JP2016207378A - 固体酸化物形燃料電池システムの運転方法 - Google Patents

固体酸化物形燃料電池システムの運転方法 Download PDF

Info

Publication number
JP2016207378A
JP2016207378A JP2015085936A JP2015085936A JP2016207378A JP 2016207378 A JP2016207378 A JP 2016207378A JP 2015085936 A JP2015085936 A JP 2015085936A JP 2015085936 A JP2015085936 A JP 2015085936A JP 2016207378 A JP2016207378 A JP 2016207378A
Authority
JP
Japan
Prior art keywords
solid oxide
raw material
pressure
fuel cell
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015085936A
Other languages
English (en)
Other versions
JP6459063B2 (ja
Inventor
森田 純司
Junji Morita
純司 森田
章典 行正
Akinori Yukimasa
章典 行正
嘉久和 孝
Takashi Kakuwa
孝 嘉久和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015085936A priority Critical patent/JP6459063B2/ja
Publication of JP2016207378A publication Critical patent/JP2016207378A/ja
Application granted granted Critical
Publication of JP6459063B2 publication Critical patent/JP6459063B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】リサイクルガス流量の適正化の向上を図った固体酸化物形燃料電池システムの運転方法を提供する。
【解決手段】固体酸化物形燃料電池システムの運転方法は、水添脱硫器16、改質器11、固体酸化物形燃料電池21、燃焼器25、原料ガス経路12a、改質ガス経路12b、リサイクルガス経路17、圧力調整器13、昇圧器14、水経路19、空気経路23および制御器27を備える固体酸化物形燃料電池システム100、200の運転方法であって、前記制御器は、前記接続点における原料ガスの圧力が、前記固体酸化物形燃料電池への空気供給量と、前記改質器への原料ガス供給量、前記改質器への水供給量、および、前記固体酸化物形燃料電池の目標電流の少なくともいずれか一つの値とに基づいて算出された目標圧力になるように前記圧力調整器を制御する。
【選択図】図1

Description

本発明は、水添脱硫器を備える燃料電池システムの運転方法に関する。
水添脱硫器において原料ガスに含まれる硫黄を水素と反応させて除去する従来の燃料電池システムとして、特許文献1に示す燃料電池発電システムが知られている。このシステムでは、原料ガスを燃料ブロアを介して水添脱硫器に供給している。また、改質器において生成された水素含有ガスの一部をリサイクルガスとして用いている。この改質器より下流側の水素含有ガスの圧力を、燃料ブロアの上流側における原料ガスの圧力より高くすることにより、リサイクルガスを水添脱硫器に供給している。そして、リサイクルガスの流量を、燃料ブロワより上流側に備えられた圧力調整部(調整オリフィス、ガバナ)により調整している。
特開2013−225411
しかしながら、特許文献1に示す燃料電池発電システムでは、リサイクルガス流量の適正化の観点から、未だ改善の余地があった。本発明は、リサイクルガス流量の適正化の向上を図った固体酸化物形燃料電池システムの運転方法の提供を目的とする。
本発明のある態様に係る燃料電池システムの運転方法は、原料ガスを脱硫する水添脱硫器と、前記水添脱硫器により脱硫された原料ガスを水により改質して水素を含む改質ガスを生成する改質器と、前記改質器により改質された改質ガスと空気とにより発電する固体酸化物形燃料電池と、前記固体酸化物形燃料電池から排出された改質ガスを燃焼する燃焼器と、前記水添脱硫器を経由して前記改質器へ前記原料ガスが流通する原料ガス経路と、前記改質器から前記固体酸化物形燃料電池を経由して前記燃焼器へ前記改質ガスが流通する改質ガス経路と、前記改質器より下流側の分岐点で前記改質ガス経路から分岐し、前記水添脱硫器より上流側の接続点で前記原料ガス経路に接続するリサイクルガス経路と、前記接続点より上流側の原料ガス経路を流通する原料ガスの圧力を調整する圧力調整器と、前記接続点より下流側の原料ガス経路を流通する原料ガスの圧力を上昇させる昇圧器と、前記改質器に供給される水が流通する水経路と、前記固体酸化物形燃料電池に供給される空気が流通する空気経路と、制御器と、を備える固体酸化物形燃料電池システムの運転方法であって、前記制御器は、前記接続点における原料ガスの圧力が、前記固体酸化物形燃料電池への空気供給量と、前記改質器への原料ガス供給量、前記改質器への水供給量、および、前記固体酸化物形燃料電池の目標電流の少なくともいずれか一つの値とに基づいて算出された目標圧力になるように前記圧力調整器を制御する。
本発明は、リサイクルガス流量の適正化が可能であるという効果を奏する。
第1実施形態に係る固体酸化物形燃料電池システムの機能的な構成の一例を示すブロック図である。 図1の固体酸化物形燃料電池システムの運転方法の一例を示すフローチャートである。 図2の演算プログラムの一例を示すフローチャートである。 第2実施形態に係る固体酸化物形燃料電池システムの機能的な構成の一例を示すブロック図である。 図4の固体酸化物形燃料電池システムの運転方法の一例を示すフローチャートである。
(本発明の基礎となる知見)
本発明者は、固体酸化物形燃料電池システムにおいて、リサイクルガス流量の適正化を図ることについて鋭意検討を重ねた。その結果、本発明者は従来技術には下記のような問題があることを見出した。
特許文献1の燃料電池発電システムでは、圧力調整部は、リサイクルガス流量が原料ガスの流量に対して一定比率になるように、燃料ブロアの上流側圧力と改質器の下流側圧力との差を調整している。この下流側圧力は発電出力に応じて求められているため、リサイクルガス流量は発電出力に基づいて調整される。
しかしながら、たとえば、この燃料電池発電システムの燃料電池に固体酸化物形燃料電池(SOFC)を用いた場合、リサイクルガス流量を発電出力に基づいて調整しただけでは、適正な流量のリサイクルガスが水添脱硫器に供給されない。
すなわち、SOFCは燃焼器により加熱されると共に、空気により冷却される。このようなSOFCの温度調整は、効率および発電出力を考慮して行われる。つまり、SOFCの温度を上げる場合には、燃料電池発電システムの効率の観点から、まず、空気量を減少させる。それでも昇温が必要な場合に、原料ガス量を増加させる。一方、発電に必要な原料ガス量を確保するため、原料ガス量をあまり減少させることができない。このため、燃料電池の温度を下げる場合には、主に、空気量を増加する。このように、SOFCの温度は主に空気量により調整されるため、SOFCに供給される空気量は増減する。
このような空気量の変化は改質器の下流側圧力に影響する。よって、この空気量の影響を考慮せずに、発電出力に基づいて下流側圧力を求めると、リサイクルガス流量の過不足が生じてしまう。
さらに、SOFCシステムでは、改質器およびSOFCが高温である。このため、これらの間に圧力計を設けることができず、改質器の下流側圧力を直接、計測することができない。また、SOFCシステムでは、ホットモジュールに改質器およびSOFCが一体的に組み込まれている。このため、これらの間に圧力損失を設けて、改質器の下流側圧力を予め設定することは非常に困難である。よって、空気量の影響を受けた改質器の下流側圧力を求めることは難しい。
本発明は、上記知見に基づいてなされたものであり、リサイクルガス流量の適正化できる固体電解質形燃料電池システムの運転方法を提供する。
(実施形態)
本発明の実施の第1の態様に係る固体酸化物形燃料電池システムの運転方法は、原料ガスを脱硫する水添脱硫器と、前記水添脱硫器により脱硫された原料ガスを水により改質して水素を含む改質ガスを生成する改質器と、前記改質器により改質された改質ガスと空気とにより発電する固体酸化物形燃料電池と、前記固体酸化物形燃料電池から排出された改質ガスを燃焼する燃焼器と、前記水添脱硫器を経由して前記改質器へ前記原料ガスが流通する原料ガス経路と、前記改質器から前記固体酸化物形燃料電池を経由して前記燃焼器へ前記改質ガスが流通する改質ガス経路と、前記改質器より下流側の分岐点で前記改質ガス経路から分岐し、前記水添脱硫器より上流側の接続点で前記原料ガス経路に接続するリサイクルガス経路と、前記接続点より上流側の原料ガス経路を流通する原料ガスの圧力を調整する圧力調整器と、前記接続点より下流側の原料ガス経路を流通する原料ガスの圧力を上昇させる昇圧器と、前記改質器に供給される水が流通する水経路と、前記固体酸化物形燃料電池に供給される空気が流通する空気経路と、制御器と、を備える固体酸化物形燃料電池システムの運転方法であって、前記制御器は、前記接続点における原料ガスの圧力が、前記固体酸化物形燃料電池への空気供給量と、前記改質器への原料ガス供給量、前記改質器への水供給量、および、前記固体酸化物形燃料電池の目標電流の少なくともいずれか一つの値とに基づいて算出された目標圧力になるように前記圧力調整器を制御する。
本発明の実施の第2の態様に係る固体酸化物形燃料電池システムの運転方法では、第1の態様において、前記固体酸化物形燃料電池システムは、前記圧力調整器より下流側かつ前記接続点より上流側の前記原料ガス経路を流通する原料ガスの圧力を検知する圧力計をさらに備え、前記制御器は、前記圧力計から前記接続点における原料ガスの圧力を取得してもよい。
本発明の実施の第3の態様に係る固体酸化物形燃料電池システムの運転方法では、第1または第2の態様において、前記固体酸化物形燃料電池システムは、前記固体酸化物形燃料電池に空気を供給する第1供給器と、前記第1供給器から供給された空気の流量を検知する第1流量計と、をさらに備え、前記制御器は、前記第1流量計から前記空気供給量を取得してもよい。
本発明の実施の第4の態様に係る固体酸化物形燃料電池システムの運転方法では、第1〜第3のいずれかの態様において、前記固体酸化物形燃料電池システムは、前記改質器に原料ガスを供給する第2供給器と、前記第2供給器から供給された原料ガスの流量を検知する第2流量計と、をさらに備え、前記制御器は、前記第2流量計から前記改質器への原料ガス供給量を取得してもよい。
本発明の実施の第5の態様に係る固体酸化物形燃料電池システムの運転方法では、第1〜第4のいずれかの態様において、前記改質器に水を供給する第3供給器と、前記第3供給器から供給された水の流量を検知する第3流量計と、をさらに備え、前記制御器は、前記第3流量計から前記改質器への水供給量を取得してもよい。
(第1実施形態)
第1実施形態に係る固体酸化物形燃料電池システム(SOFCシステム)100について、図1を参照して説明する。図1は、第1実施形態に係るSOFCシステム100の機能的な構成の一例を示すブロック図である。SOFCシステム100は、固体酸化物形燃料電池システムであって、水添脱硫器16、改質器11、固体酸化物形燃料電池(SOFC)21、燃焼器25、原料ガス経路12a、改質ガス経路12b、リサイクルガス経路17、圧力調整器13、昇圧器14、水経路19、空気経路23および制御器27を備えている。SOFCシステム100は、第2供給器10、第3供給器18および第1供給器22をさらに備えていてもよい。
第2供給器10は、原料ガスを供給する供給器であって、原料ガスの流量を調整する機能を有している。第2供給器10として、たとえば、昇圧器14および流量調整弁の少なくともいずれか一方、または、定容積型ポンプが例示される。なお、原料は、たとえば、メタンを主成分とする都市ガス、天然ガス、LPG等の少なくとも炭素および水素から構成される有機化合物を含むガスである。
水添脱硫器16は、原料ガスを脱硫する反応器である。この水添脱硫器16では、原料ガスに含まれる硫黄化合物が触媒の存在下で水素と水添脱硫反応して脱硫される。水添脱硫触媒として、たとえば、CuZn系触媒、および、CoMo系触媒とこの下流に設けられた吸着剤とで構成された触媒などが例示される。CuZn系触媒は、硫黄化合物を硫化水素に変換する機能、および、硫化水素を吸着する機能を共に有する。CoMo系触媒は、原料中の硫黄化合物を硫化水素に変換する機能を有する。吸着剤は、硫化水素を吸着する機能を有し、たとえば、ZnO系触媒およびCuZn系触媒が例示される。
改質器11は、水添脱硫器16により脱硫された原料ガスを水により改質して水素を含む改質ガスを生成する反応器である。改質器11では、原料ガスが触媒の存在下で水蒸気と改質反応して、水素含有の改質ガスを生成する。改質器11は、改質触媒の適温、たとえば、600〜700℃に加熱される。また、改質器11には蒸発器(図示せず)が設けられており、ここで、第3供給器18から供給された水から水蒸気が生成される。
SOFC21は、改質器11により生成された改質ガスと空気とにより発電する固体酸化物形燃料電池である。SOFC21は、セル、改質ガス流路、発電用空気流路および冷却用空気流路が設けられている。この改質ガス流路は改質ガス経路12bに接続され、発電用空気流路および冷却用空気流路は空気経路23に接続されている。発電用空気および冷却用空気には、空気経路23から供給された空気が用いられる。
セルは、電解質、および、これを互いの間に挟むアノードおよびカソードで構成されている。セルの構造は、いわゆる、平板型、円筒型および円筒平板型などが例示される。電解質は、たとえば、イットリウム(Y)酸化物(Y2O3)を添加したジルコニア(ZrO2)であるイットリア安定化ジルコニア(YSZ)、あるいはイッテルビウム(Yb)やスカンジウム(Sc)をドープしたジルコニア系の固体電解質が例示される。アノードは、たとえば、ニッケル(Ni)とYSZの混合物、またはニッケルとセリウム(Ce)の酸化物(CeO2)にガドリニウム(Gd)を添加した混合物などが例示される。カソードは、たとえば、ランタン、ストロンチウム、マンガンを含有する酸化物や、ランタン、ストロンチウム、コバルト、鉄を含有する酸化物等が例示される。
SOFC21は、その触媒の適温に加熱される。この適温は、たとえば、電解質にYSZを用いた場合、電解質の厚みにも依存するが、たとえば、500℃〜1000℃である。このSOFC21は、改質器11と共にホットモジュールに組み込まれていてもよい。また、SOFC21には温度検知器(図示せず)が設けられている。温度検知器は、SOFC21の温度を検知し、検知した温度を制御器27へ出力する。
燃焼器25は、SOFC21から排出された改質ガス(オフ改質ガス)を燃焼する装置である。燃焼器25としては、バーナーが例示される。燃焼器25は、改質器11およびSOFC21の近傍に配置され、これらを加熱する。オフ改質ガスは、可燃性ガスおよび酸素を含む。可燃性ガスには、改質反応に使用されなかった改質ガス、および、発電反応に使用されなかった改質ガスである。酸素は、発電反応に使用されなかった空気中の酸素である。燃焼器25は燃焼排ガス経路26に接続されている。燃焼器25により排出された燃焼排ガスは燃焼排ガス経路26を介してSOFCシステム100の外部へ排出される。
原料ガス経路12aは、第2供給器10から水添脱硫器16を経由して改質器11へ原料ガスが流通する経路である。原料ガス経路12aは、その上流端が第2供給器10に接続し、下流端が改質器11に接続する。この間の原料ガス経路12aに、圧力調整器13、昇圧器14および水添脱硫器16がこの順で設けられている。
改質ガス経路12bは、改質器11からSOFC21を経由して燃焼器25へ改質ガスが流通する経路である。改質ガス経路12bは、その上流端が改質器11に接続し、下流端が燃焼器25に接続する。この間の改質ガス経路12bにSOFC21がこの順で設けられている。
リサイクルガス経路17は、改質器11より下流側の分岐点で改質ガス経路12bから分岐し、水添脱硫器16より上流側の接続点で原料ガス経路12aに接続する経路である。このリサイクルガス経路17により、改質ガスの一部(リサイクルガス)が改質器11の下流から水添脱硫器16の上流へ供給される。なお、リサイクルガス経路17には、リサイクルガスの流量を調整する機器が設けられていてもよい。この機器としては、可変オリフィス、昇圧ポンプおよび固定オリフィスなどが例示される。この中でも、コスト、および、水蒸気を含んだ高温のリサイクルガスによる負荷の点から、固定オリフィスが好ましい。
圧力調整器13は、接続点より上流側の原料ガス経路12aを流通する原料ガスの圧力を調整する機器である。圧力調整器13としては、たとえば、ステッピングモーターを備えた可変オリフィスが例示される。
昇圧器14は、接続点より下流側の原料ガス経路12aを流通する原料ガスの圧力を上昇させる機器である。この昇圧器14は、たとえば、モータ駆動の定容積ポンプ、および、電磁式のダイアフラムポンプなどが例示される。
第3供給器18は、水を改質器11に供給する装置であって、水の流量を調整する機能を有する。第3供給器18として、たとえば、定量吐出が可能なプランジャーポンプが例示される。水経路19は、改質器11に供給される水が流通する経路である。水経路19は、その上流端が第3供給器18に接続され、下流端が改質器11に接続されている。
第1供給器22は、空気をSOFC21に供給する装置であって、空気の流量を調整する機能を有する。第1供給器22として、たとえば、電磁駆動式のダイアフラムポンプが例示される。空気経路23は、SOFC21に供給される空気が流通する経路である。空気経路23は、その上流端が第1供給器22に接続され、下流端がSOFC21に接続されている。
制御器27は、SOFCシステム100の各部を制御する装置である。制御器27は、制御機能を有するものであればよく、演算処理部(図示せず)および記憶部(図示せず)とを備える。たとえば、演算処理部としてはMPUおよびCPU等のプロセッサが例示され、記憶部としてはメモリ−が例示される。記憶部は、制御プログラムを記憶し、演算処理部は、制御プログラムを記憶部から読み出してこれを実行する。換言すると、制御プログラムは、演算処理部に、そのプログラムされた制御を実行させる。制御器27は、集中制御を行う単独の装置で構成されていてもよく、互いに協同して分散制御を行う装置で構成されていてもよい。
制御器27は、電力負荷(図示せず)の需要量に基づいてSOFC21が発電する目標電流を決定する。そして、制御器27は、SOFC21が目標電流の電力を発電するよう電力変換装置(図示せず)、第2供給器10、第3供給器18、第1供給器22を制御する。なお、電力負荷の需要量は、電力変換装置と電力負荷とを繋ぐ交流電力経路に設けられた電力負荷計測器(図示せず)から制御器27に出力される。また、制御器27は、温度検知器により検知されたSOFC21の温度がSOFC21の適温になるように第1供給器22を制御する。
制御器27は、接続点における原料ガスの圧力が、SOFC21への空気供給量と、改質器11への原料ガス供給量、改質器11への水供給量、および、SOFC21の目標電流の少なくともいずれか一つの値とに基づいて算出された目標圧力になるように圧力調整器13により制御する。
次に、SOFCシステム100の動作(SOFCシステム100の運転方法)について、図1を参照して説明する。このSOFCシステム100の動作は、制御器27によって実現される。
SOFC21が所定電力を発電する発電状態では、原料ガスは、第2供給器10から供給され、圧力調整器13を通過し、昇圧器14により昇圧されて、水添脱硫器16に流入する。ここで、原料ガス中の硫黄化合物は、水素と水添脱硫反応し、除去される。そして、脱硫された原料ガスが改質器11に供給される。これと共に、水が第3供給器18から改質器11に供給されて、この蒸発器により水蒸気になる。この改質器11において原料ガスと水蒸気とが改質反応し、水素を含有する改質ガスが生成する。
改質ガスの一部は、改質ガス経路12bの分岐点からリサイクルガス経路17に流入し、リサイクルガス経路17の接続点から原料ガス経路12aに流入する。そして、改質ガスは原料ガスと混合して昇圧器14により昇圧されてから、水添脱硫器16に供給される。この改質ガスの水素が水添脱硫反応に使用される。
残りの改質ガスはSOFC21に供給されると共に、空気が第1供給器22からSOFC21に供給される。ここで、この空気が冷却用空気としてセルを冷却し、さらにこの空気の一部が発電用空気として利用される。そして、発電で使用されなかった改質ガスなどを含むオフ改質ガスは、燃焼器25に供給される。また、SOFC21から排出された空気も、オフ改質ガスに混合されて、燃焼器25に供給される。ここで、オフ改質ガスが空気により燃焼する。この燃焼熱によりSOFC21および改質器11が加熱され、燃焼器25から排出された燃焼排ガスにより水添脱硫器16が加熱される。
次に、SOFCシステム100の運転方法(動作)について、図2および図3を参照して詳しく説明する。図2は、SOFCシステム100の運転方法の一例を示すフローチャートである。図3は、図2の演算処理の一例を示すフローチャートである。この運転方法は制御器27の制御により実行される。
制御器27は、SOFC21が発電状態であるか否かを判定する(ステップS1)。ここで、SOFC21による発電電力が所定電力未満であれば、制御器27はSOFC21が発電状態でないとして(ステップS1:NO)、ステップS1の処理を繰り返す。
一方、SOFC21による発電電力が所定電力以上であれば、制御器27はSOFC21が発電状態であるとして(ステップS1:YES)、ステップS2へ進む。ここで、制御器27は、SOFC21への空気供給量と、改質器11への原料ガス供給量、改質器11への水供給量、および、SOFC21の目標電流の少なくともいずれか一つの値とを取得する。
すなわち、制御器27は、SOFC21に供給される空気の流量(SOFC21への空気供給量)を取得する。この空気供給量は、発電用空気として用いられる空気の流量(発電用空気量)と、冷却用空気として用いられる空気の流量(冷却用空気量)とを含む。発電用空気量は、SOFC21の目標電流に基づいて設定される。冷却用空気量は、温度検知器より検知されたSOFC21の温度(検知温度)に基づいて設定される。そして、制御器27は、第1供給器22を制御して、発電用空気量および冷却用空気量を含む流量の空気を第1供給器22から供給する。そして、検知温度がSOFC21の適温より高ければ、制御器27は、第1供給器22を制御して、空気供給量を増やす。一方、検知温度がSOFC21の適温より低ければ、制御器27は、第1供給器22を制御して、空気供給量を減らす。このように、SOFC21の発電および温度に応じた流量の空気が第1供給器22から供給される。このため、制御器27は、たとえば、空気の流量を調整する機能を有する第1供給器22などから空気供給量を取得する。
さらに、制御器27は、改質器11への原料ガス供給量、改質器11への水供給量、および、SOFC21の目標電流の少なくともいずれか一つの値を取得する。制御器27が、改質器11へ供給される原料ガスの流量(改質器11への原料ガス供給量)を取得する場合、たとえば、原料ガス供給量を第2供給器10などから取得する。この第2供給器10は、SOFC21の目標電流に基づいた流量の原料ガスが改質器11へ供給されるように制御されている。よって、第2供給器10から、SOFC21の発電に応じた原料ガス供給量が得られる。
なお、原料ガス供給量が取得され、水供給量および目標電流が取得されない場合、制御器27は、原料ガス供給量に基づいて水供給量を求める。たとえば、原料ガス供給量と水供給量とのモル比などが反応式などに基づいて定められている場合、制御器27は、このモル比に応じて原料ガス供給量から水供給量を求める。
または、制御器27が、改質器11へ供給される水の流量(改質器11への水供給量)を取得する場合、たとえば、水供給量を第3供給器18などから取得する。この第3供給器18は、SOFC21の目標電流に基づいた流量の水が改質器11へ供給されるように制御されている。よって、第3供給器18から、SOFC21の発電に応じた水供給量が得られる。
なお、水供給量が取得され、原料ガス供給量または目標電流が取得されない場合、水供給量に基づいて原料ガス供給量を求める。たとえば、原料ガスと水供給量とのモル比などが反応式などに基づいて定まっている場合、制御器27は、このモル比に応じて水供給量から原料ガス供給量を求める。
または、制御器27は、SOFC21の目標電流を取得する場合、制御器27は、SOFC21の目標電流に基づいて発電に用いられる改質ガスの流量を求める。そして、制御器27は、この改質ガスの流量に応じた原料ガスの流量および水の流量を改質反応式などに基づいて求め、この原料ガスの流量を改質器11への原料ガス供給量とし、水の流量を改質器11への水供給量として取得する。このような流量に基づいて第2供給器10および第3供給器18が制御されると、SOFC21の発電に応じた流量の原料ガスおよび水が供給される。
このように、空気供給量によって、SOFC21の発電および温度に応じた空気供給量が求まる。また、原料ガス供給量、水供給量、および/または、目標電流によって、SOFC21の発電に応じた原料ガス供給量および水供給量が求まる。このため、空気供給量と、原料ガス供給量、水供給量および目標電流の少なくともいずれかの値とを取得することにより、SOFC21の発電および温度に応じた原料ガス、水および空気の各種ガスの供給量が得られる。
続いて、制御器27は流量演算プログラムを実行する(ステップS3)。この流量演算プログラムでは、図3に示すステップS31〜S33の各プログラムが実行される。まず、制御器27は、流量演算プログラムを実行する(ステップS31)。このプログラムでは、原料ガス、水および空気の各種ガスの供給量から、SOFCシステム100の排出口から排出された燃焼排ガスの流量を演算式により求める。燃焼排ガスの流量は、各種ガスの供給量と、SOFCシステム100の各種機器や配管などの圧力損失とに依存している。この圧力損失は、各種ガスの供給量に依存している。このため、燃焼排ガスの流量と各種ガスの供給量との関係を、実験で得られたデータ、あるいは、シミュレーションなどにより得ることによって、この関係を示す演算式が作成される。
そして、制御器27は、圧力演算プログラムを実行する(ステップS32)。この圧力演算プログラムでは、燃焼排ガスの流量から、リサイクルガス経路17の分岐点における改質ガス経路12bを流通する改質ガスの圧力を演算式により求める。分岐点における改質ガスの圧力は、燃焼排ガスの流量と、分岐点より下流側にあるSOFC21、燃焼器25および燃焼排ガス経路26における圧力損失とに依存している。この圧力損失は、燃焼排ガスの流量に依存している。このため、分岐点における改質ガスの圧力と燃焼排ガスの流量との関係を、実験で得られたデータ、あるいは、シミュレーションなどにより得ることによって、この関係を示す演算式が作成される。
そして、制御器27は、差圧演算プログラムを実行する(ステップS33)。この差圧演算プログラムでは、分岐点における改質ガスの圧力と、リサイクルガス経路17との接続点における原料ガス経路12aを流通する原料ガスの圧力との差を演算式により求める。この差圧は、原料ガス供給量に対して所定割合の流量の改質ガスがリサイクルガス経路17を流通するように決定される。このため、差圧は、原料供給量と、リサイクルガス経路17の圧力損失とに依存しており、圧力損失は原料供給量に依存している。よって、差圧と原料供給量との関係を、実験で得られたデータ、あるいは、シミュレーションなどにより得ることによって、この関係を示す演算式が作成される。
差圧が求まると、図2のステップS4の処理に進む。ここで、制御器27は、リサイクルガス経路17との接続点における原料ガス経路12aを流通する改質ガスの圧力の目標値(目標圧力)を差圧に基づいて求める。つまり、分岐点における改質ガスの圧力から差圧を差し引いて、リサイクルガス経路17との接続点における原料ガスの圧力を求め、これを目標圧力として設定する。
そして、制御器27は、接続点における原料ガスの圧力が目標圧力になるように、圧力調整器13を制御する(ステップS5)。たとえば、原料供給量と、圧力調整器13が持つ流量-圧力損失特性データとに基づいて、圧力調整器13の開度を調整することにより、原料ガスの圧力が調整される。これにより、分岐点の改質ガスの圧力と接続点の原料ガスの圧力との差圧が調整されて、この差圧に応じた流量のリサイクルガスが水添脱硫器16に供給される。
上記構成によれば、接続点における原料ガスの圧力が、空気供給量と、原料ガス供給量、水供給量および目標電流の少なくともいずれか一つの値とに基づいて算出された目標圧力になるように圧力調整器13を調整している。この空気供給量は、SOFC21の発電出力および温度に応じた流量である。よって、接続点における原料ガスの圧力は、SOFC21の発電出力だけでなく、SOFC21の温度に応じて変化する空気供給量に基づいて定められる。これにより、空気供給量の増減により、分岐点における改質ガスの圧力が影響を受けても、これを反映した接続点における原料ガスの圧力が設定される。この結果、接続点と分岐点との間の改質ガスの差圧により決まるリサイクルガス流量は適正に調整される。
また、分岐点における改質ガスの圧力を直接求めずに、接続点における原料ガスの圧力を調整している。このため、改質器11およびSOFC21が高温であるSOFCシステム100においても、適正な流量のリサイクルガスを供給することができる。
(変形例1)
上記構成では、空気供給量は第1供給器22から取得された。これに対して、空気供給量は、第1流量計24から取得されてもよい。この第1流量計24は、第1供給器22から供給された空気の流量を検知する空気流量計である。第1流量計24は、たとえば、熱式流量センサ、あるいは、超音波式または差圧式の流量計などが例示される。
図2示すSOFC21の運転方法では、発電状態において(ステップS1:YES)、制御器27は、空気供給量と、原料ガス供給量、水供給量、および、目標電流の少なくともいずれか一つの値とを取得する(ステップS2)。この空気供給量は、第1流量計24から取得される。そして、演算プログラムの実行により差圧を得て(ステップS3)、差圧に応じた目標圧力を設定する(ステップS4)。そして、制御器27は、圧力調整器13を制御して、接続点における原料ガスの圧力を目標圧力に調整する(ステップS5)。
このように、第1流量計24により検知された空気供給量に基づいて目標圧力を設定している。よって、目標圧力がさらに精度良く設定されるため、この目標圧力に基づいて適正な流量のリサイクルガスを供給することができる。
(変形例2)
上記構成では、原料ガス供給量は第2供給器10から取得された。これに対して、原料ガス供給量は、第2流量計15から取得されてもよい。この第2流量計15は、第2供給器10から供給された原料ガスの流量を検知する原料流量計である。第2流量計15は、たとえば、熱式流量センサ、あるいは、超音波式または差圧式の流量計などが例示される。
図2示すSOFC21の運転方法では、発電状態において(ステップS1:YES)、制御器27は、空気供給量と、原料ガス供給量、水供給量、および、目標電流の少なくともいずれか一つの値とを取得する(ステップS2)。この原料ガス供給量は、第1流量計24から取得される。そして、演算プログラムの実行により差圧を得て(ステップS3)、差圧に応じた目標圧力を設定する(ステップS4)。そして、制御器27は、圧力調整器13を制御して、接続点における原料ガスの圧力を目標圧力に調整する(ステップS5)。
このように、第2流量計15により検知された原料ガス供給量に基づいて目標圧力を設定している。よって、目標圧力がさらに精度良く設定されるため、この目標圧力に基づいて適正な流量のリサイクルガスを供給することができる。
なお、この変形例2においても、変形例1と同様に、空気供給量は、第1流量計24から取得されてもよい。
(変形例3)
上記構成では、水供給量は第3供給器18から取得された。これに対して、水供給量は、第3流量計20から取得されてもよい。この第3流量計20は、第3供給器18から供給された水の流量を検知する水流量計である。第3流量計20として、たとえば、電磁式の流量計が例示される。
図2示すSOFC21の運転方法では、発電状態において(ステップS1:YES)、制御器27は、空気供給量と、原料ガス供給量、水供給量、および、目標電流の少なくともいずれか一つの値とを取得する(ステップS2)。この水供給量は、第3流量計20から取得される。そして、演算プログラムの実行により差圧を得て(ステップS3)、差圧に応じた目標圧力を設定する(ステップS4)。そして、制御器27は、圧力調整器13を制御して、接続点における原料ガスの圧力を目標圧力に調整する(ステップS5)。
このように、第3流量計20により検知された水供給量に基づいて目標圧力を設定している。よって、目標圧力がさらに精度良く設定されるため、この目標圧力に基づいて適正な流量のリサイクルガスを供給することができる。
なお、この変形例2においても、変形例1と同様に、空気供給量は、第1流量計24から取得されてもよい。この変形例3においても、変形例2と同様に、原料ガス供給量は、第2流量計15から取得されてもよい。
(第2実施形態)
第2実施形態に係るSOFCシステム200の構成は、圧力計201をさらに備える点を除いて、第1実施形態に係るSOFCシステム100の構成と同様である。図4は、第2実施形態に係るSOFCシステム200の機能的な構成の一例を示すブロック図である。
圧力計201は、図4に示すように、圧力調整器13より下流側かつ接続点より上流側の原料ガス経路12aに設けられ、ここを流通する改質ガスの圧力を検知する機器である。圧力計201として、たとえば、ダイアフラムを用いた半導体式圧力センサ、または、静電容量式圧力センサなどが例示される。
このSOFCシステム200の運転方法では、図2に示すステップS5の処理の後に、図5に示すステップS6の処理を行っている。図5は、第2実施形態に係るSOFCシステム200の運転方法の一例を示すフローチャートである。
具体的には、図5示すSOFC21の運転方法では、発電状態において(ステップS1:YES)、制御器27は、空気供給量と、原料ガス供給量、水供給量、および、目標電流の少なくともいずれか一つの値とを取得する(ステップS2)。そして、演算プログラムの実行により差圧を得て(ステップS3)、差圧に応じた目標圧力を設定する(ステップS4)。そして、制御器27は、圧力調整器13を制御して、接続点における原料ガスの圧力を目標圧力に調整する(ステップS5)。
この圧力調整後に、制御器27は、圧力計201により検知された圧力を取得する。検知された圧力は、圧力調整器13より下流側かつ接続点より上流側の原料ガス経路12aを流通する原料ガスの圧力である。この圧力計201による検知位置と接続点との間に圧力損失がほぼないため、制御器27は、検知された圧力を接続点における原料ガスの圧力として取得する。
そして、制御器27は、接続点における原料ガスの圧力が目標圧力であるか否かを判定する(ステップS6)。接続点における原料ガスの圧力が目標圧力でなければ(ステップS6:NO)、制御器27は圧力調整器13を制御する(ステップS5)。たとえば、接続点における原料ガスの圧力が目標圧力より低ければ、圧力調整器13の開度を大きくする。一方、接続点における原料ガスの圧力が目標圧力であれば(ステップS6:YES)、制御器27はステップS1の処理に戻り、ステップS1〜S6の処理を繰り返す。
上記構成によれば、制御器27は、圧力計201から接続点における原料ガスの圧力を取得している。このため、接続点における原料ガスの圧力を目標圧力にさらに精度良く合わせられるため、適正な流量のリサイクルガスを供給することができる。
なお、第2実施形態においても、変形例1と同様に、空気供給量は、第1流量計24から取得されてもよい。また、第2実施形態においても、変形例2と同様に、原料ガス供給量は、第2流量計15から取得されてもよい。さらに、第2実施形態においても、変形例3と同様に、水供給量は、第3流量計20から取得されてもよい。
また、上記全実施形態は、互いに相手を排除しない限り、互いに組み合わせてもよい。上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造および/または機能の詳細を実質的に変更できる。
本発明の固体酸化物形燃料電池システムの運転方法は、リサイクルガス流量の適正化の向上を図った固体酸化物形燃料電池システムの運転方法等として有用である。
10 :第2供給器
11 :改質器
12a :原料ガス経路
12b :改質ガス経路
13 :圧力調整器
14 :昇圧器
15 :第2流量計
16 :水添脱硫器
17 :リサイクルガス経路
18 :第3供給器
19 :水経路
20 :第3流量計
21 :SOFC(固体酸化物形燃料電池)
22 :第1供給器
23 :空気経路
24 :第1流量計
25 :燃焼器
26 :燃焼排ガス経路
27 :制御器
100 :SOFCシステム(固体酸化物形燃料電池システム)
200 :SOFCシステム(固体酸化物形燃料電池システム)
201 :圧力計

Claims (5)

  1. 原料ガスを脱硫する水添脱硫器と、
    前記水添脱硫器により脱硫された原料ガスを水により改質して水素を含む改質ガスを生成する改質器と、
    前記改質器により改質された改質ガスと空気とにより発電する固体酸化物形燃料電池と、
    前記固体酸化物形燃料電池から排出された改質ガスを燃焼する燃焼器と、
    前記水添脱硫器を経由して前記改質器へ前記原料ガスが流通する原料ガス経路と、
    前記改質器から前記固体酸化物形燃料電池を経由して前記燃焼器へ前記改質ガスが流通する改質ガス経路と、
    前記改質器より下流側の分岐点で前記改質ガス経路から分岐し、前記水添脱硫器より上流側の接続点で前記原料ガス経路に接続するリサイクルガス経路と、
    前記接続点より上流側の原料ガス経路を流通する原料ガスの圧力を調整する圧力調整器と、
    前記接続点より下流側の原料ガス経路を流通する原料ガスの圧力を上昇させる昇圧器と、
    前記改質器に供給される水が流通する水経路と、
    前記固体酸化物形燃料電池に供給される空気が流通する空気経路と、
    制御器と、を備える固体酸化物形燃料電池システムの運転方法であって、
    前記制御器は、前記接続点における原料ガスの圧力が、前記固体酸化物形燃料電池への空気供給量と、前記改質器への原料ガス供給量、前記改質器への水供給量、および、前記固体酸化物形燃料電池の目標電流の少なくともいずれか一つの値とに基づいて算出された目標圧力になるように前記圧力調整器を制御する、固体酸化物形燃料電池システムの運転方法。
  2. 前記固体酸化物形燃料電池システムは、前記圧力調整器より下流側かつ前記接続点より上流側の前記原料ガス経路を流通する原料ガスの圧力を検知する圧力計をさらに備え、
    前記制御器は、前記圧力計から前記接続点における原料ガスの圧力を取得する、請求項1に記載の固体酸化物形燃料電池システムの運転方法。
  3. 前記固体酸化物形燃料電池システムは、前記固体酸化物形燃料電池に前記空気を供給する第1供給器と、前記第1供給器から供給された空気の流量を検知する第1流量計と、をさらに備え、
    前記制御器は、前記第1流量計から前記空気供給量を取得する、請求項1または2に記載の固体酸化物形燃料電池システムの運転方法。
  4. 前記固体酸化物形燃料電池システムは、前記改質器に前記原料ガスを供給する第2供給器と、前記第2供給器から供給された原料ガスの流量を検知する第2流量計と、をさらに備え、
    前記制御器は、前記第2流量計から前記改質器への原料ガス供給量を取得する、請求項1〜3のいずれか一項に記載の固体酸化物形燃料電池システムの運転方法。
  5. 前記固体酸化物形燃料電池システムは、前記改質器に前記水を供給する第3供給器と、前記第3供給器から供給された水の流量を検知する第3流量計と、をさらに備え、
    前記制御器は、前記第3流量計から前記改質器への水供給量を取得する、請求項1〜4のいずれか一項に記載の固体酸化物形燃料電池システムの運転方法。
JP2015085936A 2015-04-20 2015-04-20 固体酸化物形燃料電池システムの運転方法 Active JP6459063B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015085936A JP6459063B2 (ja) 2015-04-20 2015-04-20 固体酸化物形燃料電池システムの運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015085936A JP6459063B2 (ja) 2015-04-20 2015-04-20 固体酸化物形燃料電池システムの運転方法

Publications (2)

Publication Number Publication Date
JP2016207378A true JP2016207378A (ja) 2016-12-08
JP6459063B2 JP6459063B2 (ja) 2019-01-30

Family

ID=57490233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015085936A Active JP6459063B2 (ja) 2015-04-20 2015-04-20 固体酸化物形燃料電池システムの運転方法

Country Status (1)

Country Link
JP (1) JP6459063B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020140782A (ja) * 2019-02-27 2020-09-03 三菱日立パワーシステムズ株式会社 燃料電池発電システム
JP2020161499A (ja) * 2020-06-18 2020-10-01 三菱日立パワーシステムズ株式会社 燃料電池発電システム
US20220190368A1 (en) * 2019-03-27 2022-06-16 Nissan Motor Co., Ltd. Fuel cell system and method for controlling fuel cell system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025596A (ja) * 2000-07-05 2002-01-25 Mitsubishi Electric Corp りん酸型燃料電池発電設備
JP2009076273A (ja) * 2007-09-19 2009-04-09 Nippon Telegr & Teleph Corp <Ntt> 燃料電池システム
WO2012128369A1 (ja) * 2011-03-24 2012-09-27 Jx日鉱日石エネルギー株式会社 燃料電池システム
JP2013225411A (ja) * 2012-04-20 2013-10-31 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システム
JP2013229120A (ja) * 2012-04-24 2013-11-07 Osaka Gas Co Ltd 固体酸化物形燃料電池システム
JP2013254564A (ja) * 2012-06-05 2013-12-19 Aisin Seiki Co Ltd 燃料電池システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025596A (ja) * 2000-07-05 2002-01-25 Mitsubishi Electric Corp りん酸型燃料電池発電設備
JP2009076273A (ja) * 2007-09-19 2009-04-09 Nippon Telegr & Teleph Corp <Ntt> 燃料電池システム
WO2012128369A1 (ja) * 2011-03-24 2012-09-27 Jx日鉱日石エネルギー株式会社 燃料電池システム
JP2013225411A (ja) * 2012-04-20 2013-10-31 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システム
JP2013229120A (ja) * 2012-04-24 2013-11-07 Osaka Gas Co Ltd 固体酸化物形燃料電池システム
JP2013254564A (ja) * 2012-06-05 2013-12-19 Aisin Seiki Co Ltd 燃料電池システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020140782A (ja) * 2019-02-27 2020-09-03 三菱日立パワーシステムズ株式会社 燃料電池発電システム
CN113491027A (zh) * 2019-02-27 2021-10-08 三菱动力株式会社 燃料电池发电系统
US20220190368A1 (en) * 2019-03-27 2022-06-16 Nissan Motor Co., Ltd. Fuel cell system and method for controlling fuel cell system
US11721821B2 (en) * 2019-03-27 2023-08-08 Nissan Motor Co., Ltd. Fuel cell system and method for controlling fuel cell system
JP2020161499A (ja) * 2020-06-18 2020-10-01 三菱日立パワーシステムズ株式会社 燃料電池発電システム
JP7064087B2 (ja) 2020-06-18 2022-05-10 三菱重工業株式会社 燃料電池発電システム

Also Published As

Publication number Publication date
JP6459063B2 (ja) 2019-01-30

Similar Documents

Publication Publication Date Title
JP6472638B2 (ja) 複合発電システム、その制御装置及び方法並びにプログラム
US10938046B2 (en) Fuel cell system
CN106910912B (zh) 燃料电池系统及其操作方法及燃料电池发电厂
US9653742B2 (en) Fuel cell system
EP2847816B1 (en) Method of operating a fuel cell power system
JP6459063B2 (ja) 固体酸化物形燃料電池システムの運転方法
EP3264508B1 (en) Fuel cell system and method for operating the same
US11335930B2 (en) Fuel cell system and method for operating the same
JP2013527555A (ja) 熱電併給設備を運転する方法
US8808935B2 (en) Fuel cell system
JP6901231B2 (ja) 燃料電池の制御装置及び燃料電池の制御方法
JP2015041443A (ja) 固体酸化物形燃料電池システム
JP5289361B2 (ja) 燃料電池システム及びその電流制御方法
JP2014089920A (ja) 固体酸化物形燃料電池システム
JP6239229B2 (ja) 燃料電池システムおよび燃料電池運転方法
JP7116651B2 (ja) 固体酸化物形燃料電池システム
JP2018006005A (ja) 燃料電池の制御装置及び制御方法並びに発電システム
EP2800185B1 (en) Fuel cell system and method for operating same
JP2016085927A (ja) 複合発電システム及び複合発電システムの制御方法
JP2013134916A (ja) 燃料電池システム及びその運転方法
JP2014207133A (ja) 水素生成システムおよび燃料電池システム
JP7119690B2 (ja) 燃料電池システム、原燃料ガスの流量測定方法および原燃料ガスのガス種特定方法
KR100987175B1 (ko) 연료전지 시스템 및 그 연료 공급 방법
JP2011076942A (ja) 固体電解質型燃料電池
JP2016091816A (ja) 複合発電システムの制御装置及び方法並びにプログラム、それを備えた複合発電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181213

R151 Written notification of patent or utility model registration

Ref document number: 6459063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151