JP2016196975A - Refrigeration cycle device and expansion valve - Google Patents

Refrigeration cycle device and expansion valve Download PDF

Info

Publication number
JP2016196975A
JP2016196975A JP2015076676A JP2015076676A JP2016196975A JP 2016196975 A JP2016196975 A JP 2016196975A JP 2015076676 A JP2015076676 A JP 2015076676A JP 2015076676 A JP2015076676 A JP 2015076676A JP 2016196975 A JP2016196975 A JP 2016196975A
Authority
JP
Japan
Prior art keywords
expansion valve
refrigerant
opening
flow rate
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015076676A
Other languages
Japanese (ja)
Other versions
JP6566693B2 (en
Inventor
瑞樹 津田
Mizuki Tsuda
瑞樹 津田
福治 塚田
Fukuji Tsukada
福治 塚田
貴則 五十川
Takanori Isogawa
貴則 五十川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Original Assignee
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd filed Critical Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority to JP2015076676A priority Critical patent/JP6566693B2/en
Publication of JP2016196975A publication Critical patent/JP2016196975A/en
Application granted granted Critical
Publication of JP6566693B2 publication Critical patent/JP6566693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration cycle device preventing failure, such as fault of a compressor, from occurring even when used in a refrigerant R410A.SOLUTION: A refrigerant used in a refrigeration cycle is R32. An outdoor expansion valve 13 makes a ratio of a flow rate of a refrigerant to opening change of the outdoor expansion valve 13 relatively small in a low-opening region part 42b whose opening is relatively low, and makes the ratio of the flow rate of the refrigerant to the opening change of the outdoor expansion valve 13 larger in a high-opening region part 42a, whose opening is larger than that of the low-opening region part 42b, than that of the low-opening region part 42b.SELECTED DRAWING: Figure 4

Description

本発明は、冷凍サイクル装置及び膨張弁に関する。   The present invention relates to a refrigeration cycle apparatus and an expansion valve.

本技術分野の背景技術として、特開2012−189238号公報(特許文献1)がある。この公報には、冷媒R32は冷媒R410Aと比べて熱物性が異なるので、この熱物性に応じた冷凍サイクル装置の制御を行うことが必要であるとしている。そして、特許文献1では、冷媒R410Aから冷媒R32に変えると、その熱物性の差により圧縮機の吐出温度が上昇し、冷凍サイクルの圧縮機の冷凍機油が劣化するという現象が発生するので、インジェクション用の膨張弁から冷媒熱交換器を通り、圧縮機の圧縮室に接続されたバイパス回路を設けて圧縮機の吐出温度の上昇を抑制することを提案している。   As background art of this technical field, there is JP 2012-189238 A (Patent Document 1). According to this publication, the refrigerant R32 has different thermal properties than the refrigerant R410A, and therefore it is necessary to control the refrigeration cycle apparatus in accordance with the thermophysical properties. And in patent document 1, when it changes into refrigerant | coolant R32 from refrigerant | coolant R410A, the discharge temperature of a compressor will rise by the difference in the thermophysical property, and the phenomenon that the refrigeration oil of the compressor of a refrigerating cycle will generate | occur | produce will occur. It has been proposed to provide a bypass circuit connected from the expansion valve to the compressor heat chamber through the refrigerant heat exchanger to suppress an increase in the discharge temperature of the compressor.

特開2012−189238号公報JP 2012-189238 A

特許文献1では熱物性の観点から冷媒R32の特性に対応した装置構成を提案している。しかし、本発明者等の知見によると、冷媒R32と冷媒R410Aの流量特性の相違によって次のような事実が明らかになった。すなわち、冷媒の流量特性の相違によって、室外機の膨張弁(以下、室外膨張弁という)を通過する冷媒R32の量が冷媒R410Aに比べて特異性を有している。これによって、冷媒R410Aを用いる機種と同じ室外膨張弁を使用すると冷媒の温度が大きく変動することが判明した。   Patent Document 1 proposes an apparatus configuration corresponding to the characteristics of the refrigerant R32 from the viewpoint of thermophysical properties. However, according to the knowledge of the present inventors, the following facts have been clarified by the difference in flow rate characteristics between the refrigerant R32 and the refrigerant R410A. That is, the amount of the refrigerant R32 that passes through the expansion valve of the outdoor unit (hereinafter referred to as the outdoor expansion valve) is more specific than the refrigerant R410A due to the difference in the flow rate characteristics of the refrigerant. Accordingly, it has been found that when the same outdoor expansion valve as the model using the refrigerant R410A is used, the temperature of the refrigerant greatly fluctuates.

これにより、特に、室外膨張弁を通過する冷媒R32の循環量が少なくなる外気温度が低いときの暖房運転において、冷媒R410Aに使用している室外膨張弁を使用すると、室外膨張弁の開度変化に対する冷媒の流量変化の割合が大きく変化し、室外膨張弁から吐出される冷媒R32の温度が異常上昇することで、冷凍機油の劣化によって圧縮機が故障するといった事態を引き起こす恐れがある。
そこで、本発明は、冷媒R410Aに使用しても圧縮機の故障等の不具合が生じない冷凍サイクル装置を提供することを課題とする。
Thereby, in particular, when the outdoor expansion valve used for the refrigerant R410A is used in the heating operation when the outside air temperature at which the circulation amount of the refrigerant R32 passing through the outdoor expansion valve is small is low, the opening degree change of the outdoor expansion valve is changed. The ratio of the change in the flow rate of the refrigerant with respect to the refrigerant changes greatly, and the temperature of the refrigerant R32 discharged from the outdoor expansion valve rises abnormally, which may cause a situation where the compressor breaks down due to deterioration of the refrigerating machine oil.
Then, this invention makes it a subject to provide the refrigerating-cycle apparatus which does not produce malfunctions, such as a failure of a compressor, even if it uses it for refrigerant | coolant R410A.

上記課題を解決するため、本発明の一形態は、膨張弁は、比較的開度が低い低開度領域では当該膨張弁の開度変化に対する冷媒の流量の割合を比較的小さくし、開度が前記低開度領域より高い高開度領域では前記膨張弁の開度変化に対する冷媒の流量の割合を前記低開度領域より大きくする形状である。   In order to solve the above-described problem, according to one aspect of the present invention, the expansion valve has a relatively small ratio of the flow rate of the refrigerant to the change in the opening of the expansion valve in the low opening region where the opening is relatively low. However, in the high opening region higher than the low opening region, the ratio of the flow rate of the refrigerant to the change in the opening of the expansion valve is larger than that in the low opening region.

本発明によれば、冷媒R410Aに使用しても圧縮機の故障等の不具合が生じない冷凍サイクル装置を提供することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, it is possible to provide a refrigeration cycle apparatus that does not cause problems such as a compressor failure even when used for the refrigerant R410A.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

図1は、本発明の実施例1である冷凍サイクル装置の系統図である。FIG. 1 is a system diagram of a refrigeration cycle apparatus that is Embodiment 1 of the present invention. 図2は、室外膨張弁による冷媒R410Aと冷媒R32の流量−吐出温度特性について示すグラフである。FIG. 2 is a graph showing the flow rate-discharge temperature characteristics of the refrigerant R410A and the refrigerant R32 by the outdoor expansion valve. 図3は、本発明の実施例1である冷凍サイクル装置の室外膨張弁の膨張弁開度−膨張弁流量特性について説明するグラフである。FIG. 3 is a graph for explaining the expansion valve opening degree-expansion valve flow rate characteristic of the outdoor expansion valve of the refrigeration cycle apparatus that is Embodiment 1 of the present invention. 図4は、本発明の実施例1である冷凍サイクル装置の室外膨張弁の縦断面図である。FIG. 4 is a longitudinal sectional view of an outdoor expansion valve of the refrigeration cycle apparatus that is Embodiment 1 of the present invention. 図5は、本発明の実施例2である冷凍サイクル装置の系統図である。FIG. 5 is a system diagram of a refrigeration cycle apparatus that is Embodiment 2 of the present invention.

以下、本発明の実施例について図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施例1である冷凍サイクル装置の系統図である。本実施例の冷凍サイクル装置1は、室外機2と室内機3とを備えている。冷凍サイクル装置1は、圧縮機11、四方弁12、室外膨張弁13、室外熱交換器14、及び室内熱交換器21、室内膨張弁22(室内機3の膨張弁)などを冷媒配管31で接続して冷凍サイクルを構成している。本実施例では、冷媒として冷媒R32を使用している。   FIG. 1 is a system diagram of a refrigeration cycle apparatus that is Embodiment 1 of the present invention. The refrigeration cycle apparatus 1 according to the present embodiment includes an outdoor unit 2 and an indoor unit 3. The refrigeration cycle apparatus 1 includes a compressor 11, a four-way valve 12, an outdoor expansion valve 13, an outdoor heat exchanger 14, an indoor heat exchanger 21, an indoor expansion valve 22 (an expansion valve for the indoor unit 3) and the like through a refrigerant pipe 31. Connected to form a refrigeration cycle. In the present embodiment, the refrigerant R32 is used as the refrigerant.

図1において、圧縮機11は冷媒配管31を介して四方弁12に接続されている。四方弁12は圧縮機11との接続をガス阻止弁32側又は室外熱交換器14側に切り替える機能を備えている。室外熱交換器14には室外ファン15が設けられており、冷媒と外部の空気との間で熱交換して、冷房運転では冷媒R32の熱を外部空気に排出し、暖房運転では外部空気の熱を冷媒R32に汲み上げる機能を備えている。
また、室外熱交換器14には冷媒配管31を介して室外膨張弁13が接続されており、室外膨張弁13は、さらに液阻止弁33と接続されている。ガス阻止弁32と液阻止弁33は冷媒配管31によって室内機3側と接続されている。
In FIG. 1, the compressor 11 is connected to the four-way valve 12 via a refrigerant pipe 31. The four-way valve 12 has a function of switching the connection with the compressor 11 to the gas blocking valve 32 side or the outdoor heat exchanger 14 side. The outdoor heat exchanger 14 is provided with an outdoor fan 15 that exchanges heat between the refrigerant and the outside air, and discharges the heat of the refrigerant R32 to the outside air in the cooling operation, and the outside air in the heating operation. It has a function of pumping heat to the refrigerant R32.
An outdoor expansion valve 13 is connected to the outdoor heat exchanger 14 via a refrigerant pipe 31, and the outdoor expansion valve 13 is further connected to a liquid blocking valve 33. The gas blocking valve 32 and the liquid blocking valve 33 are connected to the indoor unit 3 side by the refrigerant pipe 31.

室外膨張弁13はパルスモータ16によって往復動される膨張弁本体41(図4)を備えており、膨張弁本体41は冷媒R32の量を連続的に調整することができる。すなわち、パルスモータ16のパルス数と膨張弁本体41の移動量(往復移動量)とは予め関係付けて決められており、例えば1パルスで0.1mmだけ膨張弁本体41が移動するようにしていれば、1mm移動させる場合は10パルスを与えれば良いことになる。もちろん、このパルス数と膨張弁本体41の移動量は任意に設定することが可能である。更に、膨張弁本体41の往復移動量と冷媒R32の流量の関係は膨張弁本体41の軸方向断面形状によって定めることができ、この点は後述する。つまり、本実施例では、冷媒R32の流量特性によってこの断面形状が決められている。この流量特性と膨張弁本体41の弁開度及び断面形状の関係については図2、図3を用いて後ほど説明する。   The outdoor expansion valve 13 includes an expansion valve main body 41 (FIG. 4) reciprocated by the pulse motor 16, and the expansion valve main body 41 can continuously adjust the amount of the refrigerant R32. That is, the number of pulses of the pulse motor 16 and the movement amount (reciprocation amount) of the expansion valve main body 41 are determined in advance, and for example, the expansion valve main body 41 moves by 0.1 mm in one pulse. In this case, it is sufficient to give 10 pulses when moving 1 mm. Of course, the number of pulses and the amount of movement of the expansion valve body 41 can be arbitrarily set. Furthermore, the relationship between the amount of reciprocation of the expansion valve body 41 and the flow rate of the refrigerant R32 can be determined by the axial sectional shape of the expansion valve body 41, which will be described later. That is, in this embodiment, the cross-sectional shape is determined by the flow rate characteristic of the refrigerant R32. The relationship between the flow rate characteristics, the valve opening degree of the expansion valve body 41 and the cross-sectional shape will be described later with reference to FIGS.

吐出温度検出部である温度センサ17は、圧縮機11の上部に設けられて冷媒の吐出温度を間接的に検出する。
外気温度検出部である温度センサ18は、室外熱交換器14に取り付けられて外気温度を検出する。
制御部となる制御装置19は、温度センサ17,18などの検出値に基づいて、パルスモータ16を制御する。
A temperature sensor 17 serving as a discharge temperature detection unit is provided on the upper portion of the compressor 11 and indirectly detects the discharge temperature of the refrigerant.
A temperature sensor 18 serving as an outside air temperature detection unit is attached to the outdoor heat exchanger 14 and detects the outside air temperature.
A control device 19 serving as a control unit controls the pulse motor 16 based on detection values of the temperature sensors 17 and 18 and the like.

本実施例において、暖房運転時には、圧縮機11から吐出された高温高圧のガス冷媒は、図1に実線矢印で示すように、四方弁12、ガス阻止弁32、冷媒配管31を通り、室内機3に至って室内熱交換器21で凝縮されて液冷媒となる。この液冷媒は、通常では全開状態の室内膨張弁22を通過後、冷媒配管31及び液阻止弁33を通って室外膨張弁13に至り、この室外膨張弁13により減圧されて低温低圧のガス液混合冷媒となる。この減圧された冷媒は、室外熱交換器14、室外ファン15の作用によって蒸発され、ガス冷媒となり再び四方弁12を経由して圧縮機11に戻される。なお、冷房運転中の冷媒の流れは破線で示している(公知のため、詳細な説明は省略する)。   In the present embodiment, during the heating operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 passes through the four-way valve 12, the gas blocking valve 32, and the refrigerant pipe 31, as indicated by solid arrows in FIG. 3 is condensed in the indoor heat exchanger 21 to become a liquid refrigerant. This liquid refrigerant normally passes through the indoor expansion valve 22 in a fully opened state, then reaches the outdoor expansion valve 13 through the refrigerant pipe 31 and the liquid blocking valve 33, and is decompressed by the outdoor expansion valve 13 to be a low-temperature and low-pressure gas liquid. It becomes a mixed refrigerant. The decompressed refrigerant is evaporated by the action of the outdoor heat exchanger 14 and the outdoor fan 15, becomes a gas refrigerant, and returns to the compressor 11 via the four-way valve 12 again. In addition, the flow of the refrigerant during the cooling operation is indicated by a broken line (detailed description is omitted because it is publicly known).

暖房運転中は、圧縮機11の運転可能範囲を逸脱しないように、圧縮機11の上部に設けた温度センサ17により冷媒の吐出温度を間接的に検出し、圧縮機11からの冷媒の吐出温度が所定の目標温度に収束するように室外膨張弁13の開度をフィードバック制御している。すなわち、室外膨張弁13の開度を制御することにより冷媒の吐出温度を調整できるので、結果的に、圧縮機11の冷媒の吐出温度を制御することができるようになる。かかる制御は、制御装置19が行う。   During the heating operation, the refrigerant discharge temperature is indirectly detected by the temperature sensor 17 provided at the upper part of the compressor 11 so as not to deviate from the operable range of the compressor 11, and the refrigerant discharge temperature from the compressor 11 is detected. Is feedback controlled for the degree of opening of the outdoor expansion valve 13 so as to converge to a predetermined target temperature. That is, since the refrigerant discharge temperature can be adjusted by controlling the opening degree of the outdoor expansion valve 13, as a result, the refrigerant discharge temperature of the compressor 11 can be controlled. Such control is performed by the control device 19.

ところで、本発明者等の知見によると、冷媒R32と冷媒R410Aの流量特性の相違によって次のような事実が明らかになった。すなわち、冷媒の流量特性の相違によって、室外膨張弁を通過する冷媒R32の量が、冷媒R410Aに比べて特異的な特性を有しており、これによって、室外膨張弁として冷媒R410Aを用いた機種と同じ室外膨張弁を使用すると冷媒の温度が大きく変動することが判明した。
冷媒R32は冷媒R410Aに比べて流れ易い特性を有しており、これによって冷媒R32の温度を制御する室外膨張弁の開度変化に対する冷媒の流量変化の割合が大きくなり、冷媒R410Aと比べると、この流量変化に依存して冷媒R32の温度変化が大きくなる傾向となる。
By the way, according to the knowledge of the present inventors, the following facts have been clarified by the difference in the flow rate characteristics between the refrigerant R32 and the refrigerant R410A. That is, the amount of the refrigerant R32 that passes through the outdoor expansion valve has a specific characteristic compared to the refrigerant R410A due to the difference in the flow rate characteristics of the refrigerant, and thus, a model using the refrigerant R410A as the outdoor expansion valve. It was found that the refrigerant temperature fluctuated greatly when the same outdoor expansion valve was used.
Refrigerant R32 has a characteristic that it is easier to flow than refrigerant R410A, and as a result, the ratio of the change in the flow rate of the refrigerant to the change in the degree of opening of the outdoor expansion valve that controls the temperature of refrigerant R32 increases, and compared with refrigerant R410A, Depending on this flow rate change, the temperature change of the refrigerant R32 tends to increase.

特に、室外膨張弁を通過する冷媒R32の循環量が少なくなる外気温度が低いときの暖房運転において、冷媒R410Aに使用している機種の室外膨張弁を使用すると、室外膨張弁の開度変化に対する冷媒R32の流量変化の割合が大きく変化し、室外膨張弁から吐出される冷媒R32の温度が異常上昇することで、冷凍機油の劣化によって圧縮機が故障するといった事態を引き起こす恐れがある。
また、一般的に暖房運転では、室外膨張弁の開度は圧縮機の温度が所定の温度になるように前記の例のようにフィードバック制御されているが、前記したように室外膨張弁の開度変化に対して冷媒R32の流量変化の割合が大きいため、これに伴って冷媒R32の温度が大きく変動するようになる。
In particular, when the outdoor expansion valve of the model used for the refrigerant R410A is used in the heating operation when the outside air temperature at which the circulation amount of the refrigerant R32 passing through the outdoor expansion valve decreases is low, the change in the opening degree of the outdoor expansion valve can be prevented. The rate of change in the flow rate of the refrigerant R32 changes greatly, and the temperature of the refrigerant R32 discharged from the outdoor expansion valve rises abnormally, which may cause a situation where the compressor breaks down due to deterioration of the refrigerating machine oil.
In general, in the heating operation, the opening of the outdoor expansion valve is feedback controlled as in the above example so that the compressor temperature becomes a predetermined temperature. However, as described above, the opening of the outdoor expansion valve is not controlled. Since the rate of change in the flow rate of the refrigerant R32 is large with respect to the change in temperature, the temperature of the refrigerant R32 greatly fluctuates accordingly.

したがって、圧縮機の冷媒の吐出温度を所定の温度に収束するようにフィードバック制御していても、室外膨張弁の開度が小さいときは開度制御している状態で冷媒の流量変化(=温度変化)が大きいため、圧縮機の冷媒の吐出温度もこれに対応して大きく変動して目標温度に収束させることが困難である。このため、暖房運転を行っている場合は室内機の吹出温度が上下してユーザの快適性を損なうことにもなる。   Therefore, even if feedback control is performed so that the refrigerant discharge temperature of the compressor converges to a predetermined temperature, when the opening of the outdoor expansion valve is small, the change in the refrigerant flow rate (= temperature) Therefore, it is difficult for the refrigerant discharge temperature of the compressor to fluctuate correspondingly and converge to the target temperature. For this reason, when the heating operation is performed, the blowout temperature of the indoor unit rises and falls and the user's comfort is impaired.

以下では、冷凍サイクル装置1において、これらの不具合を解消するための手段について説明する。
図2は、室外膨張弁による冷媒R410Aと冷媒R32の流量−吐出温度特性について示すグラフである。この図2は、同じ流量特性の室外膨張弁を用いて冷媒R410Aと冷媒R32を使用した場合の室外膨張弁を流れる冷媒の流量(膨張弁流量)と圧縮機からの冷媒の吐出温度(吐出温度)との関係を示す特性図であり、圧縮機の回転数は冷媒R410A、冷媒R32とも同じ回転数としている。
Below, the means for eliminating these malfunctions in the refrigeration cycle apparatus 1 will be described.
FIG. 2 is a graph showing the flow rate-discharge temperature characteristics of the refrigerant R410A and the refrigerant R32 by the outdoor expansion valve. FIG. 2 shows the refrigerant flow rate (expansion valve flow rate) flowing through the outdoor expansion valve and the refrigerant discharge temperature (discharge temperature) when the refrigerant R410A and the refrigerant R32 are used using the outdoor expansion valve having the same flow rate characteristics. ), And the rotation speed of the compressor is the same for both refrigerant R410A and refrigerant R32.

図2からは、膨張弁流量が少ない室外膨張弁の低開度の領域では、冷媒R32の膨張弁流量の流量変化に対し吐出温度の温度変化の割合が大きく、その傾きが大きいことが分かる。一方、冷媒R410Aを使用した場合は膨張弁流量の流量変化に対し吐出温度の温度変化の割合が小さく、その傾きが小さいことが分かる。したがって、ある吐出温度T1から、これより高い吐出温度T2まで冷媒を温度上昇させるためには、冷媒R32は少ない量の冷媒を調量するのに対し、冷媒R410Aは多くの量の冷媒を調量することになる。   From FIG. 2, it can be seen that, in the low opening region of the outdoor expansion valve where the expansion valve flow rate is small, the rate of temperature change of the discharge temperature is large and the gradient is large with respect to the flow rate change of the expansion valve flow rate of the refrigerant R32. On the other hand, it can be seen that when the refrigerant R410A is used, the rate of change in the temperature of the discharge temperature with respect to the change in the flow rate of the expansion valve is small, and the inclination thereof is small. Therefore, in order to raise the temperature of the refrigerant from a certain discharge temperature T1 to a higher discharge temperature T2, the refrigerant R32 measures a small amount of refrigerant, whereas the refrigerant R410A measures a large amount of refrigerant. Will do.

膨張弁流量の流量変化は膨張弁の開度により変化するが、本実施例ではパルスモータ16を使用していることから、前記のフィードバック制御に際して、パルスモータ16の1パルス毎の冷媒R32の温度変化は冷媒R410Aに比較して大きいことが分かる。つまり、低開度の領域での膨張弁流量、あるいは膨張弁の開度の変化による冷媒の吐出温度の変化が大きいことがわかる。
例えば、図2に示すように、冷媒R410Aの膨張弁流量をG1、冷媒R32の膨張弁流量をG2として同等の吐出温度(T1)で比較した場合、冷媒R410Aに比較して冷媒R32の膨張弁流量のほうが少ないことがわかる。これは冷媒R32が少ない流量変化で大きな温度変化を生じることを示している。
Although the flow rate change of the expansion valve flow rate varies depending on the opening degree of the expansion valve, since the pulse motor 16 is used in this embodiment, the temperature of the refrigerant R32 for each pulse of the pulse motor 16 during the feedback control. It turns out that a change is large compared with refrigerant | coolant R410A. That is, it can be seen that the change in the refrigerant discharge temperature due to the change in the expansion valve flow rate or the expansion valve opening in the low opening region is large.
For example, as shown in FIG. 2, when the expansion valve flow rate of the refrigerant R410A is G1, the expansion valve flow rate of the refrigerant R32 is G2, and compared at the same discharge temperature (T1), the expansion valve of the refrigerant R32 is compared with the refrigerant R410A. It can be seen that the flow rate is lower. This indicates that the refrigerant R32 causes a large temperature change with a small flow rate change.

図3は、実施例1の室外膨張弁13の膨張弁開度−膨張弁流量特性について説明するグラフである。この図3は、冷媒R410Aに使用した既存の室外膨張弁(a1)と、冷媒R32に使用する実施例1の室外膨張弁13(a2)の開度(膨張弁開度)と流量(膨張弁流量)との関係を示した特性図である。図2に示した特性から、冷媒R410Aで使用している既存の室外膨張弁をそのまま冷媒R32で使用すると、冷媒R410Aで使用している室外膨張弁は吐出温度に対して流量変化が大きいため、低開度領域でも流量の変化が大きく、吐出温度を安定化させるのが困難となる。   FIG. 3 is a graph for explaining the expansion valve opening-expansion valve flow rate characteristics of the outdoor expansion valve 13 of the first embodiment. FIG. 3 shows the opening (expansion valve opening) and flow rate (expansion valve) of the existing outdoor expansion valve (a1) used for the refrigerant R410A and the outdoor expansion valve 13 (a2) of Example 1 used for the refrigerant R32. It is the characteristic view which showed the relationship with (flow rate). From the characteristics shown in FIG. 2, when the existing outdoor expansion valve used in the refrigerant R410A is used as it is in the refrigerant R32, the outdoor expansion valve used in the refrigerant R410A has a large flow rate change with respect to the discharge temperature. Even in the low opening region, the flow rate changes greatly, making it difficult to stabilize the discharge temperature.

そこで、本実施例では、図3に示したような(a2)、冷媒R32の流量特性に対応した室外膨張弁13を使用するようにしている。具体的にはこの図3のa2の特性に合わせて、膨張弁本体41(図4)の移動量(開度変化)に対する必要とされる冷媒流量に合せて膨張弁本体41の表面形状を決めればよい。
本実施例においては、冷媒R32に対応した室外膨張弁13は図3に示す低開度領域で、膨張弁の開度変化に対する膨張弁流量の変化の割合を小さくすることで吐出温度の変化を小さくすることが可能となる。
Therefore, in this embodiment, the outdoor expansion valve 13 corresponding to the flow rate characteristic of the refrigerant R32 as shown in FIG. 3 (a2) is used. Specifically, the surface shape of the expansion valve main body 41 can be determined according to the required refrigerant flow rate with respect to the movement amount (opening change) of the expansion valve main body 41 (FIG. 4) in accordance with the characteristics of a2 in FIG. That's fine.
In this embodiment, the outdoor expansion valve 13 corresponding to the refrigerant R32 has a low opening range shown in FIG. 3, and the change in the discharge temperature is reduced by reducing the rate of change in the expansion valve flow rate relative to the change in the expansion valve opening. It can be made smaller.

また、高開度領域においては、膨張弁流量及び(冷凍サイクル装置1における)冷媒循環量が多いため、冷媒の吐出温度が低くなりやすいが、当該膨張弁流量及び冷媒循環量が多い場合でも冷媒の吐出温度が上昇する場合があるため膨張弁流量を小さくすることは得策でない。このため、高開度領域では室外膨張弁13の開度変化に対する冷媒の流量変化の傾きを大きくする形状とするのがよい。   Further, in the high opening range, the expansion valve flow rate and the refrigerant circulation amount (in the refrigeration cycle apparatus 1) are large, so that the refrigerant discharge temperature tends to be low, but even when the expansion valve flow rate and the refrigerant circulation amount are large, the refrigerant Since the discharge temperature may increase, it is not a good idea to reduce the flow rate of the expansion valve. For this reason, it is good to make it the shape which enlarges the inclination of the flow volume change of the refrigerant | coolant with respect to the opening degree change of the outdoor expansion valve 13 in a high opening degree area | region.

以下では、以上の知見に基づいた室外膨張弁13の具体的な構成や、その制御等について説明する。
図4は、実施例1の室外膨張弁13の縦断面図である。室外膨張弁13の膨張弁本体41は、弁部42と、この弁部42に固定された作動軸43とにより構成されている。弁部42は冷媒通路の壁面44に対向して配置されており、弁部42と壁面44の間の開口面積によって冷媒R32の流量を制御することができる。
Below, the concrete structure of the outdoor expansion valve 13 based on the above knowledge, its control, etc. are demonstrated.
FIG. 4 is a longitudinal sectional view of the outdoor expansion valve 13 of the first embodiment. The expansion valve main body 41 of the outdoor expansion valve 13 includes a valve portion 42 and an operating shaft 43 fixed to the valve portion 42. The valve portion 42 is disposed to face the wall surface 44 of the refrigerant passage, and the flow rate of the refrigerant R32 can be controlled by the opening area between the valve portion 42 and the wall surface 44.

作動軸43の他端は、パルスモータ16のロータにねじ作用で係り合うようにされており、すなわち、ロータの内部に形成されたねじ部とねじ作用で係り合うようなねじ部が形成されている(以上、図示せず)。したがって、ロータが回転することによってねじ係合されている作動軸43が図4において上下に往復動することができる。そして、パルスモータ16に与えられるパルス数に対応してそのロータが回転し、この回転に応じた動作量だけ作動軸43が往復動される。   The other end of the operating shaft 43 is engaged with the rotor of the pulse motor 16 by a screw action, that is, a screw part that is engaged with the screw part formed inside the rotor by a screw action is formed. (Not shown). Therefore, the operating shaft 43 that is screw-engaged as the rotor rotates can reciprocate up and down in FIG. Then, the rotor rotates in accordance with the number of pulses applied to the pulse motor 16, and the operation shaft 43 is reciprocated by an operation amount corresponding to the rotation.

弁部42の表面には断面形状が異なる少なくとも高開度領域部42aと低開度領域部42bの2つの領域が形成されている。低開度領域部42bは図3に示す低開度領域の開度−流量特性を実現するものであり、高開度領域部42aは図3に示す高開度領域の開度−流量特性を実現する。図4に示す弁部42の高開度領域部42aと低開度領域部42bの表面の断面形状は、曲線状あるは直線状で形成することができる(図4の例では低開度領域部42bが直線状で、高開度領域部42aが曲線状である)。そして、作動軸43の長手方向に沿った弁部42の表面の断面形状の変動は、低開度領域部42bに比べて高開度領域部42aの方が急峻な変化をするように形成されている。高開度領域部42aと低開度領域部42bの表面の断面形状は、図3に示すような特性、あるいは当該特性に近似した特性が得られる形状とすれば、図4の例以外にも様々に実現することができる。
ここで、本実施例では室外膨張弁13に予め下限開度及び複数の上限開度を設けておき、制御装置19が、温度センサ18で検出する外気温度により上限開度を決定して室外膨張弁13の開度制御を実施する。
On the surface of the valve portion 42, at least two regions of a high opening region 42a and a low opening region 42b having different cross-sectional shapes are formed. The low opening region 42b realizes the opening-flow rate characteristic of the low opening region shown in FIG. 3, and the high opening region 42a has the opening-flow rate characteristic of the high opening region shown in FIG. Realize. The cross-sectional shape of the surface of the high opening area portion 42a and the low opening area portion 42b of the valve portion 42 shown in FIG. 4 can be formed as a curve or a straight line (in the example of FIG. The portion 42b is linear, and the high opening region 42a is curved). The variation of the cross-sectional shape of the surface of the valve portion 42 along the longitudinal direction of the operating shaft 43 is formed such that the high opening region portion 42a changes more sharply than the low opening region portion 42b. ing. If the cross-sectional shape of the surface of the high opening area portion 42a and the low opening area portion 42b is a shape as shown in FIG. It can be realized in various ways.
Here, in this embodiment, the outdoor expansion valve 13 is provided with a lower limit opening and a plurality of upper limit openings in advance, and the control device 19 determines the upper limit opening based on the outside air temperature detected by the temperature sensor 18, and the outdoor expansion is performed. The opening degree control of the valve 13 is performed.

例えば、図3に示す下限開度EVOminは、冷凍サイクル装置1の運転停止直後の冷媒R32の移動による次回起動時の圧縮機11への液戻り防止のため、冷媒R410Aを使用した既存の冷凍サイクル装置の膨張弁流量と同様の冷媒流量になるように設定にする(a1とa2が一致する)。また、図3に示す上限開度EVOmax1は、高開度領域においての冷媒の吐出温度の異常上昇防止のために冷媒R410Aを使用した既存の冷凍サイクル装置と同様の膨張弁流量とする(a1とa2が一致する)。なお、上限開度EVOmax1はR410Aの膨張弁流量以下としても良い。   For example, the lower limit opening EVOmin shown in FIG. 3 is an existing refrigeration cycle that uses the refrigerant R410A in order to prevent liquid return to the compressor 11 at the next startup due to the movement of the refrigerant R32 immediately after the operation of the refrigeration cycle apparatus 1 is stopped. The refrigerant flow rate is set to be the same as the expansion valve flow rate of the apparatus (a1 and a2 match). Further, the upper limit opening EVOmax1 shown in FIG. 3 is set to the same expansion valve flow rate as that of the existing refrigeration cycle apparatus using the refrigerant R410A in order to prevent an abnormal increase in the refrigerant discharge temperature in the high opening range (a1 and a2 matches). The upper limit opening EVOmax1 may be equal to or lower than the expansion valve flow rate of R410A.

そして、温度センサ18で検出する通常の外気温度では上限開度は高開度領域の上限開度であるEVOmax1とするが、外気温度が予め設定された温度を下回った場合は、上限開度をEVOmax1から上限開度EVOmax2に変更する制御を制御装置19で行う。ここで、“上限開度EVOmax1>上限開度EVOmax2”であり、上限開度EVOmax2は、図3の低開度領域の上限値であり高開度領域の下限値である。   In the normal outside air temperature detected by the temperature sensor 18, the upper limit opening is EVOmax1, which is the upper limit opening in the high opening region. However, if the outside air temperature falls below a preset temperature, the upper limit opening is The control device 19 performs control to change from EVOmax1 to the upper limit opening EVOmax2. Here, “the upper limit opening EVOmax1> the upper limit opening EVOmax2”, and the upper limit opening EVOmax2 is the upper limit value in the low opening range and the lower limit value in the high opening range in FIG.

上限開度EVOmax1から上限開度EVOmax2への変更の制御は、前記したように室外膨張弁13を通過する冷媒R32の循環量が少なくなる外気温度が低いときに行う。すなわち、膨張弁流量の変動が大きい高開度領域で室外膨張弁13の開度を制御した場合、圧縮機11からの冷媒の吐出温度の変化が大きくなり、当該吐出温度の異常上昇による冷凍機油の劣化や、室外膨張弁13の開度変化に基づく大きな空調温度変化によるユーザの快適性不良を防止するために行われる。   Control of the change from the upper limit opening EVOmax1 to the upper limit opening EVOmax2 is performed when the outside air temperature at which the circulation amount of the refrigerant R32 passing through the outdoor expansion valve 13 is reduced is low as described above. That is, when the opening degree of the outdoor expansion valve 13 is controlled in a high opening range where the fluctuation of the expansion valve flow rate is large, the change in the discharge temperature of the refrigerant from the compressor 11 becomes large, and the refrigerating machine oil due to the abnormal increase in the discharge temperature This is performed in order to prevent a user's comfort failure due to a large change in the air conditioning temperature based on the deterioration of the air conditioner or the opening degree change of the outdoor expansion valve 13.

上限開度をEVOmax2に変更する場合は、下限開度EVOminから上限開度EVOmax2に至るまでのパルスモータ16のステップ数を予め記憶しておき、制御装置19による室外膨張弁13の開度制御を開始してからの積算ステップ数(室外膨張弁13を開く場合は加算、閉じる場合は減算する)によって現在の室外膨張弁13の開度がおおよそ推定できるので、これら積算ステップ数を比較することによって上限開度EVOmax2を超えない範囲で開度の調整が可能となる。
また、室外膨張弁13の作動軸43の位置を検出する位置センサを設け、この位置センサからの検出信号によって上限開度EVOmax2を超えない範囲で制御装置19が開度制御するようにしてもよい。
When changing the upper limit opening to EVOmax2, the number of steps of the pulse motor 16 from the lower limit opening EVOmin to the upper limit opening EVOmax2 is stored in advance, and the opening control of the outdoor expansion valve 13 by the control device 19 is performed. Since the current opening degree of the outdoor expansion valve 13 can be roughly estimated by the number of accumulated steps after the start (adding when opening the outdoor expansion valve 13 and subtracting when closing the outdoor expansion valve 13), by comparing these accumulated step numbers The opening can be adjusted within a range not exceeding the upper limit opening EVOmax2.
Further, a position sensor for detecting the position of the operating shaft 43 of the outdoor expansion valve 13 may be provided, and the control device 19 may control the opening degree within a range not exceeding the upper limit opening degree EVOmax2 by a detection signal from the position sensor. .

以上説明した本実施例の冷凍サイクル装置1によれば、暖房運転を行うような外気温度が低い状態においては、室外膨張弁13は低開度領域で使用するが、室外膨張弁13の弁部42に形成した低開度領域部42bの開度変化(弁部42の移動量)に対する冷媒の流量変化の割合が小さく設定されている。そのため、冷媒R32を使用した場合においても、暖房運転時の冷媒R32の温度変化を小さくすることができ、冷媒R32の圧縮機11からの吐出温度の異常上昇による冷凍機油の劣化を抑制することができる。   According to the refrigeration cycle apparatus 1 of the present embodiment described above, the outdoor expansion valve 13 is used in a low opening region when the outside air temperature is low so that the heating operation is performed, but the valve portion of the outdoor expansion valve 13 is used. The ratio of the change in the flow rate of the refrigerant with respect to the change in the opening degree (the amount of movement of the valve part 42) of the low opening degree region part 42b formed in 42 is set to be small. Therefore, even when the refrigerant R32 is used, the temperature change of the refrigerant R32 during the heating operation can be reduced, and the deterioration of the refrigerating machine oil due to the abnormal increase in the discharge temperature of the refrigerant R32 from the compressor 11 can be suppressed. it can.

なお、高開度領域においては、冷媒R32の吐出温度が低くなりやすいが、膨張弁流量及び冷媒循環量が多い場合でも冷媒R32の吐出温度が上昇する場合があるため膨張弁流量を小さくすることは得策でない。そのため、高開度領域では高開度領域部42aの開度変化(弁部42の移動量)に対する冷媒の流量変化の割合を大きくしている。   In the high opening range, the discharge temperature of the refrigerant R32 tends to be low, but even if the expansion valve flow rate and the refrigerant circulation amount are large, the discharge temperature of the refrigerant R32 may increase, so the expansion valve flow rate should be reduced. Is not a good idea. Therefore, in the high opening region, the ratio of the change in the refrigerant flow rate with respect to the opening change of the high opening region portion 42a (the amount of movement of the valve portion 42) is increased.

また、本実施例では、室外膨張弁13を通過する冷媒R32の循環量が少なくなる外気温度が低いときには、上限開度EVOmax1から上限開度EVOmax2への変更の制御を行う(図3)。すなわち、膨張弁流量の変動が大きい高開度領域で室外膨張弁13の開度を制御した場合、圧縮機11からの冷媒の吐出温度の変化が大きくなり、あるいは、当該吐出温度の異常上昇による冷凍機油の劣化や、室外膨張弁13の開度変化に基づく大きな空調温度変化によるユーザの快適性不良が生じるのを、防止することができる。   Further, in this embodiment, when the outside air temperature at which the circulation amount of the refrigerant R32 passing through the outdoor expansion valve 13 decreases is low, the change from the upper limit opening EVOmax1 to the upper limit opening EVOmax2 is controlled (FIG. 3). That is, when the opening degree of the outdoor expansion valve 13 is controlled in a high opening degree region where the fluctuation of the expansion valve flow rate is large, a change in the discharge temperature of the refrigerant from the compressor 11 becomes large, or due to an abnormal increase in the discharge temperature. It is possible to prevent the deterioration of the refrigerating machine oil and the poor comfort of the user due to a large change in the air conditioning temperature based on the change in the opening degree of the outdoor expansion valve 13.

また、室外膨張弁13の開度は圧縮機11の冷媒R32の吐出温度が所定の温度になるようにフィードバック制御されている。そして、前記したように室外膨張弁13の開度変化に対して冷媒R32の流量変化の割合を小さくできるため、これに伴う冷媒R32の温度変動も小さくなる。したがって、圧縮機11のR32の吐出温度を所定の温度に収束するようにフィードバック制御する場合も目標温度に収束させることが容易となる。このため、暖房運転を行っている場合は、室内機3の吹出温度が極度に上下せずユーザの快適性を保つことが可能となる。   The opening degree of the outdoor expansion valve 13 is feedback-controlled so that the discharge temperature of the refrigerant R32 of the compressor 11 becomes a predetermined temperature. And since the ratio of the flow volume change of refrigerant | coolant R32 can be made small with respect to the opening degree change of the outdoor expansion valve 13 as mentioned above, the temperature fluctuation of refrigerant | coolant R32 accompanying this also becomes small. Therefore, even when feedback control is performed so that the discharge temperature of R32 of the compressor 11 converges to a predetermined temperature, it is easy to converge to the target temperature. For this reason, when performing the heating operation, it is possible to maintain the comfort of the user without the temperature of the indoor unit 3 blowing up and down extremely.

図5は、本発明の実施例2である冷凍サイクル装置の系統図である。図5において、実施例1の場合と同一符号は実施例1と同様の部材等であり、詳細な説明は省略する。実施例2においても冷媒R32を用いていることも同様である。
実施例1の冷凍サイクル装置1において、前記のような圧縮機11の冷媒の吐出温度を目標値に収束させるようなフィードバック制御を行うことは、冷媒の吐出温度の変化に対して追従性が遅いということが想定される。
このため、本実施例では圧縮機11の吸入乾き度を目標値に収束させるように室外膨張弁13の開度制御を実施することにより、更に冷媒の吐出温度の変化を小さくすることができるようにする。
FIG. 5 is a system diagram of a refrigeration cycle apparatus that is Embodiment 2 of the present invention. In FIG. 5, the same reference numerals as those in the first embodiment are the same members as those in the first embodiment, and detailed description thereof is omitted. In the second embodiment, the refrigerant R32 is also used.
In the refrigeration cycle apparatus 1 according to the first embodiment, the feedback control that converges the refrigerant discharge temperature of the compressor 11 to the target value as described above is slow in following the change in the refrigerant discharge temperature. It is assumed that.
For this reason, in the present embodiment, the change in the refrigerant discharge temperature can be further reduced by controlling the opening degree of the outdoor expansion valve 13 so that the suction dryness of the compressor 11 converges to the target value. To.

すなわち、図5の冷凍サイクル装置100が実施例1の冷凍サイクル装置1と相違するのは、圧縮機11の吸入側の冷媒温度を検出する温度センサ51、圧縮機11の吸入側の冷媒圧力を検出する圧力センサ52、及び圧縮機11の吐出側の冷媒圧力を検出する圧力センサ53を設けている点である。また、制御装置19においては、これらのセンサの検出値に基づいて圧縮機11に吸入される冷媒の吸入乾き度を算出する吸入乾き度算出部19aを備えている。
そして本実施例では、制御装置19が、吸入乾き度算出部19aが算出する吸入乾き度が予め設定した目標値となるように室外膨張弁13の開度をフィードバック制御する。
That is, the refrigeration cycle apparatus 100 of FIG. 5 differs from the refrigeration cycle apparatus 1 of the first embodiment in that the temperature sensor 51 that detects the refrigerant temperature on the suction side of the compressor 11 and the refrigerant pressure on the suction side of the compressor 11 are different. The pressure sensor 52 to detect and the pressure sensor 53 to detect the refrigerant pressure on the discharge side of the compressor 11 are provided. In addition, the control device 19 includes a suction dryness calculation unit 19a that calculates the suction dryness of the refrigerant sucked into the compressor 11 based on the detection values of these sensors.
In this embodiment, the control device 19 feedback-controls the opening degree of the outdoor expansion valve 13 so that the suction dryness calculated by the suction dryness calculation unit 19a becomes a preset target value.

ここで、既存の冷媒R410Aを使用した一般的な冷凍サイクル装置においては、圧縮機への冷媒の液戻りを回避するために目標吸入乾き度を1に近い値になるように制御している。しかしながら、冷媒R32を使用した場合、圧縮機から吐出される冷媒R32の吐出温度が上昇しやすいため、冷媒R410Aを用いる場合と同じような吸入乾き度の目標値となるような制御を実行すると、圧縮機から吐出される冷媒温度の異常上昇による冷凍機油の劣化や、室外膨張弁の開度変化に基づく大きな温度変化によるユーザの快適性不良に至る恐れがある。この点を防止するため、吸入乾き度を1より十分小さな値にすると圧縮機への冷媒の液戻りが懸念される。
そこで、前記の吸入乾き度のフィードバック制御を、吸入乾き度が例えば0.7〜0.9程度になるように行うことが望ましい。これにより、圧縮機11への冷媒の液戻り、及び圧縮機11からの冷媒の吐出温度の上昇を抑制することができる。
Here, in the general refrigeration cycle apparatus using the existing refrigerant R410A, the target suction dryness is controlled to be a value close to 1 in order to avoid the liquid return of the refrigerant to the compressor. However, when the refrigerant R32 is used, the discharge temperature of the refrigerant R32 discharged from the compressor is likely to rise. Therefore, when control is performed so that the suction dryness target value is the same as when the refrigerant R410A is used, There is a risk of deterioration of the refrigeration oil due to an abnormal rise in the temperature of the refrigerant discharged from the compressor and a user's comfort failure due to a large temperature change based on a change in the degree of opening of the outdoor expansion valve. In order to prevent this point, if the suction dryness is set to a value sufficiently smaller than 1, there is a concern that the refrigerant returns to the compressor.
Therefore, it is desirable to perform the feedback control of the suction dryness so that the suction dryness becomes, for example, about 0.7 to 0.9. Thereby, the liquid return of the refrigerant | coolant to the compressor 11 and the raise of the discharge temperature of the refrigerant | coolant from the compressor 11 can be suppressed.

そのため、本実施例では、使用する室外膨張弁は実施例1の場合と同様に冷媒R32の特性に対応した前記の室外膨張弁13(図3、図4)とし、室外膨張弁13の流量特性は実施例1と同様に、低開度領域では開度変化に対する流量変化の傾きを小さくし、高開度領域では開度変化に対する流量変化の傾きを大きくしたものを使用する。
そして、吸入乾き度が比較的小さい場合は室外膨張弁13の開度を閉じ側に制御し、吸入乾き度が1に近くなった場合は室外膨張弁13の開度を開き側に制御することにより、目標吸入乾き度に収束するようにフィードバック制御することができる。
また、実施例1と同様に予め室外膨張弁13の下限開度、及び上限開度を設けておき、吸入乾き度により上限開度を前記EVOmax1及びEVOmax2(図3)から選択して、室外膨張弁13の制御を実施することもできる。
Therefore, in this embodiment, the outdoor expansion valve to be used is the above-described outdoor expansion valve 13 (FIGS. 3 and 4) corresponding to the characteristics of the refrigerant R32 as in the first embodiment, and the flow rate characteristics of the outdoor expansion valve 13 are the same. In the same manner as in the first embodiment, the flow rate change with respect to the change in the opening amount is reduced in the low opening range, and the flow rate change with respect to the change in the opening amount is increased in the high opening range.
When the suction dryness is relatively small, the opening degree of the outdoor expansion valve 13 is controlled to the closed side, and when the suction dryness degree is close to 1, the opening degree of the outdoor expansion valve 13 is controlled to the opening side. Thus, feedback control can be performed so as to converge to the target suction dryness.
Further, similarly to the first embodiment, the lower limit opening and the upper limit opening of the outdoor expansion valve 13 are provided in advance, and the upper limit opening is selected from EVOmax1 and EVOmax2 (FIG. 3) according to the degree of suction dryness. Control of the valve 13 can also be implemented.

例えば、実施例1と同様に下限開度EVOminは、運転停止直後の冷媒R32の移動による次回起動時の冷媒の液戻り防止のため、既存の冷媒R410Aを使用している機種の膨張弁流量と同じ流量に設定にする。また、上限開度EVOmax1は、高開度領域においての圧縮機11からの冷媒の吐出温度の異常上昇防止のために、既存の冷媒R410Aを使用している機種と同じ膨張弁流量とする。   For example, similarly to the first embodiment, the lower limit opening EVOmin is equal to the expansion valve flow rate of the model using the existing refrigerant R410A in order to prevent the refrigerant from returning at the next activation due to the movement of the refrigerant R32 immediately after the operation is stopped. Set to the same flow rate. The upper limit opening EVOmax1 is set to the same expansion valve flow rate as that of a model using the existing refrigerant R410A in order to prevent an abnormal increase in the refrigerant discharge temperature from the compressor 11 in the high opening range.

そして、通常の場合、吸入乾き度をフィードバック制御するときの上限開度はEVOmax1とする。しかし、吸入乾き度算出部19aで算出した吸入乾き度が予め設定された値を下回った場合は、制御装置19は、上限開度はEVOmax1から上限開度EVOmax2に変更する制御を行う。上限開度をEVOmax2に変更する制御は、実施例1と同じ手段で実現することができる。   In a normal case, the upper limit opening when feedback control of the suction dryness is EVOmax1. However, when the suction dryness calculated by the suction dryness calculation unit 19a falls below a preset value, the control device 19 performs control to change the upper limit opening from EVOmax1 to the upper limit opening EVOmax2. Control for changing the upper limit opening to EVOmax2 can be realized by the same means as in the first embodiment.

以上説明した本実施例の冷凍サイクル装置100によれば、暖房運転を行うような外気温度が低い状態においては、室外膨張弁13は低開度領域で使用される。そして、室外膨張弁13の弁部42に形成した低開度領域部42bでは、開度変化(弁部42の移動量)に対する冷媒の流量変化の割合を小さく設定している。そのため、冷媒R32を使用した場合においても、暖房運転時の冷媒R32の温度変化を小さくすることができ、冷媒R32の圧縮機11からの冷媒の吐出温度の異常上昇による冷凍機油の劣化を抑制することができる。
なお、室外膨張弁13の高開度領域においては、膨張弁流量が多い場合でも圧縮機11からの冷媒の吐出温度が上昇する場合があるため、膨張弁流量を小さくすることは得策でないので、室外膨張弁13の開度変化に対する冷媒の流量変化の傾きを大きくする形状としている。
According to the refrigeration cycle apparatus 100 of the present embodiment described above, the outdoor expansion valve 13 is used in the low opening region in a state where the outside air temperature is low so as to perform the heating operation. And in the low opening degree area | region part 42b formed in the valve part 42 of the outdoor expansion valve 13, the ratio of the flow volume change of the refrigerant | coolant with respect to opening degree change (movement amount of the valve part 42) is set small. Therefore, even when the refrigerant R32 is used, the temperature change of the refrigerant R32 during the heating operation can be reduced, and the deterioration of the refrigerating machine oil due to the abnormal increase in the refrigerant discharge temperature from the compressor 11 of the refrigerant R32 is suppressed. be able to.
In the high opening area of the outdoor expansion valve 13, since the discharge temperature of the refrigerant from the compressor 11 may increase even when the expansion valve flow rate is large, it is not a good idea to reduce the expansion valve flow rate. The shape of the gradient of the change in the flow rate of the refrigerant with respect to the change in the opening degree of the outdoor expansion valve 13 is increased.

また、室外膨張弁13の開度は目標の吸入乾き度になるようにフィードバック制御されているが、前記したように室外膨張弁13の開度変化に対して冷媒R32の流量変化の割合が小さくできるため、これに伴う冷媒R32の温度変動も小さくなる。したがって、目標となる値に収束するように吸入乾き度をフィードバック制御する場合も、追従性良く目標となる吸入乾き度に収束させることが容易となる。
さらに、算出した吸入乾き度が予め設定された値を下回った場合は、制御装置19は、上限開度はEVOmax1から上限開度EVOmax2に変更する制御を行う。これにより、吸入乾き度が過度に低下して圧縮機への冷媒の液戻りが発生するのを抑制することができる。
Further, the opening degree of the outdoor expansion valve 13 is feedback-controlled so as to achieve the target suction dryness, but as described above, the rate of change in the flow rate of the refrigerant R32 is small with respect to the opening degree change of the outdoor expansion valve 13. Therefore, the temperature fluctuation of the refrigerant R32 accompanying this is also reduced. Accordingly, even when feedback control is performed on the suction dryness so as to converge to the target value, it becomes easy to converge to the target suction dryness with good followability.
Further, when the calculated suction dryness falls below a preset value, the control device 19 performs control to change the upper limit opening from EVOmax1 to the upper limit opening EVOmax2. Thereby, it can suppress that the suction dryness falls too much and the liquid return of the refrigerant | coolant to a compressor generate | occur | produces.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is also possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1 冷凍サイクル装置
11 圧縮機
12 四方弁
13 室外膨張弁(膨張弁)
14 室外熱交換器
17 温度センサ(吐出温度検出部)
18 温度センサ(外気温度検出部)
19 制御装置(制御部)
19a 吸入乾き度算出部
21 室内熱交換器
31 冷媒配管
42a 高開度領域部(高開度領域)
42b 低開度領域部(低開度領域)
100 冷凍サイクル装置
DESCRIPTION OF SYMBOLS 1 Refrigeration cycle apparatus 11 Compressor 12 Four-way valve 13 Outdoor expansion valve (expansion valve)
14 Outdoor heat exchanger 17 Temperature sensor (discharge temperature detector)
18 Temperature sensor (outside temperature detector)
19 Control device (control unit)
19a Suction dryness calculation unit 21 Indoor heat exchanger 31 Refrigerant piping 42a High opening region (high opening region)
42b Low opening area (low opening area)
100 Refrigeration cycle equipment

Claims (6)

圧縮機、四方弁、膨張弁、室外熱交換器、及び室内熱交換器を冷媒配管で接続して冷凍サイクルを構成する冷凍サイクル装置であって、
前記冷凍サイクルに用いる冷媒はR32であり、
前記膨張弁は、比較的開度が低い低開度領域では当該膨張弁の開度変化に対する冷媒の流量の割合を比較的小さくし、開度が前記低開度領域より高い高開度領域では前記膨張弁の開度変化に対する冷媒の流量の割合を前記低開度領域より大きくする形状であることを特徴とする冷凍サイクル装置。
A compressor, a four-way valve, an expansion valve, an outdoor heat exchanger, and an indoor heat exchanger are connected to each other by a refrigerant pipe to constitute a refrigeration cycle,
The refrigerant used in the refrigeration cycle is R32,
The expansion valve has a relatively small ratio of the flow rate of the refrigerant to the change in the opening degree of the expansion valve in a low opening range where the opening degree is relatively low, and in a high opening range where the opening degree is higher than the low opening range. A refrigeration cycle apparatus having a shape in which a ratio of a flow rate of the refrigerant to a change in the opening degree of the expansion valve is larger than the low opening degree region.
前記圧縮機の冷媒の吐出温度を検出する吐出温度検出部と、
前記膨張弁の開度を、前記吐出温度が目標温度に収束するようにフィードバック制御する制御部とを備えることを特徴とする請求項1に記載の冷凍サイクル装置。
A discharge temperature detector for detecting a discharge temperature of the refrigerant of the compressor;
The refrigeration cycle apparatus according to claim 1, further comprising: a control unit that performs feedback control of an opening degree of the expansion valve so that the discharge temperature converges to a target temperature.
前記圧縮機に吸入される冷媒の吸入乾き度を算出する吸入乾き度算出部と、
前記膨張弁の開度を、前記吸入乾き度が目標吸入乾き度に収束するようにフィードバック制御する制御部とを備えることを特徴とする請求項1に記載の冷凍サイクル装置。
A suction dryness calculating unit for calculating the suction dryness of the refrigerant sucked into the compressor;
2. The refrigeration cycle apparatus according to claim 1, further comprising: a control unit that feedback-controls an opening degree of the expansion valve so that the suction dryness converges to a target suction dryness.
外気の温度を検出する外気温度検出部を備え、
前記制御部は、外気の温度が予め設定された温度を下回ったときは前記膨張弁の上限開度を前記低開度領域の上限開度とし、そうでないときは前記膨張弁の上限開度を前記高開度領域の上限開度とすることを特徴とする請求項2に記載の冷凍サイクル装置。
It has an outside air temperature detector that detects the temperature of outside air,
The control unit sets the upper limit opening of the expansion valve as the upper limit opening of the low opening range when the temperature of the outside air falls below a preset temperature, and sets the upper limit opening of the expansion valve otherwise. The refrigeration cycle apparatus according to claim 2, wherein an upper limit opening degree of the high opening degree region is set.
前記制御部は、前記吸入乾き度算出部で算出した吸入乾き度が予め設定された吸入乾き度を下回ったときは前記膨張弁の上限開度を前記低開度領域の上限開度とし、そうでないときは前記膨張弁の上限開度を前記高開度領域の上限開度とすることを特徴とする請求項3に記載の冷凍サイクル装置。   When the suction dryness calculated by the suction dryness calculation unit falls below a preset suction dryness, the control unit sets the upper limit opening of the expansion valve as the upper limit opening of the low opening range, and so on. If not, the upper limit opening of the expansion valve is set as the upper limit opening of the high opening region. 冷凍サイクルを構成する冷凍サイクル装置に用いられる膨張弁であって、
比較的開度が低い低開度領域では当該膨張弁の開度変化に対する冷媒の流量の割合を比較的小さくし、開度が前記低開度領域より高い高開度領域では前記膨張弁の開度変化に対する冷媒の流量の割合を前記低開度領域より大きくする形状であることを特徴とする膨張弁。
An expansion valve used in a refrigeration cycle apparatus constituting a refrigeration cycle,
In the low opening range where the opening is relatively low, the ratio of the refrigerant flow rate to the change in opening of the expansion valve is relatively small, and in the high opening range where the opening is higher than the low opening range, the expansion valve is opened. An expansion valve characterized by having a shape in which the ratio of the flow rate of the refrigerant to the degree of change is larger than the low opening degree region.
JP2015076676A 2015-04-03 2015-04-03 Refrigeration cycle equipment Active JP6566693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015076676A JP6566693B2 (en) 2015-04-03 2015-04-03 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015076676A JP6566693B2 (en) 2015-04-03 2015-04-03 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2016196975A true JP2016196975A (en) 2016-11-24
JP6566693B2 JP6566693B2 (en) 2019-08-28

Family

ID=57358373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015076676A Active JP6566693B2 (en) 2015-04-03 2015-04-03 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP6566693B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009351A1 (en) * 2022-07-04 2024-01-11 三菱電機株式会社 Refrigeration cycle device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133628A (en) * 1991-11-12 1993-05-28 Daikin Ind Ltd Device for controlling operation of refrigerating apparatus
JPH06272973A (en) * 1993-03-24 1994-09-27 Daikin Ind Ltd Air conditioner
JPH09133435A (en) * 1995-11-08 1997-05-20 Mitsubishi Heavy Ind Ltd Expansion valve
JP2001012808A (en) * 1999-06-29 2001-01-19 Matsushita Electric Ind Co Ltd Method of and apparatus for controlling expansion valve of air conditioner
JP2001221526A (en) * 2000-02-04 2001-08-17 Mitsubishi Electric Corp Refrigerative air conditioner
JP2013108647A (en) * 2011-11-18 2013-06-06 Daikin Industries Ltd Electronic expansion valve and air conditioner
JP2014089006A (en) * 2012-10-31 2014-05-15 Daikin Ind Ltd Air conditioner
JP2014142136A (en) * 2013-01-24 2014-08-07 Pacific Ind Co Ltd Electric expansion valve
JP2015004486A (en) * 2013-06-21 2015-01-08 株式会社東芝 Air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133628A (en) * 1991-11-12 1993-05-28 Daikin Ind Ltd Device for controlling operation of refrigerating apparatus
JPH06272973A (en) * 1993-03-24 1994-09-27 Daikin Ind Ltd Air conditioner
JPH09133435A (en) * 1995-11-08 1997-05-20 Mitsubishi Heavy Ind Ltd Expansion valve
JP2001012808A (en) * 1999-06-29 2001-01-19 Matsushita Electric Ind Co Ltd Method of and apparatus for controlling expansion valve of air conditioner
JP2001221526A (en) * 2000-02-04 2001-08-17 Mitsubishi Electric Corp Refrigerative air conditioner
JP2013108647A (en) * 2011-11-18 2013-06-06 Daikin Industries Ltd Electronic expansion valve and air conditioner
JP2014089006A (en) * 2012-10-31 2014-05-15 Daikin Ind Ltd Air conditioner
JP2014142136A (en) * 2013-01-24 2014-08-07 Pacific Ind Co Ltd Electric expansion valve
JP2015004486A (en) * 2013-06-21 2015-01-08 株式会社東芝 Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009351A1 (en) * 2022-07-04 2024-01-11 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP6566693B2 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
KR100922222B1 (en) Air conditioning system
WO2009119023A1 (en) Freezing apparatus
KR102217500B1 (en) Refrigerant cooling for variable speed drive
JP5795025B2 (en) Refrigeration cycle equipment
JP2015215107A (en) Air conditioner
JP2017044454A (en) Refrigeration cycle device and control method for the same
JP2014190554A (en) Air conditioner
JPWO2012032699A1 (en) Refrigeration cycle equipment
JP2014037911A (en) Cascade heat pump cycle
JPWO2018138796A1 (en) Refrigeration cycle equipment
JP5943869B2 (en) Air conditioner
JP2008241065A (en) Refrigerating device and oil returning method of refrigerating device
KR100505237B1 (en) Control method of air-conditioner
CN107076491B (en) Selecting a control strategy for an expansion valve
JP6566693B2 (en) Refrigeration cycle equipment
JP2015132434A (en) Refrigeration cycle device
JP2017133763A (en) Air conditioner
JP6076583B2 (en) heat pump
JP6052493B2 (en) Heat pump cycle equipment
JP2018119777A5 (en)
JP2018146142A (en) Air conditioner
CN105283331A (en) Air-conditioner system for vehicle and method for controlling same
JP6403413B2 (en) Air conditioner
JP6272365B2 (en) Refrigeration cycle equipment
JP2007010214A (en) Heat pump type water heater

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160407

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190730

R150 Certificate of patent or registration of utility model

Ref document number: 6566693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150