JP2016225078A - 燃料電池構造体 - Google Patents

燃料電池構造体 Download PDF

Info

Publication number
JP2016225078A
JP2016225078A JP2015108822A JP2015108822A JP2016225078A JP 2016225078 A JP2016225078 A JP 2016225078A JP 2015108822 A JP2015108822 A JP 2015108822A JP 2015108822 A JP2015108822 A JP 2015108822A JP 2016225078 A JP2016225078 A JP 2016225078A
Authority
JP
Japan
Prior art keywords
fuel cell
power generation
fuel
cell stack
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015108822A
Other languages
English (en)
Other versions
JP6667214B2 (ja
Inventor
康貴 井筒
Yasutaka Izutsu
康貴 井筒
堀田 信行
Nobuyuki Hotta
信行 堀田
石川 秀樹
Hideki Ishikawa
秀樹 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2015108822A priority Critical patent/JP6667214B2/ja
Priority to PCT/JP2016/002498 priority patent/WO2016189852A1/ja
Publication of JP2016225078A publication Critical patent/JP2016225078A/ja
Application granted granted Critical
Publication of JP6667214B2 publication Critical patent/JP6667214B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】燃料電池構造体におけるガスの漏れや接触不良の発生を抑制する。
【手段】燃料電池構造体は、第1の方向に並べて配置された複数の発電単位と、ねじ部が形成された軸部と、軸部に対して第1の方向の一方側に位置するフランジ部と、をそれぞれ含む複数の締結部材とを備え、複数の締結部材で締結されている。燃料電池構造体は、さらに、複数の発電単位に対して第1の方向の一方側に配置され、複数の締結部材のフランジ部の座面に直接、または、他の部材を介して接する第1の部材と、複数の発電単位に対して第1の方向の他方側に配置され、複数の締結部材の軸部に形成されたねじ部に螺合する複数のねじ孔が形成された第2の部材とを備える。
【選択図】図10

Description

本明細書によって開示される技術は、燃料電池構造体に関する。
固体酸化物形燃料電池(以下、「SOFC」ともいう)は、一般に、所定の方向(以下、「配列方向」ともいう)に並べて配置された複数の発電単位を備える燃料電池スタックの形態で利用される。発電単位は、発電の最小単位であり、電解質層と電解質層を挟んで配列方向に互いに対向する空気極および燃料極とを含む。
一般に、燃料電池スタックには、複数の発電単位にわたって配列方向に延びる複数のボルト孔が形成されており、複数のボルト孔のそれぞれに挿入されたボルトと、各ボルトに嵌められたナットとによって締結される(例えば特許文献1参照)。
特開2014−212090号公報
上述した従来の構成では、ナットの座面が、燃料電池スタックを構成するある部材(例えば、エンドプレート)の表面に接触し、その接触する部分に締結応力が集中するため、当該部材が局所的に変形するおそれがあり、これによって締結力が減少してガス漏れや接触不良を引き起こすおそれがある。
なお、このような課題は、ボルトやナットに限らず、締結部材で締結された燃料電池スタックに共通の課題である。また、このような課題は、燃料電池スタックに限らず、複数の発電単位を備える構造体(本明細書ではこの構造体を「燃料電池構造体」と呼ぶ)に共通の課題である。また、このような課題は、SOFCに限らず、他のタイプの燃料電池構造体にも共通の課題である。
本明細書では、上述した課題の少なくとも一部を解決することが可能な技術を開示する。
本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。
(1)本明細書に開示される燃料電池構造体は、第1の方向に並べて配置された複数の発電単位と、前記第1の方向に延びると共にねじ部が形成された軸部と、前記軸部に対して前記第1の方向の一方側に位置するフランジ部と、をそれぞれ含む複数の締結部材と、を備え、前記複数の締結部材で締結された燃料電池構造体において、さらに、前記複数の発電単位に対して前記第1の方向の前記一方側に配置され、前記複数の締結部材の前記フランジ部における前記第1の方向の他方側の面である座面に直接、または、他の部材を介して接する第1の部材と、前記複数の発電単位に対して前記第1の方向の前記他方側に配置され、前記複数の締結部材の前記軸部に形成された前記ねじ部に螺合する複数のねじ孔が形成された第2の部材と、を備えることを特徴とする。本燃料電池構造体によれば、各締結部材のフランジ部の座面が第1の部材と直接、または、他の部材を介して接し、第2の部材に複数のねじ孔が形成されており、各締結部材の軸部に形成されたねじ部が、第2の部材の各ねじ孔に螺合しているため、締結力は第2の部材に直に発生することとなり、第2の部材の一部分に締結応力が集中することが回避され、第2の部材の局所的な変形を抑制することができ、ガス漏れや接触不良の発生を抑制することができる。
(2)上記燃料電池構造体において、前記締結部材の前記軸部と前記フランジ部とは一体の部材である構成としてもよい。本燃料電池構造体によれば、例えば、軸部とフランジ部とが別体であり、軸部とフランジ部とが螺合する構成と比較して、螺合箇所が少なくなるため、締結荷重の管理を容易にすることができると共に、長期使用における螺合箇所の緩みを抑制することができる。
(3)上記燃料電池構造体において、前記第1の方向の前記他方側の前記ねじ部の端の前記第1の方向における位置は、前記第1の方向の前記他方側の前記ねじ孔の端の前記第1の方向における位置と比べて、同じか、または、前記第1の方向の前記他方側である構成としてもよい。本燃料電池構造体によれば、ねじ部の端の位置がねじ孔の端の位置より第1の方向の上記一方側である構成と比較して、ねじ部とねじ孔との螺合部分の噛み数を一定に、かつ、より多くすることができるため、締結力の安定化を実現することができると共に、螺合箇所の耐久性を向上させることができる。
(4)上記燃料電池構造体において、前記燃料電池構造体は、前記複数の発電単位と、前記第1の方向の端部を構成する前記第1の部材および前記第2の部材とを備える燃料電池スタックであり、前記第1の部材および前記第2の部材は、平板状部材である構成としてもよい。本燃料電池構造体によれば、燃料電池スタックにおけるガス漏れや接触不良の発生を抑制することができる。
(5)上記燃料電池構造体において、前記燃料電池構造体は、前記複数の発電単位を備える燃料電池スタックと、前記燃料電池スタックから排出されたガスを燃焼させる燃焼室と、原燃料ガスを改質して前記燃料電池スタックに供給する燃料ガスを生成する改質室と、の少なくとも一方が形成された補助器と、を備える発電モジュールであり、前記第2の部材は、前記補助器である構成としてもよい。本燃料電池構造体によれば、燃料電池スタックと補助器とを備える発電モジュールにおけるガス漏れや接触不良の発生を抑制することができる。
なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、燃料電池構造体、燃料電池スタック、燃料電池スタックと補助器とを備える発電モジュール、発電モジュールを備える燃料電池システム等の形態で実現することが可能である。
第1実施形態における燃料電池スタック100の外観構成を示す斜視図である。 第1実施形態における燃料電池スタック100の上側のXY平面構成を示す説明図である。 第1実施形態における燃料電池スタック100の下側のXY平面構成を示す説明図である。 図1から図3のIV−IVの位置における燃料電池スタック100のXZ断面構成を説明図である。 図1から図3のV−Vの位置における燃料電池スタック100のYZ断面構成を示す説明図である。 図4に示す断面と同一の位置における互いに隣接する2つの発電単位102のXZ断面構成を示す説明図である。 図5に示す断面と同一の位置における互いに隣接する2つの発電単位102のYZ断面構成を示す説明図である。 図6のVIII−VIIIの位置における発電単位102のXY断面構成を示す説明図である。 図6のIX−IXの位置における発電単位102のXY断面構成を示す説明図である。 燃料電池スタック100の締結のためのXZ断面構成を示す説明図である。 比較例の燃料電池スタック100’の締結のためのXZ断面構成を示す説明図である。 第1実施形態の第1の変形例における燃料電池スタック100aの締結のためのXZ断面構成を示す説明図である。 第1実施形態の第2の変形例における燃料電池スタック100bの締結のためのXZ断面構成を示す説明図である。 第1実施形態の第3の変形例における燃料電池スタック100cの締結のためのXZ断面構成を示す説明図である。 第2実施形態における燃料電池ホットモジュール10の外観構成を示す斜視図である。 図15のXVI−XVIの位置における発電モジュール20のXZ断面構成を示す説明図である。 図15のXVII−XVIIの位置における発電モジュール20のYZ断面構成を示す説明図である。 第2実施形態における発電モジュール20の締結のためのXY断面構成を示す説明図である。 第2実施形態における発電モジュール20の締結のためのXZ断面構成を示す説明図である。 第2実施形態の変形例におけるホットモジュール10fの外観構成を示す斜視図である。 第2実施形態の変形例における補助器200fのXY断面構成を示す説明図である。
A.第1実施形態:
A−1.構成:
(燃料電池スタック100の構成)
図1から図5は、本実施形態における燃料電池スタック100の構成を概略的に示す説明図である。図1には、燃料電池スタック100の外観構成が示されており、図2には、燃料電池スタック100の上側の平面構成が示されており、図3には、燃料電池スタック100の下側の平面構成が示されており、図4には、図1から図3のIV−IVの位置における燃料電池スタック100の断面構成が示されており、図5には、図1から図3のV−Vの位置における燃料電池スタック100の断面構成が示されている。各図には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を上方向と呼び、Z軸負方向を下方向と呼ぶものとするが、燃料電池スタック100は実際にはそのような向きとは異なる向きで設置されてもよい。図6以降についても同様である。
燃料電池スタック100は、複数の(本実施形態では7つの)発電単位102と、一対のエンドプレート104,106とを備える。7つの発電単位102は、所定の配列方向(本実施形態では上下方向)に並べて配置されている。一対のエンドプレート104,106は、7つの発電単位102を上下から挟むように配置されている。なお、上記配列方向(上下方向)は、特許請求の範囲における第1の方向に相当する。
図1に示すように、各発電単位102のZ方向回りの外周の4つの角部には、上下方向に貫通する孔が形成されており、各層に形成され互いに対応する孔同士が上下方向に連通して、上下方向に延びるボルト孔109を構成している。各ボルト孔109にはボルト22が挿入されており、各ボルト22によって燃料電池スタック100は締結されている。燃料電池スタック100の締結のための構成については、後に詳述する。
図1、図2、図4および図5に示すように、各発電単位102および下側のエンドプレート106のZ方向回りの外周辺の中点付近には、上下方向に貫通する孔が形成されており、各層に形成され互いに対応する孔同士が上下方向に連通して、各発電単位102およびエンドプレート106にわたって上下方向に延びる連通孔108を構成している。
図1、図2および図4に示すように、燃料電池スタック100のZ方向回りの外周における1つの辺(Y軸に平行な2つの辺の内のX軸正方向側の辺)の中点付近に位置する連通孔108は、燃料電池スタック100の外部から酸化剤ガスOGが導入され、その酸化剤ガスOGを各発電単位102に供給するガス流路である酸化剤ガス導入マニホールド161として機能し、該辺の反対側の辺(Y軸に平行な2つの辺の内のX軸負方向側の辺)の中点付近に位置する連通孔108は、各発電単位102の空気室166から排出されたガスである酸化剤オフガスOOGを燃料電池スタック100の外部へと排出するガス流路である酸化剤ガス排出マニホールド162として機能する。なお、本実施形態では、酸化剤ガスOGとして、例えば空気が使用される。
また、図1、図2および図5に示すように、燃料電池スタック100のZ方向回りの外周における1つの辺(X軸に平行な2つの辺の内のY軸正方向側の辺)の中点付近に位置する連通孔108は、燃料電池スタック100の外部から燃料ガスFGが導入され、その燃料ガスFGを各発電単位102に供給するガス流路である燃料ガス導入マニホールド171として機能し、該辺の反対側の辺(X軸に平行な2つの辺の内のY軸負方向側の辺)の中点付近に位置する連通孔108は、各発電単位102の燃料室176から排出されたガスである燃料オフガスFOGを燃料電池スタック100の外部へと排出するガス流路である燃料ガス排出マニホールド172として機能する。なお、本実施形態では、燃料ガスFGとして、例えば都市ガスを改質した水素リッチなガスが使用される。
図1および図3から図5に示すように、燃料電池スタック100には、4つのガス通路部材27が設けられている。各ガス通路部材27は、中空筒状の本体部28と、本体部28の側面から分岐した中空筒状の分岐部29とを有している。分岐部29の孔は本体部28の孔と連通している。各ガス通路部材27の分岐部29には、ガス配管(図示せず)が接続される。図4に示すように、酸化剤ガス導入マニホールド161の位置に配置されたガス通路部材27の本体部28の孔は、酸化剤ガス導入マニホールド161に連通しており、酸化剤ガス排出マニホールド162の位置に配置されたガス通路部材27の本体部28の孔は、酸化剤ガス排出マニホールド162に連通している。また、図5に示すように、燃料ガス導入マニホールド171の位置に配置されたガス通路部材27の本体部28の孔は、燃料ガス導入マニホールド171に連通しており、燃料ガス排出マニホールド172の位置に配置されたガス通路部材27の本体部28の孔は、燃料ガス排出マニホールド172に連通している。なお、各ガス通路部材27とエンドプレート106の表面との間には、絶縁シート26が介在している。絶縁シート26は、例えばマイカシートや、セラミック繊維シート、セラミック圧粉シート、ガラスシート、ガラスセラミック複合剤等により構成される。
(エンドプレート104,106の構成)
一対のエンドプレート104,106は、矩形の平板形状の導電性部材であり、例えばステンレス材やアルミ添加ステンレス材により形成されている。一方のエンドプレート104は、最も上に位置する発電単位102の上側に配置され、他方のエンドプレート106は、最も下に位置する発電単位102の下側に配置されている。一対のエンドプレート104,106によって複数の発電単位102が押圧された状態で挟持されている。上側のエンドプレート104は、燃料電池スタック100のプラス側の出力端子として機能し、下側のエンドプレート106は、燃料電池スタック100のマイナス側の出力端子として機能する。
(発電単位102の構成)
図6から図9は、発電単位102の詳細構成を示す説明図である。図6には、図4に示す断面と同一の位置における互いに隣接する2つの発電単位102の断面構成が示されており、図7には、図5に示す断面と同一の位置における互いに隣接する2つの発電単位102の断面構成が示されており、図8には、図6のVIII−VIIIの位置における発電単位102の断面構成が示されており、図9には、図6のIX−IXの位置における発電単位102の断面構成が示されている。
図6および図7に示すように、発電の最小単位である発電単位102は、単セル110と、セパレータ120と、空気極側フレーム130と、空気極側集電体134と、燃料極側フレーム140と、燃料極側集電体144と、発電単位102の最上層および最下層を構成する一対のインターコネクタ150とを備えている。セパレータ120、空気極側フレーム130、燃料極側フレーム140、インターコネクタ150におけるZ方向回りの周縁部には、上述したボルト22が挿入されるボルト孔109に対応する孔や、各マニホールドして機能する連通孔108に対応する孔が形成されている(図8および図9参照)。
単セル110は、電解質層112と、電解質層112を挟んで上下方向(発電単位102が並ぶ配列方向)に互いに対向する空気極(カソード)114および燃料極(アノード)116とを備える。なお、本実施形態の単セル110は、燃料極116で電解質層112および空気極114を支持する燃料極支持形の単セルである。
電解質層112は、矩形の平板形状部材であり、例えば、YSZ(イットリア安定化ジルコニア)、ScSZ(スカンジア安定化ジルコニア)、SDC(サマリウムドープセリア)、GDC(ガドリニウムドープセリア)、ペロブスカイト型酸化物等の固体酸化物により形成されている。空気極114は、矩形の平板形状部材であり、例えば、ペロブスカイト型酸化物(例えばLSCF(ランタンストロンチウムコバルト鉄酸化物)、LSM(ランタンストロンチウムマンガン酸化物)、LNF(ランタンニッケル鉄))により形成されている。燃料極116は、矩形の平板形状部材であり、例えば、Ni(ニッケル)、Niとセラミック粒子からなるサーメット、Ni基合金等により形成されている。このように、本実施形態の単セル110(発電単位102)は、電解質として固体酸化物を用いる固体酸化物形燃料電池(SOFC)である。
セパレータ120は、中央付近に上下方向に貫通する矩形の孔121が形成されたフレーム状の部材であり、例えば、金属により形成されている。セパレータ120における孔121の周囲部分は、電解質層112における空気極114の側の表面の周縁部に対向している。セパレータ120は、その対向した部分に配置されたロウ材(例えばAgロウ)により形成された接合部124により、電解質層112(単セル110)と接合されている。セパレータ120により、空気極114に面する空気室166と燃料極116に面する燃料室176とが区画され、単セル110の周縁部における一方の電極側から他方の電極側へのガスのリークが抑制される。なお、セパレータ120が接合された単セル110をセパレータ付き単セルともいう。
インターコネクタ150は、矩形の平板形状の導電性部材であり、例えばフェライト系ステンレスにより形成されている。インターコネクタ150は、単セル110に対して配列方向に対向するように配置されている。インターコネクタ150は、発電単位102間の電気的導通を確保すると共に、発電単位102間での反応ガスの混合を防止する。なお、本実施形態では、2つの発電単位102が隣接して配置されている場合、1つのインターコネクタ150は、隣接する2つの発電単位102に共有されている。すなわち、ある発電単位102における上側のインターコネクタ150は、その発電単位102の上側に隣接する他の発電単位102における下側のインターコネクタ150と同一部材である。また、燃料電池スタック100は一対のエンドプレート104,106を備えているため、燃料電池スタック100において最も上に位置する発電単位102は上側のインターコネクタ150を備えておらず、最も下に位置する発電単位102は下側のインターコネクタ150を備えていない(図4および図5参照)。
図8に示すように、空気極側フレーム130は、中央付近に上下方向に貫通する矩形の孔131が形成されたフレーム状の部材であり、例えば、マイカ等の絶縁体により形成されている。空気極側フレーム130は、セパレータ120とインターコネクタ150との間に配置され、セパレータ120における電解質層112に対向する側とは反対側の表面の周縁部と、インターコネクタ150における空気極114に対向する側の表面の周縁部とに接触している。空気極側フレーム130の孔131は、空気極114に面する空気室166を構成する。また、空気極側フレーム130によって、発電単位102に含まれる一対のインターコネクタ150間が電気的に絶縁される。また、空気極側フレーム130には、酸化剤ガス導入マニホールド161と空気室166とを連通する酸化剤ガス供給連通孔132と、空気室166と酸化剤ガス排出マニホールド162とを連通する酸化剤ガス排出連通孔133とが形成されている。
図9に示すように、燃料極側フレーム140は、中央付近に上下方向に貫通する矩形の孔141が形成されたフレーム状の部材であり、例えば、金属により形成されている。燃料極側フレーム140は、セパレータ120とインターコネクタ150との間に配置され、セパレータ120における電解質層112に対向する側の表面の周縁部と、インターコネクタ150における燃料極116に対向する側の表面の周縁部とに接触している。燃料極側フレーム140の孔141は、燃料極116に面する燃料室176を構成する。また、燃料極側フレーム140には、燃料ガス導入マニホールド171と燃料室176とを連通する燃料ガス供給連通孔142と、燃料室176と燃料ガス排出マニホールド172とを連通する燃料ガス排出連通孔143とが形成されている。
図8に示すように、空気極側集電体134は、空気室166内に配置されている。空気極側集電体134は、所定の間隔をあけて並べられた複数の略四角柱状の導電性部材から構成されており、例えば、フェライト系ステンレスにより形成されている。空気極側集電体134は、空気極114における電解質層112に対向する側とは反対側の表面と、インターコネクタ150における空気極114に対向する側の表面とに接触することにより、空気極114とインターコネクタ150とを電気的に接続する。なお、空気極側集電体134とインターコネクタ150とが一体の部材として形成されていてもよい。
図9に示すように、燃料極側集電体144は、燃料室176内に配置されている。燃料極側集電体144は、インターコネクタ対向部146と、複数の電極対向部145と、各電極対向部145とインターコネクタ対向部146とをつなぐ連接部147とを備えており、例えば、ニッケルやニッケル合金、ステンレス等により形成されている。各電極対向部145は、燃料極116における電解質層112に対向する側とは反対側の表面に接触し、インターコネクタ対向部146は、インターコネクタ150における燃料極116に対向する側の表面に接触する。そのため、燃料極側集電体144は、燃料極116とインターコネクタ150とを電気的に接続する。なお、電極対向部145とインターコネクタ対向部146との間には、例えばマイカにより形成されたスペーサー149が配置されている。そのため、燃料極側集電体144が温度サイクルや反応ガス圧力変動による発電単位102の変形に追随し、燃料極側集電体144を介した燃料極116とインターコネクタ150との電気的接続が良好に維持される。
A−2.燃料電池スタック100の動作:
図4、図6および図8に示すように、酸化剤ガス導入マニホールド161の位置に設けられたガス通路部材27の分岐部29に接続されたガス配管(図示せず)を介して酸化剤ガスOGが供給されると、酸化剤ガスOGは、ガス通路部材27の分岐部29および本体部28の孔を介して酸化剤ガス導入マニホールド161に導入され、酸化剤ガス導入マニホールド161から各発電単位102の酸化剤ガス供給連通孔132を介して、空気室166に供給される。また、図5、図7および図9に示すように、燃料ガス導入マニホールド171の位置に設けられたガス通路部材27の分岐部29に接続されたガス配管(図示せず)を介して燃料ガスFGが供給されると、燃料ガスFGは、ガス通路部材27の分岐部29および本体部28の孔を介して燃料ガス導入マニホールド171に導入され、燃料ガス導入マニホールド171から各発電単位102の燃料ガス供給連通孔142を介して、燃料室176に供給される。
各発電単位102の空気室166に酸化剤ガスOGが供給され、燃料室176に燃料ガスFGが供給されると、単セル110において酸化剤ガスOGおよび燃料ガスFGの電気化学反応による発電が行われる。この発電反応は発熱反応である。各発電単位102において、単セル110の空気極114は空気極側集電体134を介して一方のインターコネクタ150に電気的に接続され、燃料極116は燃料極側集電体144を介して他方のインターコネクタ150に電気的に接続されている。また、燃料電池スタック100に含まれる複数の発電単位102は、電気的に直列に接続されている。そのため、燃料電池スタック100の出力端子として機能するエンドプレート104,106から、各発電単位102において生成された電気エネルギーが取り出される。なお、SOFCは、比較的高温(例えば700℃から1000℃)で発電が行われることから、起動後、発電により発生する熱で高温が維持できる状態になるまで、燃料電池スタック100が加熱器(図示せず)により加熱されてもよい。
各発電単位102において空気室166から排出されたガスである酸化剤オフガスOOGは、図4、図6および図8に示すように、空気室166から酸化剤ガス排出連通孔133を介して酸化剤ガス排出マニホールド162に排出され、さらに酸化剤ガス排出マニホールド162の位置に設けられたガス通路部材27の本体部28および分岐部29の孔を経て、当該分岐部29に接続されたガス配管(図示せず)を介して燃料電池スタック100の外部に排出される。また、各発電単位102において燃料室176から排出されたガスである燃料オフガスFOGは、図5、図7および図9に示すように、燃料室176から燃料ガス排出連通孔143を介して燃料ガス排出マニホールド172に排出され、さらに燃料ガス排出マニホールド172の位置に設けられたガス通路部材27の本体部28および分岐部29の孔を経て、当該分岐部29に接続されたガス配管(図示しない)を介して燃料電池スタック100の外部に排出される。
なお、本実施形態の燃料電池スタック100では、上述したように、複数のボルト孔109とは別に複数のマニホールド(連通孔108)が形成されているため、ボルト22に含まれる汚染物質が各マニホールドにおけるガス流れによって燃料室176や空気室166に運ばれ、燃料極116や空気極114に付着して電極の反応速度が低下する被毒現象の発生を回避することができると共に、各ボルト22が互いに異なる温度のガスにさらされて各ボルト22の熱膨張による変形量に差が生じ、燃料電池スタック100の面方向において燃料電池スタック100の接圧がばらつき、燃料電池スタック100の内部から外部にガスが漏洩する事態の発生を回避することができる。
A−3.燃料電池スタック100の締結のための構成:
図10は、燃料電池スタック100の締結のための構成を示す説明図である。図10には、図1から図3のX−Xの位置における燃料電池スタック100の断面構成が示されている。上述したように、燃料電池スタック100は、複数のボルト22によって締結されている。図10に示すように、ボルト22は、軸部226と、軸部226の一方(本実施形態では上側)の端部に形成されたフランジ部228とを備えている。軸部226とフランジ部228とは、一体の部材である。フランジ部228は、径(軸部226の軸方向に直交する方向の寸法)が軸部226より大きい部分であり、座面229を有している。座面229は、フランジ部228における軸部226の軸方向に直交する表面の内、軸部226側の表面である。ボルト22の軸部226におけるフランジ部228とは反対側の端部には、ねじ部224が形成されている。ねじ部224の外周面には、おねじが形成されている。
ボルト孔109は、各発電単位102に形成された貫通孔と、上側のエンドプレート104に形成された貫通孔とから構成されている。また、下側のエンドプレート106には、ボルト孔109に連通するねじ孔107が形成されている。ねじ孔107は、下側のエンドプレート106を上下方向に貫通しており、その内周面にめねじが形成されている。
ボルト22は、ボルト孔109に挿入されており、ボルト22の軸部226に形成されたねじ部224は、下側のエンドプレート106に形成されたねじ孔107に螺合している。この状態において、ボルト22の軸部226は、上下方向(Z軸方向)に延びる姿勢となっている。また、フランジ部228は、軸部226に対して上側(Z軸正方向側)に位置しており、フランジ部228の座面229は、上側のエンドプレート104の上側の表面に接している。
また、上下方向の位置に関し、ボルト22のねじ部224の下端の位置は、ねじ孔107の下端の位置と同じ位置となっている。このような構成は、発電単位102やエンドプレート104,106の厚さや締結荷重による変形量を考慮してボルト22の長さを設定することにより実現可能である。あるいは、ボルト22の長さを長めに設定しておき、締結後に、ねじ孔107を貫通して下側に突出したねじ部224の部分をカットすることによっても実現可能である。
なお、図10には、1つのボルト孔109の位置における燃料電池スタック100の断面が示されているが、他の3つのボルト孔109の位置における燃料電池スタック100の断面も同様の構成である。そのため、下側のエンドプレート106には、合計4つのねじ孔107が形成されており、各ねじ孔107にボルト22のねじ部224が螺合していることとなる。各ねじ孔107に螺合した各ボルト22によって、燃料電池スタック100が締結される。
本実施形態の燃料電池スタック100では、上述した締結のための構成を有しているため、ガス漏れや接触不良の発生を抑制することができる。図11は、比較例の燃料電池スタック100’の締結のための構成を示す説明図である。図11に示す比較例の燃料電池スタック100’では、ボルト22と、ボルト22に嵌められたナット24とによって燃料電池スタック100’が締結されている。この比較例では、ナット24の座面249が下側のエンドプレート106の下側の表面に接している。そのため、下側のエンドプレート106における座面249との接触部分に締結応力が集中し、エンドプレート106が局所的に変形して締結力が減少し、ガス漏れや接触不良を引き起こすおそれがある。特に、締結力が大きい場合や、長期にわたって締結状態が維持された場合に、そのおそれが顕著である。
これに対して、本実施形態の燃料電池スタック100では、下側のエンドプレート106に複数のねじ孔107が形成されており、各ボルト22の軸部226に形成されたねじ部224が、下側のエンドプレート106の各ねじ孔107に螺合している。そのため、締結力は下側のエンドプレート106に直に発生することとなり、エンドプレート106の一部分に締結応力が集中することが回避される。これにより、エンドプレート106の局所的な変形を抑制することができ、ガス漏れや接触不良の発生を抑制することができる。
また、本実施形態の燃料電池スタック100では、上側のエンドプレート104付近の構成に関し、ボルト22の軸部226とフランジ部228とが一体の部材であるため、例えば、フランジ部228がボルト22と別体のナットで構成され、ボルト22の軸部226とナットとが螺合する構成と比較して、螺合箇所が少なくなるため、締結荷重の管理を容易にすることができると共に、長期使用における螺合箇所の緩みを抑制することができる。
また、本実施形態の燃料電池スタック100では、上下方向の位置に関し、ボルト22のねじ部224の下端の位置が、エンドプレート106に形成されたねじ孔107の下端の位置と同じ位置となっている。そのため、ねじ部224の下端の位置がねじ孔107の下端の位置より上側である構成(ねじ孔107の途中までしかねじ部224が挿入されていない構成)と比較して、ねじ部224とねじ孔107との螺合部分の噛み数を一定に、かつ、より多くすることができるため、締結力の安定化を実現することができると共に、螺合箇所の耐久性を向上させることができる。また、ねじ部224の下端の位置がねじ孔107の下端の位置より下側である構成(ねじ孔107の下側からねじ部224の先端部が突出した構成)と比較して、ボルト22の軽量化を実現することができ、その結果、燃料電池スタック100の軽量化を実現することができる。
なお、ボルト22の熱膨張係数とエンドプレート104,106の熱膨張係数とが近いほど、それぞれの部材の熱膨張量の差に起因する締結荷重の変動を抑制することができるため、好ましい。例えば、ボルト22がインコネル材により形成され、エンドプレート104,106がステンレス材やアルミ添加ステンレス材により形成されることが好ましい。
なお、本実施形態におけるボルト22と、上側のエンドプレート104と、下側のエンドプレート106と、燃料電池スタック100とは、それぞれ、特許請求の範囲における締結部材と、第1の部材と、第2の部材と、燃料電池構造体とに相当する。
A−4.第1実施形態の変形例:
図12は、第1実施形態の第1の変形例における燃料電池スタック100aの締結のための構成を示す説明図である。図12に示す変形例では、上下方向の位置に関し、ボルト22のねじ部224の下端の位置が、ねじ孔107の下端の位置より下側の位置となっている。その他の構成は、図10に示す第1実施形態と同様であるため、同一の符号を付すことによってその説明を省略する。
第1実施形態の第1の変形例における燃料電池スタック100aでは、上述した第1実施形態と同様に、下側のエンドプレート106に複数のねじ孔107が形成されており、各ボルト22の軸部226に形成されたねじ部224が、下側のエンドプレート106の各ねじ孔107に螺合している。そのため、エンドプレート106の一部分に締結応力が集中することが回避され、エンドプレート106の局所的な変形を抑制することができ、ガス漏れや接触不良の発生を抑制することができる。
また、第1実施形態の第1の変形例における燃料電池スタック100aでは、上述した第1実施形態と同様に、ボルト22の軸部226とフランジ部228とが一体の部材であるため、螺合箇所が少なくなり、締結荷重の管理を容易にすることができると共に、長期使用における螺合箇所の緩みを抑制することができる。
また、第1実施形態の第1の変形例における燃料電池スタック100aでは、上下方向の位置に関し、ボルト22のねじ部224の下端の位置が、エンドプレート106に形成されたねじ孔107の下端の位置より下側の位置となっているため、ねじ部224の下端の位置がねじ孔107の下端の位置より上側である構成(ねじ孔107の途中までしかねじ部224が挿入されていない構成)と比較して、ねじ部224とねじ孔107との螺合部分の噛み数を一定に、かつ、より多くすることができるため、締結力の安定化を実現することができると共に、螺合箇所の耐久性を向上させることができる。
図13は、第1実施形態の第2の変形例における燃料電池スタック100bの締結のための構成を示す説明図である。図13に示す変形例では、上下方向の位置に関し、ボルト22のねじ部224の下端の位置が、ねじ孔107の下端の位置より上側の位置となっている。その他の構成は、図10に示す第1実施形態と同様であるため、同一の符号を付すことによってその説明を省略する。
第1実施形態の第2の変形例における燃料電池スタック100bでは、上述した第1実施形態と同様に、下側のエンドプレート106に複数のねじ孔107が形成されており、各ボルト22の軸部226に形成されたねじ部224が、下側のエンドプレート106の各ねじ孔107に螺合している。そのため、エンドプレート106の一部分に締結応力が集中することが回避され、エンドプレート106の局所的な変形を抑制することができ、ガス漏れや接触不良の発生を抑制することができる。
また、第1実施形態の第2の変形例における燃料電池スタック100bでは、上述した第1実施形態と同様に、ボルト22の軸部226とフランジ部228とが一体の部材であるため、螺合箇所が少なくなり、締結荷重の管理を容易にすることができると共に、長期使用における螺合箇所の緩みを抑制することができる。
図14は、第1実施形態の第3の変形例における燃料電池スタック100cの締結のための構成を示す説明図である。図14に示す変形例では、ボルト22にフランジ部228が存在せず、その代わりに、ボルト22の軸部226の上端に形成されたねじ部227に螺合するナット24がフランジ部として機能する。その他の構成は、図10に示す第1実施形態と同様であるため、同一の符号を付すことによってその説明を省略する。なお、この変形例では、ボルト22とナット24とが、特許請求の範囲における締結部材に相当する。
第1実施形態の第3の変形例における燃料電池スタック100cでは、上述した第1実施形態と同様に、各ボルト22に螺合するナット24の座面249が、上側のエンドプレート104の上側の表面に接しており、下側のエンドプレート106に複数のねじ孔107が形成されており、各ボルト22の軸部226に形成されたねじ部224が、下側のエンドプレート106の各ねじ孔107に螺合している。そのため、エンドプレート106の一部分に締結応力が集中することが回避され、エンドプレート106の局所的な変形を抑制することができ、ガス漏れや接触不良の発生を抑制することができる。
B.第2実施形態:
B−1.構成:
(燃料電池ホットモジュール10の構成)
図15は、第2実施形態における燃料電池ホットモジュール(以下、「ホットモジュール」という)10の構成を概略的に示す説明図である。図15では、ホットモジュール10の構成をわかりやすくするために、一部の構成が透過して示されたり、一部の構成の図示が省略されたりしている。ホットモジュール10は、発電モジュール20と、発電モジュール20を収容する断熱容器30と、発電モジュール20に接続された各種配管232,234,236,238とを備える。ホットモジュール10は、起動時等に発電モジュール20を加熱する加熱器(例えばガスバーナー)を備えていてもよい。
(断熱容器30の構成)
断熱容器30は、例えばステンレスにより形成された筐体の内側面に断熱材が配置された構成を有する。発電モジュール20が断熱容器30内に収容されることにより、発電を行う際に発電モジュール20が高温に維持される。
(発電モジュール20の構成)
図16および図17は、第2実施形態における発電モジュール20の構成を概略的に示す説明図である。図16には、図15のXVI−XVIの位置における発電モジュール20の断面構成が示されており、図17には、図15のXVII−XVIIの位置における発電モジュール20の断面構成が示されている。図15から図17に示すように、発電モジュール20は、燃料電池スタック100eと、燃料電池スタック100eの下側に配置された補助器200とを備える。
(燃料電池スタック100eの構成)
第2実施形態の燃料電池スタック100eでは、各ボルト孔109に加えて、マニホールドを構成する各連通孔108にもボルト22が挿入されている点が、第1実施形態の燃料電池スタック100と異なる。具体的には、各連通孔108にボルト22が挿入され、連通孔108の内周面とボルト22の軸部226の外周面との間に形成された空間が、各マニホールドとして利用される。また、第2実施形態の燃料電池スタック100eは、後述する締結のための構成も第1実施形態と異なる。第2実施形態の燃料電池スタック100eにおけるその他の構成は、上述した第1実施形態の燃料電池スタック100の構成と同様であるため、同一の符号を付すことによってその説明を省略する。
(補助器200の構成)
補助器200は、箱形状の補助器本体部210と、補助器本体部210の側面に形成された固定部220とを備えている。補助器200は、例えばステンレス材やアルミ添加ステンレス材により形成されている。
固定部220は、補助器本体部210の側面から上下方向に直交する方向に張り出すような形状である。補助器本体部210および固定部220の上端の位置は互いに同一である。すなわち、補助器本体部210の上面と固定部220の上面とによって、補助器200の最上面が構成される。固定部220における燃料電池スタック100eの各連通孔108および各ボルト孔109に対応する位置には、それらの連通孔108またはボルト孔109に連通する孔208が形成されている。
補助器本体部210の内部は、2つの隔壁222によって、一次燃焼室212と、一次燃焼室212の下に配置された改質室214と、改質室214の下に配置された二次燃焼室216とに区切られている。一次燃焼室212は、燃料電池スタック100eから排出される酸化剤オフガスOOGと燃料オフガスFOGとを混合して燃焼させるための室であり、固定部220に形成された孔208を介して、酸化剤ガス排出マニホールド162および燃料ガス排出マニホールド172と連通している。また、二次燃焼室216は、一次燃焼室212で混合・燃焼させた酸化剤オフガスOOGと燃料オフガスFOGとをさらに燃焼させるための室であり、改質室214を上下に貫通する流路218を介して、一次燃焼室212と連通している。一次燃焼室212および二次燃焼室216の一方または両方には、酸化剤オフガスOOGと燃料オフガスFOGとの燃焼を促進させる触媒が配置されている。
改質室214は、原燃料ガスRFGを改質して水素リッチな燃料ガスFGを生成するための室であり、固定部220に形成された孔208を介して、燃料ガス導入マニホールド171と連通している。改質室214には、改質反応を促進させる触媒が配置されている。
(各種配管232,234,236,238の構成)
発電モジュール20の補助器200には、酸化剤ガスOGが導入される酸化剤ガス導入配管232と、原燃料ガスRFGが導入される原燃料ガス導入配管234と、改質水RWが導入される改質水導入配管236と、排ガスEGが排出される排ガス排出配管238とが接続されている。酸化剤ガス導入配管232は、固定部220に形成された孔208を介して、酸化剤ガス導入マニホールド161に連通している。原燃料ガス導入配管234および改質水導入配管236は、補助器本体部210の改質室214に連通しており、排ガス排出配管238は、補助器本体部210の二次燃焼室216に連通している。
B−2.発電モジュール20の動作:
図16に示すように、酸化剤ガスOGは、酸化剤ガス導入配管232から固定部220に形成された孔208を介して、酸化剤ガス導入マニホールド161に導入され、酸化剤ガス導入マニホールド161から各発電単位102の空気室166に供給される。また、図17に示すように、原燃料ガスRFG(都市ガス)および改質水RWは、それぞれ、原燃料ガス導入配管234および改質水導入配管236から補助器本体部210の改質室214に流入し、改質反応に供される。改質室214における改質反応に伴い生成された燃料ガスFGは、補助器200の固定部220に形成された孔208を介して燃料ガス導入マニホールド171に導入され、燃料ガス導入マニホールド171から各発電単位102の燃料室176に供給される。
各発電単位102の空気室166に酸化剤ガスOGが供給され、燃料室176に燃料ガスFGが供給されると、第1実施形態と同様に、各発電単位102において発電が行われる。各発電単位102において空気室166から排出されたガスである酸化剤オフガスOOGは、図16に示すように、空気室166から酸化剤ガス排出マニホールド162および固定部220に形成された孔208を経て、補助器本体部210の一次燃焼室212に排出される。また、各発電単位102において燃料室176から排出されたガスである燃料オフガスFOGは、図17に示すように、燃料室176から燃料ガス排出マニホールド172および固定部220に形成された孔208を経て、補助器本体部210の一次燃焼室212に排出される。一次燃焼室212に排出された酸化剤オフガスOOGおよび燃料オフガスFOGは、一次燃焼室212において混合されて燃焼し、流路218を介して二次燃焼室216に導かれてさらに燃焼し、排ガス排出配管238を介してホットモジュール10の外部に排出される。なお、一次燃焼室212および二次燃焼室216において発生する熱により、改質室214における改質反応が促進されると共に、発電モジュール20が高温に維持される。
B−3.発電モジュール20の締結のための構成:
図18および図19は、第2実施形態における発電モジュール20の締結のための構成を示す説明図である。図18には、補助器200の上側の平面構成が示されており、図19には、図15および図18のXIX−XIXの位置における発電モジュール20の断面構成が示されている。
図19に示すように、ボルト孔109は、各発電単位102に形成された貫通孔と、一対のエンドプレート104,106に形成された貫通孔とから構成されている。また、ボルト孔109は、固定部220におけるボルト孔109に対応する位置に形成された孔208と連通している。固定部220における孔208の下側には、孔208に連通するねじ孔221が形成されている。ねじ孔221の内周面には、めねじが形成されている。孔208とねじ孔221とが一体となった孔は、固定部220を上下方向に貫通している。
ボルト孔109に挿入されたボルト22は、固定部220に形成された孔208まで達し、ボルト22の軸部226に形成されたねじ部224は、固定部220における孔208の下側に形成されたねじ孔221に螺合している。この状態において、ボルト22の軸部226は、上下方向(Z軸方向)に延びる姿勢となっている。また、フランジ部228は、軸部226に対して上側(Z軸正方向側)に位置しており、フランジ部228の座面229は、上側のエンドプレート104の上側の表面に接している。また、上下方向の位置に関し、ボルト22のねじ部224の下端の位置は、ねじ孔221の下端の位置と同じ位置となっている。
なお、図19には、1つのボルト孔109の位置における発電モジュール20の断面が示されているが、他の3つのボルト孔109の位置における発電モジュール20の断面も同様の構成である。
また、図16および図17に示すように、マニホールドとして機能する各連通孔108は、各発電単位102に形成された貫通孔と、一対のエンドプレート104,106に形成された貫通孔とから構成されている。また、各連通孔108は、固定部220における各連通孔108に対応する位置に形成された孔208と連通している。固定部220における孔208の下側には、孔208に連通するねじ孔221が形成されている。ねじ孔221の内周面には、めねじが形成されている。連通孔108の位置では、マニホールドの気密を確保するため、図19に示すボルト孔109の位置の構成とは異なり、ねじ孔221は固定部220の下側表面まで達せず、固定部220を上下方向に貫通していない。
各連通孔108に挿入されたボルト22は、固定部220に形成された孔208まで達し、ボルト22の軸部226に形成されたねじ部224は、固定部220における孔208の下側に形成されたねじ孔221に螺合している。この状態において、ボルト22の軸部226は、上下方向(Z軸方向)に延びる姿勢となっている。また、フランジ部228は、軸部226に対して上側(Z軸正方向側)に位置しており、フランジ部228の座面229は、マニホールドの気密を確保するために配置された絶縁シート26を介して、上側のエンドプレート104の上側の表面に接している。
図18に示すように、補助器200の固定部220には、4つのボルト孔109に対応する位置に設けられた4つのねじ孔221と、4つの連通孔108に対応する位置に設けられた4つのねじ孔221との合計8つのねじ孔221が形成されており、各ねじ孔221にボルト22のねじ部224が螺合していることとなる。これにより、補助器200と燃料電池スタック100eとが固定され、発電モジュール20が締結される。
このように、本実施形態の発電モジュール20では、各ボルト22のフランジ部228の座面229が、上側のエンドプレート104の上側の表面に、直接、または、他の部材を介して接している。また、補助器200に複数のねじ孔221が形成されており、各ボルト22の軸部226に形成されたねじ部224が、補助器200の各ねじ孔221に螺合している。そのため、締結力は補助器200に直に発生することとなり、補助器200の一部分に締結応力が集中することが回避される。これにより、補助器200の局所的な変形を抑制することができ、ガス漏れや接触不良の発生を抑制することができる。
また、本実施形態の発電モジュール20では、上側のエンドプレート104付近の構成に関し、ボルト22の軸部226とフランジ部228とが一体の部材であるため、例えば、フランジ部228がボルト22と別体のナットで構成され、ボルト22の軸部226とナットとが螺合する構成と比較して、螺合箇所が少なくなるため、締結荷重の管理を容易にすることができると共に、長期使用における螺合箇所の緩みを抑制することができる。
また、本実施形態の発電モジュール20では、上下方向の位置に関し、ボルト孔109に挿入されたボルト22のねじ部224の下端の位置が、補助器200に形成されたねじ孔221の下端の位置と同じ位置となっている。そのため、ねじ部224の下端の位置がねじ孔221の下端の位置より上側である構成(ねじ孔221の途中までしかねじ部224が挿入されていない構成)と比較して、ねじ部224とねじ孔221との螺合部分の噛み数を一定に、かつ、より多くすることができるため、締結力の安定化を実現することができると共に、螺合箇所の耐久性を向上させることができる。また、ねじ部224の下端の位置がねじ孔221の下端の位置より下側である構成(ねじ孔221の下側からねじ部224の先端部が突出した構成)と比較して、ボルト22の軽量化を実現することができ、その結果、発電モジュール20の軽量化を実現することができる。
なお、ボルト22の熱膨張係数とエンドプレート104,106や補助器200の熱膨張係数とが近いほど、それぞれの部材の熱膨張量の差に起因する締結荷重の変動を抑制することができるため、好ましい。例えば、ボルト22がインコネル材により形成され、エンドプレート104,106や補助器200がステンレス材やアルミ添加ステンレス材により形成されることが好ましい。
なお、本実施形態におけるボルト22と、上側のエンドプレート104と、補助器200と、発電モジュール20とは、それぞれ、特許請求の範囲における締結部材と、第1の部材と、第2の部材と、燃料電池構造体とに相当する。
B−4.第2実施形態の変形例:
図20は、第2実施形態の変形例におけるホットモジュール10fの構成を示す説明図であり、図21は、第2実施形態の変形例における補助器200fの構成を示す説明図である。図20には、ホットモジュール10fの外観構成が示されており、図21には、補助器200fの上側の平面構成が示されている。図20および図21に示す変形例では、補助器200fの固定部220fの構成と、発電モジュール20fを締結するための構成が、上述した第2実施形態と異なっている。その他の構成については、上述した第2実施形態と同様であるため、同一の符号を付すことによってその説明を省略する。
図20および図21に示すように、第2実施形態の変形例では、補助器200fの固定部220fが、第2実施形態と同様に、補助器本体部210の側面から上下方向に直交する方向に、4つの連通孔108に対応する位置まで張り出している。図20および図21のXVI−XVIの位置およびXVII−XVIIの位置における発電モジュール20fの断面構成は、それぞれ、図16および図17に示す第2実施形態の発電モジュール20の断面構成と同様である。すなわち、各連通孔108の位置では、各連通孔108が補助器200fの固定部220fに形成された孔208と連通し、孔208の下側には孔208に連通するねじ孔221が形成され、各連通孔108に挿入されたボルト22は孔208まで達し、ボルト22の軸部226に形成されたねじ部224はねじ孔221に螺合している。
一方、図20および図21に示すように、第2実施形態の変形例では、補助器200fの固定部220fが、4つのボルト孔109に対応する位置までは張り出していない点が、第2実施形態と異なる。図20および図21のX−Xの位置における発電モジュール20fの断面構成は、図10に示す第1実施形態の断面構成と同様である。すなわち、各ボルト孔109の位置では、下側のエンドプレート106に、ボルト孔109に連通するねじ孔107が形成されており、ボルト孔109に挿入されたボルト22の軸部226に形成されたねじ部224は、下側のエンドプレート106に形成されたねじ孔107に螺合している。
このように、第2実施形態の変形例では、各連通孔108に挿入されたボルト22については、各ボルト22の軸部226に形成されたねじ部224が補助器200fの各ねじ孔221に螺合しているため、補助器200fの一部分に締結応力が集中することが回避され、補助器200fの局所的な変形を抑制することができ、ガス漏れや接触不良の発生を抑制することができる。また、各ボルト孔109に挿入されたボルト22については、各ボルト22の軸部226に形成されたねじ部224が下側のエンドプレート106の各ねじ孔107に螺合しているため、エンドプレート106の一部分に締結応力が集中することが回避され、エンドプレート106の局所的な変形を抑制することができ、ガス漏れや接触不良の発生を抑制することができる。
なお、第2実施形態の変形例におけるボルト22と、上側のエンドプレート104と、下側のエンドプレート106および補助器200fと、発電モジュール20fとは、それぞれ、特許請求の範囲における締結部材と、第1の部材と、第2の部材と、燃料電池構造体とに相当する。
C.その他の変形例:
本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
また、上記第1実施形態では、マニホールドとして機能する各連通孔108にボルト22が挿入されていないが、第2実施形態と同様に、各連通孔108にボルト22が挿入され、それらのボルト22がエンドプレート106に形成されたねじ孔に螺合しているとしてもよい。反対に、上記第2実施形態では、マニホールドとして機能する各連通孔108にもボルト22が挿入されているが、第1実施形態と同様に、各連通孔108にはボルト22が挿入されていないとしてもよい。なお、上記実施形態では、各ボルト22の軸部の外周面と各連通孔108の内周面との間の空間を各マニホールドとして利用しているが、これに代えて、各ボルト22の軸部に軸方向の孔を形成し、その孔を各マニホールドとして利用してもよい。
また、上記実施形態では、上側のエンドプレート104が、複数の発電単位102に対して配列方向の一方側に配置され、複数のボルト22のフランジ部228における座面229に直接、または、他の部材を介して接する第1の部材として機能しているが、他の部材が上記第1の部材として機能してもよい。また、上記第1実施形態では、下側のエンドプレート106が、複数の発電単位102に対して配列方向の他方側に配置され、複数のボルト22の軸部226に形成されたねじ部224に螺合する複数のねじ孔が形成された第2の部材として機能し、上記第2実施形態では、補助器200が上記第2の部材として機能するが、他の部材が上記第2の部材として機能してもよい。
また、上記実施形態において、ねじ孔107,221の内周面の全面にめねじが形成されている必要はなく、内周面の少なくとも一部にめねじが形成されていればよい。また、上記実施形態において、ねじ孔107,221がボルト22が挿入される側とは反対側まで貫通している構成を貫通しない構成に変更したり、反対に、ねじ孔107,221がボルト22が挿入される側とは反対側まで貫通していない構成を貫通している構成に変更してもよい。
また、上記実施形態では、すべてのボルト22について、ボルト22のねじ部224がエンドプレート104や補助器200に形成されたねじ孔107,221に螺合される構成としているが、少なくとも2つのボルト22について、そのような構成とすれば、少なくともそれらのボルト22の部分について、ガス漏れや接触不良の発生を抑制することができる。また、上記実施形態において、一部のボルト22と残りの一部のボルト22とで、上下方向のボルト22の向きが逆向きであるとしてもよい。例えば、上記第1実施形態では、すべてのボルト22が、ねじ部224が下側になる向きに配置されているが、一部のボルト22が、ねじ部224が上側になる向きに配置されてもよい。この場合には、当該一部のボルト22のねじ部224は、上側のエンドプレート104に形成されたねじ孔に螺合される。また、上述した第1実施形態の各変形例の特徴は、第2実施形態にも同様に適用可能である。
また、上記第2実施形態では、補助器本体部210の上面と固定部220の上面とによって、補助器200の最上面が構成されているが、固定部220の位置を下側にずらし、補助器200の最上面が補助器本体部210の上面によって構成されるように変形してもよい。この場合には、固定部220の上面は、燃料電池スタック100の下面に接しないが、固定部220のねじ孔221に螺合されたボルト22の締結力は、補助器本体部210の上面を介して燃料電池スタック100の下面に伝達される。
また、上記第2実施形態では、発電モジュール20が断熱容器30に収容されているとしているが、発電モジュール20が断熱容器30に収容されている必要はない。また、上記第2実施形態では、補助器200が、燃料電池スタック100から排出されたガスを燃焼させる一次燃焼室212と、一次燃焼室212で燃焼させたガスをさらに燃焼させるための二次燃焼室216と、原燃料ガスRFGを改質して燃料電池スタック100に供給する燃料ガスFGを生成する改質室214とを有しているが、補助器200は、一次燃焼室212と改質室214との少なくとも1つを有していればよい。
また、上記実施形態では、締結部材としてボルト22や、ボルト22とナット24との組み合わせを使用しているが、他の種類の締結部材を使用してもよい。
また、上記実施形態において、燃料電池スタック100に含まれる発電単位102の個数は、あくまで一例であり、発電単位102の個数は燃料電池スタック100に要求される出力電圧等に応じて適宜決められる。また、上記実施形態において、燃料電池スタック100の締結に使用されるボルト22の個数は、あくまで一例であり、ボルト22の個数は燃料電池スタック100に要求される締結力等に応じて適宜決められる。
また、上記実施形態では、エンドプレート104,106が出力端子として機能するとしているが、エンドプレート104,106の代わりに、エンドプレート104,106のそれぞれと接続された別部材(例えば、エンドプレート104,106のそれぞれと発電単位102との間に配置された導電板)が出力端子として機能するとしてもよい。
また、上記実施形態では、2つの発電単位102が隣接して配置されている場合には、1つのインターコネクタ150が隣接する2つの発電単位102に共有されるとしているが、このような場合でも、2つの発電単位102がそれぞれのインターコネクタ150を備えてもよい。また、上記実施形態では、燃料電池スタック100において最も上に位置する発電単位102の上側のインターコネクタ150や、最も下に位置する発電単位102の下側のインターコネクタ150は省略されているが、これらのインターコネクタ150を省略せずに設けてもよい。
また、上記実施形態において、燃料極側集電体144は、空気極側集電体134と同様の構成であってもよく、燃料極側集電体144と隣接するインターコネクタ150とが一体部材であってもよい。また、空気極側フレーム130ではなく燃料極側フレーム140が絶縁体であってもよい。また、空気極側フレーム130や燃料極側フレーム140は、多層構成であってもよい。
また、上記実施形態における各部材を形成する材料は、あくまで例示であり、各部材が他の材料により形成されてもよい。
また、上記実施形態において、都市ガスを改質して水素リッチな燃料ガスFGを得るとしているが、LPガスや灯油、メタノール、ガソリン等の他の原料から燃料ガスFGを得るとしてもよいし、燃料ガスFGとして純水素を利用してもよい。
また、上記実施形態において、電解質層112と空気極114との間に、例えばセリアにより形成された反応防止層を設け、電解質層112内のジルコニウム等と空気極114内のストロンチウム等とが反応することによる電解質層112と空気極114との間の電気抵抗の増大を抑制するとしてもよい。
また、上記実施形態では、固体酸化物形燃料電池(SOFC)を例に説明したが、本発明は、固体高分子形燃料電池(PEFC)、リン酸型燃料電池(PAFC)、溶融炭酸塩形燃料電池(MCFC)といった他のタイプの燃料電池にも適用可能である。
10:燃料電池ホットモジュール 20:発電モジュール 22:ボルト 24:ナット 26:絶縁シート 27:ガス通路部材 28:本体部 29:分岐部 30:断熱容器 100:燃料電池スタック 102:発電単位 104:エンドプレート 105:ねじ孔 106:エンドプレート 107:ねじ孔 108:連通孔 109:ボルト孔 110:単セル 112:電解質層 114:空気極 116:燃料極 120:セパレータ 121:孔 124:接合部 130:空気極側フレーム 131:孔 132:酸化剤ガス供給連通孔 133:酸化剤ガス排出連通孔 134:空気極側集電体 140:燃料極側フレーム 141:孔 142:燃料ガス供給連通孔 143:燃料ガス排出連通孔 144:燃料極側集電体 145:電極対向部 146:インターコネクタ対向部 147:連接部 149:スペーサー 150:インターコネクタ 161:酸化剤ガス導入マニホールド 162:酸化剤ガス排出マニホールド 166:空気室 171:燃料ガス導入マニホールド 172:燃料ガス排出マニホールド 176:燃料室 200:補助器 208:孔 210:補助器本体部 212:一次燃焼室 214:改質室 216:二次燃焼室 218:流路 220:固定部 221:ねじ孔 222:隔壁 224:ねじ部 226:軸部 227:ねじ部 228:フランジ部 229:座面 232:酸化剤ガス導入配管 234:原燃料ガス導入配管 236:改質水導入配管 238:排ガス排出配管 249:座面

Claims (5)

  1. 第1の方向に並べて配置された複数の発電単位と、
    前記第1の方向に延びると共にねじ部が形成された軸部と、前記軸部に対して前記第1の方向の一方側に位置するフランジ部と、をそれぞれ含む複数の締結部材と、
    を備え、前記複数の締結部材で締結された燃料電池構造体において、さらに、
    前記複数の発電単位に対して前記第1の方向の前記一方側に配置され、前記複数の締結部材の前記フランジ部における前記第1の方向の他方側の面である座面に直接、または、他の部材を介して接する第1の部材と、
    前記複数の発電単位に対して前記第1の方向の前記他方側に配置され、前記複数の締結部材の前記軸部に形成された前記ねじ部に螺合する複数のねじ孔が形成された第2の部材と、を備えることを特徴とする、燃料電池構造体。
  2. 請求項1に記載の燃料電池構造体において、
    前記締結部材の前記軸部と前記フランジ部とは一体の部材であることを特徴とする、燃料電池構造体。
  3. 請求項1または請求項2に記載の燃料電池構造体において、
    前記第1の方向の前記他方側の前記ねじ部の端の前記第1の方向における位置は、前記第1の方向の前記他方側の前記ねじ孔の端の前記第1の方向における位置と比べて、同じか、または、前記第1の方向の前記他方側であることを特徴とする、燃料電池構造体。
  4. 請求項1から請求項3までのいずれか一項に記載の燃料電池構造体において、
    前記燃料電池構造体は、前記複数の発電単位と、前記第1の方向の端部を構成する前記第1の部材および前記第2の部材とを備える燃料電池スタックであり、
    前記第1の部材および前記第2の部材は、平板状部材であることを特徴とする、燃料電池構造体。
  5. 請求項1から請求項3までのいずれか一項に記載の燃料電池構造体において、
    前記燃料電池構造体は、
    前記複数の発電単位を備える燃料電池スタックと、
    前記燃料電池スタックから排出されたガスを燃焼させる燃焼室と、原燃料ガスを改質して前記燃料電池スタックに供給する燃料ガスを生成する改質室と、の少なくとも一方が形成された補助器と、
    を備える発電モジュールであり、
    前記第2の部材は、前記補助器であることを特徴とする、燃料電池構造体。
JP2015108822A 2015-05-28 2015-05-28 燃料電池構造体 Active JP6667214B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015108822A JP6667214B2 (ja) 2015-05-28 2015-05-28 燃料電池構造体
PCT/JP2016/002498 WO2016189852A1 (ja) 2015-05-28 2016-05-23 燃料電池構造体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015108822A JP6667214B2 (ja) 2015-05-28 2015-05-28 燃料電池構造体

Publications (2)

Publication Number Publication Date
JP2016225078A true JP2016225078A (ja) 2016-12-28
JP6667214B2 JP6667214B2 (ja) 2020-03-18

Family

ID=57392693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015108822A Active JP6667214B2 (ja) 2015-05-28 2015-05-28 燃料電池構造体

Country Status (2)

Country Link
JP (1) JP6667214B2 (ja)
WO (1) WO2016189852A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327105A (ja) * 2003-04-22 2004-11-18 Sony Corp 燃料電池および燃料電池の設計方法
JP2005166386A (ja) * 2003-12-02 2005-06-23 Nissan Motor Co Ltd 燃料電池スタックおよびその締付方法
JP2006302900A (ja) * 2005-04-20 2006-11-02 Samsung Sdi Co Ltd 燃料電池システム用スタック
JP2007273097A (ja) * 2006-03-30 2007-10-18 Nissan Motor Co Ltd 燃料電池スタック構造体及びその製造方法
WO2007138984A1 (ja) * 2006-05-29 2007-12-06 Ngk Spark Plug Co., Ltd. 固体電解質形燃料電池スタック
JP2008078148A (ja) * 2007-10-24 2008-04-03 Toyota Motor Corp 燃料電池
JP2008123774A (ja) * 2006-11-10 2008-05-29 Casio Comput Co Ltd 締結部材、セルスタック、燃料電池装置及び電子機器
JP2009224211A (ja) * 2008-03-17 2009-10-01 Casio Comput Co Ltd 加湿器、発電セルシステム、燃料電池装置及び電子機器。
JP2010192362A (ja) * 2009-02-20 2010-09-02 Nissan Motor Co Ltd 燃料電池
JP2011076762A (ja) * 2009-09-29 2011-04-14 Ngk Spark Plug Co Ltd 燃料電池スタック及び燃料電池
JP2011192552A (ja) * 2010-03-15 2011-09-29 Honda Motor Co Ltd 燃料電池スタック
JP2013020886A (ja) * 2011-07-13 2013-01-31 Honda Motor Co Ltd 燃料電池スタック
JP2013175448A (ja) * 2012-01-23 2013-09-05 Ngk Spark Plug Co Ltd 燃料電池システム
WO2014208739A1 (ja) * 2013-06-28 2014-12-31 日本特殊陶業株式会社 燃料電池及びその製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327105A (ja) * 2003-04-22 2004-11-18 Sony Corp 燃料電池および燃料電池の設計方法
JP2005166386A (ja) * 2003-12-02 2005-06-23 Nissan Motor Co Ltd 燃料電池スタックおよびその締付方法
JP2006302900A (ja) * 2005-04-20 2006-11-02 Samsung Sdi Co Ltd 燃料電池システム用スタック
JP2007273097A (ja) * 2006-03-30 2007-10-18 Nissan Motor Co Ltd 燃料電池スタック構造体及びその製造方法
WO2007138984A1 (ja) * 2006-05-29 2007-12-06 Ngk Spark Plug Co., Ltd. 固体電解質形燃料電池スタック
JP2008123774A (ja) * 2006-11-10 2008-05-29 Casio Comput Co Ltd 締結部材、セルスタック、燃料電池装置及び電子機器
JP2008078148A (ja) * 2007-10-24 2008-04-03 Toyota Motor Corp 燃料電池
JP2009224211A (ja) * 2008-03-17 2009-10-01 Casio Comput Co Ltd 加湿器、発電セルシステム、燃料電池装置及び電子機器。
JP2010192362A (ja) * 2009-02-20 2010-09-02 Nissan Motor Co Ltd 燃料電池
JP2011076762A (ja) * 2009-09-29 2011-04-14 Ngk Spark Plug Co Ltd 燃料電池スタック及び燃料電池
JP2011192552A (ja) * 2010-03-15 2011-09-29 Honda Motor Co Ltd 燃料電池スタック
JP2013020886A (ja) * 2011-07-13 2013-01-31 Honda Motor Co Ltd 燃料電池スタック
JP2013175448A (ja) * 2012-01-23 2013-09-05 Ngk Spark Plug Co Ltd 燃料電池システム
WO2014208739A1 (ja) * 2013-06-28 2014-12-31 日本特殊陶業株式会社 燃料電池及びその製造方法

Also Published As

Publication number Publication date
JP6667214B2 (ja) 2020-03-18
WO2016189852A1 (ja) 2016-12-01

Similar Documents

Publication Publication Date Title
US11394039B2 (en) Electro-chemical reaction unit having glass seal member composed of vertically long crystal grains, and electro-chemical reaction cell stack, and electro-chemical reaction unit production method comprising same
JP6452809B2 (ja) 燃料電池発電単位および燃料電池スタック
JP6667278B2 (ja) 電気化学反応セルスタック
JP6917416B2 (ja) 電気化学反応セルスタック
JP6873944B2 (ja) 電気化学反応セルスタック
JP6407069B2 (ja) 燃料電池スタック
JP7194242B1 (ja) 電気化学反応セルスタック
JP6527761B2 (ja) インターコネクタ−燃料電池単セル複合体および燃料電池スタック
JP6945035B1 (ja) 電気化学反応セルスタック
JP2018041569A (ja) 電気化学反応単位および電気化学反応セルスタック
WO2016189852A1 (ja) 燃料電池構造体
JP2016207270A (ja) 燃料電池スタックおよび発電モジュール
KR102318475B1 (ko) 전기 화학 반응 셀 스택
JP2022017722A (ja) 電気化学反応セルスタック
WO2016175231A1 (ja) 燃料電池スタック
JP6389959B2 (ja) 燃料電池スタックおよび燃料電池スタックの製造方法
JP7244470B2 (ja) 燃料電池発電モジュール
JP2018147709A (ja) 電気化学反応構造体
JP2018014246A (ja) 電気化学反応単位および電気化学反応セルスタック
JP2019029240A (ja) 燃料電池発電単位および燃料電池スタック
JP2023139360A (ja) 複合体
JP6959040B2 (ja) スタック用プレート、電気化学反応セルスタック、および、電気化学反応セルスタックの製造方法
JP6827672B2 (ja) 電気化学反応セルスタック
JP2024056240A (ja) 電気化学反応セルスタック
JP2019003795A (ja) 電気化学反応単位および電気化学反応セルスタック

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190918

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20191224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200225

R150 Certificate of patent or registration of utility model

Ref document number: 6667214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250