ポートを通して、発生させられたガスを持続的に除去するための機構と、
    前記鋳造ピットの前記上部部分から水蒸気および任意の他のガスを吸引し、そのような混合物から水を持続的に除去し、かつ、滲出が検出されない場合には前記鋳造ピットの前記上部部分に任意の他のガスを再循環させるが、滲出が検出される場合には前記上側エリアから水蒸気および他のガスを完全に排出するための機構と
    をさらに備える、請求項1に記載のシステム。
  10. 前記不活性流体は、ヘリウムガスである、請求項1に記載のシステム。
  11. 前記不活性流体は、ヘリウムガスおよびアルゴンガスの混合物である、請求項1に記載のシステム。
  12. 前記不活性流体は、ヘリウムガスおよびアルゴンガスの混合物であり、前記混合物は、ヘリウムガスを少なくとも約20%含む、請求項1に記載のシステム。
  13. 前記不活性流体は、ヘリウムガスおよびアルゴンガスの混合物であり、前記混合物は、ヘリウムガスを少なくとも約60%含む、請求項1に記載のシステム。
  14. 請求項1に記載のシステムを使用して作製されたリチウム−アルミニウム合金を含む中間鋳造生成物。
  15. 前記合金は、約0.1%〜6%のリチウムを含む、請求項14に記載の中間鋳造生成物。
  16. 前記合金は、100,000ポンド/平方インチ(「psi」)(6895バール)の引張強度、および、80,000psi(5516バール)の降伏強度の要件を満たす特性を備える、請求項14に記載の中間鋳造生成物。
  17. 請求項1に記載のシステムを使用して作製されたリチウム−アルミニウム合金を含む押出成形された生成物。
  18. 請求項1に記載のシステムを使用して作製されたリチウム−アルミニウム合金を含む生成物であって、前記生成物は、航空機または自動車のための構成要素である、生成物。
  19. 前記システムは、溶融金属検出器を備え、前記溶融金属検出器は、直接チル鋳造と関連付けられた滲出または湯漏れを検出するように動作可能であって、そのような検出に応じて、(1)鋳造鋳型内への液体冷却剤の流動を減少させ、かつ、(2)不活性ガスを前記鋳造ピットに導入するように動作可能である、請求項1に記載のシステムにおいて生産されるアルミニウム−リチウム合金。
  20. 前記鋳造鋳型内への前記液体冷却剤の流動の減少は、流量率ゼロまでの減少を含む、請求項19に記載のアルミニウム−リチウム合金。
  21. 前記滲出または湯漏れの検出に応じて、前記システムは、前記鋳造鋳型と関連付けられた鋳造ピットにおけるプラテンの任意の移動を減少させるようにさらに動作可能である、請求項19に記載のアルミニウム−リチウム合金。
  22. 前記滲出または湯漏れの検出に応じて、前記システムは、不活性ガスを前記鋳造鋳型に導入するように動作可能である、請求項19に記載のアルミニウム−リチウム合金。
  23. 前記不活性ガスは、不活性ガスの混合物である、請求項19に記載のアルミニウム−リチウム合金。
JP2015556239A 2013-02-04 2014-02-04 直接チル鋳造のためのプロセスおよび装置 Active JP6462590B2 (ja)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US201361760323P 2013-02-04 2013-02-04
US61/760,323 2013-02-04
PCT/US2013/041457 WO2013173649A2 (en) 2012-05-17 2013-05-16 Process and apparatus for minimizing the potential for explosions in the direct chill casting of aluminum lithium alloys
USPCT/US2013/041457 2013-05-16
USPCT/US2013/041464 2013-05-16
PCT/US2013/041464 WO2013173655A2 (en) 2012-05-17 2013-05-16 Apparatus for casting aluminum lithium alloys
USPCT/US2013/041459 2013-05-16
PCT/US2013/041459 WO2013173651A2 (en) 2012-05-17 2013-05-16 Process and apparatus for direct chill casting
US201361908065P 2013-11-23 2013-11-23
US61/908,065 2013-11-23
PCT/US2014/014737 WO2014121297A1 (en) 2013-02-04 2014-02-04 Process and apparatus for direct chill casting

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018131449A Division JP6668422B2 (ja) 2013-02-04 2018-07-11 直接チル鋳造のためのプロセスおよび装置

Publications (3)

Publication Number Publication Date
JP2016513017A true JP2016513017A (ja) 2016-05-12
JP2016513017A5 JP2016513017A5 (ja) 2017-03-09
JP6462590B2 JP6462590B2 (ja) 2019-01-30

Family

ID=51263059

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015556239A Active JP6462590B2 (ja) 2013-02-04 2014-02-04 直接チル鋳造のためのプロセスおよび装置
JP2018131449A Active JP6668422B2 (ja) 2013-02-04 2018-07-11 直接チル鋳造のためのプロセスおよび装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018131449A Active JP6668422B2 (ja) 2013-02-04 2018-07-11 直接チル鋳造のためのプロセスおよび装置

Country Status (9)

Country Link
US (4) US9616493B2 (ja)
EP (3) EP2950946B1 (ja)
JP (2) JP6462590B2 (ja)
KR (2) KR102226773B1 (ja)
CN (2) CN104520030B (ja)
BR (1) BR112014028383A2 (ja)
IN (1) IN2014DN10497A (ja)
RU (2) RU2675127C2 (ja)
WO (2) WO2014121295A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8365808B1 (en) 2012-05-17 2013-02-05 Almex USA, Inc. Process and apparatus for minimizing the potential for explosions in the direct chill casting of aluminum lithium alloys
IN2014DN10497A (ja) 2013-02-04 2015-08-21 Almex Usa Inc
US9936541B2 (en) * 2013-11-23 2018-04-03 Almex USA, Inc. Alloy melting and holding furnace
US11272584B2 (en) 2015-02-18 2022-03-08 Inductotherm Corp. Electric induction melting and holding furnaces for reactive metals and alloys
CN105642852A (zh) * 2016-01-26 2016-06-08 东北大学 一种高活性合金气冷半连续铸造系统及方法
CN107721398B (zh) * 2017-11-25 2022-08-05 郑州远东耐火材料有限公司 电熔砖浇铸保温箱定位装置
NO345211B1 (en) * 2018-09-10 2020-11-09 Norsk Hydro As Method to determining a presence or absence of water in a DC casting starter block and DC casting equipment
CN109513909B (zh) * 2018-11-07 2020-06-09 宁波市特种设备检验研究院 一种防止蒸汽爆炸的铸造铝制品冷却方法
FR3101793B1 (fr) * 2019-10-11 2021-12-24 Safran Aircraft Engines Installation et procédé d’obtention d’un produit à partir d’une composition fondue
WO2022051216A1 (en) * 2020-09-02 2022-03-10 Wagstaff, Inc. System, apparatus, and method for direct chill casting venting

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413421A (en) * 1977-06-24 1979-01-31 Showa Denko Kk Controlling method of semiicontinuous casting of metal
JPS62176642A (ja) * 1983-11-10 1987-08-03 アルミニウム カンパニ− オブ アメリカ 防火連続鋳造方法
JPH0191947A (ja) * 1987-10-02 1989-04-11 Nippon Light Metal Co Ltd 中空ビレット鋳造方法
JPH01233050A (ja) * 1988-03-11 1989-09-18 Sumitomo Light Metal Ind Ltd Al−Li合金の連続鋳造法
JPH04313455A (ja) * 1991-01-28 1992-11-05 Aluminum Co Of America <Alcoa> 連続鋳造における冷却水の伝熱制御方法及び制御装置
JPH06297100A (ja) * 1993-04-16 1994-10-25 Arishiumu:Kk 金属の竪型連続鋳造方法及びその装置

Family Cites Families (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2286481A (en) 1940-07-05 1942-06-16 Norton Co Induction furnace
US2863558A (en) 1957-04-29 1958-12-09 Aluminum Co Of America Filtering molten aluminous metal
US3006473A (en) 1958-11-03 1961-10-31 Aluminum Co Of America Filtering of molten aluminum
US3235089A (en) 1960-06-30 1966-02-15 Star Porcelain Company Composite adsorbent filter body
US3281238A (en) 1963-11-13 1966-10-25 Aluminum Co Of America Treatment of molten aluminous metal
US4188884A (en) 1964-07-27 1980-02-19 The United States Of America As Represented By The Secretary Of The Navy Water reactive underwater warhead
US3320348A (en) 1964-08-07 1967-05-16 V & V Companies Inc Induction melting furnace
US3335212A (en) 1964-08-27 1967-08-08 Alco Standard Corp Induction melting furnace
CH451416A (de) 1965-07-24 1968-05-15 Vaw Ver Aluminium Werke Ag Verfahren zur Zuführung des Schmiermittels beim vollkontinuierlichen Giessen von Metallen in stationären Kokillen
US3524548A (en) 1968-09-16 1970-08-18 Kaiser Aluminium Chem Corp Filter medium for molten metal
US3800856A (en) 1971-06-24 1974-04-02 Jones & Laughlin Steel Corp Apparatus for cooling of vacuum-cast ingots
US3895937A (en) 1971-07-16 1975-07-22 Ardal Og Sunndal Verk Dynamic vacuum treatment to produce aluminum alloys
BE788995A (fr) 1971-09-20 1973-01-15 Voest Ag Dispositif servant a faciliter l'ecoulement de la coulee dans les installations de coulage en continu
US3947363A (en) 1974-01-02 1976-03-30 Swiss Aluminium Limited Ceramic foam filter
US4113241A (en) 1977-09-22 1978-09-12 Swiss Aluminium Ltd. Apparatus for the filtration of molten metal in a crucible type furnace
NO790471L (no) 1978-02-18 1979-08-21 British Aluminium Co Ltd Stoepemetaller.
US4166495A (en) * 1978-03-13 1979-09-04 Aluminum Company Of America Ingot casting method
DE2818495B1 (de) 1978-04-27 1979-10-04 Hans Horst Schmelz Und Giesste Verfahren zum Schmelzen von Aluminium oder Aluminiumlegierungen in einem Induktionsrinnenschmelzofen
US4214624A (en) 1978-10-26 1980-07-29 Kaiser Aluminum & Chemical Corporation Method of and mold for DC casting
US4237961A (en) 1978-11-13 1980-12-09 Kaiser Aluminum & Chemical Corporation Direct chill casting method with coolant removal
US4248630A (en) 1979-09-07 1981-02-03 The United States Of America As Represented By The Secretary Of The Navy Method of adding alloy additions in melting aluminum base alloys for ingot casting
GB2096032A (en) 1981-04-07 1982-10-13 Mitsubishi Steel Mfg Continuously casting lead-containing steel
US4597432A (en) 1981-04-29 1986-07-01 Wagstaff Engineering, Inc. Molding device
WO1983002911A1 (en) 1982-02-24 1983-09-01 Yaji, Motoyasu Method of controlling continuous casting facility
EP0090583B2 (en) 1982-03-31 1992-02-05 Alcan International Limited Heat treatment of aluminium alloys
US4395333A (en) 1982-04-14 1983-07-26 Groteke Daniel E Pre-wet and reinforced molten metal filter
DE3222162C2 (de) 1982-06-10 1985-07-11 Schweizerische Aluminium Ag, Chippis Filter zur Filtration von schmelzflüssigen Metallen
US4444377A (en) 1982-07-14 1984-04-24 Daniel E. Groteke Molten metal transfer crucible
GB2129345B (en) 1982-10-15 1986-03-12 Alcan Int Ltd Continuous casting of aluminium alloy
US4598763A (en) 1982-10-20 1986-07-08 Wagstaff Engineering, Inc. Direct chill metal casting apparatus and technique
US4501317A (en) 1982-11-03 1985-02-26 Olin Corporation Casting system having lubricated casting nozzles
US4427185A (en) 1982-11-26 1984-01-24 Atlantic Richfield Company Method and apparatus for gaseous cleaning of aluminum
US4527609A (en) 1983-05-06 1985-07-09 Voest-Alpine International Corporation Continuous casting plant for continuously casting a metal melt
US4593745A (en) * 1983-11-10 1986-06-10 Aluminum Company Of America Fire retardant continuous casting process
US4610295A (en) 1983-11-10 1986-09-09 Aluminum Company Of America Direct chill casting of aluminum-lithium alloys
US4724887A (en) 1983-11-10 1988-02-16 Aluminum Company Of America Direct chill casting of lithium-containing alloys
EP0229211A1 (en) 1984-10-09 1987-07-22 Aluminum Company Of America Fire retardant continuous casting process
EP0142341B1 (en) 1983-11-10 1988-07-13 Aluminum Company Of America Continuous casting
US4709740A (en) 1983-11-10 1987-12-01 Aluminum Company Of America Direct chill casting of aluminum-lithium alloys
GB8400426D0 (en) * 1984-01-09 1984-02-08 Alcan Int Ltd Casting metals
US4581295A (en) 1984-03-13 1986-04-08 Aluminum Company Of America Refractory assembly for containment of molten Al-Li alloys
US4556535A (en) 1984-07-23 1985-12-03 Aluminum Company Of America Production of aluminum-lithium alloy by continuous addition of lithium to molten aluminum stream
US4567936A (en) 1984-08-20 1986-02-04 Kaiser Aluminum & Chemical Corporation Composite ingot casting
US4964993A (en) 1984-10-16 1990-10-23 Stemcor Corporation Multiple-use molten metal filters
CA1226416A (en) 1984-11-30 1987-09-08 Neil B. Bryson Device for collecting molten metal break-outs in casting of light metals
US4628985A (en) 1984-12-06 1986-12-16 Aluminum Company Of America Lithium alloy casting
US4607679A (en) 1984-12-06 1986-08-26 Aluminum Company Of America Providing oligomer moisture barrier in direct chill casting of aluminum-lithium alloy
US4709747A (en) 1985-09-11 1987-12-01 Aluminum Company Of America Process and apparatus for reducing macrosegregation adjacent to a longitudinal centerline of a solidified body
GB8524400D0 (en) 1985-10-03 1985-11-06 Foseco Int Filtration of aluminium-lithium alloys
US4640497A (en) 1985-10-25 1987-02-03 Swiss Aluminium Ltd. Filtration apparatus
US4832910A (en) 1985-12-23 1989-05-23 Aluminum Company Of America Aluminum-lithium alloys
US5177035A (en) 1986-06-27 1993-01-05 The Carborundum Company Molten metal filter and method for making same
US5185297A (en) 1986-09-16 1993-02-09 Lanxide Technology Company, Lp Ceramic foams
US4808558A (en) 1987-08-26 1989-02-28 Lanxide Technology Company, Lp Ceramic foams
US4770697A (en) 1986-10-30 1988-09-13 Air Products And Chemicals, Inc. Blanketing atmosphere for molten aluminum-lithium alloys or pure lithium
FR2607739B1 (fr) 1986-12-03 1989-04-14 Cegedur Procede et dispositif de coulee dans une fosse, sans risque d'explosion, de l'aluminium et de ses alliages, notamment avec le lithium
US4769158A (en) 1986-12-08 1988-09-06 Aluminum Company Of America Molten metal filtration system using continuous media filter
GB8702837D0 (en) 1987-02-09 1987-03-18 Alcan Int Ltd Casting al-li alloys
US4809866A (en) 1987-05-18 1989-03-07 Burt Equipment Co., Inc. Spill-containment device
GB8713449D0 (en) 1987-06-09 1987-07-15 Alcan Int Ltd Aluminium alloy composites
US4761266A (en) * 1987-06-22 1988-08-02 Kaiser Aluminum & Chemical Corporation Controlled addition of lithium to molten aluminum
FR2623113B1 (fr) 1987-11-13 1990-02-09 Pechiney Aluminium Dispositif de coulee en charge a grand nombre de lingotieres de billettes metalliques de diametres multiples
US4773470A (en) 1987-11-19 1988-09-27 Aluminum Company Of America Casting aluminum alloys with a mold header comprising delaminated vermiculite
JPH01233051A (ja) 1988-03-11 1989-09-18 Sumitomo Light Metal Ind Ltd Al−Li合金の連続鋳造法
US5052469A (en) 1988-09-20 1991-10-01 Showa Denko Kabushiki Kaisha Method for continuous casting of a hollow metallic ingot and apparatus therefor
JP2707288B2 (ja) 1988-09-24 1998-01-28 昭和電工株式会社 アルミニウム−リチウム系合金の連続鋳造方法
EP0364097A1 (en) 1988-09-26 1990-04-18 Alcan International Limited Process for producing composite ceramic articles
US5388518A (en) 1988-11-10 1995-02-14 Composite Materials Technology, Inc. Propellant formulation and process
US4947925A (en) 1989-02-24 1990-08-14 Wagstaff Engineering, Inc. Means and technique for forming the cavity of an open-ended mold
US5085830A (en) 1989-03-24 1992-02-04 Comalco Aluminum Limited Process for making aluminum-lithium alloys of high toughness
US4987950A (en) * 1989-06-14 1991-01-29 Aluminum Company Of America Method and apparatus for controlling the heat transfer of liquid coolant in continuous casting
US5032171A (en) 1989-12-14 1991-07-16 Aluminum Company Of America Aluminum scrap recovery by inductively moving molten metal
US5176197A (en) 1990-03-30 1993-01-05 Nippon Steel Corporation Continuous caster mold and continuous casting process
GB9013199D0 (en) * 1990-06-13 1990-08-01 Alcan Int Ltd Apparatus and process for direct chill casting of metal ingots
US5028570A (en) 1990-06-15 1991-07-02 Dresser Industries, Inc. Silicon nitride bonded magnesia refractory and method
KR920006111B1 (ko) 1990-06-16 1992-07-27 한국과학기술연구원 대기용해에 의한 알루미늄-리튬합금의 제조방법
US5167918A (en) 1990-07-23 1992-12-01 Agency For Defence Development Manufacturing method for aluminum-lithium alloy
US5212343A (en) 1990-08-27 1993-05-18 Martin Marietta Corporation Water reactive method with delayed explosion
EP0498296B2 (de) * 1991-02-06 2000-12-06 Concast Standard Ag Kokille zum Stranggiessen von Metallen, insbesondere von Stahl
JPH0557400A (ja) 1991-05-15 1993-03-09 Sumitomo Light Metal Ind Ltd アルミニウムの連続鋳造法及びその装置
RU2048568C1 (ru) 1993-02-05 1995-11-20 Комаров Сергей Борисович Способ получения алюминиево-литиевых сплавов
US5415220A (en) 1993-03-22 1995-05-16 Reynolds Metals Company Direct chill casting of aluminum-lithium alloys under salt cover
DE4328045C2 (de) 1993-08-20 2001-02-08 Ald Vacuum Techn Ag Verfahren zum Entkohlen von kohlenstoffhaltigen Metallschmelzen
JP3035688B2 (ja) * 1993-12-24 2000-04-24 トピー工業株式会社 連続鋳造におけるブレークアウト予知システム
US5427602A (en) 1994-08-08 1995-06-27 Aluminum Company Of America Removal of suspended particles from molten metal
EP0726114A3 (en) 1995-02-10 1997-09-10 Reynolds Metals Co Method and device for reducing the uptake of moisture and hydrogen from hygroscopic molten salts during the casting of ingots of Al-Li alloys
JP3197780B2 (ja) 1995-03-28 2001-08-13 株式会社アリシウム アルミニウム−リチウム合金用耐火材
AUPN633295A0 (en) 1995-11-02 1995-11-23 Comalco Aluminium Limited Bleed out detector for direct chill casting
US5846481A (en) 1996-02-14 1998-12-08 Tilak; Ravindra V. Molten aluminum refining apparatus
US5845481A (en) 1997-01-24 1998-12-08 Westinghouse Electric Corporation Combustion turbine with fuel heating system
US5873405A (en) 1997-06-05 1999-02-23 Alcan International Limited Process and apparatus for direct chill casting
US6446704B1 (en) * 1997-06-27 2002-09-10 Richard J. Collins Continuous casting mold plug activation and bleedout detection system
CA2295839C (en) 1997-07-10 2008-04-08 Wagstaff, Inc. A system for providing consistent flow through multiple permeable perimeter walls in a casting mold
US6148018A (en) 1997-10-29 2000-11-14 Ajax Magnethermic Corporation Heat flow sensing system for an induction furnace
US6069910A (en) 1997-12-22 2000-05-30 Eckert; C. Edward High efficiency system for melting molten aluminum
DE69912850T2 (de) 1998-12-18 2004-09-09 Corus Aluminium Walzprodukte Gmbh Herstellungsverfahren eines produktes aus aluminium-magnesium-lithium-legierung
JP4313455B2 (ja) 1999-01-29 2009-08-12 株式会社岡村製作所 机等における配線ダクト装置
US6144690A (en) 1999-03-18 2000-11-07 Kabushiki Kaishi Kobe Seiko Sho Melting method using cold crucible induction melting apparatus
US6393044B1 (en) 1999-11-12 2002-05-21 Inductotherm Corp. High efficiency induction melting system
US6398844B1 (en) 2000-02-07 2002-06-04 Air Products And Chemicals, Inc. Blanketing molten nonferrous metals and alloys with gases having reduced global warming potential
US6491087B1 (en) 2000-05-15 2002-12-10 Ravindra V. Tilak Direct chill casting mold system
JP2002089542A (ja) 2000-09-13 2002-03-27 Kato Electrical Mach Co Ltd 小型ヒンジ装置並びにこの小型ヒンジ装置を用いた携帯用電話機
US7204295B2 (en) 2001-03-30 2007-04-17 Maerz-Gautschi Industrieofenanlagen Gmbh Mold with a function ring
RU2261933C2 (ru) 2002-09-09 2005-10-10 Открытое акционерное общество "Новосибирский завод химконцентратов" Литиево-алюминиевый сплав, способ и установка для его получения
US6837300B2 (en) 2002-10-15 2005-01-04 Wagstaff, Inc. Lubricant control system for metal casting system
CN1611311A (zh) 2002-12-31 2005-05-04 张爱兴 连铸低温钢水,微微粒子的微电,铸坯提速正常浇制
EP1452252A1 (en) 2003-02-28 2004-09-01 Hubert Dipl.-Ing. Sommerhofer Continuous casting method
US7296613B2 (en) 2003-06-13 2007-11-20 Wagstaff, Inc. Mold table sensing and automation system
US7674884B2 (en) 2003-12-10 2010-03-09 Novimmune S.A. Neutralizing antibodies and methods of use thereof
US7007739B2 (en) * 2004-02-28 2006-03-07 Wagstaff, Inc. Direct chilled metal casting system
DE102005018305A1 (de) 2004-05-25 2005-12-22 Tecpharma Licensing Ag Verabreichungsgerät mit geschütztem Primer
US7000676B2 (en) 2004-06-29 2006-02-21 Alcoa Inc. Controlled fluid flow mold and molten metal casting method for improved surface
US8196641B2 (en) * 2004-11-16 2012-06-12 Rti International Metals, Inc. Continuous casting sealing method
FR2889541B1 (fr) 2005-08-04 2007-09-28 Pechiney Rhenalu Sa Procede de recyclage de scrap d'alliages de type aluminium-lithium
JP4504914B2 (ja) 2005-12-19 2010-07-14 株式会社神戸製鋼所 アルミニウム鋳塊の製造方法、アルミニウム鋳塊、およびアルミニウム鋳塊の製造用保護ガス
DE102006056683A1 (de) 2006-01-11 2007-07-12 Sms Demag Ag Verfahren und Vorrichtung zum Stranggießen
JP5194766B2 (ja) 2007-12-19 2013-05-08 パナソニック株式会社 インバータ一体型電動圧縮機
US7871477B2 (en) * 2008-04-18 2011-01-18 United Technologies Corporation High strength L12 aluminum alloys
RU2381865C1 (ru) * 2008-08-20 2010-02-20 Открытое акционерное общество "Каменск-Уральский металлургический завод" Способ получения заготовок из алюминиевых сплавов, содержащих литий
US8056611B2 (en) * 2008-10-06 2011-11-15 Alcoa Inc. Process and apparatus for direct chill casting
CN101428334B (zh) 2008-12-11 2011-11-30 株洲冶炼集团股份有限公司 一种金属锭的浇铸装置
FR2942479B1 (fr) 2009-02-20 2011-02-25 Alcan Rhenalu Procede de coulee pour alliages d'aluminium
CN101648265B (zh) 2009-07-21 2012-09-26 西南铝业(集团)有限责任公司 一种铝锂中间合金的制备方法
US20110049197A1 (en) 2009-08-06 2011-03-03 Paul Anthony Withey Liquid device having filter
US8574336B2 (en) 2010-04-09 2013-11-05 Southwire Company Ultrasonic degassing of molten metals
CN101967588B (zh) 2010-10-27 2012-08-29 中国航空工业集团公司北京航空材料研究院 一种耐损伤铝锂合金及其制备方法
CN101984109B (zh) * 2010-11-30 2012-05-30 西南铝业(集团)有限责任公司 一种含银的铝锂合金光谱标准样品及其制备方法
CN201892583U (zh) 2010-12-09 2011-07-06 西南铝业(集团)有限责任公司 一种铝锂合金测温装置
FR2971793B1 (fr) 2011-02-18 2017-12-22 Alcan Rhenalu Demi-produit en alliage d'aluminium a microporosite amelioree et procede de fabrication
US9400137B2 (en) 2011-05-23 2016-07-26 Inductotherm Corp. Electric induction furnace with lining wear detection system
US8365808B1 (en) * 2012-05-17 2013-02-05 Almex USA, Inc. Process and apparatus for minimizing the potential for explosions in the direct chill casting of aluminum lithium alloys
US8479802B1 (en) 2012-05-17 2013-07-09 Almex USA, Inc. Apparatus for casting aluminum lithium alloys
CN102699302B (zh) 2012-07-10 2014-01-22 中冶赛迪电气技术有限公司 一种板坯连铸结晶器漏钢预报系统及其预报方法
IN2014DN10497A (ja) 2013-02-04 2015-08-21 Almex Usa Inc
US9936541B2 (en) 2013-11-23 2018-04-03 Almex USA, Inc. Alloy melting and holding furnace
US11272584B2 (en) 2015-02-18 2022-03-08 Inductotherm Corp. Electric induction melting and holding furnaces for reactive metals and alloys

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413421A (en) * 1977-06-24 1979-01-31 Showa Denko Kk Controlling method of semiicontinuous casting of metal
JPS62176642A (ja) * 1983-11-10 1987-08-03 アルミニウム カンパニ− オブ アメリカ 防火連続鋳造方法
JPH0191947A (ja) * 1987-10-02 1989-04-11 Nippon Light Metal Co Ltd 中空ビレット鋳造方法
JPH01233050A (ja) * 1988-03-11 1989-09-18 Sumitomo Light Metal Ind Ltd Al−Li合金の連続鋳造法
JPH04313455A (ja) * 1991-01-28 1992-11-05 Aluminum Co Of America <Alcoa> 連続鋳造における冷却水の伝熱制御方法及び制御装置
JPH06297100A (ja) * 1993-04-16 1994-10-25 Arishiumu:Kk 金属の竪型連続鋳造方法及びその装置

Also Published As

Publication number Publication date
CN105008064B (zh) 2017-06-06
WO2014121297A1 (en) 2014-08-07
EP2950945A1 (en) 2015-12-09
US20180229296A1 (en) 2018-08-16
IN2014DN10497A (ja) 2015-08-21
RU2015137667A (ru) 2017-03-10
US9764380B2 (en) 2017-09-19
KR102226773B1 (ko) 2021-03-11
EP2950945B1 (en) 2018-09-12
EP2950946B1 (en) 2021-07-28
US20150139852A1 (en) 2015-05-21
CN104520030B (zh) 2018-03-30
WO2014121295A4 (en) 2014-09-18
WO2014121297A4 (en) 2014-09-18
US9950360B2 (en) 2018-04-24
US9616493B2 (en) 2017-04-11
JP2018158386A (ja) 2018-10-11
KR20150114565A (ko) 2015-10-12
US10864576B2 (en) 2020-12-15
JP6668422B2 (ja) 2020-03-18
US20170209919A1 (en) 2017-07-27
EP3117931B1 (en) 2020-10-21
BR112014028383A2 (pt) 2018-05-29
CN104520030A (zh) 2015-04-15
US20150367409A1 (en) 2015-12-24
WO2014121295A1 (en) 2014-08-07
EP2950946A1 (en) 2015-12-09
RU2678848C2 (ru) 2019-02-04
KR20150115621A (ko) 2015-10-14
EP3117931A1 (en) 2017-01-18
JP6462590B2 (ja) 2019-01-30
CN105008064A (zh) 2015-10-28
RU2014151000A (ru) 2016-07-10
KR102185680B1 (ko) 2020-12-02
RU2675127C2 (ru) 2018-12-17

Similar Documents

Publication Publication Date Title
JP6668422B2 (ja) 直接チル鋳造のためのプロセスおよび装置
JP6174686B2 (ja) アルミニウムリチウム合金の直接チル鋳造における爆発の潜在的可能性を最小限にするためのプロセスおよび装置
EP2664398B1 (en) Apparatus for casting aluminum lithium alloys

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181227

R150 Certificate of patent or registration of utility model

Ref document number: 6462590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250