JP2016212946A - Manufacturing method of substrate for magnetic disk and grinding wheel - Google Patents

Manufacturing method of substrate for magnetic disk and grinding wheel Download PDF

Info

Publication number
JP2016212946A
JP2016212946A JP2016170994A JP2016170994A JP2016212946A JP 2016212946 A JP2016212946 A JP 2016212946A JP 2016170994 A JP2016170994 A JP 2016170994A JP 2016170994 A JP2016170994 A JP 2016170994A JP 2016212946 A JP2016212946 A JP 2016212946A
Authority
JP
Japan
Prior art keywords
grinding
groove
substrate
end surface
grindstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016170994A
Other languages
Japanese (ja)
Other versions
JP2016212946A5 (en
JP6645935B2 (en
Inventor
広昭 小澤
Hiroaki Ozawa
広昭 小澤
武良 高橋
Takeyoshi Takahashi
武良 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Publication of JP2016212946A publication Critical patent/JP2016212946A/en
Publication of JP2016212946A5 publication Critical patent/JP2016212946A5/en
Application granted granted Critical
Publication of JP6645935B2 publication Critical patent/JP6645935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/14Zonally-graded wheels; Composite wheels comprising different abrasives
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a substrate for a magnetic disk in which an end surface of the disc-shaped substrate is finished in high quality and stable grinding work becomes possible.SOLUTION: According to the present invention, a grinding fluid is brought into contact with an end surface portion of a disc-shaped substrate, and a grindstone is brought into contact with an outer circumferential side end surface and it is moved relatively to grind and machine a substrate end surface. The grindstone is formed in a cylindrical shape and has multiple groove shapes arranged in parallel in the inner circumferential side. The multiple groove shapes comprise grooves for coarse grinding work and grooves for precision grinding. The grindstone has means for preventing the grinding waste generated when performing the grinding work in the grooves for the coarse grinding work from moving to the grooves for precision grinding. Then, the outer circumferential side end surface of the substrate is sequentially brought into contact with the grooves for the coarse grinding work of the grindstone and the grooves for the precision grinding, and the outer circumferential side end surface of the substrate is ground and machined.SELECTED DRAWING: Figure 4

Description

本発明は、ハードディスクドライブ(以下、「HDD」と略記する。)などの磁気記録装置に搭載される磁気ディスクの製造に用いられる磁気ディスク用基板の製造方法、及び磁気ディスク用基板の端面研削加工に用いる研削用砥石に関するものである。   The present invention relates to a method for manufacturing a magnetic disk substrate used for manufacturing a magnetic disk mounted on a magnetic recording apparatus such as a hard disk drive (hereinafter abbreviated as “HDD”), and end grinding of the magnetic disk substrate. The present invention relates to a grinding wheel for use in grinding.

HDD等の磁気記録装置に搭載される情報記録媒体の一つとして磁気ディスクがある。磁気ディスクは、円板状の基板上に磁性層等の薄膜を形成して構成されたものであり、その基板としてアルミニウム合金基板やガラス基板が用いられている。ガラス基板はアルミニウム合金基板よりも硬く、耐衝撃性に優れるという利点がある。これらの基板の表面は磁気ヘッドの浮上高さを極力下げることができるように高精度に研磨して平滑化されており、高記録密度化を実現している。近年、HDDの更なる大記録容量化、低価格化の要求は増すばかりであり、これを実現するためには、磁気ディスク用基板においても更なる高品質化、低コスト化が必要になってきている。   One of information recording media mounted on a magnetic recording device such as an HDD is a magnetic disk. A magnetic disk is configured by forming a thin film such as a magnetic layer on a disk-shaped substrate, and an aluminum alloy substrate or a glass substrate is used as the substrate. A glass substrate is harder than an aluminum alloy substrate, and has an advantage of excellent impact resistance. The surfaces of these substrates are polished and smoothed with high precision so as to reduce the flying height of the magnetic head as much as possible, thereby realizing high recording density. In recent years, the demand for further increase in recording capacity and price of HDDs has increased, and in order to realize this, it has become necessary to further improve the quality and cost of magnetic disk substrates. ing.

磁気ディスク用基板は、通常、円板状に形成した基板に、形状加工(端面研削及び面取り)、端面研磨、主表面研削、主表面研磨、化学強化等の工程を順次施して製造される。
上記のように安価で高記録密度を達成できる磁気ディスクが求められているが、磁気ディスクの高記録密度化のためには、基板の加工精度にも高度なものが要求されており、それは基板の主表面のみならず、端面形状においても同様である。
A magnetic disk substrate is usually manufactured by sequentially performing steps such as shape processing (end surface grinding and chamfering), end surface polishing, main surface grinding, main surface polishing, and chemical strengthening on a disk-shaped substrate.
As described above, there is a demand for a magnetic disk that is inexpensive and can achieve a high recording density. However, in order to increase the recording density of the magnetic disk, a high level of processing accuracy is required for the substrate. The same applies to the end surface shape as well as the main surface.

従来の円板状基板の端面の加工方法としては、基板の端面部分に研削液を接触させながら、基板の外周側端面および内周側端面に研削砥石を接触回転させて研削加工を行い、基板の外周側端面および内周側端面に所定の面取り加工を施していた(特許文献1など)。この場合に砥石は、一般には総形砥石とも呼ばれているもので、基板の端面形状を形成するための溝形状を有しており、この砥石を基板の端面と接触させて加工することにより、砥石の溝形状を基板の端面に形状転写している。また、研削加工は、粗研削用の砥石による粗研削加工と、精密研削用砥石による精密研削加工とに分けて行われることが知られている。   As a conventional processing method of the end surface of the disk-shaped substrate, the grinding liquid is contacted and rotated on the outer peripheral side end surface and the inner peripheral side end surface of the substrate while bringing the grinding liquid into contact with the end surface portion of the substrate, and then the substrate is processed. A predetermined chamfering process was performed on the outer peripheral side end surface and the inner peripheral side end surface (Patent Document 1, etc.). In this case, the grindstone is generally called a general grindstone, and has a groove shape for forming the end face shape of the substrate. By processing the grindstone in contact with the end face of the substrate, The shape of the grindstone groove is transferred to the end face of the substrate. In addition, it is known that the grinding process is performed by being divided into a rough grinding process using a grinding wheel for rough grinding and a precision grinding process using a grinding wheel for precision grinding.

特開2000−296470号公報JP 2000-296470 A

しかしながら、本発明者の検討によると、従来、円筒状砥石の内周側に形成された粗研削用溝と精密研削用溝に基板の外周側端面を順次接触させることにより、前記基板の外周側端面を粗研削と精密研削の2段階加工を実施した場合に、精密研削加工後の基板の端面にキズなどのチッピングが発生する場合があった。   However, according to the study of the present inventor, conventionally, the outer peripheral side of the substrate is brought into contact with the rough grinding groove and the precision grinding groove formed on the inner peripheral side of the cylindrical grindstone by sequentially contacting the outer peripheral end surface of the substrate. When two-step processing of rough grinding and precision grinding is performed on the end face, chipping such as scratches may occur on the end face of the substrate after precision grinding.

そこで、本発明は、信頼性の確保の観点から、円板状の磁気ディスク用基板の端面を高品質に仕上げることができる磁気ディスク用基板の製造方法を提供することを第1の目的とする。また、上記磁気ディスク用基板の端面研削加工に好適に用いることができる研削用砥石を提供することを第2の目的とする。   In view of the above, the first object of the present invention is to provide a method for manufacturing a magnetic disk substrate capable of finishing the end face of the disk-shaped magnetic disk substrate with high quality from the viewpoint of ensuring reliability. . It is a second object of the present invention to provide a grinding wheel that can be suitably used for end face grinding of the magnetic disk substrate.

本発明者は、上記従来の課題を解決するべく、円筒状に形成されているとともに、その内周側に複数の並列した粗研削用と精密研削用の溝形状を有する砥石を用い、この砥石の内周側に円板状基板の外周側端面を接触させ、且つ基板と砥石とを相対的に移動させることにより、基板の外周側端面を研削加工する方法(本明細書では、説明の便宜上この加工方法を「内接型研削加工」、これに用いる砥石を便宜上「内接型研削用砥石」と呼ぶことがある。)を詳細に調査した。   In order to solve the above-described conventional problems, the present inventor uses a grindstone that is formed in a cylindrical shape and has a plurality of parallel rough grinding and precision grinding grooves on its inner peripheral side. A method of grinding the outer peripheral side end surface of the substrate by bringing the outer peripheral side end surface of the disk-shaped substrate into contact with the inner peripheral side of the substrate and relatively moving the substrate and the grindstone (in this specification, for convenience of explanation) This processing method was called “inscribed grinding”, and the grindstone used therefor was sometimes called “inscribed grinding wheel” for convenience.)

その結果、本発明者は、次のような現象を見出した。
従来の内接型研削用砥石の溝形状は、例えば図3に示すように、複数の溝2a,2a・・・を含む粗研削加工用領域2Aと、複数の溝2b,2b・・・を含む精密研削加工用領域2Bとを備えている。粗研削加工用領域2Aと精密研削加工用領域2Bでは砥粒径が異なり、最初に砥粒径が大きい砥粒(粗い番手の砥粒)の粗研削加工用領域2Aで粗研削を行い、続いて、砥粒径が小さい砥粒(細かい番手の砥粒)の精密研削加工用領域2Bで精密研削(仕上げ研削)を行うことができる。
As a result, the present inventors have found the following phenomenon.
As shown in FIG. 3, for example, the groove shape of the conventional inscribed grinding wheel includes a rough grinding region 2A including a plurality of grooves 2a, 2a, and a plurality of grooves 2b, 2b,. Including a precision grinding region 2B. The coarse grinding region 2A and the fine grinding region 2B have different abrasive grain sizes. First, rough grinding is performed in the coarse grinding region 2A of abrasive grains having a large abrasive grain size (coarse count abrasive grains). Thus, precision grinding (finish grinding) can be performed in the precision grinding region 2B of abrasive grains having a small abrasive grain size (fine count abrasive grains).

ところが、内接型研削加工では砥石の溝形状が円筒形状の内側にあるため、粗研削加工用の溝2aで研削加工を行っている際に発生する研削屑が周囲に飛散した場合、精密研削加工用の溝2bに到達する場合がある(図3中の矢印で示す)。粗研削加工で発生する研削屑は精密研削加工で発生するものより相対的に大きいものが多い。また、このような研削屑は、精密研削加工用の溝2bに堆積してスラッジ状となる場合もある。そして、これらの異物は砥石の回転による遠心力によって溝に張り付きやすい。その結果、研削屑は精密研削加工時に発生するチッピングやピット状欠陥の原因になり、端面品質の低下を招く。このようにガラス基板の端面品質を悪化させるため、生産歩留りも低下するという問題が起こってしまう。
本発明者は、さらに鋭意検討した結果、粗研削加工用の溝で研削加工を行っている際に発生する研削屑が精密研削加工用の溝に移動することを抑制する手段を設けることで上記の問題を解決できることを見出し、本発明を完成するに到ったものである。
すなわち、本発明は、前記課題を解決するため、以下の構成としている。
However, since the groove shape of the grindstone is inside the cylindrical shape in the inscribed grinding process, when grinding waste generated during grinding with the groove 2a for rough grinding is scattered around, precision grinding In some cases, it may reach the processing groove 2b (indicated by an arrow in FIG. 3). Many grinding scraps generated by rough grinding are relatively larger than those generated by precision grinding. Further, such grinding waste may be accumulated in the precision grinding groove 2b and become sludge. These foreign substances are likely to stick to the groove due to the centrifugal force generated by the rotation of the grindstone. As a result, the grinding scraps cause chipping and pit-like defects that occur during precision grinding, leading to deterioration of the end face quality. Thus, since the end surface quality of a glass substrate is deteriorated, the problem that a production yield also falls will arise.
As a result of further intensive studies, the inventor described above by providing means for suppressing the movement of grinding scrap generated when grinding is performed in the coarse grinding groove to the precision grinding groove. The present inventors have found that the above problem can be solved, and have completed the present invention.
That is, the present invention has the following configuration in order to solve the above problems.

(構成1)
円板状の基板の端面部分に研削液を接触させつつ、前記基板の外周側端面に砥石を接触させて相対的に移動させることにより前記基板の端面を研削加工する処理を有する磁気ディスク用基板の製造方法であって、前記砥石は、円筒状に形成されているとともにその内周側に複数の並列した溝形状を有し、前記複数の溝形状は、粗研削加工用の溝と、精密研削加工用の溝とを含み、前記粗研削加工用の溝で研削加工を行っている際に発生する研削屑が前記精密研削加工用の溝に移動することを抑制する手段を有しており、前記粗研削加工用の溝と前記精密研削加工用の溝に順次前記基板の外周側端面を接触させることにより、前記基板の外周側端面を研削加工することを特徴とする磁気ディスク用基板の製造方法。
(Configuration 1)
A magnetic disk substrate having a process of grinding the end surface of the substrate by bringing a grinding stone into contact with the outer peripheral side end surface of the substrate and moving it relatively while contacting the end surface portion of the disk-shaped substrate. The grindstone is formed in a cylindrical shape and has a plurality of parallel groove shapes on its inner peripheral side, and the plurality of groove shapes include a groove for rough grinding, and a precision A grinding groove, and has means for suppressing movement of grinding waste generated when grinding with the rough grinding groove to the precision grinding groove. An outer peripheral side end surface of the substrate is ground by bringing the outer peripheral side end surface of the substrate into contact with the rough grinding groove and the fine grinding groove in order. Production method.

(構成2)
前記研削屑が前記精密な研削加工用の溝に移動することを抑制する手段は、前記粗研削用の溝と前記精密研削加工用の溝との間に壁を設ける手段であることを特徴とする構成1に記載の磁気ディスク用基板の製造方法。
(Configuration 2)
The means for suppressing the grinding scraps from moving to the precision grinding groove is a means for providing a wall between the rough grinding groove and the precision grinding groove. A method for manufacturing a magnetic disk substrate according to Configuration 1.

(構成3)
前記研削屑が前記精密な研削加工用の溝に移動することを抑制する手段は、前記粗研削用の溝と前記精密研削加工用の溝との間に壁となる段差を設けて砥石直径を異ならしめ、砥石直径の大きい方に前記粗研削加工用の溝を配置し、砥石直径の小さい方に前記精密研削用の溝を配置する手段であることを特徴とする構成1又は2に記載の磁気ディスク用基板の製造方法。
(Configuration 3)
The means for preventing the grinding scraps from moving into the precise grinding groove is provided with a step which becomes a wall between the rough grinding groove and the precision grinding groove to reduce the grindstone diameter. 3. The configuration 1 or 2, wherein the rough grinding groove is disposed on the larger grindstone diameter, and the precision grinding groove is disposed on the smaller grindstone diameter. A method of manufacturing a magnetic disk substrate.

(構成4)
円板状の基板の端面部分に研削液を接触させつつ、前記基板の外周側端面に砥石を接触させて相対的に移動させることにより前記基板の端面を研削加工する処理を有する磁気ディスク用基板の製造方法であって、前記砥石は、円筒状に形成されているとともにその内周側に複数の並列した溝形状を有し、前記複数の溝形状は、粗研削加工用の溝と、精密研削加工用の溝とを含み、前記粗研削用の溝と前記精密研削加工用の溝との間には隆起部があり、前記粗研削加工用の溝と前記精密研削加工用の溝に順次前記基板の外周側端面を接触させることにより、前記基板の外周側端面を研削加工することを特徴とする磁気ディスク用基板の製造方法。
(Configuration 4)
A magnetic disk substrate having a process of grinding the end surface of the substrate by bringing a grinding stone into contact with the outer peripheral side end surface of the substrate and moving it relatively while contacting the end surface portion of the disk-shaped substrate. The grindstone is formed in a cylindrical shape and has a plurality of parallel groove shapes on its inner peripheral side, and the plurality of groove shapes include a groove for rough grinding, and a precision A groove for grinding, and there is a raised portion between the groove for rough grinding and the groove for precision grinding, and the groove for rough grinding and the groove for precision grinding are sequentially formed. A method of manufacturing a magnetic disk substrate, comprising: grinding an outer peripheral side end surface of the substrate by bringing the outer peripheral side end surface of the substrate into contact with each other.

(構成5)
円板状の基板の端面部分に研削液を接触させつつ、前記基板の外周側端面に砥石を接触させて相対的に移動させることにより前記基板の端面を研削加工する処理を有する磁気ディスク用基板の製造方法であって、前記砥石は、円筒状に形成されているとともにその内周側に複数の並列した溝形状を有し、前記複数の溝形状は、粗研削加工用の溝と、精密研削加工用の溝とを含み、前記砥石の内周側には段差が設けられて直径の異なる複数の領域が存在し、前記直径の大きい領域に前記粗研削加工用の溝を配置し、前記直径の小さい方に前記精密研削用の溝を配置し、前記粗研削加工用の溝と前記精密研削加工用の溝に順次前記基板の外周側端面を接触させることにより、前記基板の外周側端面を研削加工することを特徴とする磁気ディスク用基板の製造方法。
(Configuration 5)
A magnetic disk substrate having a process of grinding the end surface of the substrate by bringing a grinding stone into contact with the outer peripheral side end surface of the substrate and moving it relatively while contacting the end surface portion of the disk-shaped substrate. The grindstone is formed in a cylindrical shape and has a plurality of parallel groove shapes on its inner peripheral side, and the plurality of groove shapes include a groove for rough grinding, and a precision A plurality of regions having different diameters provided with steps on the inner peripheral side of the grindstone, and arranging the grooves for rough grinding in the region having a large diameter, The precision grinding groove is arranged on the smaller diameter side, and the outer peripheral side end face of the substrate is brought into contact with the rough grinding groove and the fine grinding groove in sequence with the outer peripheral side end face of the substrate. For magnetic disks characterized by grinding Method of manufacturing the plate.

(構成6)
前記砥石として、電着砥石を用いることを特徴とする構成1乃至5のいずれかに記載の磁気ディスク用基板の製造方法。
(Configuration 6)
6. The method for manufacturing a magnetic disk substrate according to any one of Structures 1 to 5, wherein an electrodeposited grindstone is used as the grindstone.

(構成7)
円板状の磁気ディスク用基板の端面部分に研削液を接触させつつ、前記基板の外周側端面に砥石を接触させて相対的に移動させることにより前記基板の端面を研削加工する処理に用いる研削用砥石であって、前記研削用砥石は、円筒状に形成されているとともにその内周側に複数の並列した溝形状を有し、前記複数の溝形状は、粗研削加工用の溝と、精密研削加工用の溝とを含み、前記粗研削加工用の溝で研削加工を行っている際に発生する研削屑が前記精密研削加工用の溝に移動することを抑制する手段を有していることを特徴とする研削用砥石。
(Configuration 7)
Grinding used for grinding the end surface of the substrate by bringing a grinding stone into contact with the outer peripheral end surface of the substrate and moving it relatively while contacting the end surface portion of the disk-shaped magnetic disk substrate. The grinding wheel is formed in a cylindrical shape and has a plurality of parallel groove shapes on its inner peripheral side, and the plurality of groove shapes include a groove for rough grinding, A means for suppressing grinding dust generated when grinding is performed in the groove for rough grinding, to move to the groove for precision grinding. A grinding wheel characterized by comprising:

(構成8)
円板状の磁気ディスク用基板の端面部分に研削液を接触させつつ、前記基板の外周側端面に砥石を接触させて相対的に移動させることにより前記基板の端面を研削加工する処理に用いる研削用砥石であって、前記砥石は、円筒状に形成されているとともにその内周側に複数の並列した溝形状を有し、前記複数の溝形状は、粗研削加工用の溝と、精密研削加工用の溝とを含み、前記粗研削用の溝と前記精密研削加工用の溝との間には隆起部を有することを特徴とする研削用砥石。
(Configuration 8)
Grinding used for grinding the end surface of the substrate by bringing a grinding stone into contact with the outer peripheral end surface of the substrate and moving it relatively while contacting the end surface portion of the disk-shaped magnetic disk substrate. The grindstone is formed in a cylindrical shape and has a plurality of parallel groove shapes on the inner peripheral side thereof. The plurality of groove shapes include a groove for rough grinding and precision grinding. A grinding wheel characterized by comprising a groove for machining and having a raised portion between the groove for rough grinding and the groove for precision grinding.

(構成9)
円板状の磁気ディスク用基板の端面部分に研削液を接触させつつ、前記基板の外周側端面に砥石を接触させて相対的に移動させることにより前記基板の端面を研削加工する処理に用いる研削用砥石であって、前記砥石は、円筒状に形成されているとともにその内周側に複数の並列した溝形状を有し、前記複数の溝形状は、粗研削加工用の溝と、精密研削加工用の溝とを含み、前記砥石の内周側には段差が設けられて直径の異なる複数の領域が存在し、前記直径の大きい領域に前記粗研削加工用の溝を配置し、前記直径の小さい方に前記精密研削用の溝を配置していることを特徴とする研削用砥石。
(Configuration 9)
Grinding used for grinding the end surface of the substrate by bringing a grinding stone into contact with the outer peripheral end surface of the substrate and moving it relatively while contacting the end surface portion of the disk-shaped magnetic disk substrate. The grindstone is formed in a cylindrical shape and has a plurality of parallel groove shapes on the inner peripheral side thereof. The plurality of groove shapes include a groove for rough grinding and precision grinding. A plurality of regions having different diameters provided with steps on the inner peripheral side of the grindstone, the grooves for rough grinding are disposed in the region having a large diameter, and the diameter A grinding wheel for grinding, characterized in that the groove for precision grinding is arranged on the smaller side.

本発明に係る磁気ディスク用基板の製造方法によれば、チッピングの発生を抑制し、磁気ディスク用基板の端面を高品質に仕上げることができる。さらには、安定した研削加工が可能である。ここで、上記基板の端面研削加工に本発明に係る研削用砥石を用いることにより、チッピングの発生を抑制し、磁気ディスク用基板の端面を高品質に仕上げることができる。   According to the method for manufacturing a magnetic disk substrate according to the present invention, the occurrence of chipping can be suppressed, and the end surface of the magnetic disk substrate can be finished with high quality. Furthermore, stable grinding can be performed. Here, by using the grinding wheel according to the present invention for the end face grinding of the substrate, the occurrence of chipping can be suppressed and the end face of the magnetic disk substrate can be finished with high quality.

ガラス基板の端面形状を示す断面図である。It is sectional drawing which shows the end surface shape of a glass substrate. 本発明におけるガラス基板の端面研削工程の実施形態を示すもので、砥石の溝形状が成す円形を含む平面での断面図である。The embodiment of the end surface grinding process of the glass substrate in the present invention is shown, and is a sectional view on a plane including a circle formed by a groove shape of a grindstone. 上記端面研削工程に用いる砥石の溝形状の一例(従来例)を示す断面図である。It is sectional drawing which shows an example (conventional example) of the groove shape of the grindstone used for the said end surface grinding process. 上記端面研削工程に用いる本発明の砥石の一実施の形態を示す断面図である。It is sectional drawing which shows one Embodiment of the grindstone of this invention used for the said end surface grinding process. 上記端面研削工程に用いる本発明の砥石の他の実施の形態を示す断面図である。It is sectional drawing which shows other embodiment of the grindstone of this invention used for the said end surface grinding process. 上記端面研削工程に用いる本発明の砥石のその他の実施の形態を示す断面図である。It is sectional drawing which shows other embodiment of the grindstone of this invention used for the said end surface grinding process. 上記端面研削工程に用いる本発明の砥石のその他の実施の形態を示す断面図である。It is sectional drawing which shows other embodiment of the grindstone of this invention used for the said end surface grinding process.

以下、本発明を実施するための形態について詳述する。磁気ディスク用基板としては上述の通りアルミニウム合金系の基板も存在するが、ここでは一例としてガラス基板の場合について述べる。アルミニウム合金系基板についても適宜変更して適用することができる。
図1は、本発明が適用される磁気ディスク用ガラス基板1の外周側端部の断面図である。該ガラス基板1は、図1には示されていないが、中心部に円孔を有する全体が円板状に形成され(図2を参照)、その表裏の主表面1a,1aと、これら主表面1a,1a間に形成される外周側の端面と内周側の端面を有する。
Hereinafter, embodiments for carrying out the present invention will be described in detail. As described above, an aluminum alloy-based substrate also exists as a magnetic disk substrate. Here, a glass substrate will be described as an example. The aluminum alloy-based substrate can also be changed and applied as appropriate.
FIG. 1 is a cross-sectional view of the outer peripheral end of a magnetic disk glass substrate 1 to which the present invention is applied. Although the glass substrate 1 is not shown in FIG. 1, the whole having a circular hole in the center is formed in a disc shape (see FIG. 2), and main surfaces 1a and 1a on the front and back sides thereof, It has an outer peripheral end surface and an inner peripheral end surface formed between the surfaces 1a and 1a.

上記ガラス基板1の外周側の端面は、その主表面1aと直交する側壁面1bと、この側壁面1bと表裏の主表面1a,1aとの間にそれぞれ形成されている2つの面取面(面取り加工した面)1c、1cとからなる形状に形成されている。また、上記ガラス基板1の内周側の端面については図示していないが、上記外周側端面と同様に、その主表面1aと直交する側壁面と、この側壁面と表裏の主表面1a,1aとの間にそれぞれ形成されている2つの面取面とからなる形状に形成されている。   The end surface on the outer peripheral side of the glass substrate 1 has a side wall surface 1b orthogonal to the main surface 1a, and two chamfered surfaces formed between the side wall surface 1b and the front and back main surfaces 1a and 1a ( A chamfered surface) 1c and 1c are formed. Moreover, although it does not show in figure about the end surface of the inner peripheral side of the said glass substrate 1, like the said outer peripheral side end surface, the side wall surface orthogonal to the main surface 1a, and this side wall surface and main surface 1a, 1a of the front and back Are formed in a shape composed of two chamfered surfaces formed respectively.

そして、本発明は、公称1.8インチディスク(外径48mm)以上に好ましく適用できる。例えば、公称2.5インチディスクの場合は、ガラス基板1の外径が65mm、内径が20mmに仕上げられる。また、例えば、公称3.5インチディスクの場合は、ガラス基板1の外径が95mmで内径が25mmに仕上げられる。ここで、内径とは、ガラス基板1の中心部の円孔の内径のことである。なお、板厚は、いずれのサイズにおいても0.6〜1.5mm程度である。   The present invention can be preferably applied to a nominal 1.8 inch disk (outer diameter 48 mm) or more. For example, in the case of a nominal 2.5 inch disc, the glass substrate 1 is finished to have an outer diameter of 65 mm and an inner diameter of 20 mm. For example, in the case of a nominal 3.5 inch disk, the glass substrate 1 is finished to have an outer diameter of 95 mm and an inner diameter of 25 mm. Here, the inner diameter is the inner diameter of a circular hole in the center of the glass substrate 1. The plate thickness is about 0.6 to 1.5 mm in any size.

磁気ディスク用ガラス基板1の主表面1a、外周側端面および内周側端面はいずれも、最終的にはそれぞれ所定の表面粗さとなるように研磨(鏡面研磨)仕上げされる。ガラス基板1の外周側端面及び内周側端面はいずれも、上述のような端面形状に仕上げられ、なお且つ、表面粗さが例えばRmaxで1μm以下、Raで0.1μm以下の鏡面状態に仕上げられることが通常求められる。   The main surface 1a, the outer peripheral side end surface, and the inner peripheral side end surface of the glass substrate 1 for magnetic disk are all polished (mirror polished) so as to finally have a predetermined surface roughness. Both the outer peripheral side end face and the inner peripheral side end face of the glass substrate 1 are finished in the end face shape as described above, and the surface roughness is finished in a mirror surface state with Rmax of 1 μm or less and Ra of 0.1 μm or less, for example. It is usually sought to be.

磁気ディスク用ガラス基板1は、例えばダイレクトプレス法やフロート法等により得られたガラス板を所定の円板状に加工して得られた円板状のガラス基板1に、端面の研削・研磨(鏡面研磨)、主表面の研削・鏡面研磨、化学強化等の工程を順次施して製造される。
なお、本明細書においては、ダイレクトプレス法やフロート法等により得られたガラス板を所定の円板状に加工したガラス基板(ガラス素板)から、このガラス基板に加工、処理等を施して作製される最終製品のガラス基板にいたるまで、説明の便宜上、すべてガラス基板もしくは磁気ディスク用ガラス基板と呼ぶこととする。
まず、上記ガラス基板1の端面の研削・研磨工程について説明する。
The magnetic disk glass substrate 1 is formed by subjecting a glass plate 1 obtained by processing, for example, a glass plate obtained by a direct press method or a float method into a predetermined disc shape, and grinding and polishing an end face ( (Mirror polishing), grinding of the main surface, mirror polishing, chemical strengthening, etc. are performed in order.
In the present specification, a glass substrate (glass base plate) obtained by processing a glass plate obtained by a direct press method or a float method into a predetermined disc shape is processed, processed, etc. For the sake of convenience of explanation, all the steps up to the glass substrate of the final product to be manufactured are referred to as a glass substrate or a magnetic disk glass substrate.
First, the grinding / polishing process of the end face of the glass substrate 1 will be described.

本発明に係る磁気ディスク用ガラス基板の製造方法は、上記構成1にあるように、円板状の基板の端面部分に研削液を接触させつつ、前記基板の外周側端面に砥石を接触させて相対的に移動させることにより前記基板の端面を研削加工する処理を有する磁気ディスク用基板の製造方法であって、前記砥石は、円筒状に形成されているとともにその内周側に複数の並列した溝形状を有し、前記複数の溝形状は、粗研削加工用の溝と、精密研削加工用の溝とを含み、前記粗研削加工用の溝で研削加工を行っている際に発生する研削屑が前記精密研削加工用の溝に移動することを抑制する手段を有しており、前記粗研削加工用の溝と前記精密研削加工用の溝に順次前記基板の外周側端面を接触させることにより、前記基板の外周側端面を研削加工する構成としている。
本発明で行う端面研削加工は、内接型研削加工である。また、本発明の端面研削加工に用いる砥石は、内接型研削加工用砥石である。以下、かかる本発明の端面研削加工について詳しく説明する。
In the method for manufacturing a glass substrate for a magnetic disk according to the present invention, a grinding stone is brought into contact with the outer peripheral side end surface of the substrate while bringing the grinding liquid into contact with the end surface portion of the disk-shaped substrate as in the above-described configuration 1. A method of manufacturing a magnetic disk substrate having a process of grinding an end face of the substrate by relatively moving the grindstone, wherein the grindstone is formed in a cylindrical shape and is arranged in parallel on the inner peripheral side thereof A plurality of groove shapes, each of which includes a rough grinding groove and a precision grinding groove, and is generated when grinding is performed with the rough grinding groove. Means for suppressing movement of scraps into the precision grinding groove is provided, and the outer peripheral side end surface of the substrate is sequentially brought into contact with the rough grinding groove and the precision grinding groove. To grind the outer peripheral side end surface of the substrate. It has a configuration.
The end surface grinding performed in the present invention is an inscribed grinding process. Moreover, the grindstone used for the end surface grinding of the present invention is an inscribed grinding grindstone. Hereinafter, the end face grinding of the present invention will be described in detail.

本発明で行う端面研削加工は、円筒状に形成された砥石の内周側にガラス基板の外周側端面を接触させ、且つガラス基板と砥石とを相対的に移動させることにより、ガラス基板の外周側端面を研削加工する構成である。例えば、具体的には、図2に示されるように、基板外周側を加工する砥石(回転砥石)3は、ガラス基板1の外周側端面に対して図中の矢印13方向(切込み方向)に接触する。また、ガラス基板1を上記砥石に対して図中の矢印12方向(切込み方向)に接触させるようにしてもよい。   In the end surface grinding process performed in the present invention, the outer peripheral side end surface of the glass substrate is brought into contact with the inner peripheral side of the grindstone formed in a cylindrical shape, and the glass substrate and the grindstone are relatively moved, whereby the outer periphery of the glass substrate. It is the structure which grinds a side end surface. For example, specifically, as shown in FIG. 2, the grindstone (rotary grindstone) 3 for processing the substrate outer peripheral side is in the direction of the arrow 13 (cutting direction) in the figure with respect to the outer peripheral side end surface of the glass substrate 1. Contact. Moreover, you may make it contact the glass substrate 1 with respect to the said grindstone in the arrow 12 direction (cutting direction) in a figure.

上記砥石3は、円筒状に形成されているとともにその内周側の表面に、ガラス基板の端面形状を形成するための複数の並列した溝形状を有し、具体的には、例えばガラス基板の外周側端面に側壁面と面取面の両方の面を形状転写できるような溝形状となっている。つまり、上記砥石3は、ガラス基板1の研削加工面の仕上がり目標の寸法形状を考慮して、所定の寸法形状に形成されている。   The grindstone 3 is formed in a cylindrical shape and has a plurality of parallel groove shapes for forming the end face shape of the glass substrate on the inner peripheral surface thereof. The groove shape is such that both the side wall surface and the chamfered surface can be transferred to the outer peripheral side end surface. That is, the grindstone 3 is formed in a predetermined dimensional shape in consideration of a target dimensional shape of the ground surface of the glass substrate 1.

この場合において、砥石3及びガラス基板1をそれぞれ回転させながら加工を行うことが好ましく、各々の周速度、周速度比については外周側端面の加工に好適なように適宜設定されればよい。また、図2では、ガラス基板1は矢印10方向に、砥石3は矢印11方向にそれぞれ回転させるが、回転方向は特に限定されるわけではない。砥石3とガラス基板1の回転方向は、加工位置(接触位置)において、同方向(ダウンカット)、異方向(アップカット)のいずれでもよい。   In this case, it is preferable to perform the processing while rotating the grindstone 3 and the glass substrate 1, and the peripheral speed and the peripheral speed ratio may be appropriately set so as to be suitable for processing of the outer peripheral side end face. In FIG. 2, the glass substrate 1 is rotated in the direction of arrow 10 and the grindstone 3 is rotated in the direction of arrow 11, but the rotation direction is not particularly limited. The rotation direction of the grindstone 3 and the glass substrate 1 may be either the same direction (down cut) or a different direction (up cut) at the processing position (contact position).

研削性や加工能率の観点からは、例えば砥石3の周速度は、300〜3000m/分、ガラス基板1の加工位置における周速度は、3〜100m/分程度とすることが好適である。
また、このような研削加工に使用する研削液(クーラント)については、冷却効果が高く、生産現場において安全性の高い水溶性の研削液が好適である。
From the viewpoint of grindability and processing efficiency, for example, the peripheral speed of the grindstone 3 is preferably 300 to 3000 m / min, and the peripheral speed at the processing position of the glass substrate 1 is preferably about 3 to 100 m / min.
Moreover, about the grinding fluid (coolant) used for such a grinding process, the cooling effect is high and the water-soluble grinding fluid with high safety | security at a production site is suitable.

ところで、上記砥石3は、図4に示すような断面形状を有している。図4は、上記端面加工工程に用いる本発明の砥石の一実施の形態を示す断面図である。
すなわち、上記砥石3は、全体が円筒状に形成されているとともにその内周側に複数の並列した溝形状を有し、この複数の溝形状は、粗研削加工用の溝と、精密研削加工用の溝とを含む。具体的には、図4に示すように、粗研削加工用領域3Aと精密研削(仕上げ研削)加工用領域3Bとを備えており、粗研削加工用領域3Aには複数の溝3a,3a・・・を有し、精密研削加工用領域3Bには同じく複数の溝3b,3b・・・を有している。砥石3の複数の溝形状の夫々は、ガラス基板1の外周側端面の側壁面と面取面の両方を同時に研削加工できるように形成されていてもよい。
Incidentally, the grindstone 3 has a cross-sectional shape as shown in FIG. FIG. 4 is a cross-sectional view showing an embodiment of the grindstone of the present invention used in the end face machining step.
That is, the grindstone 3 is formed in a cylindrical shape as a whole and has a plurality of parallel groove shapes on the inner peripheral side thereof. The plurality of groove shapes include a groove for rough grinding and a precision grinding process. And a groove for use. Specifically, as shown in FIG. 4, a rough grinding region 3A and a precision grinding (finish grinding) region 3B are provided, and the rough grinding region 3A includes a plurality of grooves 3a, 3a,. .. And the precision grinding region 3B has a plurality of grooves 3b, 3b. Each of the plurality of groove shapes of the grindstone 3 may be formed so that both the side wall surface and the chamfered surface of the outer peripheral side end surface of the glass substrate 1 can be ground simultaneously.

粗研削加工用領域3Aと精密研削加工用領域3Bでは砥粒径が異なり、最初に砥粒径が大きい砥粒(粗い番手の砥粒)の粗研削加工用領域3Aで粗研削を行い、続いて、砥粒径が小さい砥粒(細かい番手の砥粒)の精密研削加工用領域3Bで精密研削(仕上げ研削)を行うことができる。
本発明に係る上記砥石3は、上記粗研削加工用の溝3aで研削加工を行っている際に発生する研削屑が上記精密研削加工用の溝3bに移動することを抑制する手段を有している。
The coarse grinding region 3A and the fine grinding region 3B have different abrasive grain sizes. First, rough grinding is performed in the coarse grinding region 3A of abrasive grains having a large abrasive grain size (coarse count abrasive grains). Thus, precision grinding (finish grinding) can be performed in the precision grinding region 3B of the abrasive grains having a small abrasive grain size (fine count abrasive grains).
The grindstone 3 according to the present invention has means for suppressing the grinding waste generated when grinding is performed in the rough grinding groove 3a from moving to the precision grinding groove 3b. ing.

具体的には、図4を参照するとわかるように、本実施形態では、上記粗研削用の複数の溝3aを含む粗研削加工用領域3Aと、上記精密研削加工用の複数の溝3bを含む精密研削加工用領域3Bとの間に壁となる段差31を設けて砥石直径を異ならしめている。したがって、砥石直径の大きい領域の方に前記粗研削加工用の溝3aを配置し、砥石直径の小さい領域の方に前記精密研削用の溝3bを配置している。このような構成によれば、粗研削加工用の溝3aで研削加工を行っている際に発生する研削屑が周囲に飛散しても、粗研削加工用領域3Aと精密研削加工用領域3Bとの間に壁となる段差31を設けているので、粗研削用の溝3aで発生した研削屑が飛散しても上記段差31で阻まれるので、精密研削加工用の溝3bに到達し、堆積することを抑制することができる。このように本実施形態においては、上記粗研削加工用の溝3aで研削加工を行っている際に発生する研削屑が上記精密研削加工用の溝3bに移動することを抑制するため、従来構成(図3参照)のように、精密研削において、精密研削加工用の溝2bに溜まった粗研削のスラッジの影響で、チッピングが発生することを効果的に低減することができる。   Specifically, as can be seen with reference to FIG. 4, the present embodiment includes a rough grinding region 3A including a plurality of grooves 3a for rough grinding and a plurality of grooves 3b for precision grinding. A step 31 serving as a wall is provided between the precision grinding region 3B and the diameter of the grindstone is made different. Therefore, the rough grinding groove 3a is disposed in the region having the larger grindstone diameter, and the precision grinding groove 3b is disposed in the region having the smaller grindstone diameter. According to such a configuration, even if grinding waste generated when grinding is performed in the rough grinding groove 3a, the rough grinding region 3A and the precision grinding region 3B Since the step 31 serving as a wall is provided between them, even if the grinding waste generated in the rough grinding groove 3a is scattered, the step 31 prevents the grinding scraps from reaching the groove 3b for precision grinding. Can be suppressed. As described above, in the present embodiment, in order to suppress movement of grinding waste generated when grinding is performed in the rough grinding groove 3a to the precision grinding groove 3b, a conventional configuration is used. As shown in FIG. 3, in the precision grinding, it is possible to effectively reduce the occurrence of chipping due to the influence of the coarse grinding sludge accumulated in the precision grinding groove 2b.

図4の実施形態において、上記精密研削加工用の複数の溝3bを含む精密研削加工用領域3Bの砥石直径(以下、「精密研削砥石の直径」と呼ぶ。)は、以下であることが好ましい。
すなわち、加工するガラス基板1の直径をL(mm)とするとき、精密研削砥石の直径は、L+1(mm)以上、300mm以下であることが好ましい。より好ましくは、L+5(mm)以上、2L(mm)以下であることが望ましい。
In the embodiment of FIG. 4, the grinding wheel diameter (hereinafter referred to as “the diameter of the precision grinding wheel”) of the precision grinding region 3 </ b> B including the plurality of grooves 3 b for precision grinding is preferably as follows. .
That is, when the diameter of the glass substrate 1 to be processed is L (mm), the diameter of the precision grinding wheel is preferably L + 1 (mm) or more and 300 mm or less. More preferably, it is L + 5 (mm) or more and 2 L (mm) or less.

精密研削砥石の直径が、L+1(mm)よりも小さいと、砥石の磨耗が早くなり、生産性が悪化する可能性がある。一方、精密研削砥石の直径が、300mmよりも大きいと、砥石の寸法が大きくなり、コストが高くなる可能性がある。また、砥石を精度よく動かすのが難しくなる可能性がある。   If the diameter of the precision grinding wheel is smaller than L + 1 (mm), the grinding wheel wears quickly, and the productivity may deteriorate. On the other hand, if the diameter of the precision grinding wheel is larger than 300 mm, the size of the grinding wheel becomes large and the cost may increase. Moreover, it may be difficult to move the grindstone with high accuracy.

なお、ここで言う砥石の直径とは、砥石の溝底面の位置での直径を言うものとする。また、この砥石の溝底面とは、溝の一番深い底面のことであり、通常、基板端面の側壁面を研削加工する加工面である。以下においても、同様の意味で用いる。   The diameter of the grindstone here refers to the diameter at the position of the groove bottom surface of the grindstone. Further, the groove bottom surface of the grindstone is the deepest bottom surface of the groove, and is usually a processing surface for grinding the side wall surface of the substrate end surface. In the following, the same meaning is used.

また、図4の実施形態において、上記粗研削加工用の複数の溝3aを含む粗研削加工用領域3Aの砥石直径(以下、「粗研削砥石の直径」と呼ぶ。)と精密研削砥石の直径との差は、以下であることが好ましい。
粗研削砥石の直径から精密研削砥石の直径を引いた値、すなわち、粗研削砥石の直径と精密研削砥石の直径の差は、0.4mm以上、60mm以下であることが好ましい。より好ましくは、4mm以上、20mm以下であることが望ましい。
In the embodiment of FIG. 4, the grinding wheel diameter (hereinafter referred to as “rough grinding wheel diameter”) of the rough grinding region 3 </ b> A including the plurality of rough grinding grooves 3 a and the diameter of the precision grinding wheel are as follows. The difference is preferably as follows.
The value obtained by subtracting the diameter of the precision grinding wheel from the diameter of the rough grinding wheel, that is, the difference between the diameter of the coarse grinding wheel and the diameter of the precision grinding wheel is preferably 0.4 mm or more and 60 mm or less. More preferably, it is 4 mm or more and 20 mm or less.

粗研削砥石の直径と精密研削砥石の直径の差が、0.4mmよりも小さいと、粗研削加工用の溝で研削加工を行っている際に発生する研削屑が精密研削加工用の溝に移動することを抑制する効果が十分に得られない。一方、粗研削砥石の直径と精密研削砥石の直径の差が、60mmよりも大きいと、加工が難しくコストが高くなったり、加工するガラス基板の移動距離が大きくなるので、生産性が悪化する可能性がある。   If the difference between the diameter of the coarse grinding wheel and the diameter of the precision grinding wheel is less than 0.4 mm, the grinding dust generated when grinding with the coarse grinding groove will become a precision grinding groove. The effect of suppressing movement cannot be sufficiently obtained. On the other hand, if the difference between the diameter of the coarse grinding wheel and the diameter of the precision grinding wheel is larger than 60 mm, the processing becomes difficult and the cost increases, and the moving distance of the glass substrate to be processed increases, so that the productivity may deteriorate. There is sex.

なお、精密研削加工で発生する研削屑自体は精密研削で欠陥を発生させるような影響を及ぼさない。つまり、ある研削加工でその砥粒径に依存する研削屑のサイズが、その研削で発生する研削屑のサイズよりも大きい場合にガラス基板に欠陥を発生させてしまう。要するに、問題となるのは、粗研削で発生した研削屑が精密研削用の溝に堆積することであり、これによって精密研削でガラス基板にチッピング等の欠陥が発生してしまう。   In addition, the grinding scraps generated in the precision grinding process do not affect the generation of defects in the precision grinding. That is, when the size of the grinding waste depending on the abrasive grain size in a certain grinding process is larger than the size of the grinding waste generated by the grinding, a defect is generated in the glass substrate. In short, the problem is that grinding scrap generated by rough grinding accumulates in the grooves for precision grinding, which causes defects such as chipping on the glass substrate by precision grinding.

本発明の内接型端面研削加工で用いる上記砥石3としては、例えば高剛性材料であるダイヤモンド、Al、SiC、CBN等あるいはこれらの複合砥粒を電着した所謂電着砥石や、砥粒を金属質結合剤で固めた所謂メタル砥石などが好適である。特に、電着砥石を用いた場合には台金に対して砥粒層を比較的薄くできるため、その溝形転写形状を砥石使用可能期間の全体に亘って比較的正確に維持できるため好ましい。また、メタル砥石を用いた場合には、金属質ボンド層から突き出た砥粒により研削作用が行われ、粗さが抑えられるため好ましい。砥粒の粒径としては、粗研削用には、例えば#200〜#800、精密研削用には、例えば#800〜#4000の砥粒が好適である。 Examples of the grindstone 3 used in the inscribed end face grinding of the present invention include, for example, a so-called electrodeposition grindstone obtained by electrodeposition of diamond, Al 2 O 3 , SiC, CBN or the like, which is a high-rigidity material, or composite abrasive grains thereof. A so-called metal grindstone in which abrasive grains are hardened with a metallic binder is suitable. In particular, when an electrodeposited grindstone is used, the abrasive grain layer can be made relatively thin with respect to the base metal, so that the groove-shaped transfer shape can be maintained relatively accurately over the entire usable period of the grindstone. In addition, when a metal grindstone is used, the grinding action is performed by the abrasive grains protruding from the metallic bond layer, which is preferable because the roughness is suppressed. As the particle size of the abrasive grains, for example, # 200 to # 800 are suitable for rough grinding, and for example, # 800 to # 4000 are suitable for precision grinding.

また、上記端面加工工程に用いる本発明の砥石の他の実施の形態としては、図5に示すように、粗研削用の複数の溝4aを含む粗研削加工用領域4Aと、精密研削加工用の複数の溝4bを含む精密研削加工用領域4Bとの間に壁となる隆起部41を設けている。   Further, as another embodiment of the grindstone of the present invention used in the end face machining step, as shown in FIG. 5, a coarse grinding region 4A including a plurality of coarse grinding grooves 4a, and a precision grinding work A raised portion 41 serving as a wall is provided between the fine grinding region 4B including the plurality of grooves 4b.

図5の実施形態において、上記隆起部41の高さは、0.2mm以上、30mm以下であることが好ましい。より好ましくは、2mm以上、10mm以下であることが望ましい。
なお、ここで言う隆起部の高さとは、隆起部の下端(溝のないところの砥石面の位置)から先端(頂点)までの長さを言うものとする。以下においても、同様の意味で用いる。
上記隆起部41の高さが、0.2mmよりも小さいと、粗研削加工用の溝で研削加工を行っている際に発生する研削屑が精密研削加工用の溝に移動することを抑制する効果が十分に得られない。一方、上記隆起部41の高さが、30mmよりも大きいと、加工が難しくコストが高くなったり、加工するガラス基板の移動距離が大きくなるので、生産性が悪化する可能性がある。
In the embodiment of FIG. 5, the height of the raised portion 41 is preferably 0.2 mm or more and 30 mm or less. More preferably, it is 2 mm or more and 10 mm or less.
In addition, the height of the raised part said here shall say the length from the lower end (position of the grindstone surface in a place without a groove | channel) to a front-end | tip (apex) of a raised part. In the following, the same meaning is used.
When the height of the raised portion 41 is smaller than 0.2 mm, it is possible to prevent the grinding dust generated when grinding is performed in the rough grinding groove from moving to the precision grinding groove. The effect cannot be obtained sufficiently. On the other hand, when the height of the raised portion 41 is larger than 30 mm, processing is difficult and cost is increased, and the moving distance of the glass substrate to be processed is increased, so that productivity may be deteriorated.

本実施形態では、粗研削加工用の溝4aで研削加工を行っている際に発生する研削屑がたとえ精密研削加工用領域4Bの方へ飛散したとしても、粗研削加工用領域4Aと精密研削加工用領域4Bとの間に設けられた上記隆起部41によって阻まれるので、粗研削用の溝4aで発生した研削屑が精密研削加工用の溝4bに到達し、堆積することを抑制することができる。   In the present embodiment, even if grinding waste generated when grinding is performed in the coarse grinding groove 4a is scattered toward the precision grinding region 4B, the coarse grinding region 4A and the precision grinding are performed. Since it is blocked by the raised portion 41 provided between the processing region 4B and the grinding scrap generated in the rough grinding groove 4a, it is prevented from reaching and accumulating in the precision grinding groove 4b. Can do.

また、上記端面加工工程に用いる本発明の砥石のその他の実施の形態として、図6に示すように、粗研削用の複数の溝5aを含む粗研削加工用領域5Aと、精密研削加工用の複数の溝5bを含む精密研削加工用領域5Bとの間に段差51が設けられており、前述の図4に示す実施形態と同様砥石直径を異ならしめている。
本実施形態では、粗研削加工用の溝5aで研削加工を行っている際に発生する研削屑がたとえ精密研削加工用領域5Bの方へ飛散したとしても、粗研削加工用領域5Aと精密研削加工用領域5Bとの間の段差51によって阻まれるので、粗研削用の溝5aで発生した研削屑が精密研削加工用の溝5bに到達し、堆積することを抑制することができる。
Further, as another embodiment of the grindstone of the present invention used in the end face machining step, as shown in FIG. 6, a rough grinding region 5A including a plurality of grooves 5a for rough grinding, A step 51 is provided between the precision grinding region 5B including the plurality of grooves 5b, and the grindstone diameter is different from that in the embodiment shown in FIG.
In the present embodiment, even if grinding scraps generated during grinding with the coarse grinding groove 5a are scattered toward the precision grinding region 5B, the coarse grinding region 5A and the precision grinding are performed. Since it is obstructed by the step 51 between the processing region 5B, it is possible to suppress the grinding waste generated in the rough grinding groove 5a from reaching and accumulating in the precision grinding groove 5b.

さらに、本発明の砥石のその他の実施の形態として、図7に示すように、粗研削用の複数の溝6aを含む粗研削加工用領域6Aと、精密研削加工用の複数の溝6bを含む精密研削加工用領域6Bとの間に図示するような断面形状の段差61が設けられており、前述の図4に示す実施形態と同様砥石直径を異ならしめている。
本実施形態においても、粗研削加工用の溝6aで研削加工を行っている際に発生する研削屑が精密研削加工用領域6Bの方へ飛散したとしても、上記段差61によって阻まれるので、粗研削用の溝6aで発生した研削屑が精密研削加工用の溝6bに到達し、堆積することを抑制することができる。
Further, as another embodiment of the grindstone of the present invention, as shown in FIG. 7, a rough grinding region 6A including a plurality of grooves 6a for rough grinding and a plurality of grooves 6b for precision grinding are included. A step 61 having a cross-sectional shape as shown in the figure is provided between the precision grinding region 6B and the grindstone diameter is different from that in the embodiment shown in FIG.
Also in the present embodiment, even if grinding waste generated when grinding is performed in the groove 6a for rough grinding is scattered by the above-described step 61 even if it is scattered toward the precision grinding region 6B, rough grinding is performed. It is possible to suppress grinding waste generated in the grinding groove 6a from reaching and accumulating in the precision grinding groove 6b.

なお、上述の図4、図6および図7に示す実施形態では、いずれも段差が1箇所で、全体で2段階の砥石直径の異なる領域が存在する場合を示しているが、本発明はこれに限らず、段差が複数段に設けられて、砥石直径の異なる複数の領域が存在する実施形態も含まれる。この場合、砥石直径の異なる複数の領域のうち、砥石直径のより大きい領域に前記粗研削加工用の溝を配置し、砥石直径のより小さい領域に前記精密研削用の溝を配置するようにする。例えば、全体で3段階の砥石直径の異なる領域が存在する場合、砥石直径の一番大きい領域に前記粗研削加工用の溝を配置し、砥石直径の一番小さい領域に前記精密研削用の溝を配置し、中間の砥石直径の領域には、たとえば粗研削の2段階目の加工用の溝を配置する。   In the above-described embodiments shown in FIGS. 4, 6, and 7, there is a case where there is a single step, and there are regions having different two-stage grindstone diameters as a whole. However, the present invention includes an embodiment in which a plurality of steps are provided in a plurality of steps and there are a plurality of regions having different grindstone diameters. In this case, among the plurality of regions having different grinding wheel diameters, the rough grinding groove is disposed in a region having a larger grinding wheel diameter, and the precise grinding groove is disposed in a region having a smaller grinding wheel diameter. . For example, in the case where there are regions with different three-stage grindstone diameters as a whole, the coarse grinding groove is disposed in the region having the largest grindstone diameter, and the precision grinding groove is disposed in the region having the smallest grindstone diameter. In the region of the intermediate grindstone diameter, for example, a groove for processing in the second stage of rough grinding is arranged.

なお、本発明における上述の端面研削加工では、円筒状の研削砥石の回転軸に対してガラス基板の回転軸を傾けた状態で両者を回転させながら研削加工を行ってもよい。これによって、ガラス基板1の端面に当接する砥石の軌跡が一定とはならないで、砥石の凸部(砥粒)が基板端面に対してランダムな位置に当接、作用するため、基板へのダメージが少なく、研削加工面の表面粗さやその面内ばらつきも小さくなり、研削加工面をより高平滑に仕上げることができる。
また、必要に応じて、上述の本発明の端面研削加工に加えて、従来のブラシ研磨加工等を行ってもよい。
In the above-described end face grinding in the present invention, the grinding may be performed while rotating both of the glass substrates while the rotation axis of the glass substrate is inclined with respect to the rotation axis of the cylindrical grinding wheel. As a result, the trajectory of the grindstone that comes into contact with the end surface of the glass substrate 1 does not become constant, and the convex portions (abrasive grains) of the grindstone come into contact with and act at random positions on the end surface of the substrate. Therefore, the surface roughness and in-plane variation of the ground surface can be reduced, and the ground surface can be finished with higher smoothness.
In addition to the above-described end face grinding of the present invention, a conventional brush polishing process or the like may be performed as necessary.

また、磁気ディスク用ガラス基板に用いる硝種としては特に限定を設けないが、ガラス基板の材質としては、例えば、アルミノシリケートガラス、ソーダライムガラス、ソーダアルミノシリケートガラス、アルミノボロシリケートガラス、ボロシリケートガラス、石英ガラス、チェーンシリケートガラス、又は結晶化ガラス等のガラスセラミックス等が挙げられる。なかでもアルミノシリケートガラスは、耐衝撃性や耐振動性に優れるため特に好ましい。
以上のようにして、基板の外周側及び内周側端面の研削、研磨工程を終えたガラス基板に、続いて主表面の鏡面研磨工程、化学強化工程、等を施すことにより、図1に示すような磁気ディスク用ガラス基板1が得られる。
The glass type used for the magnetic disk glass substrate is not particularly limited. Examples of the glass substrate material include aluminosilicate glass, soda lime glass, soda aluminosilicate glass, aluminoborosilicate glass, borosilicate glass, Examples thereof include glass ceramics such as quartz glass, chain silicate glass, or crystallized glass. Of these, aluminosilicate glass is particularly preferable because it is excellent in impact resistance and vibration resistance.
The glass substrate that has been subjected to the grinding and polishing steps of the outer peripheral side and inner peripheral side end surfaces of the substrate as described above is then subjected to a mirror polishing step, a chemical strengthening step, and the like of the main surface, as shown in FIG. Such a magnetic disk glass substrate 1 is obtained.

以上は、磁気ディスク用基板の一例としてガラス基板の場合について説明したが、磁気ディスク用基板としては上述の通りアルミニウム合金系の基板も存在し、このアルミニウム合金系の基板の端面研削処理においても上述した本発明の端面研削処理を好ましく適用することができ、基板端面の加工品質の向上が可能となる。なお、上記アルミニウム合金系の基板としては、アルミニウム合金基板と、表面にNiP系合金が形成されたアルミニウム合金基板とが含まれる。   As described above, the case of the glass substrate as an example of the magnetic disk substrate has been described. However, as described above, an aluminum alloy-based substrate also exists as the magnetic disk substrate, and the above-described surface grinding process of this aluminum alloy-based substrate also includes The end surface grinding process of the present invention can be preferably applied, and the processing quality of the substrate end surface can be improved. The aluminum alloy substrate includes an aluminum alloy substrate and an aluminum alloy substrate having a NiP alloy formed on the surface thereof.

また、上述の本発明による磁気ディスク用ガラス基板の製造方法によって製造された磁気ディスク用ガラス基板の主表面上に少なくとも磁性層を形成する磁気ディスクの製造方法についても提供する。
すなわち、例えば上述の本発明に係る実施の形態により得られる磁気ディスク用ガラス基板上に、少なくとも磁性層を形成することにより磁気ディスクが得られる。通常は、例えばガラス基板上に、付着層、軟磁性層、下地層、磁性層、保護層、潤滑層などを設けた磁気ディスクとするのが好適である。
The present invention also provides a magnetic disk manufacturing method in which at least a magnetic layer is formed on the main surface of the magnetic disk glass substrate manufactured by the above-described method for manufacturing a magnetic disk glass substrate according to the present invention.
That is, for example, a magnetic disk can be obtained by forming at least a magnetic layer on a glass substrate for a magnetic disk obtained by the above-described embodiment of the present invention. Usually, for example, a magnetic disk in which an adhesion layer, a soft magnetic layer, an underlayer, a magnetic layer, a protective layer, a lubricating layer, and the like are provided on a glass substrate is preferable.

例えば磁性層としては、垂直磁気記録媒体用としては例えばCo系のhcp結晶構造をもつ合金などが挙げられる。
また、保護層としては、例えば、炭素系保護層などが好ましく挙げられる。また、保護層上の潤滑層を形成する潤滑剤としては、PFPE(パーフロロポリエーテル)系化合物が挙げられる。
ガラス基板上に上記各層を成膜する方法については、公知のスパッタリング法などを用いることができる。炭素系保護層の成膜についてはプラズマCVD法も好ましく用いられる。また、潤滑層の成膜にはディップ法などを用いることができる。
For example, the magnetic layer may be, for example, an alloy having a Co-based hcp crystal structure for a perpendicular magnetic recording medium.
Moreover, as a protective layer, a carbon-type protective layer etc. are mentioned preferably, for example. Examples of the lubricant that forms the lubricating layer on the protective layer include PFPE (perfluoropolyether) compounds.
As a method for forming each of the layers on the glass substrate, a known sputtering method or the like can be used. A plasma CVD method is also preferably used for forming the carbon-based protective layer. A dipping method or the like can be used for forming the lubricating layer.

本発明による磁気ディスク用ガラス基板の製造方法によって製造された磁気ディスク用ガラス基板を用いて磁気ディスクを製造することにより、基板の端面を高品質に仕上げることができ、基板端面の表面状態が起因する障害の発生を防止し、より一層の高記録密度化と高信頼性を実現できる磁気ディスクを提供することができる。   By manufacturing a magnetic disk using the glass substrate for magnetic disk manufactured by the method for manufacturing a glass substrate for magnetic disk according to the present invention, the end surface of the substrate can be finished with high quality, and the surface state of the substrate end surface is caused. Therefore, it is possible to provide a magnetic disk capable of preventing the occurrence of the failure and realizing higher recording density and higher reliability.

以下に実施例を挙げて、本発明の実施の形態についてさらに具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
(実施例1)
まず、溶融ガラスからダイレクトプレス法により直径66mmφ、板厚0.9mmの円板状のアルミノシリケートガラスからなるガラス基板(ガラス素板)を得た。
Hereinafter, the embodiment of the present invention will be described more specifically with reference to examples. In addition, this invention is not limited to a following example.
Example 1
First, a glass substrate (glass base plate) made of a disc-shaped aluminosilicate glass having a diameter of 66 mmφ and a plate thickness of 0.9 mm was obtained from molten glass by a direct press method.

次いで、上記ガラス基板に寸法精度及び形状精度を向上させるためラッピング工程を行った。このラッピング工程は両面ラッピング装置を用いて行なった。   Next, a lapping process was performed on the glass substrate in order to improve dimensional accuracy and shape accuracy. This lapping process was performed using a double-sided lapping apparatus.

次に、円筒状の砥石を用いてガラス基板の中央部分に孔を空けた。次に、基板の外周端面の研削加工を行った。
使用した砥石は、前述の図4に示したような直径差のある電着砥石を選択した。精密研削砥石の直径は110mm、粗研削砥石の直径は116mmとした。砥石の直径の定義は前記のとおりである。また、砥石の溝の深さは0.5mm、溝底面の幅は0.5mm、溝の開口角は45度であり、これら溝形状は、粗研削加工用領域と精密研削加工用領域のいずれもおいても同じである。なお、粗研削用の砥粒の大きさ(番手)は#500、精密研削用の砥粒の大きさ(番手)は#1000である。
研削加工は、前述の図2に示すガラス基板と砥石との配置関係で行い、ガラス基板と砥石の各々の周速度、回転方向、切込み速度は適宜設定することができるが、本実施例では、ガラス基板回転数は200rpm、砥石回転数は6000rpm、ガラス基板と砥石の回転方向は逆回転とした。
Next, a hole was made in the central portion of the glass substrate using a cylindrical grindstone. Next, the outer peripheral end face of the substrate was ground.
As the grindstone used, an electrodeposition grindstone having a diameter difference as shown in FIG. 4 was selected. The diameter of the precision grinding wheel was 110 mm, and the diameter of the rough grinding wheel was 116 mm. The definition of the diameter of the grindstone is as described above. The depth of the grindstone groove is 0.5 mm, the width of the groove bottom is 0.5 mm, and the opening angle of the groove is 45 degrees. The groove shape can be either a rough grinding region or a precision grinding region. The same is true. The size (count) of the abrasive grains for rough grinding is # 500, and the size (count) of the abrasive grains for precision grinding is # 1000.
Grinding is performed by the positional relationship between the glass substrate and the grindstone shown in FIG. 2, and the peripheral speed, rotation direction, and cutting speed of each of the glass substrate and the grindstone can be appropriately set. The rotation speed of the glass substrate was 200 rpm, the rotation speed of the grindstone was 6000 rpm, and the rotation direction of the glass substrate and the grindstone was reversed.

以上のようにして、100枚のガラス基板の端面加工を行った。
得られた100枚のガラス基板について、側壁面と面取面との成す角部Aおよび主表面と面取面との成す角部B(図1参照)でのチッピングの発生の有無を目視と顕微鏡観察により調査した。
As described above, end face processing of 100 glass substrates was performed.
With respect to the obtained 100 glass substrates, the presence or absence of occurrence of chipping at the corner portion A formed by the side wall surface and the chamfered surface and the corner portion B formed by the main surface and the chamfered surface (see FIG. 1) was visually observed. It was investigated by microscopic observation.

(実施例2)
前述の図5に示すような断面形状の電着砥石を用いたこと以外は上記実施例1と同様に研削加工を行った。
精密研削砥石の直径、粗研削砥石の直径とも110mmとし、隆起部の高さは3mmとした。隆起部の高さの定義は前記のとおりである。また、砥石の溝の深さは0.5mm、溝底面の幅は0.5mm、溝の開口角は45度であり、これら溝形状は、粗研削加工用領域と精密研削加工用領域のいずれもおいても同じである。
100枚のガラス基板の端面加工を行い、実施例1と同様に、得られた100枚のガラス基板について、側壁面と面取面との成す角部Aおよび主表面と面取面との成す角部B(図1参照)でのチッピングの発生の有無を目視と顕微鏡観察により調査した。
(Example 2)
Grinding was performed in the same manner as in Example 1 except that the electrodeposition grindstone having a cross-sectional shape as shown in FIG. 5 was used.
Both the diameter of the precision grinding wheel and the diameter of the rough grinding wheel were 110 mm, and the height of the raised portion was 3 mm. The definition of the height of the raised portion is as described above. The depth of the grindstone groove is 0.5 mm, the width of the groove bottom is 0.5 mm, and the opening angle of the groove is 45 degrees. The groove shape can be either a rough grinding region or a precision grinding region. The same is true.
End face processing of 100 glass substrates is performed, and the corner portion A formed by the side wall surface and the chamfered surface and the main surface and the chamfered surface are formed on the 100 glass substrates obtained in the same manner as in Example 1. The presence or absence of chipping at the corner B (see FIG. 1) was examined by visual observation and microscopic observation.

(比較例)
また、比較例として、前述の図3に示すような断面形状の電着砥石を用いたこと以外は上記実施例1と同様に研削加工を行った。
精密研削砥石の直径、粗研削砥石の直径とも110mmとした。また、砥石の溝の深さは0.5mm、溝底面の幅は0.5mm、溝の開口角は45度であり、これら溝形状は、粗研削加工用領域と精密研削加工用領域のいずれもおいても同じである。
100枚のガラス基板の端面加工を行い、実施例1と同様に、得られた100枚のガラス基板について、側壁面と面取面との成す角部Aおよび主表面と面取面との成す角部B(図1参照)でのチッピングの発生の有無を目視と顕微鏡観察により調査した。
(Comparative example)
Further, as a comparative example, grinding was performed in the same manner as in Example 1 except that an electrodeposited grinding stone having a cross-sectional shape as shown in FIG. 3 was used.
Both the diameter of the precision grinding wheel and the diameter of the rough grinding wheel were 110 mm. The depth of the grindstone groove is 0.5 mm, the width of the groove bottom is 0.5 mm, and the opening angle of the groove is 45 degrees. The groove shape can be either a rough grinding region or a precision grinding region. The same is true.
End face processing of 100 glass substrates is performed, and the corner portion A formed by the side wall surface and the chamfered surface and the main surface and the chamfered surface are formed on the 100 glass substrates obtained in the same manner as in Example 1. The presence or absence of chipping at the corner B (see FIG. 1) was examined by visual observation and microscopic observation.

その結果、実施例1および実施例2におけるチッピング率はいずれも3%以下であったのに対し、比較例では60%と非常に高かった。特に20枚目以降のチッピング発生が多かった。
また、加工終了後の砥石について、精密研削加工用の溝を詳細に観察したところ、実施例1および実施例2に使用した砥石では、スラッジの堆積はほとんど認められなかったが、比較例に使用した砥石では、スラッジの堆積が認められた。
As a result, the chipping rates in Example 1 and Example 2 were both 3% or less, whereas in the comparative example, they were very high at 60%. In particular, chipping occurred frequently after the 20th sheet.
In addition, when the grindstone after the processing was finished, the grooves for precision grinding were observed in detail. In the grindstone used in Example 1 and Example 2, almost no sludge was found, but this was used in the comparative example. In the grindstone, sludge accumulation was observed.

この結果から明らかなように、本発明によれば、粗研削加工用の溝で研削加工を行っている際に発生する研削屑が精密研削加工用の溝に移動することを抑制する手段を有する研削砥石を用いたので、チッピングの発生を抑えることができ、仕上がり表面品質の良好な研削加工を行うことができた。
これに対し、従来の内接型研削砥石による加工では、精密研削加工用の溝に粗研削での研削屑のスラッジが堆積するため、チッピングの発生率が高く、歩留りが著しく低下してしまう。
なお、上記実施例2では、研削液の流れが砥石の隆起部によって妨げられる可能性があり、十分に研削液を加工面に行き渡らせるためには研削液の供給方法が複雑になる可能性がある。これに対し、上記実施例1では、研削液の供給を精密研削砥石側から行うことにより、粗研削砥石側へも研削液が十分に供給され、供給方法は複雑にならなくて済むのでより好ましい。
As is apparent from this result, according to the present invention, there is provided means for suppressing the movement of the grinding scrap generated when grinding is performed in the rough grinding groove to the precision grinding groove. Since a grinding wheel was used, the occurrence of chipping could be suppressed and grinding with good finished surface quality could be performed.
On the other hand, in the processing using the conventional inscribed grinding wheel, since sludge of grinding scraps in coarse grinding accumulates in the grooves for precision grinding, the occurrence rate of chipping is high, and the yield is significantly reduced.
In Example 2 described above, there is a possibility that the flow of the grinding fluid may be hindered by the raised portion of the grindstone, and there is a possibility that the supply method of the grinding fluid may be complicated in order to sufficiently distribute the grinding fluid to the processing surface. is there. On the other hand, in the first embodiment, since the grinding fluid is supplied from the precision grinding wheel side, the grinding fluid is sufficiently supplied to the rough grinding stone side, and the supply method is not complicated, which is more preferable. .

1 磁気ディスク用ガラス基板
2〜6 外周側端面研削用砥石
1a ガラス基板の主表面
1b 側壁面
1c 面取面
31 段差
41 隆起部(壁)
DESCRIPTION OF SYMBOLS 1 Glass substrate 2-6 for magnetic discs Peripheral end face grinding grindstone 1a Main surface 1b of glass substrate Side wall surface 1c Chamfered surface 31 Step 41 Raised part (wall)

Claims (9)

円板状の基板の端面部分に研削液を接触させつつ、前記基板の外周側端面に砥石を接触させて相対的に移動させることにより前記基板の端面を研削加工する処理を有する磁気ディスク用基板の製造方法であって、
前記砥石は、円筒状に形成されているとともにその内周側に複数の溝形状を有し、前記複数の溝形状は、粗研削加工用の溝と、精密研削加工用の溝とを含み、前記粗研削加工用の溝で研削加工を行っている際に発生する研削屑が前記精密研削加工用の溝に移動することを抑制する手段を有しており、
前記粗研削加工用の溝と前記精密研削加工用の溝に順次前記基板の外周側端面を接触させることにより、前記基板の外周側端面を研削加工することを特徴とする磁気ディスク用基板の製造方法。
A magnetic disk substrate having a process of grinding the end surface of the substrate by bringing a grinding stone into contact with the outer peripheral side end surface of the substrate and moving it relatively while contacting the end surface portion of the disk-shaped substrate. A manufacturing method of
The grindstone is formed in a cylindrical shape and has a plurality of groove shapes on the inner peripheral side thereof, and the plurality of groove shapes include a groove for rough grinding and a groove for precision grinding, It has means for suppressing grinding scraps generated when grinding with the rough grinding groove from moving to the precision grinding groove,
Manufacturing of a substrate for a magnetic disk, wherein the outer peripheral side end surface of the substrate is ground by sequentially bringing the outer peripheral side end surface into contact with the rough grinding groove and the precision grinding groove. Method.
前記研削屑が前記精密な研削加工用の溝に移動することを抑制する手段は、前記粗研削用の溝と前記精密研削加工用の溝との間に壁を設ける手段であることを特徴とする請求項1に記載の磁気ディスク用基板の製造方法。   The means for suppressing the grinding scraps from moving to the precision grinding groove is a means for providing a wall between the rough grinding groove and the precision grinding groove. A method for manufacturing a magnetic disk substrate according to claim 1. 前記研削屑が前記精密な研削加工用の溝に移動することを抑制する手段は、前記粗研削用の溝と前記精密研削加工用の溝との間に壁となる段差を設けて砥石直径を異ならしめ、砥石直径の大きい方に前記粗研削加工用の溝を配置し、砥石直径の小さい方に前記精密研削用の溝を配置する手段であることを特徴とする請求項1又は2に記載の磁気ディスク用基板の製造方法。   The means for preventing the grinding scraps from moving into the precise grinding groove is provided with a step which becomes a wall between the rough grinding groove and the precision grinding groove to reduce the grindstone diameter. 3. The means according to claim 1 or 2, wherein the rough grinding groove is disposed on the larger grindstone diameter, and the fine grinding groove is disposed on the smaller grindstone diameter. Of manufacturing a magnetic disk substrate. 円板状の基板の端面部分に研削液を接触させつつ、前記基板の外周側端面に砥石を接触させて相対的に移動させることにより前記基板の端面を研削加工する処理を有する磁気ディスク用基板の製造方法であって、
前記砥石は、円筒状に形成されているとともにその内周側に複数の溝形状を有し、前記複数の溝形状は、粗研削加工用の溝と、精密研削加工用の溝とを含み、前記粗研削用の溝と前記精密研削加工用の溝との間には隆起部があり、
前記粗研削加工用の溝と前記精密研削加工用の溝に順次前記基板の外周側端面を接触させることにより、前記基板の外周側端面を研削加工することを特徴とする磁気ディスク用基板の製造方法。
A magnetic disk substrate having a process of grinding the end surface of the substrate by bringing a grinding stone into contact with the outer peripheral side end surface of the substrate and moving it relatively while contacting the end surface portion of the disk-shaped substrate. A manufacturing method of
The grindstone is formed in a cylindrical shape and has a plurality of groove shapes on the inner peripheral side thereof, and the plurality of groove shapes include a groove for rough grinding and a groove for precision grinding, There is a raised portion between the rough grinding groove and the precision grinding groove,
Manufacturing of a substrate for a magnetic disk, wherein the outer peripheral side end surface of the substrate is ground by sequentially bringing the outer peripheral side end surface into contact with the rough grinding groove and the precision grinding groove. Method.
円板状の基板の端面部分に研削液を接触させつつ、前記基板の外周側端面に砥石を接触させて相対的に移動させることにより前記基板の端面を研削加工する処理を有する磁気ディスク用基板の製造方法であって、
前記砥石は、円筒状に形成されているとともにその内周側に複数の溝形状を有し、前記複数の溝形状は、粗研削加工用の溝と、精密研削加工用の溝とを含み、
前記砥石の内周側には段差が設けられて直径の異なる複数の領域が存在し、前記直径の大きい領域に前記粗研削加工用の溝を配置し、前記直径の小さい方に前記精密研削用の溝を配置し、
前記粗研削加工用の溝と前記精密研削加工用の溝に順次前記基板の外周側端面を接触させることにより、前記基板の外周側端面を研削加工することを特徴とする磁気ディスク用基板の製造方法。
A magnetic disk substrate having a process of grinding the end surface of the substrate by bringing a grinding stone into contact with the outer peripheral side end surface of the substrate and moving it relatively while contacting the end surface portion of the disk-shaped substrate. A manufacturing method of
The grindstone is formed in a cylindrical shape and has a plurality of groove shapes on the inner peripheral side thereof, and the plurality of groove shapes include a groove for rough grinding and a groove for precision grinding,
Steps are provided on the inner peripheral side of the grindstone, and there are a plurality of regions having different diameters. The grooves for rough grinding are arranged in the regions having a large diameter, and the fine grinding is used in the region having the smaller diameter. Place the groove of
Manufacturing of a substrate for a magnetic disk, wherein the outer peripheral side end surface of the substrate is ground by sequentially bringing the outer peripheral side end surface into contact with the rough grinding groove and the precision grinding groove. Method.
前記砥石として、電着砥石を用いることを特徴とする請求項1乃至5のいずれかに記載の磁気ディスク用基板の製造方法。   6. The method for manufacturing a magnetic disk substrate according to claim 1, wherein an electrodeposition grindstone is used as the grindstone. 円板状の磁気ディスク用基板の端面部分に研削液を接触させつつ、前記基板の外周側端面に砥石を接触させて相対的に移動させることにより前記基板の端面を研削加工する処理に用いる研削用砥石であって、
前記研削用砥石は、円筒状に形成されているとともにその内周側に複数の溝形状を有し、前記複数の溝形状は、粗研削加工用の溝と、精密研削加工用の溝とを含み、前記粗研削加工用の溝で研削加工を行っている際に発生する研削屑が前記精密研削加工用の溝に移動することを抑制する手段を有していることを特徴とする研削用砥石。
Grinding used for grinding the end surface of the substrate by bringing a grinding stone into contact with the outer peripheral end surface of the substrate and moving it relatively while contacting the end surface portion of the disk-shaped magnetic disk substrate. A grinding wheel for
The grinding wheel is formed in a cylindrical shape and has a plurality of groove shapes on its inner peripheral side. The plurality of groove shapes include a groove for rough grinding and a groove for precision grinding. Including a means for suppressing movement of grinding waste generated when grinding is performed in the coarse grinding groove to the precision grinding groove. Whetstone.
円板状の磁気ディスク用基板の端面部分に研削液を接触させつつ、前記基板の外周側端面に砥石を接触させて相対的に移動させることにより前記基板の端面を研削加工する処理に用いる研削用砥石であって、
前記砥石は、円筒状に形成されているとともにその内周側に複数の溝形状を有し、前記複数の溝形状は、粗研削加工用の溝と、精密研削加工用の溝とを含み、前記粗研削用の溝と前記精密研削加工用の溝との間には隆起部を有することを特徴とする研削用砥石。
Grinding used for grinding the end surface of the substrate by bringing a grinding stone into contact with the outer peripheral end surface of the substrate and moving it relatively while contacting the end surface portion of the disk-shaped magnetic disk substrate. A grinding wheel for
The grindstone is formed in a cylindrical shape and has a plurality of groove shapes on the inner peripheral side thereof, and the plurality of groove shapes include a groove for rough grinding and a groove for precision grinding, A grinding wheel having a raised portion between the rough grinding groove and the precision grinding groove.
円板状の磁気ディスク用基板の端面部分に研削液を接触させつつ、前記基板の外周側端面に砥石を接触させて相対的に移動させることにより前記基板の端面を研削加工する処理に用いる研削用砥石であって、
前記砥石は、円筒状に形成されているとともにその内周側に複数の溝形状を有し、前記複数の溝形状は、粗研削加工用の溝と、精密研削加工用の溝とを含み、
前記砥石の内周側には段差が設けられて直径の異なる複数の領域が存在し、前記直径の大きい領域に前記粗研削加工用の溝を配置し、前記直径の小さい方に前記精密研削用の溝を配置していることを特徴とする研削用砥石。

Grinding used for grinding the end surface of the substrate by bringing a grinding stone into contact with the outer peripheral end surface of the substrate and moving it relatively while contacting the end surface portion of the disk-shaped magnetic disk substrate. A grinding wheel for
The grindstone is formed in a cylindrical shape and has a plurality of groove shapes on the inner peripheral side thereof, and the plurality of groove shapes include a groove for rough grinding and a groove for precision grinding,
Steps are provided on the inner peripheral side of the grindstone, and there are a plurality of regions having different diameters. The grooves for rough grinding are arranged in the regions having a large diameter, and the fine grinding is used in the region having the smaller diameter. A grindstone for grinding, characterized in that a groove is arranged.

JP2016170994A 2014-12-31 2016-09-01 Substrate manufacturing method, substrate end surface processing apparatus, substrate end surface processing method, and grinding wheel Active JP6645935B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014267108 2014-12-31
JP2014267108 2014-12-31

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016535248A Division JP6001815B1 (en) 2014-12-31 2015-12-29 Manufacturing method of magnetic disk substrate and grinding wheel

Publications (3)

Publication Number Publication Date
JP2016212946A true JP2016212946A (en) 2016-12-15
JP2016212946A5 JP2016212946A5 (en) 2019-03-14
JP6645935B2 JP6645935B2 (en) 2020-02-14

Family

ID=56284440

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016535248A Active JP6001815B1 (en) 2014-12-31 2015-12-29 Manufacturing method of magnetic disk substrate and grinding wheel
JP2016170994A Active JP6645935B2 (en) 2014-12-31 2016-09-01 Substrate manufacturing method, substrate end surface processing apparatus, substrate end surface processing method, and grinding wheel

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016535248A Active JP6001815B1 (en) 2014-12-31 2015-12-29 Manufacturing method of magnetic disk substrate and grinding wheel

Country Status (5)

Country Link
JP (2) JP6001815B1 (en)
CN (2) CN110450009B (en)
MY (1) MY183917A (en)
SG (1) SG11201702917RA (en)
WO (1) WO2016108286A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY192572A (en) 2017-03-31 2022-08-29 Hoya Corp Non-magnetic substrate for magnetic disk, and magnetic disk
CN109732471B (en) * 2017-10-31 2020-07-28 湖南大学 Chemical machinery-mechanical chemistry synergistic micro grinding method and composite abrasive grain type micro grinding tool
JP7133209B2 (en) 2018-10-31 2022-09-08 株式会社タニタ thermometer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0857756A (en) * 1994-08-22 1996-03-05 Kiyokuei Kenma Kako Kk Doughnut-shape substrate grinding tool and grinding method using this tool
JP2000296470A (en) * 1999-04-09 2000-10-24 Naoi Seiki Kk Internal grinding wheel and circular workpiece grinding device using same
JP2005059194A (en) * 2003-07-25 2005-03-10 Hamai Co Ltd Grinding wheel and shape finishing machine
JP2010005772A (en) * 2008-06-30 2010-01-14 Hoya Corp Method of processing glass substrate for magnetic disk, method of manufacturing glass substrate for magnetic disk, glass substrate for magnetic disk, and method of manufacturing magnetic disk
JP2010211882A (en) * 2009-03-11 2010-09-24 Showa Denko Kk Grinding machine for magnetic recording disk base, manufacturing method of disk base, and grinding wheel for the disk base
WO2012042906A1 (en) * 2010-09-30 2012-04-05 Hoya株式会社 Method for manufacturing magnetic-disk glass substrate
JP2013080532A (en) * 2011-09-30 2013-05-02 Hoya Corp Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and glass substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4406752B2 (en) * 2005-05-27 2010-02-03 日本電気硝子株式会社 Glass substrate end face processing apparatus and end face processing method
JP4756242B2 (en) * 2005-12-06 2011-08-24 株式会社ノリタケカンパニーリミテド Grinding wheel
JP4252093B2 (en) * 2007-01-18 2009-04-08 昭和電工株式会社 Disc-shaped substrate grinding method and grinding apparatus
KR20090063804A (en) * 2007-12-14 2009-06-18 주식회사 실트론 Grinding wheel truing tool and manufacturing method thereof, truing apparatus, manufacturing method of grinding wheel, and wafer edge grinding apparatus using the same
FR2975027B1 (en) * 2011-05-10 2014-04-18 Snecma HOLE DRILLING TOOL IN A WORKPIECE, PARTICULARLY IN ORGANIC MATRIX COMPOSITE MATERIAL, CORRESPONDING DRILLING METHOD
CN203141327U (en) * 2012-09-21 2013-08-21 珠海市巨海科技有限公司 Combined diamond grinding wheel
WO2014178416A1 (en) * 2013-04-30 2014-11-06 Hoya株式会社 Grinding stone, method for manufacturing glass substrate for magnetic disc, and magnetic disc manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0857756A (en) * 1994-08-22 1996-03-05 Kiyokuei Kenma Kako Kk Doughnut-shape substrate grinding tool and grinding method using this tool
JP2000296470A (en) * 1999-04-09 2000-10-24 Naoi Seiki Kk Internal grinding wheel and circular workpiece grinding device using same
JP2005059194A (en) * 2003-07-25 2005-03-10 Hamai Co Ltd Grinding wheel and shape finishing machine
JP2010005772A (en) * 2008-06-30 2010-01-14 Hoya Corp Method of processing glass substrate for magnetic disk, method of manufacturing glass substrate for magnetic disk, glass substrate for magnetic disk, and method of manufacturing magnetic disk
JP2010211882A (en) * 2009-03-11 2010-09-24 Showa Denko Kk Grinding machine for magnetic recording disk base, manufacturing method of disk base, and grinding wheel for the disk base
WO2012042906A1 (en) * 2010-09-30 2012-04-05 Hoya株式会社 Method for manufacturing magnetic-disk glass substrate
JP2013080532A (en) * 2011-09-30 2013-05-02 Hoya Corp Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and glass substrate

Also Published As

Publication number Publication date
MY183917A (en) 2021-03-17
CN107004431A (en) 2017-08-01
CN110450009B (en) 2021-08-13
WO2016108286A1 (en) 2016-07-07
JPWO2016108286A1 (en) 2017-04-27
CN107004431B (en) 2019-09-13
SG11201702917RA (en) 2017-05-30
JP6001815B1 (en) 2016-10-05
CN110450009A (en) 2019-11-15
JP6645935B2 (en) 2020-02-14

Similar Documents

Publication Publication Date Title
JP6089001B2 (en) Glass substrate for magnetic disk, magnetic disk
US20120204603A1 (en) Method for producing glass substrate for magnetic recording medium
JP2013140669A (en) Method of manufacturing glass substrate for magnetic disk
JP6001815B1 (en) Manufacturing method of magnetic disk substrate and grinding wheel
JP6156967B2 (en) Glass substrate manufacturing method, magnetic disk manufacturing method, and glass substrate end surface polishing apparatus
JP4905238B2 (en) Polishing method of glass substrate for magnetic recording medium
JP5994022B2 (en) Grinding wheel, method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk
JP2001191247A (en) Both surface grinding method of disc-like substrate, manufacturing method of substrate for information recording medium and manufacturing method of information recording medium
JP2010005772A (en) Method of processing glass substrate for magnetic disk, method of manufacturing glass substrate for magnetic disk, glass substrate for magnetic disk, and method of manufacturing magnetic disk
JP5074311B2 (en) Magnetic disk glass substrate processing method, magnetic disk glass substrate manufacturing method, and magnetic disk manufacturing method
CN108564970B (en) Method for manufacturing glass substrate, and method for manufacturing glass substrate for magnetic disk
JP2016126808A (en) Method for manufacturing substrate for magnetic disk and end surface polishing device
JP5639215B2 (en) Glass substrate for magnetic disk, method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk
JP5870187B2 (en) Glass substrate for magnetic disk, magnetic disk, magnetic disk drive device
JP2014216042A (en) Method of manufacturing glass substrate for magnetic disk, and magnetic disk manufacturing method
JP6353524B2 (en) Substrate manufacturing method
WO2012132073A1 (en) Method for manufacturing glass substrate for information recording medium, and information recording medium
JP2015069668A (en) Manufacturing method of magnetic disk glass substrate and manufacturing method of magnetic disk
CN105580077B (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP2015069675A (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JPWO2014208718A1 (en) Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, grinding wheel
WO2014104377A1 (en) Method for manufacturing glass substrates for magnetic disks and method for manufacturing magnetic disks
TW201943502A (en) Apparatus for dressing an abrasive wheel
JP2014199704A (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2012203921A (en) Manufacturing method for glass substrate for magnetic disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200109

R150 Certificate of patent or registration of utility model

Ref document number: 6645935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250