JP2014216042A - Method of manufacturing glass substrate for magnetic disk, and magnetic disk manufacturing method - Google Patents

Method of manufacturing glass substrate for magnetic disk, and magnetic disk manufacturing method Download PDF

Info

Publication number
JP2014216042A
JP2014216042A JP2013095284A JP2013095284A JP2014216042A JP 2014216042 A JP2014216042 A JP 2014216042A JP 2013095284 A JP2013095284 A JP 2013095284A JP 2013095284 A JP2013095284 A JP 2013095284A JP 2014216042 A JP2014216042 A JP 2014216042A
Authority
JP
Japan
Prior art keywords
glass substrate
processing
magnetic disk
face
grindstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013095284A
Other languages
Japanese (ja)
Inventor
武良 高橋
Takeyoshi Takahashi
武良 高橋
政明 植田
Masaaki Ueda
政明 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2013095284A priority Critical patent/JP2014216042A/en
Publication of JP2014216042A publication Critical patent/JP2014216042A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Surface Treatment Of Glass (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a glass substrate for a magnetic disk that enables end faces of the glass substrate to be finished in high quality and thereby achieving stable grinding processing for obtaining both the surface quality and processing accuracy.SOLUTION: In an end face working process of working on an end face part of a disk-shaped glass substrate by grinding with a grinding wheel brought into contact with it while supplying the end face part with grinding fluid, a grinding wheel having a groove shape in a face coming into contact with the end face of the glass substrate is used to bring the grinding wheel into contact with the end face in a state in which a rotating axis of the grinding wheel is inclined relative to an axis orthogonal to a main surface of the glass substrate, and, after grinding a side wall face and a chamfered face of the substrate at the same time, the end face of the glass substrate is polished with a brush.

Description

本発明は、ハードディスクドライブ(以下、「HDD」と略記する。)などの磁気記録装置に搭載される磁気ディスクの製造に用いられる磁気ディスク用ガラス基板の製造方法、及びこの製造方法によるガラス基板を用いる磁気ディスクの製造方法に関するものである。   The present invention relates to a method for manufacturing a glass substrate for a magnetic disk used for manufacturing a magnetic disk mounted on a magnetic recording apparatus such as a hard disk drive (hereinafter abbreviated as “HDD”), and a glass substrate by this manufacturing method. The present invention relates to a method of manufacturing a magnetic disk to be used.

今日、情報記録技術、特に磁気記録技術は、急速なIT産業の発達に伴い飛躍的な技術革新が要請されている。HDD等の磁気記録装置に搭載される記録媒体である磁気ディスクでは、高容量化の要請により、磁気ディスク1枚あたり、750GB以上の情報記録密度を実現できる技術が求められている。   Today, information recording technology, particularly magnetic recording technology, is required to undergo dramatic technological innovation with the rapid development of IT industry. In a magnetic disk which is a recording medium mounted on a magnetic recording apparatus such as an HDD, a technology capable of realizing an information recording density of 750 GB or more per magnetic disk is required due to a demand for higher capacity.

ところで、磁気ディスク等の情報記録媒体用基板としては、従来はアルミニウム系合金基板が広く用いられていたが、最近では、高記録密度化に適した磁気ディスク用基板として、ガラス基板の占める比率が高くなってきている。ガラス基板は、アルミニウム系合金基板に比べて剛性が高いので、磁気ディスク装置の高速回転化に適し、また、平滑な表面が得られるので、磁気ヘッドの浮上量を低下させることが容易となり、記録信号のS/N比を向上させることが出来るので好適である。   By the way, as an information recording medium substrate such as a magnetic disk, conventionally, an aluminum-based alloy substrate has been widely used. Recently, however, a ratio of a glass substrate as a magnetic disk substrate suitable for high recording density has been increased. It's getting higher. Since the glass substrate has higher rigidity than the aluminum-based alloy substrate, it is suitable for high-speed rotation of the magnetic disk device, and a smooth surface can be obtained, so that it is easy to reduce the flying height of the magnetic head, and recording This is preferable because the S / N ratio of the signal can be improved.

また、磁気ディスクの高記録密度化のためには、ガラス基板の加工精度にも高度なものが要求されており、それはガラス基板の主表面のみならず、端面形状においても同様である。
磁気ディスク用ガラス基板は、通常、円板状に成形したガラス基板に、研削、研磨、化学強化等の工程を順次施して製造される。
In addition, in order to increase the recording density of the magnetic disk, high processing accuracy is required for the glass substrate, which is the same not only for the main surface of the glass substrate but also for the end face shape.
A glass substrate for a magnetic disk is usually produced by sequentially performing steps such as grinding, polishing, and chemical strengthening on a glass substrate formed into a disk shape.

従来のガラス基板の端面の加工方法としては、円板状に成形したガラス基板の端面部分に研削液を供給しながら、ガラス基板の外周側端面および内周側端面に研削砥石を接触回転させて研削加工を行い、ガラス基板の外周側端面および内周側端面に所定の面取り加工を施していた(特許文献1など)。この場合に砥石は、一般には総形砥石とも呼ばれているもので、ガラス基板の端面形状を形成するための溝形状を有しており、この砥石をガラス基板の端面と接触させて加工することにより、砥石の溝形状をガラス基板の端面に形状転写している。また、この面取り加工の後に、ガラス基板の端面を鏡面に加工するために、ブラシ研磨が行われていた。   As a conventional processing method of the end surface of the glass substrate, while supplying a grinding liquid to the end surface portion of the glass substrate formed into a disk shape, a grinding wheel is contacted and rotated on the outer peripheral side end surface and the inner peripheral side end surface of the glass substrate. Grinding was performed, and predetermined chamfering was performed on the outer peripheral side end surface and the inner peripheral side end surface of the glass substrate (Patent Document 1, etc.). In this case, the grindstone is generally called a general grindstone, and has a groove shape for forming the end face shape of the glass substrate. The grindstone is processed by contacting with the end face of the glass substrate. Thus, the shape of the groove of the grindstone is transferred to the end surface of the glass substrate. Further, after this chamfering process, brush polishing has been performed in order to process the end surface of the glass substrate into a mirror surface.

特開平11−28649号公報JP-A-11-28649

情報化社会の進展とともに、磁気ディスクの高記録密度化の要求は高まるばかりである。磁気ディスク用のガラス基板の端面形状においても、更なる表面品質(平滑化など)の向上や、加工精度(形状精度など)の向上が求められてきている。
その理由は、たとえばHDDに搭載された時の磁気ヘッドの位置決め精度を得るための内径寸法精度の高精度化、媒体主表面に対するコロージョン発生などのコンタミ要因の低減要請に基づく外径端面の高品位化の達成が要求されるからである。
With the development of the information society, the demand for higher recording density of magnetic disks is only increasing. In the end face shape of a glass substrate for a magnetic disk, further improvement in surface quality (smoothing etc.) and improvement in processing accuracy (form accuracy etc.) have been demanded.
The reason for this is, for example, the high quality of the outer diameter end face based on the demand for reduction of contamination factors such as the accuracy of the inner diameter dimension to obtain the positioning accuracy of the magnetic head when mounted on the HDD and the occurrence of corrosion on the main surface of the medium. This is because the achievement of the conversion is required.

ところが、上述したような従来の総形砥石による研削加工と、ブラシ研磨による端面鏡面化加工の組合せでは、以下のような問題がある。
つまり、形状精度を重視しようとすると、ブラシ研磨での取代が少なくなり、総形砥石による研削加工で形成された研削条痕が取りきれず粗さが大きくなりやすい。一方、加工後の表面品質を重視しようとすると、ブラシ研磨での取代が増える結果、総形砥石による研削加工で形成された形状精度が悪化する。そこで、ブラシ研磨での取代は少なくして表面品質と形状精度の両方を得ようとすると、上記研削加工の条件を出来るだけ品位良く仕上げようとするために加工速度を出来るだけ低くするという生産効率を犠牲にした加工条件を採用する必要が生じる。
要するに、量産加工が前提の磁気ディスク用ガラス基板製造において、ガラス基板の内外径端部の加工精度と表面品質を両立させることは、従来の加工方法では困難である。
However, there are the following problems in the combination of the above-described grinding with a general grinding wheel and the end mirroring by brush polishing.
That is, if it is going to attach importance to shape accuracy, the allowance for brush polishing is reduced, and the grinding streaks formed by grinding with a general-purpose grindstone cannot be completely removed and the roughness tends to increase. On the other hand, if it is going to attach importance to the surface quality after a process, as a result of the machining allowance in brush polishing increasing, the shape precision formed by the grinding process by a general-purpose grindstone will deteriorate. Therefore, if you try to obtain both surface quality and shape accuracy with less allowance for brush polishing, the production efficiency is as low as possible in order to finish the above grinding conditions as well as possible. It is necessary to adopt processing conditions that sacrifice sacrificing.
In short, in manufacturing a glass substrate for a magnetic disk on the premise of mass production processing, it is difficult to achieve both processing accuracy and surface quality at the inner and outer diameter end portions of the glass substrate with a conventional processing method.

従来は、加工精度と表面品質のいずれかを重視することでユーザーの要求は満たされていたので然程問題は生じていなかったが、上述のとおり、近年では、磁気ディスクの更なる高記録密度化の要求に伴って、磁気ディスク用のガラス基板の端面形状においても、更なる表面品質の向上と、加工精度の向上が求められてきており、表面品質と加工精度の両立は急務となっている。   Conventionally, the user's requirement was satisfied by placing importance on either processing accuracy or surface quality, so there was no problem, but as mentioned above, in recent years, even higher recording density of magnetic disks In response to the demands for manufacturing, the surface shape of glass substrates for magnetic disks is also required to improve surface quality and processing accuracy. It is an urgent need to achieve both surface quality and processing accuracy. Yes.

以上のとおり、高記録密度化などの観点から、ガラス基板の端面の寸法形状精度や面取り加工の仕上がり面品位など、磁気ディスク用ガラス基板に対する品質要求は従来に増して高まる一方であり、従来の研削方法や研磨方法を用いて磁気ディスク用ガラス基板を製造した場合、高まるガラス基板の品質要求に安定的に応えることが困難になってきている。   As described above, from the viewpoint of increasing the recording density, the quality requirements for the glass substrate for magnetic disks, such as the dimensional accuracy of the end surface of the glass substrate and the finished surface quality of the chamfering process, are increasing more than before, When a glass substrate for a magnetic disk is manufactured using a grinding method or a polishing method, it has become difficult to stably meet the increasing quality requirements of the glass substrate.

そこで、本発明は、信頼性の確保が急務となっている磁気ディスクの高記録密度化の要請に応える観点から、磁気ディスク用ガラス基板の端面を効率良く高品質に仕上げることができ磁気ディスク用ガラス基板の製造方法を提供することを第1の目的とする。、また、このような製造方法によるガラス基板を利用する磁気ディスクの製造方法を提供することを第2の目的とする。   Therefore, the present invention can efficiently finish the end surface of a magnetic disk glass substrate with high quality from the viewpoint of meeting the demand for higher recording density of a magnetic disk, which is urgently required to ensure reliability. It is a first object to provide a method for producing a glass substrate. A second object of the present invention is to provide a method of manufacturing a magnetic disk using a glass substrate by such a manufacturing method.

そこで、本発明者は、上記課題を解決するべく鋭意検討した結果、本発明を完成するに到ったものである。
すなわち、本発明は、前記課題を解決するため、以下の構成としている。
Therefore, as a result of intensive studies to solve the above-mentioned problems, the present inventors have completed the present invention.
That is, the present invention has the following configuration in order to solve the above problems.

(構成1)
中心に円孔を有する円板状のガラス基板の端面部分に研削液を供給し、前記ガラス基板の端面である側壁面と前記ガラス基板の主表面および前記側壁面を介在する面取り面に砥石を接触させて研削することにより前記ガラス基板の端面を加工する端面加工処理を含む磁気ディスク用ガラス基板の製造方法であって、前記端面加工処理は、前記ガラス基板の主表面と直交する軸に対して回転砥石の回転軸を傾斜させた状態で当該回転砥石を当該ガラス基板の端面に当接させて前記ガラス基板の側壁面と面取り面とを同時に研削加工する第1の加工工程と、該第1の加工工程の後に行われ、該第1の加工工程によって加工されたガラス基板の側壁面および面取り面を、回転軸を有するブラシを当接させることにより研磨する第2の加工工程とを含むことを特徴とする磁気ディスク用ガラス基板の製造方法。
(Configuration 1)
Grinding liquid is supplied to the end surface portion of the disk-shaped glass substrate having a circular hole in the center, and a grindstone is placed on the side wall surface that is the end surface of the glass substrate, the main surface of the glass substrate, and the chamfered surface that interposes the side wall surface. A method of manufacturing a glass substrate for a magnetic disk including an end face processing for processing an end face of the glass substrate by contacting and grinding, wherein the end face processing is performed with respect to an axis orthogonal to the main surface of the glass substrate. A first processing step of grinding the side wall surface and the chamfered surface of the glass substrate at the same time by bringing the rotating grindstone into contact with the end surface of the glass substrate in a state where the rotation axis of the rotating grindstone is inclined; A second processing step that is performed after the first processing step and polishes the side wall surface and the chamfered surface of the glass substrate processed by the first processing step by bringing a brush having a rotating shaft into contact therewith. Method of manufacturing a glass substrate for a magnetic disk, wherein.

(構成2)
前記ガラス基板の端面において、前記第1の加工工程による加工軌跡と、前記第2の加工工程による加工軌跡とが重ならないことを特徴とする構成1に記載の磁気ディスク用ガラス基板の製造方法。
(構成3)
前記第1の加工工程において、前記ガラス基板の主表面と直交する軸と回転砥石の回転軸との間の角度は、2度〜30度の範囲であることを特徴とする構成1または2に記載の磁気ディスク用ガラス基板の製造方法。
(Configuration 2)
2. The method for manufacturing a glass substrate for a magnetic disk according to Configuration 1, wherein a processing locus by the first processing step and a processing locus by the second processing step do not overlap with each other on an end surface of the glass substrate.
(Configuration 3)
In the first processing step, the angle between the axis orthogonal to the main surface of the glass substrate and the rotation axis of the rotating grindstone is in the range of 2 degrees to 30 degrees. The manufacturing method of the glass substrate for magnetic disks of description.

(構成4)
前記第2の加工工程では、かつ、ブラシ毛の植毛角度がブラシの回転軸に対して傾斜しているブラシを用いて、ガラス基板の主表面と直交する軸と上記ブラシの回転軸とが平行になる条件で研磨するものであり、ブラシの植毛角度と、前記第1の加工工程におけるガラス基板の主表面および回転砥石の回転面との間の角度が互いに異なっていることを特徴とする構成1乃至3のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(構成5)
ガラス基板の端面の側壁面と、該ガラス基板の主表面と側壁面との間の面取り面との両方の面が形成されたガラス基板に対して、前記第1の加工工程を行うことを特徴とする構成1乃至4のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(Configuration 4)
In the second processing step, using a brush in which the flocking angle of the brush bristles is inclined with respect to the rotation axis of the brush, the axis orthogonal to the main surface of the glass substrate and the rotation axis of the brush are parallel to each other. And the angle between the flocking angle of the brush and the main surface of the glass substrate and the rotating surface of the rotating grindstone in the first processing step is different from each other. The manufacturing method of the glass substrate for magnetic discs in any one of 1-3.
(Configuration 5)
The first processing step is performed on the glass substrate on which both the side wall surface of the end surface of the glass substrate and the chamfered surface between the main surface and the side wall surface of the glass substrate are formed. The manufacturing method of the glass substrate for magnetic discs in any one of the structures 1 thru | or 4.

(構成6)
構成1乃至5のいずれかに記載の磁気ディスク用ガラス基板の製造方法によって製造された磁気ディスク用ガラス基板の主表面上に少なくとも磁性層を形成することを特徴とする磁気ディスクの製造方法。
(Configuration 6)
A magnetic disk manufacturing method comprising: forming at least a magnetic layer on a main surface of a magnetic disk glass substrate manufactured by the method for manufacturing a magnetic disk glass substrate according to any one of Structures 1 to 5.

本発明に係る磁気ディスク用ガラス基板の製造方法によれば、磁気ディスク用ガラス基板の端面を効率良く高品質に仕上げることができ、表面品質と加工精度を両立させる安定した研削加工が可能である。
また、この磁気ディスク用ガラス基板の製造方法によって製造された磁気ディスク用ガラス基板を用いる磁気ディスクの製造方法によれば、基板の端面の表面品質と加工精度を両立させて高品質に仕上げることができ、基板端面の表面状態や加工精度が起因する障害の発生を防止し、より一層の高記録密度化を実現できる信頼性の高い磁気ディスクを提供することができる。
According to the method for manufacturing a glass substrate for magnetic disk according to the present invention, the end surface of the glass substrate for magnetic disk can be finished efficiently and with high quality, and stable grinding that achieves both surface quality and processing accuracy is possible. .
Further, according to the magnetic disk manufacturing method using the magnetic disk glass substrate manufactured by this method of manufacturing a magnetic disk glass substrate, the surface quality of the end face of the substrate and the processing accuracy can be made compatible and finished with high quality. In addition, it is possible to provide a highly reliable magnetic disk capable of preventing the occurrence of failures due to the surface state of the substrate end face and the processing accuracy and realizing a further higher recording density.

本発明における第1の加工工程の一実施の形態を示すもので、(a)は斜視図、(b)は(a)とは向きを変えた正面図である。An embodiment of the 1st processing process in the present invention is shown, (a) is a perspective view and (b) is a front view which changed direction from (a). 本発明における第1の加工工程の他の実施の形態を示すもので、(a)は斜視図、(b)は(a)とは向きを変えた正面図である。The other embodiment of the 1st processing process in this invention is shown, (a) is a perspective view, (b) is the front view which changed direction from (a). 本発明における第1の加工工程による加工軌跡と、第2の加工工程による加工軌跡の一例を模式的に示す図である。It is a figure which shows typically an example of the processing locus by the 1st processing process in the present invention, and the processing locus by the 2nd processing process. 本発明における第1の加工工程に用いる砥石の溝形状の一例を示す断面図である。It is sectional drawing which shows an example of the groove shape of the grindstone used for the 1st processing process in this invention. ガラス基板の端面形状の一例を示す断面図である。It is sectional drawing which shows an example of the end surface shape of a glass substrate.

以下、本発明を実施するための形態について詳述する。
図5は、本発明が適用される磁気ディスク用ガラス基板1の外周側端部の断面図である。該ガラス基板1は、図5には示されていないが、中心部に円孔4を有する全体が円板状に形成され(図1等を参照)、その表裏の主表面1a,1aと、これら主表面1a,1a間に形成される外周側の端面と内周側の端面を有する。
上記ガラス基板1の外周側の端面は、その主表面1aと直交する側壁面1bと、この側壁面1bと表裏の主表面1a,1aとの間にそれぞれ形成されている2つの面取り面(面取りした面)1c、1cとからなる形状に形成されている。また、上記ガラス基板1の内周側の端面については図示していないが、上記外周側端面と同様に、その主表面1aと直交する側壁面と、この側壁面と表裏の主表面1a,1aとの間にそれぞれ形成されている2つの面取り面(面取りした面)とからなる形状に形成されている。
Hereinafter, embodiments for carrying out the present invention will be described in detail.
FIG. 5 is a cross-sectional view of the outer peripheral end of the magnetic disk glass substrate 1 to which the present invention is applied. Although the glass substrate 1 is not shown in FIG. 5, the whole having a circular hole 4 at the center is formed in a disc shape (see FIG. 1 and the like), and main surfaces 1a and 1a on the front and back sides thereof, It has an outer peripheral end face and an inner peripheral end face formed between the main surfaces 1a and 1a.
The outer peripheral end surface of the glass substrate 1 has a side wall surface 1b orthogonal to the main surface 1a, and two chamfered surfaces (chamfered surfaces) formed between the side wall surface 1b and the front and back main surfaces 1a and 1a. Surface) 1c, 1c. Moreover, although it does not show in figure about the end surface of the inner peripheral side of the said glass substrate 1, like the said outer peripheral side end surface, the side wall surface orthogonal to the main surface 1a, and this side wall surface and main surface 1a, 1a of the front and back Are formed in a shape composed of two chamfered surfaces (chamfered surfaces) formed between the two.

そして磁気ディスク、例えば、2.5インチディスクの場合は、ガラス基板1の外径が65mm、内径が20mmに仕上げられる。ここで、内径とは、ガラス基板1の中心部の円孔の内径のことである。 In the case of a magnetic disk, for example, a 2.5 inch disk, the glass substrate 1 is finished to have an outer diameter of 65 mm and an inner diameter of 20 mm. Here, the inner diameter is the inner diameter of a circular hole in the center of the glass substrate 1.

磁気ディスク用ガラス基板1の主表面1a、外周側端面および内周側端面はいずれも、最終的にはそれぞれ所定の表面粗さとなるように研磨(鏡面研磨)仕上げされる。ガラス基板1の外周側端面及び内周側端面はいずれも、上述のような端面形状に仕上げられ、なお且つ、表面粗さが例えばRmaxで1μm以下、Raで0.1μm以下の鏡面状態に仕上げられることが通常求められる。   The main surface 1a, the outer peripheral side end surface, and the inner peripheral side end surface of the glass substrate 1 for magnetic disk are all polished (mirror polished) so as to finally have a predetermined surface roughness. Both the outer peripheral side end face and the inner peripheral side end face of the glass substrate 1 are finished in the end face shape as described above, and the surface roughness is finished in a mirror surface state with Rmax of 1 μm or less and Ra of 0.1 μm or less, for example. It is usually sought to be.

磁気ディスク用ガラス基板1は、通常、例えばダイレクトプレス等により所定の円板状に成形したガラス基板(ガラスディスク)1に、端面の研削、研磨、主表面の鏡面研磨、化学強化等の工程を順次施して製造される。
まず、上記ガラス基板1の端面の研削・研磨工程について説明する。
なお、本明細書においては、ダイレクトプレス等により所定の円板状に成形したガラスディスクから、このガラスディスクに加工、処理等を施して作製される最終製品のガラス基板にいたるまで、説明の便宜上、すべてガラス基板もしくは磁気ディスク用ガラス基板と呼ぶこととする。
The glass substrate 1 for a magnetic disk is usually subjected to processes such as end face grinding, polishing, main surface mirror polishing, and chemical strengthening on a glass substrate (glass disk) 1 formed into a predetermined disk shape by, for example, direct pressing. Manufactured sequentially.
First, the grinding / polishing process of the end face of the glass substrate 1 will be described.
In the present specification, for convenience of explanation, from a glass disk molded into a predetermined disk shape by direct press or the like to a final product glass substrate produced by processing, processing, etc. on this glass disk. These are all referred to as glass substrates or magnetic disk glass substrates.

本発明に係る磁気ディスク用ガラス基板の製造方法は、上記構成1にあるように、中心に円孔を有する円板状のガラス基板の端面部分に研削液を供給し、前記ガラス基板の端面である側壁面と前記ガラス基板の主表面および前記側壁面を介在する面取り面に砥石を接触させて研削することにより前記ガラス基板の端面を加工する端面加工処理を含む磁気ディスク用ガラス基板の製造方法であって、前記端面加工処理は、前記ガラス基板の主表面と直交する軸に対して回転砥石の回転軸を傾斜させた状態で当該回転砥石を当該ガラス基板の端面に当接させて前記ガラス基板の側壁面と面取り面とを同時に研削加工する第1の加工工程と、該第1の加工工程の後に行われ、該第1の加工工程によって加工されたガラス基板の側壁面および面取り面をブラシ研磨する第2の加工工程とを含む構成である。
換言すると、本発明にかかる磁気ディスク用ガラス基板の製造方法は、円板状のガラス基板の端面部分に研削液を供給しつつ、前記ガラス基板の端面に砥石を接触させて研削することにより前記ガラス基板の端面を加工する端面加工処理を含む磁気ディスク用ガラス基板の製造方法であって、前記端面加工処理は、前記ガラス基板の端面と接触する面に溝形状を有する砥石を用いて、前記ガラス基板の端面に当接する前記砥石の軌跡が一定とならないように、前記ガラス基板の端面と前記砥石とを接触させ且つ前記ガラス基板と前記砥石とを相対的に移動させることにより前記ガラス基板の端面を加工する第1の加工工程と、該第1の加工工程の後に行われ、該第1の加工工程によって加工されたガラス基板の端面をブラシ研磨する第2の加工工程とを含む構成としている。
In the method for manufacturing a glass substrate for a magnetic disk according to the present invention, the grinding liquid is supplied to an end surface portion of a disk-shaped glass substrate having a circular hole at the center, as in Configuration 1, and the end surface of the glass substrate is used. A method of manufacturing a glass substrate for a magnetic disk, comprising: an end face processing for processing an end face of the glass substrate by grinding a contact with a grindstone in contact with a certain side wall surface, a main surface of the glass substrate, and a chamfered surface interposing the side wall surface In the end face processing, the rotating grindstone is brought into contact with the end face of the glass substrate in a state where the rotating shaft of the rotating grindstone is inclined with respect to an axis orthogonal to the main surface of the glass substrate. A first processing step for simultaneously grinding the side wall surface and the chamfered surface of the substrate, and the side wall surface and the chamfered surface of the glass substrate that are performed after the first processing step and processed by the first processing step. A configuration and a second processing step of brushing.
In other words, the method for manufacturing a glass substrate for a magnetic disk according to the present invention is performed by supplying a grinding liquid to an end surface portion of a disk-shaped glass substrate and grinding by bringing a grindstone into contact with the end surface of the glass substrate. A method of manufacturing a glass substrate for a magnetic disk including an end face processing for processing an end face of a glass substrate, wherein the end face processing is performed using a grindstone having a groove shape on a surface in contact with the end face of the glass substrate. The end face of the glass substrate and the grindstone are brought into contact with each other and the glass substrate and the grindstone are relatively moved so that the trajectory of the grindstone contacting the end face of the glass substrate is not constant. A first processing step for processing the end surface, and a second process that is performed after the first processing step and brushes the end surface of the glass substrate processed by the first processing step. It has a configuration and a step.

最初に、上記第1の加工工程について説明する。図1は、上記第1の加工工程の一実施の形態を示すもので、(a)は斜視図、(b)は(a)とは向きを変えた正面図である。
中心部に孔明け加工を施し、円孔4を有するガラス基板1に対して、その外周側端面については砥石2を、内周側端面に対しては砥石3を用いて加工する。砥石2は、図示するように所定の大きさの円盤状に形成されており、その外周側には、ガラス基板の端面と接触する面に溝形状を有している。この溝形状は、例えば図4に示すように、断面視では内方に凹んだ凹形状6となっている。勿論、図4に図示する形状は一例であり、これに限定する趣旨ではない。また、砥石3は、図示するように所定の大きさの円柱状に形成されており、その外周側には、ガラス基板の端面と接触する面に溝形状(例えば図4に示すような凹形状)を有している。
First, the first processing step will be described. 1A and 1B show an embodiment of the first processing step. FIG. 1A is a perspective view, and FIG. 1B is a front view in which the direction is changed from FIG.
The center part is drilled, and the glass substrate 1 having the circular holes 4 is processed using the grindstone 2 for the outer peripheral end face and the grindstone 3 for the inner peripheral end face. The grindstone 2 is formed in a disk shape of a predetermined size as shown in the figure, and has a groove shape on the outer peripheral side thereof in contact with the end surface of the glass substrate. For example, as shown in FIG. 4, the groove shape is a concave shape 6 that is recessed inward in a cross-sectional view. Of course, the shape illustrated in FIG. 4 is an example, and the present invention is not limited to this. In addition, the grindstone 3 is formed in a cylindrical shape having a predetermined size as shown in the figure, and a groove shape (for example, a concave shape as shown in FIG. 4) is formed on the outer peripheral side of the grindstone 3 in contact with the end surface of the glass substrate. )have.

本発明の第1の加工工程で用いる上記砥石(回転砥石)2と砥石(回転砥石)3としては、細かい粒度の砥粒をフェノール樹脂および/またはウレタン樹脂等の樹脂で固めたレジン砥石が好適である。この場合の砥粒の平均粒子径は、例えば65μm以下の砥粒が好適であり、特に2μm以上65μm以下の砥粒が好適である。換言すると、上記第1の加工工程で使用される砥石としては、粒度#400〜#8000の範囲内のものを用いることが好適である。 As the grindstone (rotary grindstone) 2 and grindstone (rotary grindstone) 3 used in the first processing step of the present invention, a resin grindstone in which fine-grained abrasive grains are hardened with a resin such as phenol resin and / or urethane resin is suitable. It is. In this case, the average particle diameter of the abrasive grains is preferably, for example, 65 μm or less, and particularly preferably 2 μm or more and 65 μm or less. In other words, as a grindstone used in the first processing step, it is preferable to use a grindstone having a particle size in the range of # 400 to # 8000.

第1の加工工程では、ガラス基板の端面に当接する砥石の軌跡が一定とならないようにガラス基板の端面と砥石とを接触させて、加工が行われる。具体的には、ガラス基板の主表面と直交する方向に対して、回転砥石2または回転砥石3の回転軸が傾斜した状態、換言すると、ガラス基板の主表面と直交する軸と回転砥石の回転軸とがねじりの関係になる状態で、回転砥石2または回転砥石3とガラス基板とを当接させて、ガラス基板1の側壁面と面取り面とを同時に研削加工が行われる。これについて、以下に詳細に説明する。
図1に示されるように、基板外周側を加工する砥石2については、ガラス基板1の平面方向に対して砥石2の平面方向を角度αだけ傾けた状態で加工する。また、基板内周側を加工する砥石3については、ガラス基板1の回転軸方向に対して砥石3の回転軸方向を角度βだけ傾けた状態で加工する。砥石2については、ガラス基板1の外周側端面に対して図中の矢印13方向(切込み方向)に接触し、砥石3については、ガラス基板1の内周側端面に対して図中の矢印14方向(切込み方向)に接触する。この場合において、砥石2又は砥石3、及びガラス基板1をそれぞれ所定方向に回転させながら加工を行うことが好ましく、各々の周速度、周速度比については内外周側端面の加工に好適なように適宜設定されればよい。また、図1では、ガラス基板1は矢印10方向に、砥石2は矢印11方向に、砥石3は矢印12方向にそれぞれ回転させているが、回転方向はこれに限定されるわけではない。砥石2又は砥石3とガラス基板1の回転方向は、同方向(カウンタ方向)、異方向(アンチカウンタ方向)のいずれでもよい。
In the first processing step, the processing is performed by bringing the end face of the glass substrate into contact with the grindstone so that the trajectory of the grindstone contacting the end face of the glass substrate is not constant. Specifically, the rotating grindstone 2 or the rotating grindstone 3 is inclined with respect to the direction orthogonal to the main surface of the glass substrate, in other words, the rotation of the rotating grindstone with the axis orthogonal to the main surface of the glass substrate. In a state where the shaft is in a torsional relationship, the rotating grindstone 2 or the rotating grindstone 3 and the glass substrate are brought into contact with each other, and the side wall surface and the chamfered surface of the glass substrate 1 are simultaneously ground. This will be described in detail below.
As shown in FIG. 1, the grindstone 2 for machining the outer peripheral side of the substrate is processed in a state where the plane direction of the grindstone 2 is inclined by an angle α with respect to the plane direction of the glass substrate 1. Further, the grindstone 3 for machining the inner peripheral side of the substrate is processed in a state where the rotation axis direction of the grindstone 3 is inclined by the angle β with respect to the rotation axis direction of the glass substrate 1. About the grindstone 2, it contacts with the arrow 13 direction (cutting direction) in the figure with respect to the outer peripheral side end surface of the glass substrate 1, and about the grindstone 3, the arrow 14 in the figure with respect to the inner peripheral side end surface of the glass substrate 1 is shown. Touch the direction (cutting direction). In this case, it is preferable to perform processing while rotating the grindstone 2 or the grindstone 3 and the glass substrate 1 in predetermined directions, respectively, and the peripheral speed and the peripheral speed ratio are suitable for processing the inner and outer peripheral side end faces. What is necessary is just to set suitably. In FIG. 1, the glass substrate 1 is rotated in the direction of the arrow 10, the grindstone 2 is rotated in the direction of the arrow 11, and the grindstone 3 is rotated in the direction of the arrow 12, but the rotation direction is not limited thereto. The rotation direction of the grindstone 2 or the grindstone 3 and the glass substrate 1 may be either the same direction (counter direction) or a different direction (anticounter direction).

なお、上述の砥石2のガラス基板1に対する傾斜角度αは任意に設定することができるが、上述の作用効果をより良く発揮させるためには、例えば2〜30度の範囲内とすることが好適である。また、上述の砥石3のガラス基板1に対する傾斜角度βについても任意に設定することができるが、上述の作用効果をより良く発揮させるためには、例えば2〜30度の範囲内とすることが好適である。 In addition, although the inclination | tilt angle (alpha) with respect to the glass substrate 1 of the above-mentioned grindstone 2 can be set arbitrarily, in order to demonstrate the above-mentioned effect more, it is suitable to set it as the range of 2-30 degree | times, for example. It is. Moreover, although the inclination angle (beta) with respect to the glass substrate 1 of the above-mentioned grindstone 3 can also be set arbitrarily, in order to fully demonstrate the above-mentioned effect, it shall be in the range of 2-30 degree | times, for example. Is preferred.

研削性や加工能率の観点からは、例えば砥石2の周速度は、1200〜1700m/分、砥石3の周速度は、300〜700m/分、ガラス基板1の周速度は、3〜10m/分程度とすることが好適である。
また、本発明に使用する研削液(クーラント)としては、特に制約はないが、冷却効果が高く、生産現場において安全性の高い水溶性の研削液が特に好適である。
From the viewpoint of grindability and processing efficiency, for example, the peripheral speed of the grindstone 2 is 1200 to 1700 m / min, the peripheral speed of the grindstone 3 is 300 to 700 m / min, and the peripheral speed of the glass substrate 1 is 3 to 10 m / min. It is preferable to set the degree.
Further, the grinding fluid (coolant) used in the present invention is not particularly limited, but a water-soluble grinding fluid having a high cooling effect and high safety at the production site is particularly suitable.

次に、上記第1の加工工程の後に行う上記第2の加工工程について説明する。
上記第2の加工工程は、第1の加工工程によって加工されたガラス基板の端面をブラシ研磨する工程である。
本発明におけるブラシ研磨に使用するブラシの構成は特に制約は無いが、ブラシ毛に線毛材を使用したブラシ等が適当である。また、ブラシ毛の植毛角度が回転軸方向に対して傾斜しているブラシを用いることも好適である。但し、本発明においては、上記第1の加工工程による加工軌跡と、上記第2のブラシ研磨による加工工程による加工軌跡とが重ならないように基板端面の加工を行うことが望ましく、ブラシ研磨に使用するブラシ毛の植毛角度は、上記の観点からも適宜選択することが好ましい。
Next, the second processing step performed after the first processing step will be described.
The second processing step is a step of brush polishing the end surface of the glass substrate processed by the first processing step.
Although there is no restriction | limiting in particular in the structure of the brush used for the brush grinding | polishing in this invention, The brush etc. which used the linear material for the brush hair are suitable. Moreover, it is also preferable to use a brush in which the bristles are inclined with respect to the rotation axis direction. However, in the present invention, it is desirable to process the substrate end face so that the processing locus by the first processing step and the processing locus by the second brush polishing do not overlap, and this is used for brush polishing. It is preferable that the flocking angle of the brush hair to be selected is appropriately selected also from the above viewpoint.

また、本発明のブラシ研磨工程で使用する砥粒の種類は特に限定は無い。また、砥粒の粒径としては、平均粒子径が0.01μm〜2.0μmの範囲のものが好ましい。上記範囲とすることで、ブラシ研磨による取代が少なくて済むためである。
また、加工能率の観点からは、研磨ブラシの周速度は、600m/分、ガラス基板1の周速度は、10m/分程度とすることが好適である。
また、ブラシ研磨工程に使用する研削液(クーラント)としては、特に制約はないが、冷却効果が高く、生産現場において安全性の高い水溶性の研削液が特に好適である。
上記第1の加工工程による砥石研削条痕と第2の加工工程によるブラシ研磨軌跡との両者の重複を避けながらブラシ研磨軌跡の均等化を図るために適宜、ブラシ軸とワーク軸の両者の軸並行方向で揺動運動を加えても良い。
Moreover, there is no limitation in particular in the kind of abrasive grain used at the brush grinding | polishing process of this invention. Moreover, as a particle size of an abrasive grain, the thing of the range whose average particle diameter is 0.01 micrometer-2.0 micrometers is preferable. It is because the allowance by brush polishing may be small by setting it as the said range.
From the viewpoint of processing efficiency, it is preferable that the peripheral speed of the polishing brush is 600 m / min and the peripheral speed of the glass substrate 1 is about 10 m / min.
Further, the grinding fluid (coolant) used in the brush polishing process is not particularly limited, but a water-soluble grinding fluid having a high cooling effect and high safety at the production site is particularly suitable.
In order to equalize the brush grinding trajectory while avoiding overlap between the grinding wheel grinding striation by the first machining step and the brush grinding trajectory by the second machining step, the axes of both the brush shaft and the work shaft are appropriately used. Oscillating motion may be applied in the parallel direction.

上記第1の加工工程では、ガラス基板1の端面に当接する例えば砥石2の軌跡が一定とならないように、たとえば本実施の形態では、ガラス基板1の平面方向に対して砥石2の平面方向を角度αだけ傾けた状態でガラス基板1の外周側端面と砥石2とを接触させながら加工している。これによって、ガラス基板1の端面に当接する砥石2の軌跡が一定とはならないで、砥石2の凸部(砥粒)が基板端面に対してランダムな位置に当接、作用するため、基板へのダメージが少なく、研削加工面の表面粗さやその面内ばらつきも小さくなり、研削加工面をより高平滑に仕上げることができる。従って、この第1の加工工程の後に行うブラシ研磨工程では、加工取代を減らせて、しかも端面品質(鏡面品位)を向上できる。   In the first processing step, for example, in the present embodiment, the planar direction of the grindstone 2 is set with respect to the planar direction of the glass substrate 1 so that the trajectory of the grindstone 2 that contacts the end surface of the glass substrate 1 is not constant. Processing is performed while the outer peripheral side end face of the glass substrate 1 and the grindstone 2 are brought into contact with each other while being inclined by the angle α. As a result, the locus of the grindstone 2 that contacts the end surface of the glass substrate 1 does not become constant, and the convex portions (abrasive grains) of the grindstone 2 abut and act on the substrate end surface at random positions. The surface roughness and the in-plane variation of the ground surface are reduced, and the ground surface can be finished with a higher smoothness. Therefore, in the brush polishing step performed after the first processing step, the machining allowance can be reduced and the end face quality (mirror surface quality) can be improved.

図3は、本発明における第1の加工工程による加工軌跡と、第2の加工工程による加工軌跡の一例を模式的に示す図である。
本発明においては、上記第1の加工工程による回転砥石による加工軌跡と、上記第2のブラシ研磨による加工工程による加工軌跡とが重ならないように基板端面の加工を行うことが望ましい。例えば、前述の第1の加工工程におけるガラス基板の傾き角度や、第2の加工工程において用いるブラシのブラシ毛の植毛角度を調整することによって、第1の加工工程による加工軌跡と、第2のブラシ研磨による加工工程による加工軌跡とが重ならないようにすることが可能である。図3よりわかるように、第1の加工工程による加工軌跡16と、第2の加工工程による加工軌跡15とは重なり合わずに、所定の角度(例えば外周側端面の加工においては前述の角度α)だけ異なっている場合、第1の加工工程による加工軌跡16と、第2の加工工程による加工軌跡15の重複が起こらないので、第2の加工工程では、第1の加工工程で発生した加工軌跡(研削痕など)を除去し、第1の加工工程で得られた端面の形状精度を維持しつつ、少ない取代で鏡面仕上げ加工を行うことが可能である。つまり、ガラス基板の端面加工において、表面品質と加工精度を両立させることが可能である。
FIG. 3 is a diagram schematically showing an example of a machining locus by the first machining process and a machining locus by the second machining process in the present invention.
In the present invention, it is desirable to process the substrate end face so that the processing locus by the rotating grindstone in the first processing step and the processing locus by the processing step by the second brush polishing do not overlap. For example, by adjusting the tilt angle of the glass substrate in the first processing step described above and the flocking angle of the brush bristles used in the second processing step, the processing locus by the first processing step, the second It is possible not to overlap the processing locus by the processing step by brush polishing. As can be seen from FIG. 3, the machining locus 16 by the first machining step and the machining locus 15 by the second machining step do not overlap each other, and a predetermined angle (for example, the angle α described above in the machining of the outer peripheral side end face). ), The machining locus 16 by the first machining process and the machining locus 15 by the second machining process do not overlap, so that the machining that has occurred in the first machining process in the second machining process. It is possible to perform mirror finishing with a small machining allowance while removing the locus (grinding marks and the like) and maintaining the shape accuracy of the end face obtained in the first machining step. That is, in the end face processing of the glass substrate, it is possible to achieve both surface quality and processing accuracy.

本発明においては、第1の加工工程における回転砥石による加工軌跡と、第2のブラシ研磨による加工工程による加工軌跡との成す角度は、例えば2度以上90度未満とすることが好ましい。 In the present invention, it is preferable that the angle formed by the processing locus by the rotating grindstone in the first processing step and the processing locus by the processing step by the second brush polishing is, for example, 2 degrees or more and less than 90 degrees.

図2は、上記第1の加工工程の他の実施の形態を示すもので、(a)は斜視図、(b)は(a)とは向きを変えた正面図である。
ガラス基板の内周側端面の加工方法については、上述の図1に示す実施の形態と同様であるが、外周側端面については、ガラス基板が内包されるような大きさの円筒状に形成された砥石5を用いて加工を行う点が異なる。砥石5の内周側には、ガラス基板の端面と接触する面に溝形状を有している。この溝形状は、例えば前述の図4に示すような凹形状6となっている。
2A and 2B show another embodiment of the first processing step, wherein FIG. 2A is a perspective view and FIG. 2B is a front view in which the direction is changed from FIG.
The processing method of the inner peripheral side end surface of the glass substrate is the same as that of the embodiment shown in FIG. 1 described above, but the outer peripheral side end surface is formed in a cylindrical shape having such a size as to enclose the glass substrate. The point which processes using the grindstone 5 differs. On the inner peripheral side of the grindstone 5, a groove shape is formed on the surface that contacts the end surface of the glass substrate. The groove shape is, for example, a concave shape 6 as shown in FIG.

本実施の形態においても、ガラス基板1の端面に当接する砥石5の軌跡が一定とならないように、ガラス基板1の平面方向に対して砥石5の平面方向を角度αだけ傾けた状態でガラス基板1の外周側端面と砥石5の内周側とを接触させながら加工している。従って、第1の加工工程による加工軌跡と、第2のブラシ研磨加工工程による加工軌跡の重複が起こらないようにブラシ研磨加工を行えば、第2のブラシ研磨加工工程では、第1の加工工程で発生した加工軌跡(研削痕など)を除去し、第1の加工工程で得られた端面の形状精度を維持しつつ、少ない取代で鏡面仕上げ加工を行うことが可能であり、その結果、ガラス基板の端面加工において、表面品質と加工精度を両立させることが可能である。 Also in the present embodiment, the glass substrate is in a state where the plane direction of the grindstone 5 is inclined by an angle α with respect to the plane direction of the glass substrate 1 so that the trajectory of the grindstone 5 contacting the end surface of the glass substrate 1 is not constant. The outer peripheral side end face of 1 and the inner peripheral side of the grindstone 5 are processed while being in contact with each other. Accordingly, if the brush polishing is performed so that the processing trajectory by the first processing step and the processing trajectory by the second brush polishing processing do not overlap, the first processing step is performed in the second brush polishing processing step. It is possible to remove the machining trajectory (grinding marks, etc.) generated in, and perform mirror finishing with a small machining allowance while maintaining the shape accuracy of the end face obtained in the first machining step. In end face processing of a substrate, it is possible to achieve both surface quality and processing accuracy.

また、本発明においては、ガラス基板の端面の側壁面と、該ガラス基板の主表面と側壁面との間の面取り面との両方の面が形成されたガラス基板に対して、前記第1の加工工程を行うことがより好適な実施の形態である。この場合、上記第1の加工工程における加工負荷が減らせ、より端面品質を重視した加工条件を設定することが可能になる。なお、ガラス基板の端面の側壁面と、該ガラス基板の主表面と側壁面との間の面取り面との両方の面が形成されたガラス基板を得る方法は特に限定されないが、加工精度、加工効率の点で有利な所謂総形砥石を用いた研削加工が好ましい。 In the present invention, the glass substrate on which both the side wall surface of the end surface of the glass substrate and the chamfered surface between the main surface and the side wall surface of the glass substrate are formed is the first substrate. It is a more preferred embodiment to perform the processing step. In this case, the processing load in the first processing step can be reduced, and it becomes possible to set processing conditions that place more emphasis on end face quality. The method for obtaining the glass substrate on which both the side wall surface of the end surface of the glass substrate and the chamfered surface between the main surface and the side wall surface of the glass substrate are formed is not particularly limited. Grinding using a so-called general-purpose grindstone that is advantageous in terms of efficiency is preferable.

本発明における端面加工処理においては、上記第1の加工工程と第2の加工工程における加工取代の比が、4:1〜10:1であることが好適である。上記範囲とすることにより、端面品質を従来と比べてより一層向上し、かつ、端面形状の精度がより一層向上するため好ましい In the end face processing in the present invention, it is preferable that the ratio of the machining allowance in the first processing step and the second processing step is 4: 1 to 10: 1. By setting it as the above range, it is preferable because the end face quality is further improved as compared with the conventional one and the accuracy of the end face shape is further improved.

磁気ディスク用ガラス基板に用いる硝種としては特に限定を設けないが、ガラス基板の材質としては、例えば、アルミノシリケートガラス、ソーダライムガラス、ソーダアルミノシリケートガラス、アルミノボロシリケートガラス、ボロシリケートガラス、石英ガラス、チェーンシリケートガラス、又は結晶化ガラス等のガラスセラミックス等が挙げられる。なかでもアルミノシリケートガラスは、耐衝撃性や耐振動性に優れるため特に好ましい。
以上のようにして、基板の外周側及び内周側端面の研削、研磨工程を終えたガラス基板に、続いて主表面の鏡面研磨工程、化学強化工程、等を施すことにより、図5に示すような磁気ディスク用ガラス基板1が得られる。
The glass type used for the glass substrate for the magnetic disk is not particularly limited. Examples of the glass substrate material include aluminosilicate glass, soda lime glass, soda aluminosilicate glass, aluminoborosilicate glass, borosilicate glass, and quartz glass. And glass ceramics such as chain silicate glass or crystallized glass. Of these, aluminosilicate glass is particularly preferable because it is excellent in impact resistance and vibration resistance.
The glass substrate that has been subjected to the grinding and polishing steps of the outer peripheral side and inner peripheral side end surfaces of the substrate as described above is then subjected to a mirror polishing step, a chemical strengthening step, etc. of the main surface, as shown in FIG. Such a magnetic disk glass substrate 1 is obtained.

また、本発明は、上述の本発明による磁気ディスク用ガラス基板の製造方法によって製造された磁気ディスク用ガラス基板の主表面上に少なくとも磁性層を形成する磁気ディスクの製造方法についても提供する。
すなわち、例えば上述の本発明に係る実施の形態により得られる磁気ディスク用ガラス基板上に、少なくとも磁性層を形成することにより磁気ディスクが得られる。通常は、例えばガラス基板上に、付着層、軟磁性層、下地層、磁性層、保護層、潤滑層などを設けた磁気ディスクとするのが好適である。
The present invention also provides a magnetic disk manufacturing method in which at least a magnetic layer is formed on the main surface of the magnetic disk glass substrate manufactured by the above-described method for manufacturing a magnetic disk glass substrate according to the present invention.
That is, for example, a magnetic disk can be obtained by forming at least a magnetic layer on a glass substrate for a magnetic disk obtained by the above-described embodiment of the present invention. Usually, for example, a magnetic disk in which an adhesion layer, a soft magnetic layer, an underlayer, a magnetic layer, a protective layer, a lubricating layer, and the like are provided on a glass substrate is preferable.

例えば磁性層としては、垂直磁気記録媒体用としては例えばCo系のhcp結晶構造をもつ合金などが挙げられる。
また、保護層としては、例えば、炭素系保護層などが好ましく挙げられる。また、保護層上の潤滑層を形成する潤滑剤としては、PFPE(パーフロロポリエーテル)系化合物が挙げられる。
ガラス基板上に上記各層を成膜する方法については、公知のスパッタリング法などを用いることができる。炭素系保護層の成膜についてはプラズマCVD法も好ましく用いられる。また、潤滑層の成膜にはディップ法などを用いることができる。
For example, the magnetic layer may be, for example, an alloy having a Co-based hcp crystal structure for a perpendicular magnetic recording medium.
Moreover, as a protective layer, a carbon-type protective layer etc. are mentioned preferably, for example. Examples of the lubricant that forms the lubricating layer on the protective layer include PFPE (perfluoropolyether) compounds.
As a method for forming each of the layers on the glass substrate, a known sputtering method or the like can be used. A plasma CVD method is also preferably used for forming the carbon-based protective layer. A dipping method or the like can be used for forming the lubricating layer.

本発明による磁気ディスク用ガラス基板の製造方法によって製造された磁気ディスク用ガラス基板を用いて磁気ディスクを製造することにより、基板の端面を高品質に仕上げることができ、基板端面の表面状態や形状精度が起因する障害の発生を防止し、より一層の高記録密度化を実現できる磁気ディスクを提供することができる。 By producing a magnetic disk using the glass substrate for magnetic disk produced by the method for producing a glass substrate for magnetic disk according to the present invention, the end face of the substrate can be finished with high quality, and the surface state and shape of the substrate end face It is possible to provide a magnetic disk capable of preventing occurrence of a failure due to accuracy and realizing further higher recording density.

以下に実施例を挙げて、本発明の実施の形態についてさらに具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
(実施例1)
まず、溶融ガラスから上型、下型、胴型を用いたダイレクトプレスにより直径66mmφ、厚さ1.0mmの円盤状のアルミノシリケートガラスからなるガラス基板(ガラスディスク)を得た。
Hereinafter, the embodiment of the present invention will be described more specifically with reference to examples. In addition, this invention is not limited to a following example.
Example 1
First, a glass substrate (glass disk) made of disk-shaped aluminosilicate glass having a diameter of 66 mmφ and a thickness of 1.0 mm was obtained from molten glass by direct pressing using an upper mold, a lower mold, and a body mold.

次いで、ガラス基板に寸法精度及び形状精度を向上させるためラッピング工程を行った。このラッピング工程は両面ラッピング装置を用いて行なった。 Next, a lapping process was performed on the glass substrate in order to improve dimensional accuracy and shape accuracy. This lapping process was performed using a double-sided lapping apparatus.

次に、円筒状の砥石を用いてガラス基板の中央部分に孔を空けると共に、前述の第1の加工工程と第2の加工工程を行い、基板の外周端面の研削、研磨加工を行った。
第1の加工工程では、レジン砥石を使用した。第1の加工工程は、前述の図1に示すガラス基板と砥石との配置関係で行った。第1の加工工程において、ガラス基板に対する砥石の傾き角度αは15度に設定した。また、ガラス基板と砥石の各々の周速度、回転方向は適宜設定した。
また、第2のブラシ研磨加工工程では、回転軸周りにブラシ毛が回転軸に対して傾斜して設けられている回転ブラシを使用した。このとき、回転ブラシの回転軸とガラス基板の主表面と直交する軸とは互いに平行になるようにして、研磨加工を行った。また、ブラシ毛の回転軸における傾斜角と、前記第1の加工工程におけるガラス基板に対する砥石の傾き角度と、が互いに異なるような回転ブラシを用いて研磨を行った。また、ガラス基板と研磨ブラシの各々の周速度、回転方向は適宜設定した。
Next, a hole was made in the central portion of the glass substrate using a cylindrical grindstone, and the first processing step and the second processing step described above were performed to grind and polish the outer peripheral end surface of the substrate.
In the first processing step, a resin grindstone was used. The first processing step was performed by the positional relationship between the glass substrate and the grindstone shown in FIG. In the first processing step, the inclination angle α of the grindstone with respect to the glass substrate was set to 15 degrees. Moreover, the peripheral speed and rotation direction of each of the glass substrate and the grindstone were set as appropriate.
Further, in the second brush polishing process, a rotating brush in which brush bristles are provided around the rotating shaft so as to be inclined with respect to the rotating shaft was used. At this time, polishing was performed such that the rotation axis of the rotating brush and the axis orthogonal to the main surface of the glass substrate were parallel to each other. Moreover, it grind | polished using the rotating brush from which the inclination angle in the rotating shaft of a bristle and the inclination angle of the grindstone with respect to the glass substrate in the said 1st processing process differ mutually. Further, the peripheral speed and the rotation direction of each of the glass substrate and the polishing brush were appropriately set.

以上のようにして、100枚のガラス基板の端面加工を行った。
得られた100枚のガラス基板について、端面の側壁面と面取り面の形状精度を確認するために、側壁面と面取り面との成す角部A(図5参照)の曲率半径を微細輪郭形状測定器を用いて測定し、基板100枚の平均値とバラツキ(標準偏差)の結果を表1に示した。また、面取り面の表面粗さRzを、粗さ測定機による測定値を元に算出し、その結果についても表1に示した。
As described above, end face processing of 100 glass substrates was performed.
In order to confirm the shape accuracy of the side wall surface and the chamfered surface of the obtained 100 glass substrates, the curvature radius of the corner A (see FIG. 5) formed by the side wall surface and the chamfered surface is measured with a fine contour shape. Table 1 shows the results of average values and variations (standard deviation) of 100 substrates. Further, the surface roughness Rz of the chamfered surface was calculated based on the measured value by the roughness measuring machine, and the result is also shown in Table 1.

また、参考例(参考例1)として、本発明の第1の加工工程に代えて従来の総形砥石を用いた研削加工を行った後、上記と同様にブラシ研磨により仕上げ加工を行い、100枚のガラス基板の端面加工を行った。総形砥石加工の方法、条件については公知例の条件を参考に適宜設定した。
また、別の参考例(参考例2)として、上記と同様の第1の加工工程のみを行い、100枚のガラス基板の端面加工を行った。但し、用いる砥石の種類(硬さ)を変えて2段階で加工を行った。
Moreover, as a reference example (reference example 1), instead of the first processing step of the present invention, after grinding using a conventional general-purpose grindstone, finish processing is performed by brush polishing in the same manner as described above. The end surface processing of the glass substrate of 1 sheet was performed. The method and conditions for machining the overall grinding wheel were appropriately set with reference to the conditions of known examples.
Moreover, as another reference example (reference example 2), only the first processing step similar to the above was performed, and end face processing of 100 glass substrates was performed. However, processing was performed in two stages by changing the type (hardness) of the grindstone used.

Figure 2014216042
Figure 2014216042

上記表1の結果から明らかなように、本発明の端面加工法によれば、側壁面と面取り面との成す角部の曲率半径に関する基板間バラツキは小さく、しかも面取り面は鏡面に仕上がっており、表面品質と形状精度のいずれもが良好である。
これに対し、従来の総形砥石による加工とブラシ研磨加工とを組合わせた参考例1の端面加工法によれば、加工後の表面品質を重視して加工を行ったために、面取り面は鏡面状態に仕上がったが、ブラシ研磨による加工取代が大きく、形状精度が劣化してしまった。
また、基板に対して砥石を傾けた状態で加工する参考例2の端面加工法によれば、加工後の表面品質を重視して加工を行うと、面取り面は鏡面状態に仕上がるが、良好な形状精度が得られなかった。
As is apparent from the results in Table 1 above, according to the end face processing method of the present invention, the variation between the substrates regarding the radius of curvature of the corner portion formed by the side wall surface and the chamfered surface is small, and the chamfered surface is finished to be a mirror surface. Both surface quality and shape accuracy are good.
On the other hand, according to the end face processing method of Reference Example 1 that combines conventional grinding wheel processing and brush polishing processing, the chamfered surface is a mirror surface because processing is performed with emphasis on the surface quality after processing. Although finished in a state, the machining allowance by brush polishing was large, and the shape accuracy deteriorated.
Moreover, according to the end surface processing method of Reference Example 2 in which the grindstone is tilted with respect to the substrate, the chamfered surface is finished in a mirror surface state when processing is performed with emphasis on the surface quality after processing. Shape accuracy was not obtained.

(実施例2)
上述の本発明による端面加工法において、上記第1の加工工程と第2の加工工程における加工取代の比を以下の表2に示すように変更したこと以外は実施例1と同様にしてガラス基板を作製した。
得られたガラス基板の端面からの発塵を以下の方法で評価し、以下の基準で判定した。
ガラス基板を水中に浸漬し、超音波(200kHz)を付加して1分間加振した。処理後、LPCを用いて発塵数をカウントし、取代比(第1の加工工程:第2の加工工程)が6:1(例5)の場合を1としたときに、他の例における発塵数を評価した。
また、第2の加工工程後のガラス基板の端面形状、すなわち、側壁面と面取り面との成す角部A(図5参照)の曲率半径のばらつきを示す標準偏差について、例3を1としたときの、他の例における標準偏差を評価した。なお、この値としては、1より小さい場合は、例3と比べて良化、1より大きい場合には悪化していることを示している。
その判定の結果を表2に示した。
(Example 2)
In the above-described end face machining method according to the present invention, a glass substrate is obtained in the same manner as in Example 1 except that the machining allowance ratio in the first machining process and the second machining process is changed as shown in Table 2 below. Was made.
Dust generation from the end surface of the obtained glass substrate was evaluated by the following method, and judged according to the following criteria.
The glass substrate was immersed in water, and an ultrasonic wave (200 kHz) was added and shaken for 1 minute. After the processing, the number of dust generation is counted using LPC, and when the machining allowance ratio (first processing step: second processing step) is 6: 1 (Example 5) is set to 1, in other examples The number of dust generation was evaluated.
Moreover, Example 3 was set to 1 for the standard deviation indicating the variation in the radius of curvature of the end face shape of the glass substrate after the second processing step, that is, the corner portion A (see FIG. 5) formed by the side wall surface and the chamfered surface. When the standard deviation in other examples was evaluated. In addition, as this value, when smaller than 1, it has shown that it is improving compared with Example 3, and when larger than 1, it has deteriorated.
The results of the determination are shown in Table 2.

Figure 2014216042
Figure 2014216042

上記表2の結果から明らかなように、研磨取代が増えるに従って端面からの発塵は良化することが分かるが、一方で研磨取代が増えるにつれて曲率バラツキによる形状精度の悪化が顕著になるため、研磨取代の比は適宜選定する必要がある事が分かる。つまり、上記第1の加工工程と第2の加工工程における加工取代の比が、4:1〜10:1の範囲内が好ましいことがわかる。 As is clear from the results of Table 2 above, it can be seen that the dust generation from the end surface improves as the polishing allowance increases, but on the other hand, the deterioration in shape accuracy due to variation in curvature becomes more prominent as the polishing allowance increases. It can be seen that the ratio of the polishing allowance needs to be selected appropriately. That is, it can be seen that the machining allowance ratio in the first machining step and the second machining step is preferably in the range of 4: 1 to 10: 1.

1 磁気ディスク用ガラス基板
2,5 外周側端面研削砥石
3 内周側端面研削砥石
6 溝
1a ガラス基板の主表面
1b 側壁面
1c 面取り面
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 for magnetic disks 2, 5 Outer peripheral side end grinding wheel 3 Inner peripheral side end grinding wheel 6 Groove 1a Main surface 1b of glass substrate Side wall surface 1c Chamfer

Claims (6)

中心に円孔を有する円板状のガラス基板の端面部分に研削液を供給し、前記ガラス基板の端面である側壁面と前記ガラス基板の主表面および前記側壁面を介在する面取り面に砥石を接触させて研削することにより前記ガラス基板の端面を加工する端面加工処理を含む磁気ディスク用ガラス基板の製造方法であって、
前記端面加工処理は、
前記ガラス基板の主表面と直交する軸に対して回転砥石の回転軸を傾斜させた状態で当該回転砥石を当該ガラス基板の端面に当接させて前記ガラス基板の側壁面と面取り面とを同時に研削加工する第1の加工工程と、
該第1の加工工程の後に行われ、該第1の加工工程によって加工されたガラス基板の側壁面および面取り面を、回転軸を有するブラシを当接させることにより研磨する第2の加工工程と
を含むことを特徴とする磁気ディスク用ガラス基板の製造方法。
Grinding liquid is supplied to the end surface portion of the disk-shaped glass substrate having a circular hole in the center, and a grindstone is placed on the side wall surface that is the end surface of the glass substrate, the main surface of the glass substrate, and the chamfered surface that interposes the side wall surface. A method for producing a glass substrate for a magnetic disk, comprising an end face processing for processing an end face of the glass substrate by grinding by contact,
The end face processing is
The rotating grindstone is brought into contact with the end surface of the glass substrate in a state where the rotation axis of the rotating grindstone is inclined with respect to an axis orthogonal to the main surface of the glass substrate, and the side wall surface and the chamfered surface of the glass substrate are simultaneously brought into contact with each other. A first machining step for grinding;
A second processing step that is performed after the first processing step and polishes the side wall surface and the chamfered surface of the glass substrate processed by the first processing step by bringing a brush having a rotating shaft into contact therewith; The manufacturing method of the glass substrate for magnetic discs characterized by the above-mentioned.
前記ガラス基板の端面において、前記第1の加工工程による加工軌跡と、前記第2の加工工程による加工軌跡とが重ならないことを特徴とする請求項1に記載の磁気ディスク用ガラス基板の製造方法。   2. The method of manufacturing a glass substrate for a magnetic disk according to claim 1, wherein a processing locus by the first processing step and a processing locus by the second processing step do not overlap with each other on an end surface of the glass substrate. . 前記第1の加工工程において、前記ガラス基板の主表面と直交する軸と回転砥石の回転軸との間の角度は、2度〜30度の範囲であることを特徴とする請求項1または2に記載の磁気ディスク用ガラス基板の製造方法。   The angle between the axis orthogonal to the main surface of the glass substrate and the rotation axis of the rotating grindstone in the first processing step is in the range of 2 degrees to 30 degrees. The manufacturing method of the glass substrate for magnetic discs as described in any one of. 前記第2の加工工程では、かつ、ブラシ毛の植毛角度がブラシの回転軸に対して傾斜しているブラシを用いて、ガラス基板の主表面と直交する軸と上記ブラシの回転軸とが平行になる条件で研磨するものであり、ブラシの植毛角度と、前記第1の加工工程におけるガラス基板の主表面および回転砥石の回転面との間の角度が互いに異なっていることを特徴とする請求項1乃至3のいずれかに記載の磁気ディスク用ガラス基板の製造方法。   In the second processing step, using a brush in which the flocking angle of the brush bristles is inclined with respect to the rotation axis of the brush, the axis orthogonal to the main surface of the glass substrate and the rotation axis of the brush are parallel to each other. The angle between the flocking angle of the brush and the main surface of the glass substrate and the rotating surface of the rotating grindstone in the first processing step is different from each other. Item 4. A method for producing a magnetic disk glass substrate according to any one of Items 1 to 3. ガラス基板の端面の側壁面と、該ガラス基板の主表面と側壁面との間の面取り面との両方の面が形成されたガラス基板に対して、前記第1の加工工程を行うことを特徴とする請求項1乃至4のいずれかに記載の磁気ディスク用ガラス基板の製造方法。   The first processing step is performed on the glass substrate on which both the side wall surface of the end surface of the glass substrate and the chamfered surface between the main surface and the side wall surface of the glass substrate are formed. A method for producing a glass substrate for a magnetic disk according to any one of claims 1 to 4. 請求項1乃至5のいずれかに記載の磁気ディスク用ガラス基板の製造方法によって製造された磁気ディスク用ガラス基板の主表面上に少なくとも磁性層を形成することを特徴とする磁気ディスクの製造方法。

6. A method for manufacturing a magnetic disk, comprising forming at least a magnetic layer on a main surface of the glass substrate for a magnetic disk manufactured by the method for manufacturing a glass substrate for a magnetic disk according to claim 1.

JP2013095284A 2013-04-30 2013-04-30 Method of manufacturing glass substrate for magnetic disk, and magnetic disk manufacturing method Pending JP2014216042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013095284A JP2014216042A (en) 2013-04-30 2013-04-30 Method of manufacturing glass substrate for magnetic disk, and magnetic disk manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013095284A JP2014216042A (en) 2013-04-30 2013-04-30 Method of manufacturing glass substrate for magnetic disk, and magnetic disk manufacturing method

Publications (1)

Publication Number Publication Date
JP2014216042A true JP2014216042A (en) 2014-11-17

Family

ID=51941662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013095284A Pending JP2014216042A (en) 2013-04-30 2013-04-30 Method of manufacturing glass substrate for magnetic disk, and magnetic disk manufacturing method

Country Status (1)

Country Link
JP (1) JP2014216042A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111702610A (en) * 2020-07-07 2020-09-25 中国航发动力股份有限公司 Engine wheel disc annular row special-shaped tongue-and-groove sharp edge treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111702610A (en) * 2020-07-07 2020-09-25 中国航发动力股份有限公司 Engine wheel disc annular row special-shaped tongue-and-groove sharp edge treatment method
CN111702610B (en) * 2020-07-07 2021-05-25 中国航发动力股份有限公司 Engine wheel disc annular row special-shaped tongue-and-groove sharp edge treatment method

Similar Documents

Publication Publication Date Title
JP2012142044A (en) Method for manufacturing glass substrate for information recording medium and information recording medium
JP6156967B2 (en) Glass substrate manufacturing method, magnetic disk manufacturing method, and glass substrate end surface polishing apparatus
JP6645935B2 (en) Substrate manufacturing method, substrate end surface processing apparatus, substrate end surface processing method, and grinding wheel
JP2015104771A (en) Manufacturing method of glass substrate for magnetic disk and carrier for polishing treatment
JP5361185B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5994022B2 (en) Grinding wheel, method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk
JP5752971B2 (en) Manufacturing method of glass substrate for information recording medium
JP2001191247A (en) Both surface grinding method of disc-like substrate, manufacturing method of substrate for information recording medium and manufacturing method of information recording medium
JP2013080531A (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and glass substrate
JP2014216042A (en) Method of manufacturing glass substrate for magnetic disk, and magnetic disk manufacturing method
JP2010005772A (en) Method of processing glass substrate for magnetic disk, method of manufacturing glass substrate for magnetic disk, glass substrate for magnetic disk, and method of manufacturing magnetic disk
JP5074311B2 (en) Magnetic disk glass substrate processing method, magnetic disk glass substrate manufacturing method, and magnetic disk manufacturing method
JP5947221B2 (en) Manufacturing method of glass substrate for information recording medium
JP2016126808A (en) Method for manufacturing substrate for magnetic disk and end surface polishing device
JP5701938B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5639215B2 (en) Glass substrate for magnetic disk, method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk
JP6199047B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5870187B2 (en) Glass substrate for magnetic disk, magnetic disk, magnetic disk drive device
JP2014199704A (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP6353524B2 (en) Substrate manufacturing method
JP2014180709A (en) Manufacturing method of grindstone, and glass substrate for magnetic disk
JP6121759B2 (en) Manufacturing method of glass substrate for magnetic disk
JP2015069668A (en) Manufacturing method of magnetic disk glass substrate and manufacturing method of magnetic disk
JP2010179395A (en) Manufacturing method for glass substrate
WO2014156798A1 (en) Method of manufacturing glass substrate for information recording medium