JP2016222887A - 熱線遮蔽微粒子分散体および熱線遮蔽合わせ透明基材 - Google Patents
熱線遮蔽微粒子分散体および熱線遮蔽合わせ透明基材 Download PDFInfo
- Publication number
- JP2016222887A JP2016222887A JP2015227129A JP2015227129A JP2016222887A JP 2016222887 A JP2016222887 A JP 2016222887A JP 2015227129 A JP2015227129 A JP 2015227129A JP 2015227129 A JP2015227129 A JP 2015227129A JP 2016222887 A JP2016222887 A JP 2016222887A
- Authority
- JP
- Japan
- Prior art keywords
- heat ray
- fine particles
- ray shielding
- metal fine
- fine particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Powder Metallurgy (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Laminated Bodies (AREA)
- Joining Of Glass To Other Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
【解決手段】少なくとも熱線遮蔽微粒子と熱可塑性樹脂とを含む、熱線遮蔽微粒子分散体であって、前記熱線遮蔽微粒子は、ディスク形状および/またはロッド形状を持つ金属微粒子の集合体であり、前記金属微粒子の形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、c(ただし、a≧b≧cとする。)としたとき、前記金属微粒子のアスペクト比a/cの値の平均値、標準偏差、分布、等が所定範囲にあり、前記金属が、銀または銀合金であることを特徴とする熱線遮蔽微粒子分散体、およびそれを用いた熱線遮蔽合わせ透明基材を提供する。
【選択図】なし
Description
一方、プラズマディスプレイ装置から放出される近赤外線は、プラズマディスプレイ装置の機構に伴うキセノン原子の励起に起因するものであり、そのピーク波長は700〜900nmにある。従って、特許文献3および4においては、波長700〜900nmの近赤外線に対して吸収を持つ銀微粒子であれば、当該特許文献の目的を満足するものであることによると考えられる。
金属微粒子の集合体に含有される金属微粒子がディスク状あるいはロッド状であり、当該粒子形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、c(ただし、a≧b≧cとする。)としたとき、前記集合体に含有される金属微粒子のアスペクト比a/cの統計値が所定範囲内にあるとき、日射透過率を担保しながら、太陽光の持つ波長780〜2500nmの近赤外光のうち広い範囲を遮蔽できることを知見した。そして、少なくとも熱線遮蔽微粒子の集合体と熱可塑性樹脂とを含む熱線遮蔽微粒子分散体、および、複数枚の透明基材間に当該熱線遮蔽微粒子分散体が存在している熱線遮蔽合わせ透明基材に想到して、本発明を完成したものである。
少なくとも熱線遮蔽微粒子と熱可塑性樹脂とを含む、熱線遮蔽微粒子分散体であって、
前記熱線遮蔽微粒子は、ディスク形状を持つ金属微粒子の集合体であり、
前記金属微粒子の形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、c(ただし、a≧b≧cとする。)としたとき、
前記金属微粒子のアスペクト比a/cにおいて、a/cの平均値が9.0以上40.0以下であり、a/cの標準偏差が3.0以上であり、
a/cの値が、少なくとも10.0から30.0の範囲において連続する分布を持ち、
前記集合体において、a/cの値が1.0以上9.0未満である金属微粒子の個数割合が、10%以下であり、
前記金属が、銀または銀合金である、ことを特徴とする熱線遮蔽微粒子分散体である。
第2の発明は、
少なくとも熱線遮蔽微粒子と熱可塑性樹脂とを含む、熱線遮蔽微粒子分散体であって、
前記熱線遮蔽微粒子は、ロッド形状を持つ金属微粒子の集合体であり、
前記金属微粒子の形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、c(ただし、a≧b≧cとする。)としたとき、
前記金属微粒子のアスペクト比a/cにおいて、a/cの平均値が4.0以上10.0以下であり、a/cの標準偏差が1.0以上であり、
a/cの値が、少なくとも5.0から8.0の範囲において連続する分布を持ち、
前記集合体において、a/cの値が1.0以上4.0未満である金属微粒子の個数割合が10%以下であり、
前記金属が、銀または銀合金である、ことを特徴とする熱線遮蔽微粒子分散体である。
第3の発明は、
少なくとも熱線遮蔽微粒子と熱可塑性樹脂とを含む、熱線遮蔽微粒子分散体であって、
前記熱線遮蔽微粒子として、第1の発明に記載の熱線遮蔽微粒子と第2の発明に記載の熱線遮蔽微粒子とを含む、ことを特徴とする熱線遮蔽微粒子分散体である。
第4の発明は、
前記銀合金が、白金、ルテニウム、金、パラジウム、イリジウム、銅、ニッケル、レニウム、オスニウム、ロジウムから選択される1種類以上の元素と、銀元素の合金である、ことを特徴とする熱線遮蔽微粒子分散体である。
第5の発明は、
前記金属微粒子の平均分散粒子径が1nm以上100nm以下である、ことを特徴とする熱線遮蔽微粒子分散体である。
第6の発明は、
前記熱可塑性樹脂が、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアセタール樹脂という樹脂群から選択される1種の樹脂、
または、前記樹脂群から選択される2種以上の樹脂の混合物、
または、前記樹脂群から選択される2種以上の樹脂の共重合体、のいずれかである、ことを特徴とする熱線遮蔽微粒子分散体である。
第7の発明は、
前記熱線遮蔽微粒子を0.5質量%以上80.0質量%以下含む、ことを特徴とする熱線遮蔽微粒子分散体である。
第8の発明は、
前記熱線遮蔽微粒子分散体が、シート形状、ボード形状またはフィルム形状である、ことを特徴とする熱線遮蔽微粒子分散体である。
第9の発明は、
前記熱線遮蔽微粒子分散体に含まれる単位投影面積あたりの前記熱線遮蔽微粒子の含有量が0.01g/m2以上0.5g/m2以下である、ことを特徴とする熱線遮蔽微粒子分散体である。
第10の発明は、
複数枚の透明基材間に、第1から第9の発明のいずれかに記載の熱線遮蔽微粒子分散体が存在している、ことを特徴とする熱線遮蔽合わせ透明基材である。
金属微粒子はその誘電特性に起因する光吸収を持つ。可視〜近赤外波長での吸収に限定して述べれば、具体的には、その電子構造に起因するバンド間遷移によるものと、プラズモン共鳴と呼ばれる、自由電子が光の電場と共鳴する機構によるものがある。
バンド間遷移は金属組成が決まるとその吸収波長がほぼ決まるのに対して、プラズモン共鳴吸収は金属微粒子の大きさや形状に依存して変化するため波長調整を行ないやすく、従って工業的利用対象となり得る。金属微粒子に電磁波が照射される時、この粒子径がおおむね100nm以下であるときには、局在表面プラズモン共鳴と呼ばれる強力な光吸収が発現することが知られている。金属微粒子が銀微粒子もしくは銀合金微粒子である場合、金属微粒子の粒子径がおおむね40nm以下になると、光の散乱が小さくなる一方で、局在表面プラズモン共鳴による光の吸収は強力になり、その吸収ピークは可視光の短波長側、おおよそ波長400〜450nmに位置する。
そして、金属微粒子のサイズが変化するとプラズモン共鳴波長は変化し、また共鳴の大きさも変化する。
金属微粒子が球状からはずれて細長いロッド状や扁平なディスク状となるとき、プラズモン共鳴による吸収波長位置は移動したり、2つに分離したりする。例えば扁平なディスク状粒子において、アスペクト比[長軸長]/[短軸長]の値が大きくなるにつれて、局在表面プラズモン共鳴波長は2つに分離しながら主要部は長波長側へ移動する。
短波長側へ分離した吸収は、ディスク状微粒子の短軸方向への共鳴に対応し、おおよそ波長350〜400nm前後の紫外光〜可視光短波長の領域へと移動する。
他方、長波長側へ分離した吸収は、ディスク状微粒子の長軸方向への共鳴に対応し、アスペクト比が大きくなるにつれて波長400〜780nmの可視光領域へと吸収が移動する。そして、アスペクト比がより大きくなると吸収ピークは、波長780nmより長い波長を持つ近赤外光領域へと移動する。この結果、金属微粒子のアスペクト比がおおむね9.0以上のとき、長軸方向への共鳴に対応する吸収ピークは、波長780nm以降の近赤外光領域へ移動する。
一方、細長いロッド状粒子においても、アスペクト比[長軸長]/[短軸長]の値が大きくなるにつれて、局在表面プラズモン共鳴波長は2つに分離しながら主要部は長波長側へ移動する。
具体的には、ロッド状の場合、金属微粒子のアスペクト比がおおむね4.0以上のとき、長軸方向への共鳴に対応する吸収ピークは、波長780nm以降の近赤外光領域へ移動する。
上述した、単一形状の金属微粒子が持つ吸収は、光の波長に対して選択性が非常に高く、鋭く狭い吸収ピークを有する。従って、太陽光の持つ波長780〜2500nmのスペクトルを広い範囲にわたって効率よくカットし、可視光透過率を保ちつつ日射透過率を下げようとする日射遮蔽用途には不適であった。
本発明に係る金属微粒子は、近赤外領域においてプラズモン吸収による光の吸収を発現するものである。ここで、金属は銀または銀合金であることが好ましい。
尚、本発明において「銀合金」とは、銀と、銀以外の一種類以上の金属元素との合金を意味する。尤も、「銀合金」とは、質量割合、モル割合および/または体積割合において、銀の含有比率が、銀以外の金属の含有比率を上回っていることを必ずしも意味しない。すなわち、全組成中において、質量割合、モル割合および/または体積割合における銀以外の金属の割合が、銀の割合を上回っているとしても、その組成中に銀が含有されている限り、本明細書においては「銀合金」とする。従って、選択される1種類以上の元素の割合は、銀合金微粒子の用途、作業条件等に応じて適宜決定すれば良いが、概ね、1モル%以上70モル%以下含めれば良い。
本発明に係る金属微粒子の集合体は、所定の範囲の粒子形状を有する金属微粒子の集合体で構成されている。
尚、後述する金属微粒子の製造方法、および、金属微粒子分散体の製造方法で説明するように、金属微粒子の集合体に含有される金属微粒子の特徴は、金属微粒子分散体中の金属微粒子の特徴や、金属微粒子分散液中の金属微粒子の特徴と一致するものである。
一方、微粒子の形状がロッド状である場合は、金属微粒子の集合体であって、前記集合体に含有される金属微粒子の粒子形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、c(ただし、a≧b≧cとする。)としたとき、前記集合体に含有される金属微粒子のアスペクト比a/cの統計値において、a/cの平均値が4.0以上10.0以下であり、a/cの標準偏差が1.0以上であり、アスペクト比a/cの値が、少なくとも5.0から8.0の範囲において連続する分布を持ち、当該アスペクト比a/cの値が1.0以上4.0未満である金属微粒子の個数割合が、前記集合体において10%を超えず、前記金属が銀もしくは銀合金から選ばれる1種類以上である金属微粒子の集合体を用いることで、可視光の透明性に優れ、太陽光の持つ波長780〜2500nmの近赤外光のうち広い範囲を遮蔽する、良好な日射遮蔽特性を発揮する。
具体的には、当該3次元画像から100個以上、好ましくは200個以上の金属微粒子を識別する。識別された個々の金属微粒子について、粒子形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、cとする(ただし、a≧b≧cとする)。そして最長軸の半軸長aと最短軸の半軸長cを用いて、アスペクト比a/cを算出することで求められる。
そして、ディスク状と判別された粒子群におけるアスペクト比a/cの統計値において、a/cの平均値が9.0以上40.0以下であり、a/cの標準偏差が3.0以上であり、アスペクト比a/cの値が、少なくとも10.0から30.0の範囲において連続する分布を持ち、当該アスペクト比a/cの値が1.0以上9.0未満である金属微粒子の個数割合が、前記集合体において10%を超えなければ、可視光の透明性に優れ、太陽光の持つ波長780〜2500nmの近赤外光のうち広い範囲を遮蔽する、良好な日射遮蔽特性を発揮する。
一方、ロッド状と判別された粒子群におけるアスペクト比a/cの統計値において、a/cの平均値が4.0以上10.0以下であり、a/cの標準偏差が1.0以上であり、アスペクト比a/cの値が、少なくとも5.0から8.0の範囲において連続する分布を持ち、当該アスペクト比a/cの値が1.0以上4.0未満である金属微粒子の個数割合が、前記集合体において10%を超えず、前記金属が銀もしくは銀合金から選ばれる1種類以上である金属微粒子の集合体を用いることで、可視光の透明性に優れ、太陽光の持つ波長780〜2500nmの近赤外光のうち広い範囲を遮蔽する、良好な日射遮蔽特性を発揮する。
本発明に係る金属微粒子の集合体の製造方法例について説明する。
尚、本発明に係る金属微粒子の集合体の製造方法は、当該製造方法例に限定される訳ではなく、本発明に係る金属微粒子の集合体を構成する微粒子の形状的特徴や存在割合を実施出来る方法であれば、適用できる。
一方、初期の粒径が大きい微粒子を用いる程、後述する処理を経た後に、にアスペクト比の大きい粒子となる。
従って、本発明にかかる微粒子の集合体を製造するための、初期の金属微粒子の集合体において、当該集合体に含まれる金属微粒子の粒径を適切に選択することにより、上述した本発明に係るアスペクト比の構成を有する金属微粒子の集合体を製造することができる。
以下、適切な粒径分布を持つディスク状の金属微粒子集合体の製造方法の、好ましい1例について説明する。
上述した球状金属微粒子、分散メディア(本発明において、単に「ビーズ」と記載することがある。)、分散媒体(例えば、イソプロピルアルコール、エタノール、1−メトキシ−2−プロパノール、ジメチルケトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、プロピレングリコールモノメチルエーテルアセテート、酢酸n−ブチルなどの有機溶媒、または水を挙げることができる。)、および所望により適宜な分散剤(例えば、高分子系分散剤を挙げることができる。)とを、ミル(例えば、溶媒拡散ミルを挙げることができる。)へ装填し、ビーズミル分散を行う。
このとき、ミルの周速を通常の分散時よりも下げて運転(例えば、通常運転時の0.3〜0.5倍程度で運転する。)し、低いせん断力による湿式分散を行う。
具体的には粉砕メディアとして、ジルコニアビーズ、イットリア添加ジルコニアビーズ、アルミナビーズ、窒化ケイ素ビーズなどが適している。
また、本発明にかかる球状金属微粒子は非常に微細なため、金属微粒子同士が凝集を起こしてしまうことがある。ここで、微細な粒径を持つビーズを用いることで、金属微粒子同士の凝集を効率よく解膠することができるためである。具体的には、0.3mm以下の粒径を持つビーズが好ましく、0.1mm以下の粒径を持つビーズがより好ましい。
ロッド形状を有する金属微粒子の製造方法としては、いくつか公知の方法があるが、本発明に係るロッド形状を有する金属微粒子の集合体の製造に適した製造方法例について説明する。
例えば、金属微粒子を所定の基板表面上に担持させた後、誘電体媒質中に浸漬する。そして、当該金属微粒子のプラズマ振動を誘起する偏光を照射し、基板表面で金属微粒子をプラズマ振動励起に対応させて線状に結合させ、一方、基板にバイアス電圧を印加し、誘電体媒質中の金属イオンを析出伸張させることによって、所定の金属からなる微細ロッドを固体表面に形成する方法(例えば、特開2001−064794号公報参照。)を用いることができる。
本発明に係る金属微粒子の集合体に含有される微粒子の平均粒子径は、1nm以上100nm以下であることが好ましい。
当該平均粒子径が100nm以下であれば、後述する金属微粒子分散体を製造したとき、散乱により光を完全に遮蔽することが無く、可視光領域の視認性を担保し、同時に効率よく透明性を保持することができるからである。
また、当該平均粒子径が1nm以上あれば、当該金属微粒子の工業的生産は容易であるからである。
当該金属微粒子による散乱の低減を考慮するのであれば、金属微粒子の平均分散粒子径は100nm以下がよい。この理由は、金属微粒子の分散粒子径が小さければ、幾何学散乱、または、ミー散乱による波長400nm〜780nmの可視光線領域における光の散乱が低減されるからである。当該光の散乱が低減される結果、後述する金属微粒子分散体が曇りガラスのようになって、鮮明な透明性が得られなくなるのを回避することが出来る。
また、金属微粒子の表面を、Si、Ti、Zr、Alのいずれか1種類以上の元素を含有する酸化物で被覆すれば、耐候性をより向上させることが出来、好ましい。
本発明に係る銀微粒子や銀合金微粒子といった金属微粒子の集合体を、液状の媒体中に分散させることで、本発明に係る金属微粒子分散液を得ることが出来る。
当該金属微粒子分散液は、日射遮蔽用のインクとして用いることができ、後述する金属微粒子分散体、日射遮蔽用構造体へも好適に適用できるものである。
以下、本発明に係る金属微粒子分散液とその製造方法を、(1)媒体、(2)分散剤、カップリング剤、界面活性剤、(3)金属微粒子とその含有量、の順で説明する。なお、本発明において、金属微粒子分散液を、単に「分散液」と記載する場合がある。
当該金属微粒子分散液の媒体には、金属微粒子分散液の分散性を保つための機能と、金属微粒子分散液を用いる際に欠陥を生じさせないための機能が要求される。
当該媒体としては水、有機溶媒、油脂、液状樹脂、液状のプラスチック用可塑剤、または、これらから選択される2種以上の混合物を選択し金属微粒子分散液を製造することができる。上記の要求を満たす有機溶媒としては、アルコール系、ケトン系、炭化水素系、グリコール系、水系など、種々のものを選択することが可能である。具体的には、メタノール、エタノール、1−プロパノール、イソプロパノール、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコールなどのアルコール系溶剤;アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロンなどのケトン系溶剤;3−メチル−メトキシ−プロピオネートなどのエステル系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールイソプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテートなどのグリコール誘導体;フォルムアミド、N−メチルフォルムアミド、ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドンなどのアミド類;トルエン、キシレンなどの芳香族炭化水素類;エチレンクロライド、クロルベンゼンなどのハロゲン化炭化水素類などを挙げることができる。これらの中でも極性の低い有機溶剤が好ましく、特に、イソプロピルアルコール、エタノール、1−メトキシ−2−プロパノール、ジメチルケトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、プロピレングリコールモノメチルエーテルアセテート、酢酸n−ブチルなどがより好ましい。これらの溶媒は1種または2種以上を組み合わせて用いることができる。
分散剤、カップリング剤、界面活性剤は用途に合わせて選定可能であるが、アミンを含有する基、水酸基、カルボキシル基、または、エポキシ基を官能基として有することが好ましい。これらの官能基は、金属微粒子の表面に吸着し、金属微粒子集合体の凝集を防ぎ、後述する金属微粒子分散体中でも金属微粒子を均一に分散させる効果を持つ。
均一な金属微粒子分散液を得るために、各種添加剤や分散剤を添加したり、pH調整したりしても良い。
当該金属微粒子分散液中における金属微粒子の平均分散粒子径は、1nm以上100nm以下であることが好ましい。
平均分散粒子径が100nm以下であれば、当該金属微粒子分散液中を透過する光を散乱することがなく、透明性を担保できるからである。また、金属微粒子の平均分散粒子径が1nm以上あれば、当該金属微粒子分散液の工業的生産は容易であるからである。
本発明に係る金属微粒子分散液は、吸収ピーク位置の光の吸光度に対する波長550nmの光の吸光度に対する比[(吸収ピーク位置の光の吸光度)/(波長550nmの吸光度)]の値が5.0以上12.0以下であるという、後述する金属微粒子分散体合わせ透明基材や赤外線吸収ガラス、赤外線吸収フィルム等に最適な、優れた光学的特性を有していた。
尚、当該測定において、金属微粒子分散液の透過率の調整は、その分散溶媒または分散溶媒と相溶性を有する適宜な溶媒で希釈することにより、容易になされる。
本発明に係る金属微粒子分散体とその製造方法について、(1)金属微粒子分散体、(2)金属微粒子分散体の製造方法、の順に説明する。
本発明に係る金属微粒子分散体は、前記金属微粒子と、熱可塑性樹脂またはUV硬化性樹脂とからなる。
熱可塑性樹脂としては特に制限はないが、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアセタール樹脂という樹脂群から選択される1種の樹脂、
または、前記樹脂群から選択される2種以上の樹脂の混合物、
または、前記樹脂群から選択される2種以上の樹脂の共重合体、のいずれかであることが好ましい。
一方、UV硬化性樹脂としては特に制限はないが、例えばアクリル系UV硬化性樹脂を好適に用いることができる。
また、金属微粒子分散体中に分散して含まれる金属微粒子の量は、0.001質量%以上80.0質量%以下含むことが好ましく、0.01質量%以上70質量%以下であることがより好ましい。金属微粒子が0.001質量%上あれば、金属微粒子分散体が必要な近赤外線遮蔽効果を容易に得ることができる。また、金属微粒子が80質量%以下であれば、金属微粒子分散体において熱可塑性樹脂成分の割合を稼ぐことができ、強度を担保することができる。
金属微粒子分散体は、シート形状、ボード形状またはフィルム形状へ加工することが出来、様々な用途に適用できる。
金属微粒子分散液と熱可塑性樹脂あるいは可塑剤を混合後、溶媒成分を除去することで、熱可塑性樹脂中及び/または分散剤中に金属微粒子が高濃度に分散した分散体である金属微粒子分散粉(本発明において単に「分散粉」と記載することがある。)や、可塑剤中に金属微粒子が高濃度に分散した分散液(本発明において単に「可塑剤分散液」と記載することがある。)を得ることが出来る。金属微粒子分散液から溶媒成分を除去する方法としては、当該金属微粒子分散液を減圧乾燥することが好ましい。具体的には、金属微粒子分散液を攪拌しながら減圧乾燥し、分散粉もしくは可塑剤分散液と溶媒成分とを分離する。当該減圧乾燥に用いる装置としては、真空攪拌型の乾燥機があげられるが、上記機能を有する装置であれば良く、特に限定されない。また、乾燥工程の減圧の際の圧力値は適宜選択される。
また、金属微粒子分散液や金属微粒子分散粉を樹脂中に分散させ、当該樹脂をペレット化することで、マスターバッチを得ることが出来る。
前記金属微粒子分散粉や金属微粒子分散液、またはマスターバッチを透明樹脂中へ均一に混合することにより、本発明に係るシート形状、ボード形状またはフィルム形状の金属微粒子分散体を製造出来る。当該シート形状、ボード形状またはフィルム形状の金属微粒子分散体からは、金属微粒子分散体合わせ透明基材、赤外線吸収フィルム、赤外線吸収ガラスを製造できる。
具体的には、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアセタール樹脂といった樹脂群から選択される樹脂、または当該樹脂群から選択される2種以上の樹脂の混合物、または当該樹脂群から選択される2種以上の樹脂の共重合体から、好ましい樹脂の選択を行うことが出来る。
可塑剤としては、本発明に係る熱可塑性樹脂に対して可塑剤として用いられる物質を用いることができる。例えばポリビニルアセタール樹脂で構成された赤外線吸収フィルムに用いられる可塑剤としては、一価アルコールと有機酸エステルとの化合物である可塑剤、多価アルコール有機酸エステル化合物等のエステル系である可塑剤、有機リン酸系可塑剤等のリン酸系である可塑剤が挙げられる。いずれの可塑剤も、室温で液状であることが好ましい。なかでも、多価アルコールと脂肪酸から合成されたエステル化合物である可塑剤が好ましい。
シート状またはフィルム状の金属微粒子分散体の形成方法には、公知の方法を用いることが出来る。例えば、カレンダーロール法、押出法、キャスティング法、インフレーション法等を用いることができる。
シート形状、ボード形状またはフィルム形状の金属微粒子分散体を、板ガラスまたはプラスチック等の材質からなる複数枚の透明基材間に、中間層として介在させて成る金属微粒子分散体合わせ透明基材について説明する。
金属微粒子分散体合わせ透明基材は、中間層をその両側から透明基材を用いて挟み合わせたものである。当該透明基材としては、可視光領域において透明な板ガラス、または、板状のプラスチック、ボード状のプラスチック、またはフィルム状のプラスチックが用いられる。プラスチックの材質は、特に限定されるものではなく用途に応じて選択可能であり、ポリカーボネート樹脂、アクリル樹脂、ポリエチレンテレフタレート樹脂、PET樹脂、ポリアミド樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、等が使用可能である。
本実施例に係る膜の光学特性は、分光光度計(日立製作所(株)製U−4100)を用いて測定した。可視光透過率ならびに日射透過率は、JIS R 3106に準拠して測定を行った。
粒径にばらつきを有する公知の銀の球状粒子(粒子径が5〜23nmの範囲でばらつき、平均粒子径は18nmである。本発明において「微粒子A」と記載する場合がある)を準備した。
微粒子Aを3重量部、トルエン87重量部、分散剤(カルボキシル基を有する酸価10.5mgKOH/gのアクリル系分散剤である。本発明において「分散剤a」と記載する場合がある。)10重量部とを混合し、3kgのスラリーを調製した。このスラリーをビーズと共にビーズミルへ投入し、スラリーを循環させて、5時間分散処理を行った。
得られた実施例1に係る熱線遮蔽シートの光学的特性を分光光度計により測定した。そして透過率曲線を得た。透過率曲線から、JIS R 3106に基づいて可視光透過率と日射透過率を求めた。求められた可視光透過率は82.7%、日射透過率は51.2%であった。
以上の結果を表1に示す。
微粒子Aの代替として、粒径にばらつきを持つ公知の銀の球状粒子(粒子径が15〜21nmの範囲でばらつき、平均粒子径は17nmである。本発明において「微粒子B」と記載する場合がある。)を用いた以外は、実施例1と同様にして実施例2にかかる銀微粒子の分散液(本発明において「分散液B」と記載する場合がある。)を得た。
以上の結果を表1に示した。
微粒子Aの代替として、粒径にばらつきを持つ公知の銀の球状粒子(粒子径が19〜35nmの範囲でばらつき、平均粒子径は27nmである。本発明において「微粒子C」と記載する場合がある。)を用いた以外は、実施例1と同様にして実施例3にかかる銀微粒子の分散液(本発明において「分散液C」と記載する場合がある。)を得た。
以上の結果を表1に示した。
微粒子Aの代替として、粒径にばらつきを持つ公知の銀の球状粒子(粒子径が20〜28nmの範囲でばらつき、平均粒子径は24nmである。本発明において「微粒子D」と記載する場合がある)を用いた以外は、実施例1と同様にして実施例4にかかる銀微粒子の分散液(本発明において「分散液D」と記載する場合がある。)を得た。
以上の結果を表1に示した。
微粒子Aの代替として、粒径にばらつきを持つ公知の銀−金合金(合金中に存在する金原子のモル比率[合金微粒子に含まれる金原子の物質量]/[合金微粒子に含まれる原子の全物質量]は10原子%)の球状粒子(粒子径が16〜27nmの範囲でばらつき、平均粒子径は22nmである。本発明において「微粒子E」と記載する場合がある。)を用いた以外は実施例1と同様にして、実施例5にかかる銀−金合金微粒子の分散液(本発明において「分散液E」と記載する場合がある。)を得た。
以上の結果を表1に示した。
微粒子Aの代替として、粒径にばらつきを持つ公知の銀−金合金(合金中に存在する金原子のモル比率[合金微粒子に含まれる金原子の物質量]/[合金微粒子に含まれる原子の全物質量]は50原子%)の球状粒子(粒子径が16〜24nmの範囲でばらつき、平均粒子径は20nmである。本発明において「微粒子F」と記載する場合がある。)を用いた以外は実施例1と同様にして、実施例6にかかる銀−金合金微粒子の分散液(本発明において「分散液F」と記載する場合がある。)を得た。
以上の結果を表1に示した。
微粒子Aの代替として、粒径にばらつきを持つ公知の銀−パラジウム合金(合金中に存在するパラジウム原子のモル比率[合金微粒子に含まれるパラジウム原子の物質量]/[合金微粒子に含まれる原子の全物質量]は10原子%)の球状粒子(粒子径が17〜24nmの範囲でばらつき、平均粒子径は20nmである。本発明において「微粒子G」と記載する場合がある。)を用いた以外は実施例1と同様にして、実施例7にかかる銀−パラジウム合金微粒子の分散液(本発明において「分散液G」と記載する場合がある。)を得た。
以上の結果を表1に示した。
実施例1で作成した分散粉Aとポリカーボネート樹脂ペレットとを、金属微粒子の濃度が1.0質量%となるように混合し、さらにブレンダーを用いて均一に混合して混合物とした。当該混合物を、二軸押出機を用いて290℃で熔融混練し、押出されたストランドをペレット状にカットし、熱線遮蔽透明樹脂成形体用の実施例8に係るマスターバッチ(本発明において「マスターバッチA」と記載する場合がある。)を得た。
ポリカーボネート樹脂ペレットへ、所定量のマスターバッチAを所定量添加し、実施例8に係る熱線遮蔽シートの製造用組成物を調製した。
以上の結果より、実施例1の分散粉と同様に、熱線遮蔽シートの製造に好適に用いることのできる熱線遮蔽微粒子分散体であるマスターバッチを作製出来ることが確認された。
ポリビニルブチラール樹脂に可塑剤のトリエチレングリコ−ル−ジ−2−エチルブチレ−トを添加し、ポリビニルブチラール樹脂と可塑剤との重量比が[ポリビニルブチラール樹脂/可塑剤]=100/40となるように調製した混合物を作製した。この混合物に実施例1で作製した分散粉Aを、所定量添加し、熱線遮蔽フィルムの製造用組成物を調製した。
この実施例9に係る熱線遮蔽フィルムを10cm×10cmに裁断し、同寸法を有する厚さ2mmの無機クリアガラス板2枚の間に挟み込み、積層体とした。次に、この積層体を、ゴム製の真空袋に入れ、袋内を脱気して90℃で30分間保持した後、常温まで戻した。真空袋から積層体を取り出し、当該積層体をオートクレーブ装置に入れ、圧力12kg/cm2、温度140℃で20分加圧加熱して、実施例9に係る熱線遮蔽合わせガラス(本発明において「熱線遮蔽合わせガラスI」と記載する場合がある。)を作製した。
粒径において実質的にばらつきを持たない公知の銀の球状粒子(平均粒子径は7nmである。本発明において「微粒子α」と記載する場合がある。)を準備した。微粒子Aを3重量部、トルエン87重量部、分散剤a10重量部を混合し、3kgのスラリーを調製した。このスラリーをビーズと共にビーズミルへ投入し、スラリーを循環させて、5時間分散処理を行った。
以上の結果を表1に示す。
微粒子Aの代替として、実質的に粒径にばらつきを持たない公知の銀の球状粒子(平均粒子径は19nmである。本発明において「微粒子β」と記載する場合がある。)を用いた以外は、実施例1と同様にして、実施例4にかかる銀微粒子の分散液(本発明において「分散液β」と記載する場合がある。)を得た。
以上の結果を表1に示す。
微粒子Aの代替として、粒径にばらつきを持つ公知の銀の球状粒子(粒子径が2〜26nmの範囲でばらつき、平均粒子径は15nmである。本発明において「微粒子γ」と記載する場合がある。)を用いた以外は、実施例1と同様にして、比較例3にかかる銀微粒子の分散液(本発明において「分散液γ」と記載する場合がある。)を得た。
以上の結果を表1に示す。
微粒子Aの代替として、粒径にばらつきを持つ公知の金の球状粒子(粒子径が10〜24nmの範囲でばらつき、平均粒子径は18nmである。本発明において「微粒子δ」と記載する場合がある。)を用いた以外は実施例1と同様にして、比較例4にかかる金微粒子の分散液(本発明において「分散液δ」と記載する場合がある。)を得た。
以上の結果を表1に示す。
微粒子Aの代替として、粒径にばらつきを持つ公知のパラジウムの球状粒子(粒子径が13〜23nmの範囲でばらつき、平均粒子径は19nmである。本明細書において「微粒子ε」と記載する場合がある。)を用いた以外は実施例1と同様にして、比較例5にかかるパラジウム微粒子の分散液(本発明において「分散液ε」と記載する場合がある。)を得た。
以上の結果を表1に示す。
ガラス基板上に銀を蒸着し、直径5nmの銀微粒子を担持させた。当該銀微粒子を担持したガラス基板を濃度0.1mMの硫酸水中に浸漬し、銀微粒子のプラズモン吸収を励起する偏光を照射した。
当該偏光を照射しながらガラス基板へバイアス電圧を印加し、銀微粒子を異方的に伸長させてロッド状の銀微粒子を形成させた。このとき、バイアス電圧と印加時間とを制御することで、粒子の形状を近似的に楕円体とみなしたときのアスペクト比(a/c)の値が、後述する(1)〜(5)に係る統計値を有するロッド状の銀微粒子を生成させた。
生成したロッド状の銀微粒子をガラス基板から解離させ、洗浄後に乾燥することでロッド状の銀微粒子を得た。
(2)平均値5.7、標準偏差0.7である微粒子の集合体(本発明において「微粒子I」と記載する場合がある)、
(3)平均値7.1、標準偏差0.8である微粒子の集合体(本発明において「微粒子J」と記載する場合がある)、
(4)平均値8.3、標準偏差0.9である微粒子の集合体(本発明において「微粒子K」と記載する場合がある)、
(5)平均値9.8、標準偏差0.8である微粒子の集合体(本発明において「微粒子L」と記載する場合がある)、を得た。
以上の結果を表1に示した。
以上より、実施例1〜7に係る、少なくとも熱線遮蔽微粒子の集合体と熱可塑性樹脂とを含む、熱線遮蔽微粒子分散体において、前記熱線遮蔽微粒子はディスク状である金属微粒子であって、前記集合体に含有される金属微粒子の粒子形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、c(ただし、a≧b≧cとする。)としたとき、前記集合体に含有される金属微粒子のアスペクト比a/cの統計値において、a/cの平均値が9.0以上40.0以下であり、a/cの標準偏差が3.0以上であり、アスペクト比a/cの値が、少なくとも10.0から30.0の範囲において連続する分布を持ち、当該アスペクト比a/cの値が1.0以上9.0未満である金属微粒子の個数割合が、前記集合体において10%を超えず、前記金属が、銀、銀合金から選択される1種類以上である熱線遮蔽微粒子分散体は、可視光透過率が高く日射透過率が低いことから、優れた日射遮蔽特性を発揮することが明らかとなった。
また、実施例9より、本発明にかかるフィルム状の熱線遮蔽微粒子分散体を中間層とした熱線遮蔽合わせガラスを製造可能であることが明らかとなった。
また、実施例10に係る、少なくとも熱線遮蔽微粒子の集合体と熱可塑性樹脂とを含む、熱線遮蔽微粒子分散体において、前記熱線遮蔽微粒子はロッド状である金属微粒子であって、前記集合体に含有される金属微粒子の粒子形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、c(ただし、a≧b≧cとする。)としたとき、前記集合体に含有される金属微粒子のアスペクト比a/cの統計値において、a/cの平均値が4.0以上10.0以下であり、a/cの標準偏差が1.0以上であり、アスペクト比a/cの値が、少なくとも5.0から8.0の範囲において連続する分布を持ち、当該アスペクト比a/cの値が1.0以上4.0未満である金属微粒子の個数割合が、前記集合体において10%を超えず、前記金属が、銀、銀合金から選択される1種類以上である熱線遮蔽微粒子分散体は、可視光透過率が高く日射透過率が低いことから、優れた日射遮蔽特性を発揮することが明らかとなった。
また、比較例2にかかる熱線遮蔽微粒子分散体では、含有される金属微粒子のアスペクト比の平均値は9.0以上40.0以下の範囲にあるものの、アスペクト比の標準偏差が小さいために、非常に狭い波長範囲の近赤外線しか吸収せず、日射透過率は高いままであり、日射遮蔽材料としては課題のある光学特性を有していた。
また、比較例3にかかる熱線遮蔽微粒子分散体では、含有される金属微粒子のアスペクト比の平均値は9.0以上40.0の範囲にあり、アスペクト比の標準偏差も4以上であるものの、可視光の領域を吸収してしまうアスペクト比が1.0以上9.0未満の粒子を多く含むことから可視光透過率が低く、日射遮蔽材料としては課題のある光学特性を有していた。
そして、比較例4および比較例5にかかる熱線遮蔽微粒子分散体では、含有される金属微粒子が銀微粒子または銀合金微粒子ではなく、アスペクト比の大きいディスク形状であっても可視光に吸収を持つ金微粒子またはパラジウム微粒子を用いたために、可視光透過率が低く、日射遮蔽材料としては課題のある光学特性を有していた。
Claims (10)
- 少なくとも熱線遮蔽微粒子と熱可塑性樹脂とを含む、熱線遮蔽微粒子分散体であって、
前記熱線遮蔽微粒子は、ディスク形状を持つ金属微粒子の集合体であり、
前記金属微粒子の形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、c(ただし、a≧b≧cとする。)としたとき、
前記金属微粒子のアスペクト比a/cにおいて、a/cの平均値が9.0以上40.0以下であり、a/cの標準偏差が3.0以上であり、
a/cの値が、少なくとも10.0から30.0の範囲において連続する分布を持ち、
前記集合体において、a/cの値が1.0以上9.0未満である金属微粒子の個数割合が、10%以下であり、
前記金属が、銀または銀合金である、ことを特徴とする熱線遮蔽微粒子分散体。 - 少なくとも熱線遮蔽微粒子と熱可塑性樹脂とを含む、熱線遮蔽微粒子分散体であって、
前記熱線遮蔽微粒子は、ロッド形状を持つ金属微粒子の集合体であり、
前記金属微粒子の形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、c(ただし、a≧b≧cとする。)としたとき、
前記金属微粒子のアスペクト比a/cにおいて、a/cの平均値が4.0以上10.0以下であり、a/cの標準偏差が1.0以上であり、
a/cの値が、少なくとも5.0から8.0の範囲において連続する分布を持ち、
前記集合体において、a/cの値が1.0以上4.0未満である金属微粒子の個数割合が10%以下であり、
前記金属が、銀または銀合金である、ことを特徴とする熱線遮蔽微粒子分散体。 - 少なくとも熱線遮蔽微粒子と熱可塑性樹脂とを含む、熱線遮蔽微粒子分散体であって、
前記熱線遮蔽微粒子として、請求項1に記載の熱線遮蔽微粒子と請求項2に記載の熱線遮蔽微粒子とを含む、ことを特徴とする熱線遮蔽微粒子分散体。 - 前記銀合金が、白金、ルテニウム、金、パラジウム、イリジウム、銅、ニッケル、レニウム、オスニウム、ロジウムから選択される1種類以上の元素と、銀元素の合金である、ことを特徴とする請求項1から3のいずれかに記載の熱線遮蔽微粒子分散体。
- 前記金属微粒子の平均分散粒子径が1nm以上100nm以下である、ことを特徴とする請求項1から4のいずれかに記載の熱線遮蔽微粒子分散体。
- 前記熱可塑性樹脂が、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアセタール樹脂という樹脂群から選択される1種の樹脂、
または、前記樹脂群から選択される2種以上の樹脂の混合物、
または、前記樹脂群から選択される2種以上の樹脂の共重合体、のいずれかである、ことを特徴とする請求項1から5のいずれかに記載の熱線遮蔽微粒子分散体。 - 前記熱線遮蔽微粒子を0.5質量%以上80.0質量%以下含む、ことを特徴とする請求項1から6のいずれかに記載の熱線遮蔽微粒子分散体。
- 前記熱線遮蔽微粒子分散体が、シート形状、ボード形状またはフィルム形状である、ことを特徴とする請求項1から7のいずれかに記載の熱線遮蔽微粒子分散体。
- 前記熱線遮蔽微粒子分散体に含まれる単位投影面積あたりの前記熱線遮蔽微粒子の含有量が0.01g/m2以上0.5g/m2以下である、ことを特徴とする請求項1から8のいずれかに記載の熱線遮蔽微粒子分散体。
- 複数枚の透明基材間に、請求項1から9のいずれかに記載の熱線遮蔽微粒子分散体が存在している、ことを特徴とする熱線遮蔽合わせ透明基材。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105117718A TWI705099B (zh) | 2015-06-02 | 2016-06-02 | 金屬微粒子之集合體、金屬微粒子分散液、熱射線遮蔽薄膜、熱射線遮蔽玻璃、熱射線遮蔽微粒子分散體及熱射線遮蔽夾層透明基材 |
KR1020177037703A KR102463851B1 (ko) | 2015-06-02 | 2016-06-02 | 금속 미립자의 집합체, 금속 미립자 분산액, 열선 차폐 필름, 열선 차폐 유리, 열선 차폐 미립자 분산체 및 열선 차폐 적층 투명기재 |
US15/579,413 US10675680B2 (en) | 2015-06-02 | 2016-06-02 | Aggregate of metal fine particles, metal fine particle dispersion liquid, heat ray shielding film, heat ray shielding glass, heat ray shielding fine particle dispersion body, and heat ray shielding laminated transparent base material |
EP16803466.8A EP3305442B1 (en) | 2015-06-02 | 2016-06-02 | Metal microparticle aggregate, metal microparticle dispersion liquid, heat-ray-shielding film, heat-ray-shielding glass, heat-ray-shielding microparticle dispersion, and heat-ray-shielding laminated transparent substrate |
PCT/JP2016/066450 WO2016195032A1 (ja) | 2015-06-02 | 2016-06-02 | 金属微粒子の集合体、金属微粒子分散液、熱線遮蔽フィルム、熱線遮蔽ガラス、熱線遮蔽微粒子分散体および熱線遮蔽合わせ透明基材 |
CN201680032511.9A CN108025356B (zh) | 2015-06-02 | 2016-06-02 | 金属微粒的集合体、金属微粒分散液、热线屏蔽材料 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015112693 | 2015-06-02 | ||
JP2015112693 | 2015-06-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016222887A true JP2016222887A (ja) | 2016-12-28 |
JP6531630B2 JP6531630B2 (ja) | 2019-06-19 |
Family
ID=57745548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015227129A Active JP6531630B2 (ja) | 2015-06-02 | 2015-11-19 | 熱線遮蔽微粒子分散体および熱線遮蔽合わせ透明基材 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6531630B2 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010070841A (ja) * | 2008-08-20 | 2010-04-02 | Fujifilm Corp | 複合金属ナノロッド、並びに複合金属ナノロッド含有組成物、及び偏光材料 |
JP2011118347A (ja) * | 2009-11-06 | 2011-06-16 | Fujifilm Corp | 熱線遮蔽材 |
-
2015
- 2015-11-19 JP JP2015227129A patent/JP6531630B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010070841A (ja) * | 2008-08-20 | 2010-04-02 | Fujifilm Corp | 複合金属ナノロッド、並びに複合金属ナノロッド含有組成物、及び偏光材料 |
JP2011118347A (ja) * | 2009-11-06 | 2011-06-16 | Fujifilm Corp | 熱線遮蔽材 |
Also Published As
Publication number | Publication date |
---|---|
JP6531630B2 (ja) | 2019-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6950691B2 (ja) | 近赤外線吸収微粒子分散液、近赤外線吸収微粒子分散体、近赤外線吸収透明基材、近赤外線吸収合わせ透明基材 | |
CN110683554B (zh) | 六硼化物微粒的集合体、分散液、分散体、该分散体夹层透明基材、红外线吸收膜及玻璃 | |
JP6299559B2 (ja) | 熱線遮蔽粒子、熱線遮蔽粒子分散液、熱線遮蔽粒子分散体、熱線遮蔽粒子分散体合わせ透明基材、赤外線吸収透明基材、熱線遮蔽粒子の製造方法 | |
WO2017217459A1 (ja) | 熱線遮蔽微粒子分散体、熱線遮蔽合わせ透明基材、およびそれらの製造方法 | |
WO2016010156A1 (ja) | 熱線遮蔽微粒子、熱線遮蔽微粒子分散液、熱線遮蔽フィルム、熱線遮蔽ガラス、熱線遮蔽分散体および熱線遮蔽合わせ透明基材 | |
WO2017094909A1 (ja) | 熱線遮蔽微粒子、熱線遮蔽微粒子分散液、熱線遮蔽フィルム、熱線遮蔽ガラス、熱線遮蔽分散体、および、熱線遮蔽合わせ透明基材 | |
CN108025356B (zh) | 金属微粒的集合体、金属微粒分散液、热线屏蔽材料 | |
JP6226198B2 (ja) | 赤外線吸収微粒子、赤外線吸収微粒子分散液、およびそれらを用いた赤外線吸収微粒子分散体、赤外線吸収合わせ透明基材、赤外線吸収フィルム、赤外線吸収ガラス | |
WO2016195032A1 (ja) | 金属微粒子の集合体、金属微粒子分散液、熱線遮蔽フィルム、熱線遮蔽ガラス、熱線遮蔽微粒子分散体および熱線遮蔽合わせ透明基材 | |
JP2017197633A (ja) | 熱線遮蔽分散体、熱線遮蔽合わせ透明基材およびそれらの製造方法 | |
JP6697692B2 (ja) | 赤外線吸収微粒子、およびそれを用いた分散液、分散体、合わせ透明基材、フィルム、ガラスと、その製造方法 | |
JP6531630B2 (ja) | 熱線遮蔽微粒子分散体および熱線遮蔽合わせ透明基材 | |
JP6606898B2 (ja) | 熱線遮蔽分散体および熱線遮蔽合わせ透明基材 | |
JP2016221944A (ja) | 熱線遮蔽フィルム、熱線遮蔽ガラス | |
JP6531631B2 (ja) | 金属微粒子の集合体、および、金属微粒子分散液 | |
TWI666352B (zh) | 熱射線遮蔽微粒子、熱射線遮蔽微粒子分散液、熱射線遮蔽薄膜、熱射線遮蔽玻璃、熱射線遮蔽微粒子分散體及熱射線遮蔽用夾層透明基材 | |
JP2017154902A (ja) | 六ホウ化物微粒子の集合体、六ホウ化物微粒子分散液、六ホウ化物微粒子分散体、六ホウ化物微粒子分散体合わせ透明基材、赤外線吸収フィルムおよび赤外線吸収ガラス | |
JP2023176735A (ja) | 日射遮蔽材料、日射遮蔽材料分散体、日射遮蔽透明基材 | |
WO2019098144A1 (ja) | 赤外線吸収体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181122 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20190118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190423 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190506 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6531630 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |