JP2016197678A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2016197678A
JP2016197678A JP2015077490A JP2015077490A JP2016197678A JP 2016197678 A JP2016197678 A JP 2016197678A JP 2015077490 A JP2015077490 A JP 2015077490A JP 2015077490 A JP2015077490 A JP 2015077490A JP 2016197678 A JP2016197678 A JP 2016197678A
Authority
JP
Japan
Prior art keywords
layer
igbt
diode
semiconductor device
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015077490A
Other languages
Japanese (ja)
Other versions
JP6335829B2 (en
Inventor
敦司 楢崎
Atsushi Narasaki
敦司 楢崎
真也 曽根田
Shinya Soneda
真也 曽根田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015077490A priority Critical patent/JP6335829B2/en
Priority to US14/990,092 priority patent/US9799648B2/en
Priority to KR1020160035082A priority patent/KR101808411B1/en
Priority to DE102016205111.3A priority patent/DE102016205111B4/en
Publication of JP2016197678A publication Critical patent/JP2016197678A/en
Application granted granted Critical
Publication of JP6335829B2 publication Critical patent/JP6335829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0744Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common without components of the field effect type
    • H01L27/075Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. lateral bipolar transistor, and vertical bipolar transistor and resistor
    • H01L27/0755Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66015Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene
    • H01L29/66022Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6603Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device which has improved diode recovery characteristics and in which an IGBT and a diode are formed in one semiconductor substrate.SOLUTION: A semiconductor device (RC-IGBT301) comprises: an IGBT including an emitter layer on a first principal surface side of a semiconductor substrate and a collector layer on a second principal surface side of the semiconductor substrate; a reflux diode including an anode layer 310 on the first principal surface side of the semiconductor substrate and a cathode layer on the second principal surface side of the semiconductor substrate; a well region 304 provided in the boundary between the IGBT and the reflux diode and for separating the IGBT and the reflux diode; a first electrode formed on a first principal surface of the semiconductor substrate so as to connect to the emitter layer, the anode layer, and the well region 304; a resistor 351 provided between the well region 304 and the first electrode; and a second electrode formed on a second principal surface of the semiconductor substrate so as to connect to the collector layer and the cathode layer.SELECTED DRAWING: Figure 1

Description

本発明は半導体装置に関し、特に還流ダイオードを内蔵した絶縁ゲート型バイポーラトランジスタに関する。   The present invention relates to a semiconductor device, and more particularly to an insulated gate bipolar transistor having a built-in free wheel diode.

電力用半導体素子であるパワーデバイスは、家電製品や電気自動車、鉄道といった分野から、「再生可能エネルギー」として注目が高まっている太陽光発電や風力発電の分野まで幅広く用いられている。これらの分野では、パワーデバイスでインバータ回路を構築し、誘導モータなどの誘導性負荷を駆動する場合が多い。その場合、誘導性負荷の逆起電力により生じる電流を還流させる為の還流ダイオード(以下、単にダイオードと表記)が必要であり、通常のインバータ回路は、絶縁ゲート型バイポーラトランジスタ(以下、IGBTと表記)とダイオードを複数個用いて構成される。しかし、インバータ装置は、小型軽量化および低コスト化が強く望まれており、複数個の半導体素子を搭載する事は望ましくない。そこで、その解決方法の一つとして、IGBTとダイオードを同一のチップに形成した逆導通型IGBT(以下、RC−IGBTと表記)の開発が進められている(例えば特許文献1、2を参照)。これにより、半導体素子の搭載面積縮小や低コスト化が望める。   Power devices, which are power semiconductor elements, are widely used in fields such as home appliances, electric vehicles, and railways, and in the fields of solar power generation and wind power generation that are attracting attention as “renewable energy”. In these fields, an inverter circuit is often constructed with a power device to drive an inductive load such as an induction motor. In that case, a free-wheeling diode (hereinafter simply referred to as a diode) is required to recirculate the current generated by the back electromotive force of the inductive load, and an ordinary inverter circuit is an insulated gate bipolar transistor (hereinafter referred to as IGBT). ) And a plurality of diodes. However, the inverter device is strongly desired to be reduced in size, weight and cost, and it is not desirable to mount a plurality of semiconductor elements. Thus, as one of the solutions, development of a reverse conduction type IGBT (hereinafter referred to as RC-IGBT) in which an IGBT and a diode are formed on the same chip is underway (see, for example, Patent Documents 1 and 2). . As a result, it is possible to reduce the mounting area and cost of the semiconductor element.

特開2008−53648号公報JP 2008-53648 A 特開2008−103590号公報JP 2008-103590 A

RC−IGBTは、IGBTとダイオードが1つの半導体基板内に形成されているが、低コスト化を実現する為に、両素子を個別にではなく同時に形成していく必要がある。一般的に、IGBTのエミッタ電極の直下には、アノード拡散層の最表面不純物濃度を高くする必要がある。しかしながら、その背反事項としてダイオードのリカバリ特性が悪化する為、表面不純物濃度は十分に高く設定出来ない問題があった。   In the RC-IGBT, the IGBT and the diode are formed in one semiconductor substrate. However, in order to reduce the cost, it is necessary to form both elements simultaneously instead of individually. Generally, it is necessary to increase the outermost surface impurity concentration of the anode diffusion layer immediately below the IGBT emitter electrode. However, there is a problem that the surface impurity concentration cannot be set sufficiently high because the recovery characteristic of the diode deteriorates as a contradiction.

本発明は以上のような課題を解決するためになされたものであり、IGBTとダイオードを1つの半導体基板内に形成した半導体装置において、ダイオードのリカバリ特性を向上させた半導体装置の提供を目的とする。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a semiconductor device in which the recovery characteristics of the diode are improved in a semiconductor device in which the IGBT and the diode are formed in one semiconductor substrate. To do.

本発明に係る半導体装置は、半導体基板の第1主面側にエミッタ層、半導体基板の第2主面側にコレクタ層を備える絶縁ゲート型バイポーラトランジスタと、半導体基板の第1主面側にアノード層、半導体基板の第2主面側にカソード層を備える還流ダイオードと、絶縁ゲート型バイポーラトランジスタと還流ダイオードとの境界に設けられ、絶縁ゲート型バイポーラトランジスタと還流ダイオードとを分離するウェル領域と、エミッタ層、アノード層およびウェル領域に接続するように半導体基板の第1主面に形成された第1電極と、ウェル領域と第1電極との間に設けられる抵抗体と、コレクタ層およびカソード層に接続するように半導体基板の第2主面に形成された第2電極と、を備える。   The semiconductor device according to the present invention includes an insulated gate bipolar transistor having an emitter layer on the first main surface side of the semiconductor substrate and a collector layer on the second main surface side of the semiconductor substrate, and an anode on the first main surface side of the semiconductor substrate. A reflux diode having a cathode layer on the second main surface side of the semiconductor substrate, a well region provided at a boundary between the insulated gate bipolar transistor and the reflux diode, and separating the insulated gate bipolar transistor and the reflux diode; A first electrode formed on the first main surface of the semiconductor substrate so as to be connected to the emitter layer, the anode layer, and the well region, a resistor provided between the well region and the first electrode, a collector layer, and a cathode layer And a second electrode formed on the second main surface of the semiconductor substrate so as to be connected to the semiconductor substrate.

本発明に係る半導体装置は、還流ダイオードと絶縁ゲート型バイポーラトランジスタとを分離するウェル領域において、ウェルと第1電極との間に抵抗体を設ける。抵抗体を設けることにより、還流ダイオードがオン状態の際にウェル領域からのホール注入が抑制される。これにより、還流ダイオードがオフした時の逆回復電流が抑制される。よって、同一基板上に還流ダイオードと絶縁ゲート型バイポーラトランジスタとを形成した半導体装置において、リカバリ特性を向上させることが可能となる。   In the semiconductor device according to the present invention, a resistor is provided between the well and the first electrode in the well region that separates the free wheel diode and the insulated gate bipolar transistor. By providing the resistor, hole injection from the well region is suppressed when the free-wheeling diode is on. Thereby, the reverse recovery current when the return diode is turned off is suppressed. Therefore, recovery characteristics can be improved in a semiconductor device in which a free wheel diode and an insulated gate bipolar transistor are formed on the same substrate.

本発明の実施形態に係る半導体装置の平面図である。1 is a plan view of a semiconductor device according to an embodiment of the present invention. 本発明の実施形態に係る半導体装置の断面図である。It is sectional drawing of the semiconductor device which concerns on embodiment of this invention. 図1中の領域Lを拡大した平面図である。It is the top view to which the area | region L in FIG. 1 was expanded. 本発明の実施形態の第1変形例に係る半導体装置の断面図である。It is sectional drawing of the semiconductor device which concerns on the 1st modification of embodiment of this invention. 本発明の実施形態の第2変形例に係る半導体装置の平面図である。It is a top view of the semiconductor device concerning the 2nd modification of an embodiment of the present invention. 本発明の実施形態の第3変形例に係る半導体装置の平面図である。It is a top view of the semiconductor device concerning the 3rd modification of an embodiment of the present invention. 前提技術に係る半導体装置の平面図である。It is a top view of the semiconductor device concerning a base technology. 前提技術に係る半導体装置の断面図である。It is sectional drawing of the semiconductor device which concerns on a premise technique. 図4中の領域Cを拡大した平面図である。It is the top view to which the area | region C in FIG. 4 was expanded. ダイオードの逆回復時の電流波形を示す図である。It is a figure which shows the electric current waveform at the time of reverse recovery of a diode.

<前提技術>
本発明の実施形態を説明する前に、本発明の前提となる技術について説明する。図7は、前提技術における半導体装置(即ち、RC−IGBT101)の平面図である。図8は、図7中のダイオード102の領域とIGBT103の領域にまたがる線分A−Bにおける断面図である。図9は、図7中の領域Cを拡大した平面図である。
<Prerequisite technology>
Prior to describing the embodiments of the present invention, the technology that is the premise of the present invention will be described. FIG. 7 is a plan view of a semiconductor device (that is, RC-IGBT 101) in the base technology. FIG. 8 is a cross-sectional view taken along line A-B across the region of diode 102 and the region of IGBT 103 in FIG. FIG. 9 is an enlarged plan view of a region C in FIG.

図7に示すように、RC−IGBT101には、ダイオード102とIGBT103が設けられている。ダイオード102とIGBT103との間には、ウェル領域104が設けられる。ウェル領域104には、ダイオード102とIGBT103とを分離するためのpウェル109が設けられる。RC−IGBT101はさらに、ゲートパッド領域105、終端領域106、耐圧保持領域107を備える。   As shown in FIG. 7, the RC-IGBT 101 is provided with a diode 102 and an IGBT 103. A well region 104 is provided between the diode 102 and the IGBT 103. In the well region 104, a p-well 109 for separating the diode 102 and the IGBT 103 is provided. The RC-IGBT 101 further includes a gate pad region 105, a termination region 106, and a breakdown voltage holding region 107.

図8に示すように、半導体基板には、ダイオード102とIGBT103とに共通のn−ドリフト層108が形成される。n−ドリフト層108の上面側において、ダイオード102とIGBT103とを分離するようにpウェル109が形成される。また、ダイオード102において、pアノード層110を貫通するようにトレンチ111が形成されている。   As shown in FIG. 8, an n − drift layer 108 common to the diode 102 and the IGBT 103 is formed on the semiconductor substrate. On the upper surface side of n − drift layer 108, p well 109 is formed so as to separate diode 102 and IGBT 103. In the diode 102, a trench 111 is formed so as to penetrate the p anode layer 110.

トレンチ111内壁には酸化膜112を介して導電性のポリシリコン113が埋め込まれている。このトレンチ111には耐圧特性を安定させる効果がある。なお、トレンチ111が形成されない従来例もある。   Conductive polysilicon 113 is buried in the inner wall of the trench 111 through an oxide film 112. The trench 111 has an effect of stabilizing the breakdown voltage characteristic. There is a conventional example in which the trench 111 is not formed.

IGBT103には、n−ドリフト層108の上面側においてpベース層114が形成される。pベース層114の上面にn+エミッタ層115およびp+コンタクト層116が形成される。n+エミッタ層115とpベース層114を貫通するようにトレンチ117が形成されている。   In the IGBT 103, a p base layer 114 is formed on the upper surface side of the n − drift layer 108. An n + emitter layer 115 and a p + contact layer 116 are formed on the upper surface of the p base layer 114. A trench 117 is formed so as to penetrate the n + emitter layer 115 and the p base layer 114.

トレンチ117内壁にはゲート酸化膜118を介して導電性のポリシリコン119が埋め込まれており、この導電性のポリシリコン119はIGBT103のゲートとしての機能を有する。   Conductive polysilicon 119 is embedded in the inner wall of the trench 117 through a gate oxide film 118, and this conductive polysilicon 119 has a function as a gate of the IGBT 103.

ダイオード102とIGBT103との境界であるウェル領域104は、ダイオード102とIGBT103の電気的動作を分離する機能を有する。ウェル領域104には、p型不純物の深い拡散層で形成されたpウェル109が形成されている。また、pウェル上の開口部120にはp+コンタクト層121が形成されている。   A well region 104 which is a boundary between the diode 102 and the IGBT 103 has a function of separating electrical operations of the diode 102 and the IGBT 103. In the well region 104, a p-well 109 formed of a deep diffusion layer of p-type impurities is formed. A p + contact layer 121 is formed in the opening 120 above the p-well.

ダイオード102のアノード層110およびトレンチ111、IGBT103のn+エミッタ層115、p+コンタクト層116およびトレンチ117、ウェル領域104のpウェル109は、絶縁膜122で覆われている。絶縁膜122には開口部123,124,120が設けられている。   The anode layer 110 and the trench 111 of the diode 102, the n + emitter layer 115 of the IGBT 103, the p + contact layer 116 and the trench 117, and the p well 109 of the well region 104 are covered with an insulating film 122. Openings 123, 124, and 120 are provided in the insulating film 122.

ダイオード102のアノード層110は、開口部123を通じてエミッタ電極125と接続されている。IGBT103のpベース層114、n+エミッタ層115およびp+コンタクト層116は、開口部124を通じてエミッタ電極125と接続されている。また、pウェル109上面側に形成されたp+コンタクト層121は、開口部120を通じてエミッタ電極125と接続されている。   The anode layer 110 of the diode 102 is connected to the emitter electrode 125 through the opening 123. The p base layer 114, the n + emitter layer 115, and the p + contact layer 116 of the IGBT 103 are connected to the emitter electrode 125 through the opening 124. The p + contact layer 121 formed on the upper surface side of the p well 109 is connected to the emitter electrode 125 through the opening 120.

なお、ダイオード102のアノード層110とエミッタ電極125とのオーミック性を向上させるために、アノード層110とエミッタ電極125との間にp+コンタクト領域を形成してもよい。また、同様の理由で、アノード層110とエミッタ電極125との間にバリアメタル層を形成してもよい。また、IGBT103のn+エミッタ層115およびp+コンタクト層116とエミッタ電極125との間にバリアメタル層を形成してもよい。   In order to improve the ohmic property between the anode layer 110 and the emitter electrode 125 of the diode 102, a p + contact region may be formed between the anode layer 110 and the emitter electrode 125. For the same reason, a barrier metal layer may be formed between the anode layer 110 and the emitter electrode 125. Further, a barrier metal layer may be formed between the n + emitter layer 115 and the p + contact layer 116 of the IGBT 103 and the emitter electrode 125.

ダイオード102の直下であるn−ドリフト層108の下面側には、nバッファ層126とn+カソード層127が形成されている。IGBT103の直下であるn−ドリフト層108の下面側には、ダイオード102と共通層であるnバッファ層126と、p+コレクタ層128が形成されている。   An n buffer layer 126 and an n + cathode layer 127 are formed on the lower surface side of the n − drift layer 108 immediately below the diode 102. An n buffer layer 126 that is a common layer with the diode 102 and a p + collector layer 128 are formed on the lower surface side of the n − drift layer 108 immediately below the IGBT 103.

n+カソード層127とp+コレクタ層128は、共通電極であるコレクタ電極129と接続されている。ここで、コレクタ電極129は金属の相互拡散防止とオーミック性を向上させるため、シリコン側から順に、例えばTi層、Ni層、Au層、又はAlSi層、Ti層、Ni層、Au層が積層されて形成されている。   The n + cathode layer 127 and the p + collector layer 128 are connected to a collector electrode 129 that is a common electrode. Here, the collector electrode 129 is formed by stacking, for example, a Ti layer, a Ni layer, an Au layer, or an AlSi layer, a Ti layer, a Ni layer, and an Au layer sequentially from the silicon side in order to prevent metal mutual diffusion and improve ohmic properties. Is formed.

次に、図7および図9に示す終端領域106を説明する。図9において、便宜上ゲート配線パターンは省略している。図7に示すように、終端領域106はダイオード102およびIGBT103の周囲を囲むように形成されている。また、ウェル領域104と終端領域106とは図7中の領域Cにおいて繋がっている。つまり、図9に示すように、ウェル領域104のpウェル109が、終端領域106のpウェル131と接続された構造となっている。終端領域106において、ウェル領域104と同様にオーミック性を向上させるためにp+コンタクト層133が形成されている。終端領域106上にも絶縁膜122が形成されており、p+コンタクト層133がエミッタ電極125と接続するために開口部135が設けられている。終端領域106に形成されたpウェル131によって、ダイオード102およびIGBT103は耐圧保持領域107と分離されている。   Next, the termination region 106 shown in FIGS. 7 and 9 will be described. In FIG. 9, the gate wiring pattern is omitted for convenience. As shown in FIG. 7, the termination region 106 is formed so as to surround the periphery of the diode 102 and the IGBT 103. Further, the well region 104 and the termination region 106 are connected in a region C in FIG. That is, as shown in FIG. 9, the p-well 109 in the well region 104 is connected to the p-well 131 in the termination region 106. In the termination region 106, a p + contact layer 133 is formed in order to improve the ohmic property like the well region 104. An insulating film 122 is also formed on the termination region 106, and an opening 135 is provided for connecting the p + contact layer 133 to the emitter electrode 125. The diode 102 and the IGBT 103 are separated from the breakdown voltage holding region 107 by the p well 131 formed in the termination region 106.

ここで、ダイオードのリカバリ特性について簡単に説明する。図10は、ダイオードをオン状態からオフ状態に切り替えた場合の逆回復時の電流波形を示す図である。ダイオードがオン状態からオフ状態になる際には、n+カソード層からpアノード層に向かって逆方向電流が流れる。この逆方向電流のピーク値をリカバリ電流(Irr)と呼ぶ。この電流がエネルギーロスになるため、リカバリ電流は小さい事が要求される。   Here, the recovery characteristics of the diode will be briefly described. FIG. 10 is a diagram showing a current waveform at the time of reverse recovery when the diode is switched from the on state to the off state. When the diode changes from the on state to the off state, a reverse current flows from the n + cathode layer toward the p anode layer. This peak value of the reverse current is called a recovery current (Irr). Since this current causes energy loss, the recovery current is required to be small.

リカバリ電流を低減する手法として、pアノード層の不純物濃度を下げることが一般的であるが、同時にオーミック性の低下やキャリア注入効率の低下を引き起こすことで、順方向電圧Vfが高くなる問題がある。   As a technique for reducing the recovery current, it is common to lower the impurity concentration of the p anode layer, but at the same time, there is a problem that the forward voltage Vf is increased by causing a decrease in ohmic property and a decrease in carrier injection efficiency. .

また、前提技術において、ダイオード102とIGBT103とを分離する深いpウェル109はダイオードのアノード層としても機能するため、この領域によってリカバリ損失が増加するという問題があった。以下で説明する本発明の実施形態は以上の問題を解決する。   Further, in the base technology, the deep p-well 109 that separates the diode 102 and the IGBT 103 also functions as an anode layer of the diode, so that there is a problem that recovery loss increases due to this region. The embodiments of the present invention described below solve the above problems.

<本発明の実施形態>
図1は、本発明の実施形態における半導体装置(即ち、RC−IGBT301)の平面図である。図2は、図1中のダイオード302の領域とIGBT303の領域にまたがる線分J−Kにおける断面図である。図3は、図1中の領域Lを拡大した平面図である。図2において、基板の上面を第1主面、下面を第2主面とする。
<Embodiment of the present invention>
FIG. 1 is a plan view of a semiconductor device (that is, RC-IGBT 301) in an embodiment of the present invention. FIG. 2 is a cross-sectional view taken along line JK that spans the region of diode 302 and the region of IGBT 303 in FIG. FIG. 3 is an enlarged plan view of a region L in FIG. In FIG. 2, the upper surface of the substrate is the first main surface and the lower surface is the second main surface.

図1に示すように、RC−IGBT301は、ダイオード302とIGBT303が設けられている。ダイオード302とIGBT303との間には、ウェル領域304が設けられる。ウェル領域304には、ダイオード302とIGBT303とを分離するためのpウェル309が設けられる。RC−IGBT301はさらに、ゲートパッド領域305、終端領域306、耐圧保持領域307を備える。   As shown in FIG. 1, the RC-IGBT 301 is provided with a diode 302 and an IGBT 303. A well region 304 is provided between the diode 302 and the IGBT 303. The well region 304 is provided with a p-well 309 for separating the diode 302 and the IGBT 303. The RC-IGBT 301 further includes a gate pad region 305, a termination region 306, and a breakdown voltage holding region 307.

図2に示すように、半導体基板には、ダイオード302とIGBT303とに共通のn−ドリフト層308が形成される。n−ドリフト層308の上面側において、ダイオード302とIGBT303とを分離するようにpウェル309が形成される。また、ダイオード302において、pアノード層310を貫通するようにトレンチ311が形成されている。   As shown in FIG. 2, an n − drift layer 308 common to the diode 302 and the IGBT 303 is formed on the semiconductor substrate. On the upper surface side of n − drift layer 308, p well 309 is formed so as to separate diode 302 and IGBT 303. In the diode 302, a trench 311 is formed so as to penetrate the p anode layer 310.

トレンチ311内壁には酸化膜312を介して導電性のポリシリコン313が埋め込まれている。このトレンチ311には耐圧特性を安定させる効果がある。   Conductive polysilicon 313 is embedded in the inner wall of the trench 311 via an oxide film 312. The trench 311 has an effect of stabilizing the breakdown voltage characteristic.

IGBT303において、n−ドリフト層308の上面側においてpベース層314が形成される。pベース層314の上面にn+エミッタ層315およびp+コンタクト層316が形成される。n+エミッタ層315とpベース層314を貫通するようにトレンチ317が形成されている。   In IGBT 303, p base layer 314 is formed on the upper surface side of n − drift layer 308. An n + emitter layer 315 and a p + contact layer 316 are formed on the upper surface of the p base layer 314. A trench 317 is formed so as to penetrate the n + emitter layer 315 and the p base layer 314.

トレンチ317内壁にはゲート酸化膜318を介して導電性のポリシリコン319が埋め込まれており、この導電性のポリシリコン319はIGBT303のゲートとしての機能を有する。   Conductive polysilicon 319 is buried in the inner wall of the trench 317 through a gate oxide film 318, and the conductive polysilicon 319 has a function as a gate of the IGBT 303.

ダイオード302とIGBT303との境界であるウェル領域304は、ダイオード302とIGBT303の電気的動作を分離する機能を有する。ウェル領域304には、p型不純物の深い拡散層で形成されたpウェル309が形成されている。pウェル309上には導電性のポリシリコンで形成された抵抗体351が配置されている。pウェル309と抵抗体351とは電気的に接続している。   A well region 304 that is a boundary between the diode 302 and the IGBT 303 has a function of separating electrical operations of the diode 302 and the IGBT 303. In the well region 304, a p-well 309 formed of a deep diffusion layer of p-type impurities is formed. A resistor 351 made of conductive polysilicon is disposed on the p well 309. The p well 309 and the resistor 351 are electrically connected.

ダイオード302のアノード層310およびトレンチ311、IGBT303のn+エミッタ層315、p+コンタクト層316およびトレンチ317、ウェル領域304のpウェル309は、絶縁膜322で覆われている。絶縁膜322には開口部323,324,320が設けられている。   The anode layer 310 and the trench 311 of the diode 302, the n + emitter layer 315 of the IGBT 303, the p + contact layer 316 and the trench 317, and the p well 309 of the well region 304 are covered with an insulating film 322. Openings 323, 324, and 320 are provided in the insulating film 322.

ダイオード302のアノード層310は、開口部323を通じてエミッタ電極325と接続されている。IGBT303のpベース層314、n+エミッタ層315およびp+コンタクト層316は、開口部324を通じてエミッタ電極325と接続されている。また、pウェル309上面側に形成された抵抗体351は、開口部320を通じてエミッタ電極325と接続されている。図3に示すように、開口部320は連続的なスリット形状である。   The anode layer 310 of the diode 302 is connected to the emitter electrode 325 through the opening 323. The p base layer 314, the n + emitter layer 315, and the p + contact layer 316 of the IGBT 303 are connected to the emitter electrode 325 through the opening 324. The resistor 351 formed on the upper surface side of the p well 309 is connected to the emitter electrode 325 through the opening 320. As shown in FIG. 3, the opening 320 has a continuous slit shape.

なお、ダイオード302のアノード層310とエミッタ電極325とのオーミック性を向上させるために、アノード層310とエミッタ電極325との間にp+コンタクト領域を形成してもよい。また、同様の理由で、アノード層310とエミッタ電極325との間にTiN等でバリアメタル層を形成してもよい。また、IGBT303のn+エミッタ層315およびp+コンタクト層316とエミッタ電極325との間にもTiN等でバリアメタル層を形成してもよい。   Note that a p + contact region may be formed between the anode layer 310 and the emitter electrode 325 in order to improve the ohmic property between the anode layer 310 and the emitter electrode 325 of the diode 302. For the same reason, a barrier metal layer may be formed of TiN or the like between the anode layer 310 and the emitter electrode 325. Further, a barrier metal layer may be formed of TiN or the like between the n + emitter layer 315 and the p + contact layer 316 of the IGBT 303 and the emitter electrode 325.

ダイオード302の直下であるn−ドリフト層308の下面側には、nバッファ層326とn+カソード層327が形成されている。IGBT303の直下であるn−ドリフト層308の下面側には、ダイオード302と共通層であるnバッファ層326と、p+コレクタ層328が形成されている。   An n buffer layer 326 and an n + cathode layer 327 are formed on the lower surface side of the n − drift layer 308 immediately below the diode 302. An n buffer layer 326 that is a common layer with the diode 302 and a p + collector layer 328 are formed on the lower surface side of the n − drift layer 308 that is directly under the IGBT 303.

n+カソード層327とp+コレクタ層328は、共通電極であるコレクタ電極329と接続されている。ここで、コレクタ電極329は金属の相互拡散防止とオーミック性を向上させるため、シリコン側から順に、例えばTi層、Ni層、Au層、又はAlSi層、Ti層、Ni層、Au層が積層されて形成されている。   The n + cathode layer 327 and the p + collector layer 328 are connected to a collector electrode 329 that is a common electrode. Here, the collector electrode 329 is formed by stacking, for example, a Ti layer, a Ni layer, an Au layer, or an AlSi layer, a Ti layer, a Ni layer, and an Au layer sequentially from the silicon side in order to prevent metal mutual diffusion and improve ohmic properties. Is formed.

次に、図1および図3に示す終端領域106を説明する。図3において、便宜上ゲート配線パターンは省略している。図3に示すように、終端領域306はダイオード302およびIGBT303の周囲を囲むように形成されている。また、ウェル領域304と終端領域306とは図1中の領域Lにおいて繋がっている。つまり、図3に示すように、ウェル領域304のpウェル309が、終端領域306のpウェル331と接続された構造となっている。終端領域306において、オーミック性を向上させるためにp+コンタクト層333が形成されている。終端領域306上にも絶縁膜322が形成されており、p+コンタクト層333がエミッタ電極325と接続するために開口部335が設けられている。終端領域306に形成されたpウェル331によって、ダイオード302およびIGBT303は耐圧保持領域307と分離されている。   Next, the termination region 106 shown in FIGS. 1 and 3 will be described. In FIG. 3, the gate wiring pattern is omitted for convenience. As shown in FIG. 3, the termination region 306 is formed so as to surround the periphery of the diode 302 and the IGBT 303. Further, the well region 304 and the termination region 306 are connected in a region L in FIG. That is, as shown in FIG. 3, the p-well 309 in the well region 304 is connected to the p-well 331 in the termination region 306. In the termination region 306, a p + contact layer 333 is formed to improve ohmic properties. An insulating film 322 is also formed on the termination region 306, and an opening 335 is provided for connecting the p + contact layer 333 to the emitter electrode 325. The diode 302 and the IGBT 303 are separated from the breakdown voltage holding region 307 by the p-well 331 formed in the termination region 306.

なお、本実施形態においてダイオード302がトレンチ構造を有しているが、トレンチを有しないプレーナダイオードにおいても同様の効果を奏す。   In the present embodiment, the diode 302 has a trench structure, but the same effect can be obtained in a planar diode having no trench.

また、本実施形態におけるIGBT303はキャリアストア層を有していないが、キャリアストアを有する電荷蓄積型トレンチゲートバイポーラトランジスタでも同様の効果を奏す。また、本実施形態におけるIGBT303は電子注入促進型であっても同様の効果を奏す。なお、本実施形態においてIGBT303はp+コンタクト層316を有しているが、p+コンタクト層316が無くても同様の効果を奏す。   Moreover, although the IGBT 303 in this embodiment does not have a carrier store layer, the same effect can be obtained by a charge storage type trench gate bipolar transistor having a carrier store. Further, the IGBT 303 in this embodiment has the same effect even if it is an electron injection promoting type. In the present embodiment, the IGBT 303 has the p + contact layer 316, but the same effect can be obtained without the p + contact layer 316.

また、本実施形態では抵抗体351として導電性のポリシリコンを用いたが、チタン(Ti)、コバルト(Co)などの金属でも同様の効果を奏す。   In the present embodiment, conductive polysilicon is used as the resistor 351, but the same effect can be obtained with a metal such as titanium (Ti) or cobalt (Co).

また、本実施形態では、nバッファ層326を有しているパンチスルー型IGBTで説明したが、nバッファ層326を有しないノンパンチスルー型IGBTでも同様の効果を奏す。   In this embodiment, the punch-through IGBT having the n buffer layer 326 has been described. However, a non-punch through IGBT having no n buffer layer 326 has the same effect.

<効果>
本発明の実施形態における半導体装置(RC-IGBT301)は、半導体基板の第1主面側にエミッタ層(n+エミッタ層315)、半導体基板の第2主面側にコレクタ層(p+コレクタ層328)を備える絶縁ゲート型バイポーラトランジスタ(IGBT303)と、半導体基板の第1主面側にアノード層310、半導体基板の第2主面側にカソード層(n+カソード層327)を備える還流ダイオード(ダイオード302)と、絶縁ゲート型バイポーラトランジスタと還流ダイオードとの境界に設けられ、絶縁ゲート型バイポーラトランジスタと還流ダイオードとを分離するウェル領域304と、エミッタ層、アノード層およびウェル領域304に接続するように半導体基板の第1主面に形成された第1電極(エミッタ電極325)と、ウェル領域304と第1電極との間に設けられる抵抗体351と、コレクタ層およびカソード層に接続するように半導体基板の第2主面に形成された第2電極(コレクタ電極329)と、を備える。
<Effect>
The semiconductor device (RC-IGBT 301) in the embodiment of the present invention has an emitter layer (n + emitter layer 315) on the first main surface side of the semiconductor substrate and a collector layer (p + collector layer 328) on the second main surface side of the semiconductor substrate. And a free-wheeling diode (diode 302) including an anode layer 310 on the first main surface side of the semiconductor substrate and a cathode layer (n + cathode layer 327) on the second main surface side of the semiconductor substrate. A well region 304 that is provided at a boundary between the insulated gate bipolar transistor and the freewheeling diode, and separates the insulated gate bipolar transistor and the freewheel diode, and is connected to the emitter layer, the anode layer, and the well region 304. A first electrode (emitter electrode 325) formed on the first main surface of A resistor 351 provided between the well region 304 and the first electrode, and a second electrode (collector electrode 329) formed on the second main surface of the semiconductor substrate so as to be connected to the collector layer and the cathode layer. Prepare.

本実施形態における半導体装置(RC-IGBT301)は、ダイオード302とIGBT303とを分離するウェル領域304において、pウェル309とエミッタ電極325との間に抵抗体351を設ける。抵抗体351を設けることにより、ダイオード302がオン状態の際にpウェル309からのホール注入が抑制される。これにより、ダイオード302がオフした時の逆回復電流が抑制される。よって、同一基板上にダイオード302とIGBT303とを形成したRC-IGBT301において、リカバリ特性を向上させることが可能となる。   In the semiconductor device (RC-IGBT 301) in this embodiment, a resistor 351 is provided between the p well 309 and the emitter electrode 325 in the well region 304 that separates the diode 302 and the IGBT 303. By providing the resistor 351, hole injection from the p-well 309 is suppressed when the diode 302 is on. Thereby, the reverse recovery current when the diode 302 is turned off is suppressed. Therefore, recovery characteristics can be improved in the RC-IGBT 301 in which the diode 302 and the IGBT 303 are formed on the same substrate.

また、本実施形態における半導体装置(RC-IGBT301)において、抵抗体351はポリシリコンである。   In the semiconductor device (RC-IGBT 301) in the present embodiment, the resistor 351 is polysilicon.

従って、IGBT303のゲート電極としてポリシリコンを用いているため、抵抗体351として同じ材料であるポリシリコンを用いることで、製造工程の複雑化を抑制することが可能である。また、ポリシリコンは電極材料として普及しているため製造コストの増大を抑制することが可能である。   Therefore, since polysilicon is used as the gate electrode of the IGBT 303, the use of polysilicon which is the same material as the resistor 351 can suppress the complexity of the manufacturing process. Further, since polysilicon is widely used as an electrode material, it is possible to suppress an increase in manufacturing cost.

また、本実施形態における半導体装置(RC-IGBT301)において、抵抗体351はチタンを含んでもよい。従って、抵抗体351をポリシリコンの代わりにチタンで形成しても同様の効果を得ることが可能である。   In the semiconductor device (RC-IGBT 301) in this embodiment, the resistor 351 may include titanium. Therefore, the same effect can be obtained even when the resistor 351 is formed of titanium instead of polysilicon.

また、本実施形態における半導体装置(RC-IGBT301)において、抵抗体351はコバルトを含んでもよい。従って、抵抗体351をポリシリコンの代わりにコバルトで形成しても同様の効果を得ることが可能である。   In the semiconductor device (RC-IGBT 301) in the present embodiment, the resistor 351 may include cobalt. Therefore, the same effect can be obtained even if the resistor 351 is formed of cobalt instead of polysilicon.

また、本実施形態における半導体装置(RC-IGBT301)において、絶縁ゲート型バイポーラトランジスタ(IGBT303)は、電子注入促進型であってもよい。従って、IGBT303がIEGT(Injection Enhanced Gate Transistor)であっても同様の効果を得ることが可能である。   In the semiconductor device (RC-IGBT 301) in the present embodiment, the insulated gate bipolar transistor (IGBT 303) may be an electron injection promotion type. Therefore, even if the IGBT 303 is an IEGT (Injection Enhanced Gate Transistor), the same effect can be obtained.

<本発明の実施形態の第1変形例>
図4は、第1変形例における半導体装置(RC−IGBT301A)の断面図である。図4に示すように、第1変形例においては、IGBT303のp+コレクタ層328がダイオード302側に延長される。ウェル領域304におけるpウェル309は、平面視でIGBT303のp+コレクタ層328に含まれる。その他の構成はRC−IGBT301(図1から図3)と同じため説明を省略する。
<First Modification of Embodiment of the Present Invention>
FIG. 4 is a cross-sectional view of the semiconductor device (RC-IGBT 301A) in the first modification. As shown in FIG. 4, in the first modification, the p + collector layer 328 of the IGBT 303 is extended to the diode 302 side. The p well 309 in the well region 304 is included in the p + collector layer 328 of the IGBT 303 in plan view. Since other configurations are the same as those of the RC-IGBT 301 (FIGS. 1 to 3), description thereof is omitted.

<効果>
本発明の実施形態の第1変形例における半導体装置(RC−IGBT301A)において、ウェル領域304は、平面視でコレクタ層(p+コレクタ層328)に含まれるように重なる。pウェル309は還流ダイオード(ダイオード302)として機能する。そのため、ダイオード302がオンの時にpウェル309から注入されたホールが、ダイオード302オフ時にリカバリ電流の発生の要因となる。第1変形例では、図4に示すように、pウェル309の直下にn+カソード層327の代わりにp+コレクタ層328が延在して設けられる。従って、ダイオード302オン時に、n+カソード層327からの電子の注入が抑制されるため、pウェル309直下のキャリア密度が低下する。よって、ダイオード302オフ時のリカバリ電流を抑制することが可能である。
<Effect>
In the semiconductor device (RC-IGBT 301A) in the first modification of the embodiment of the present invention, the well region 304 overlaps so as to be included in the collector layer (p + collector layer 328) in plan view. The p-well 309 functions as a free wheel diode (diode 302). For this reason, holes injected from the p-well 309 when the diode 302 is on cause a recovery current when the diode 302 is off. In the first modification, as shown in FIG. 4, a p + collector layer 328 is provided directly below the p well 309 instead of the n + cathode layer 327. Therefore, when the diode 302 is turned on, injection of electrons from the n + cathode layer 327 is suppressed, so that the carrier density immediately below the p well 309 is lowered. Therefore, the recovery current when the diode 302 is off can be suppressed.

<本発明の実施形態の第2変形例>
図5は、第2変形例における半導体装置(RC−IGBT301B)の平面図である。第2の変形例においては、終端領域306の構造をウェル領域304と同様の構造とする。つまり、終端領域306においても、pウェル331とエミッタ電極325との間に抵抗体351を設ける。その他の構成はRC−IGBT301(図1から図3)と同じため説明を省略する。
<Second Modification of Embodiment of the Present Invention>
FIG. 5 is a plan view of a semiconductor device (RC-IGBT 301B) in the second modification. In the second modification, the structure of the termination region 306 is the same as that of the well region 304. That is, also in the termination region 306, the resistor 351 is provided between the p well 331 and the emitter electrode 325. Since other configurations are the same as those of the RC-IGBT 301 (FIGS. 1 to 3), description thereof is omitted.

<効果>
本発明の実施形態の第2変形例における半導体装置(RC−IGBT301B)は、絶縁ゲート型バイポーラトランジスタ(IGBT303)および還流ダイオード(ダイオード302)を平面視で囲むように半導体基板に形成される終端領域306をさらに備え、第1電極(エミッタ電極325)は終端領域306にも接続しており、抵抗体351は、終端領域306と第1電極との間にも設けられる。
<Effect>
A semiconductor device (RC-IGBT 301B) according to a second modification of the embodiment of the present invention includes a termination region formed on a semiconductor substrate so as to surround the insulated gate bipolar transistor (IGBT 303) and the free wheel diode (diode 302) in plan view. The first electrode (emitter electrode 325) is also connected to the termination region 306, and the resistor 351 is also provided between the termination region 306 and the first electrode.

第2の変形例によれば、抵抗体351が適用されるpウェルの面積が増えるため、リカバリ特性をより向上させることが可能である。   According to the second modification, since the area of the p-well to which the resistor 351 is applied increases, the recovery characteristics can be further improved.

<本発明の実施形態の第3変形例>
本発明の実施形態におけるRC−IGBT301においてpウェル309と抵抗体351とを接続する開口部320の形状を変形したのが、第3変形例におけるRC−IGBT301Cである。図6は、第3変形例における半導体装置(RC−IGBT301C)の平面図である。図6に示すように、第3変形例では、開口部320は互いに分離した複数の開口で構成される。その他の構成はRC−IGBT301(図1から図3)と同じため説明を省略する。
<Third Modification of Embodiment of the Present Invention>
In the RC-IGBT 301 according to the embodiment of the present invention, the shape of the opening 320 that connects the p-well 309 and the resistor 351 is modified in the RC-IGBT 301C in the third modified example. FIG. 6 is a plan view of a semiconductor device (RC-IGBT 301C) in the third modification. As shown in FIG. 6, in the third modification, the opening 320 is composed of a plurality of openings separated from each other. Since other configurations are the same as those of the RC-IGBT 301 (FIGS. 1 to 3), description thereof is omitted.

<効果>
本発明の実施形態の第3変形例における半導体装置(RC−IGBT301C)において、ウェル領域304と第1電極(エミッタ電極325)とは、互いに分離した複数の開口(開口部320)を通して接続されており、複数の開口のそれぞれには抵抗体351が設けられる。
<Effect>
In the semiconductor device (RC-IGBT 301C) in the third modification of the embodiment of the present invention, the well region 304 and the first electrode (emitter electrode 325) are connected through a plurality of openings (opening 320) separated from each other. A resistor 351 is provided in each of the plurality of openings.

従って、RC−IGBT301(図3)における開口部320は連続的なスリット形状であったが、第3変形例では、開口部320を互いに分離した複数の開口とする。この構成により、pウェル309とエミッタ電極325との間においてコンタクト抵抗が上昇するため、リカバリ特性をより向上させることが可能である。   Therefore, although the opening part 320 in RC-IGBT301 (FIG. 3) was a continuous slit shape, in the 3rd modification, let the opening part 320 be several opening isolate | separated from each other. With this configuration, the contact resistance increases between the p-well 309 and the emitter electrode 325, so that the recovery characteristics can be further improved.

なお、本発明は、その発明の範囲内において、実施形態および各変形例を自由に組み合わせたり、実施形態および各変形例を適宜、変形、省略することが可能である。   It should be noted that the present invention can be freely combined with the embodiment and each modification within the scope of the invention, and the embodiment and each modification can be appropriately modified and omitted.

101,301,301A,301B,301C RC−IGBT、102,302 ダイオード、103,303 IGBT、104,304 ウェル領域、105,305 ゲートパッド領域、106,306 終端領域、107,307 耐圧保持領域、108,308 n−ドリフト層、109,131,309,331 pウェル、110,310 pアノード層、111,117,311,317 トレンチ、112,312 酸化膜、113,119,313,319 ポリシリコン、114,314 pベース層、115,315 n+エミッタ層、116,316 p+コンタクト層、118,318 ゲート酸化膜、120,123,124,134,135,320,324,323,335 開口部、121,133,333 p+コンタクト層、122,322 絶縁膜、125,325 エミッタ電極、126,326 nバッファ層、127,327 n+カソード層、128,328 p+コレクタ層、129,329 コレクタ電極、351 抵抗体。   101, 301, 301A, 301B, 301C RC-IGBT, 102, 302 diode, 103, 303 IGBT, 104, 304 well region, 105, 305 gate pad region, 106, 306 termination region, 107, 307 breakdown voltage holding region, 108 , 308 n-drift layer, 109, 131, 309, 331 p well, 110, 310 p anode layer, 111, 117, 311, 317 trench, 112, 312 oxide film, 113, 119, 313, 319 polysilicon, 114 , 314 p base layer, 115, 315 n + emitter layer, 116, 316 p + contact layer, 118, 318 gate oxide film, 120, 123, 124, 134, 135, 320, 324, 323, 335 opening, 121, 133 333 + Contact layer, 122 or 322. insulating film, 125,325 emitter electrode, 126,326 n buffer layer, 127,327 n + cathode layer, 128,328 p + collector layer, 129,329 collector electrode, 351 a resistor.

Claims (8)

半導体基板の第1主面側にエミッタ層、前記半導体基板の第2主面側にコレクタ層を備える絶縁ゲート型バイポーラトランジスタと、
前記半導体基板の前記第1主面側にアノード層、前記半導体基板の前記第2主面側にカソード層を備える還流ダイオードと、
前記絶縁ゲート型バイポーラトランジスタと前記還流ダイオードとの境界に設けられ、当該絶縁ゲート型バイポーラトランジスタと当該還流ダイオードとを分離するウェル領域と、
前記エミッタ層、前記アノード層および前記ウェル領域に接続するように前記半導体基板の前記第1主面に形成された第1電極と、
前記ウェル領域と前記第1電極との間に設けられる抵抗体と、
前記コレクタ層および前記カソード層に接続するように前記半導体基板の前記第2主面に形成された第2電極と、
を備える、
半導体装置。
An insulated gate bipolar transistor comprising an emitter layer on the first main surface side of the semiconductor substrate and a collector layer on the second main surface side of the semiconductor substrate;
A free-wheeling diode comprising an anode layer on the first main surface side of the semiconductor substrate and a cathode layer on the second main surface side of the semiconductor substrate;
A well region provided at a boundary between the insulated gate bipolar transistor and the reflux diode, and separating the insulated gate bipolar transistor and the reflux diode;
A first electrode formed on the first main surface of the semiconductor substrate so as to be connected to the emitter layer, the anode layer, and the well region;
A resistor provided between the well region and the first electrode;
A second electrode formed on the second main surface of the semiconductor substrate so as to be connected to the collector layer and the cathode layer;
Comprising
Semiconductor device.
前記ウェル領域は、平面視で前記コレクタ層に含まれるように重なる、
請求項1に記載の半導体装置。
The well region overlaps to be included in the collector layer in plan view;
The semiconductor device according to claim 1.
当該絶縁ゲート型バイポーラトランジスタおよび当該還流ダイオードを平面視で囲むように前記半導体基板に形成される終端領域をさらに備え、
前記第1電極は前記終端領域にも接続しており、
前記抵抗体は、前記終端領域と前記第1電極との間にも設けられる、
請求項1または請求項2に記載の半導体装置。
A termination region formed in the semiconductor substrate so as to surround the insulated gate bipolar transistor and the free-wheeling diode in plan view;
The first electrode is also connected to the termination region;
The resistor is also provided between the termination region and the first electrode.
The semiconductor device according to claim 1 or 2.
前記ウェル領域と前記第1電極とは、互いに分離した複数の開口を通して接続されており、
前記複数の開口のそれぞれには前記抵抗体が設けられる、
請求項1から請求項3のいずれか一項に記載の半導体装置。
The well region and the first electrode are connected through a plurality of openings separated from each other,
Each of the plurality of openings is provided with the resistor.
The semiconductor device as described in any one of Claims 1-3.
前記抵抗体はポリシリコンである、
請求項1から請求項4のいずれか一項に記載の半導体装置。
The resistor is polysilicon;
The semiconductor device as described in any one of Claims 1-4.
前記抵抗体はチタンを含む、
請求項1から請求項4のいずれか一項に記載の半導体装置。
The resistor includes titanium;
The semiconductor device as described in any one of Claims 1-4.
前記抵抗体はコバルトを含む、
請求項1から請求項4のいずれか一項に記載の半導体装置。
The resistor includes cobalt;
The semiconductor device as described in any one of Claims 1-4.
前記絶縁ゲート型バイポーラトランジスタは、電子注入促進型である、
請求項1から請求項7のいずれか一項に記載の半導体装置。
The insulated gate bipolar transistor is an electron injection promoting type,
The semiconductor device according to claim 1.
JP2015077490A 2015-04-06 2015-04-06 Semiconductor device Active JP6335829B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015077490A JP6335829B2 (en) 2015-04-06 2015-04-06 Semiconductor device
US14/990,092 US9799648B2 (en) 2015-04-06 2016-01-07 Semiconductor device
KR1020160035082A KR101808411B1 (en) 2015-04-06 2016-03-24 Semiconductor device
DE102016205111.3A DE102016205111B4 (en) 2015-04-06 2016-03-29 Semiconductor device with an IGBT and a freewheeling diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015077490A JP6335829B2 (en) 2015-04-06 2015-04-06 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2016197678A true JP2016197678A (en) 2016-11-24
JP6335829B2 JP6335829B2 (en) 2018-05-30

Family

ID=56937672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015077490A Active JP6335829B2 (en) 2015-04-06 2015-04-06 Semiconductor device

Country Status (4)

Country Link
US (1) US9799648B2 (en)
JP (1) JP6335829B2 (en)
KR (1) KR101808411B1 (en)
DE (1) DE102016205111B4 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019145613A (en) * 2018-02-19 2019-08-29 富士電機株式会社 Semiconductor device
JP2020043237A (en) * 2018-09-11 2020-03-19 株式会社デンソー Semiconductor device
US10622350B2 (en) 2018-02-14 2020-04-14 Fuji Electric Co., Ltd. Semiconductor device
JP2020202250A (en) * 2019-06-07 2020-12-17 三菱電機株式会社 Semiconductor device
US11094808B2 (en) 2017-05-31 2021-08-17 Fuji Electric Co., Ltd. Semiconductor device
US11107910B2 (en) 2018-02-14 2021-08-31 Fuji Electric Co., Ltd. Semiconductor device
JP2021192447A (en) * 2017-12-14 2021-12-16 富士電機株式会社 Semiconductor device
US11380784B2 (en) 2018-02-14 2022-07-05 Fuji Electric Co., Ltd. Semiconductor device
WO2023189754A1 (en) * 2022-03-31 2023-10-05 ローム株式会社 Semiconductor device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106158955A (en) 2015-03-30 2016-11-23 中芯国际集成电路制造(上海)有限公司 Power semiconductor and forming method thereof
US9825128B2 (en) * 2015-10-20 2017-11-21 Maxpower Semiconductor, Inc. Vertical power transistor with thin bottom emitter layer and dopants implanted in trenches in shield area and termination rings
US10727326B2 (en) * 2017-08-21 2020-07-28 Semiconductor Components Industries, Llc Trench-gate insulated-gate bipolar transistors (IGBTs)
JP7055056B2 (en) * 2018-04-24 2022-04-15 三菱電機株式会社 Semiconductor devices and methods for manufacturing semiconductor devices
WO2019230851A1 (en) * 2018-05-30 2019-12-05 ローム株式会社 Semiconductor device
CN111987089A (en) * 2020-08-19 2020-11-24 株洲中车时代半导体有限公司 Reverse conducting IGBT power integrated module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222952A (en) * 2001-01-26 2002-08-09 Toshiba Corp High withstand voltage semiconductor device
JP2010186805A (en) * 2009-02-10 2010-08-26 Fuji Electric Systems Co Ltd Semiconductor device
JP2014075582A (en) * 2012-09-12 2014-04-24 Fuji Electric Co Ltd Semiconductor device and method of manufacturing semiconductor device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5103830B2 (en) 2006-08-28 2012-12-19 三菱電機株式会社 Insulated gate semiconductor device
JP5052091B2 (en) * 2006-10-20 2012-10-17 三菱電機株式会社 Semiconductor device
JP4600936B2 (en) * 2007-06-20 2010-12-22 三菱電機株式会社 Semiconductor device and manufacturing method thereof
US8203181B2 (en) * 2008-09-30 2012-06-19 Infineon Technologies Austria Ag Trench MOSFET semiconductor device and manufacturing method therefor
US8580667B2 (en) * 2010-12-14 2013-11-12 Alpha And Omega Semiconductor Incorporated Self aligned trench MOSFET with integrated diode
JP6078961B2 (en) * 2012-03-19 2017-02-15 富士電機株式会社 Manufacturing method of semiconductor device
US9209109B2 (en) 2013-07-15 2015-12-08 Infineon Technologies Ag IGBT with emitter electrode electrically connected with an impurity zone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222952A (en) * 2001-01-26 2002-08-09 Toshiba Corp High withstand voltage semiconductor device
JP2010186805A (en) * 2009-02-10 2010-08-26 Fuji Electric Systems Co Ltd Semiconductor device
JP2014075582A (en) * 2012-09-12 2014-04-24 Fuji Electric Co Ltd Semiconductor device and method of manufacturing semiconductor device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11094808B2 (en) 2017-05-31 2021-08-17 Fuji Electric Co., Ltd. Semiconductor device
JP7230969B2 (en) 2017-12-14 2023-03-01 富士電機株式会社 semiconductor equipment
JP2021192447A (en) * 2017-12-14 2021-12-16 富士電機株式会社 Semiconductor device
US11810914B2 (en) 2017-12-14 2023-11-07 Fuji Electric Co., Ltd. Semiconductor device
US10622350B2 (en) 2018-02-14 2020-04-14 Fuji Electric Co., Ltd. Semiconductor device
US11107910B2 (en) 2018-02-14 2021-08-31 Fuji Electric Co., Ltd. Semiconductor device
US11380784B2 (en) 2018-02-14 2022-07-05 Fuji Electric Co., Ltd. Semiconductor device
US11949005B2 (en) 2018-02-14 2024-04-02 Fuji Electric Co., Ltd. Semiconductor device
JP2019145613A (en) * 2018-02-19 2019-08-29 富士電機株式会社 Semiconductor device
JP7091693B2 (en) 2018-02-19 2022-06-28 富士電機株式会社 Semiconductor device
CN112673466A (en) * 2018-09-11 2021-04-16 株式会社电装 Semiconductor device with a plurality of semiconductor chips
WO2020054447A1 (en) * 2018-09-11 2020-03-19 株式会社デンソー Semiconductor device
JP6996461B2 (en) 2018-09-11 2022-01-17 株式会社デンソー Semiconductor device
JP2020043237A (en) * 2018-09-11 2020-03-19 株式会社デンソー Semiconductor device
CN112673466B (en) * 2018-09-11 2024-02-23 株式会社电装 Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP2020202250A (en) * 2019-06-07 2020-12-17 三菱電機株式会社 Semiconductor device
JP7149899B2 (en) 2019-06-07 2022-10-07 三菱電機株式会社 semiconductor equipment
WO2023189754A1 (en) * 2022-03-31 2023-10-05 ローム株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP6335829B2 (en) 2018-05-30
KR20160119691A (en) 2016-10-14
US20160293595A1 (en) 2016-10-06
KR101808411B1 (en) 2017-12-12
DE102016205111A1 (en) 2016-10-06
US9799648B2 (en) 2017-10-24
DE102016205111B4 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
JP6335829B2 (en) Semiconductor device
US10692861B2 (en) Method of manufacturing a semiconductor device
CN101233615B (en) Semiconductor element and electric device
JP4167294B2 (en) Semiconductor elements and electrical equipment
JP5875680B2 (en) Insulated gate bipolar transistor
JP2005354031A (en) Semiconductor device
JP5753814B2 (en) Diode, semiconductor device and MOSFET
JP2013115223A (en) Semiconductor device
JP6145165B2 (en) Semiconductor device
JP2013051345A (en) Diode, semiconductor device and mosfet
JP2017055079A (en) Semiconductor device
US10186571B2 (en) Power semiconductor device and method therefor
JP2019075502A (en) Semiconductor device
JP6804379B2 (en) Semiconductor device
JP6002387B2 (en) Diode and power conversion system using the same
JP2011023527A (en) Semiconductor device
JP6048003B2 (en) Semiconductor device in which IGBT and diode are formed on the same semiconductor substrate
JP6561496B2 (en) Semiconductor device
JP2005243936A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180501

R150 Certificate of patent or registration of utility model

Ref document number: 6335829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250