JPH09133435A - Expansion valve - Google Patents

Expansion valve

Info

Publication number
JPH09133435A
JPH09133435A JP7289922A JP28992295A JPH09133435A JP H09133435 A JPH09133435 A JP H09133435A JP 7289922 A JP7289922 A JP 7289922A JP 28992295 A JP28992295 A JP 28992295A JP H09133435 A JPH09133435 A JP H09133435A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
flow rate
expansion valve
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7289922A
Other languages
Japanese (ja)
Inventor
Masatoshi Mitsui
正俊 三井
Takahide Yamamoto
隆英 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7289922A priority Critical patent/JPH09133435A/en
Publication of JPH09133435A publication Critical patent/JPH09133435A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an expansion valve to control a flow rate of a refrigerant with high precision according to the fluctuation of a cooling load and prevent the occurrence of the trouble and breakage of a compressor. SOLUTION: In an expansion valve to control a flow rate of a refrigerant by the area of a flow passage comprising a valve set 46 and a valve element 100, the expansion valve is formed in such a manner that a plurality of seal surfaces 101 and 102 having different gradients at which the change gradient of a refrigerant flow rate is changed to a valve lift amount from full closing of the valve body 100 to full opening are formed on the seal surface of the valve seat 46 or the valve element 100. This constitution automatically changes a change ratio of a refrigerant flow rate when a lift amount exceeds a given value, and provides a flow rate of a refrigerant responding to a cooling load through simple structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍サイクルにお
いて冷媒の流量制御に用いられる膨脹弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an expansion valve used for controlling the flow rate of refrigerant in a refrigeration cycle.

【0002】[0002]

【従来の技術】空調装置などに用いられているレシーバ
式冷凍サイクルは、従来、図3に示すように、コンプレ
ッサ1、コンデンサ2、レシーバ3、膨脹弁4およびエ
バポレータ5を備えており、冷媒が上記の順で流れるサ
イクルを構成している。
2. Description of the Related Art A receiver type refrigeration cycle used for an air conditioner or the like has conventionally been provided with a compressor 1, a condenser 2, a receiver 3, an expansion valve 4 and an evaporator 5 as shown in FIG. It constitutes a cycle that flows in the above order.

【0003】すなわち、ガス状の冷媒はコンプレッサ1
にて高温、高圧に加圧されてコンデンサ2に送られ、こ
のコンデンサ2においてはファンなどで外気が送風され
ることにより高温、高圧のガス状冷媒が強制的に冷却さ
れる。このため冷媒ガスは凝縮の潜熱が冷却風に奪わ
れ、よって液化する。そして、コンデンサ2を流れる間
に過冷却(スーパクール)される。
That is, the gaseous refrigerant is the compressor 1
At high temperature and high pressure, it is sent to the condenser 2, and the high temperature and high pressure gaseous refrigerant is forcibly cooled by the outside air being blown by the fan or the like in this condenser 2. For this reason, the latent heat of condensation of the refrigerant gas is taken by the cooling air, and the refrigerant gas is liquefied. Then, it is supercooled while flowing through the condenser 2.

【0004】コンデンサ2で液化された上記高圧の冷媒
はレシーバ3に送られ、レシーバ3で減圧される。この
減圧された液冷媒は、膨脹弁4が開かれたときに急激に
膨脹されて低圧、低温の液冷媒となり、この液状冷媒は
エバポレータ5に送られる。エバポレータ5に入った液
状冷媒は、エバポレータ5のチューブ内を流れる間に、
周囲の空気からフィンを通じて蒸発に必要な潜熱を奪っ
て盛んに蒸発し、これにより周囲の空気を冷却し、室内
を冷房する。
The high-pressure refrigerant liquefied by the condenser 2 is sent to the receiver 3 and decompressed by the receiver 3. The decompressed liquid refrigerant is rapidly expanded when the expansion valve 4 is opened to become a low-pressure low-temperature liquid refrigerant, and the liquid refrigerant is sent to the evaporator 5. While the liquid refrigerant entering the evaporator 5 flows in the tube of the evaporator 5,
The latent heat required for evaporation is taken from the ambient air through the fins to actively evaporate, thereby cooling the ambient air and cooling the room.

【0005】上記エバポレータ5で霧化した冷媒はコン
プレッサ1に戻され、再び高温、高圧に加熱されてコン
デンサ2へ送られる。以上のような冷媒の冷凍サイクル
を繰り返すことにより、冷媒はエバポレータ5で室内の
空気から熱を奪って室内の空気を冷房し、この熱をコン
デンサ2を介して外気に捨てるようになっている。
The refrigerant atomized by the evaporator 5 is returned to the compressor 1, heated again to high temperature and high pressure, and sent to the condenser 2. By repeating the refrigerant refrigeration cycle as described above, the refrigerant takes heat from the indoor air by the evaporator 5 to cool the indoor air, and the heat is discharged to the outside air via the condenser 2.

【0006】上記のような空調装置においては膨脹弁4
で冷媒の流量を制御し、かつエバポレータ5出口の冷媒
が適度な過熱度(スーパヒート)を維持するように制御
している。すなわちエバポレータ5を流れる冷媒はエバ
ポレータ5で完全に蒸発が終える程度に過熱度されるよ
うになっており、これによりコンプレッサ1に液冷媒を
戻さないようにしている。
In the air conditioner as described above, the expansion valve 4
The flow rate of the refrigerant is controlled by, and the refrigerant at the outlet of the evaporator 5 is controlled so as to maintain an appropriate degree of superheat (superheat). That is, the refrigerant flowing through the evaporator 5 is superheated to such an extent that the evaporator 5 completely completes the evaporation, so that the liquid refrigerant is not returned to the compressor 1.

【0007】このような膨脹弁4としては、例えば図4
に示される温度式膨脹弁が用いられており、この温度式
膨脹弁は、膨脹弁本体40内にダイアフラム41を設
け、このダイアフラム41は膨脹弁本体40内を圧力室
42と均圧室43とに区画している。均圧室43は、図
示しない配管を介してエバポレータ5の出口部に接続さ
れており、エバポレータ5の冷媒ガス圧が均圧室43に
導入されるようになっている。
An example of such an expansion valve 4 is shown in FIG.
The temperature type expansion valve shown in FIG. 2 is used, and this temperature type expansion valve is provided with a diaphragm 41 in the expansion valve main body 40, and the diaphragm 41 has a pressure chamber 42 and a pressure equalizing chamber 43 in the expansion valve main body 40. It is divided into The pressure equalizing chamber 43 is connected to the outlet of the evaporator 5 via a pipe (not shown), and the refrigerant gas pressure of the evaporator 5 is introduced into the pressure equalizing chamber 43.

【0008】上記ダイアフラム41には弁棒44が連結
されており、この弁棒44には弁体45が取り付けられ
ている。弁体45は弁座46に接離するようになってお
り、この弁座46は上記弁体45により開度が変化され
る弁孔46aを有している。弁孔46aは、レシーバ3
に連なる入口接続管47およびエバポレータ5に連なる
出口接続管48の間に形成されている。弁体45にはリ
ターンスプリング49が連結されており、この弁体45
はリターンスプリング49の付勢力を受けて常に弁座4
6に当接する方向、すなわち閉弁方向の力を受けてい
る。
A valve rod 44 is connected to the diaphragm 41, and a valve element 45 is attached to the valve rod 44. The valve body 45 is adapted to come into contact with and separate from the valve seat 46, and the valve seat 46 has a valve hole 46a whose opening degree is changed by the valve body 45. The valve hole 46a is the receiver 3
Is formed between the inlet connection pipe 47 connected to the above and the outlet connection pipe 48 connected to the evaporator 5. A return spring 49 is connected to the valve body 45.
Receives the urging force of the return spring 49 and is always in the valve seat 4
6, a force in the valve closing direction is received.

【0009】上記圧力室42には細管51を介して感温
筒50が接続されている。感温筒50には不活性ガスお
よび温度に応じて不活性ガスを吸着する吸着剤52が収
容されている。
A temperature sensitive tube 50 is connected to the pressure chamber 42 via a thin tube 51. The temperature-sensitive cylinder 50 contains an inert gas and an adsorbent 52 that adsorbs the inert gas according to the temperature.

【0010】この感温筒50はエバポレータ5の出口部
に設置されており、このエバポレータ5出口の冷媒温度
を検出するようになっている。このような構成の膨脹弁
4は、エバポレータ5出口部の冷媒の過熱度が所定値以
上になると感温筒50に収容した吸着剤52の温度が上
昇して不活性ガスを放出し、感温筒50のガス圧を上昇
させる。このガス圧は細管51を通じて膨脹弁本体40
の圧力室42に伝達され、この圧力室42のガス圧が上
昇する。このガス圧はダイアフラム41を押し、均圧室
43の冷媒ガス圧およびリターンスプリング49の付勢
力との和に打ち勝つと弁棒44を介して弁体45を押し
下げる。このことから、弁体45は弁座46から離れ、
弁孔46aを開く。ゆえに、レシーバ3の冷媒が入口接
続管47および弁孔46a、出口接続管48を通じてエ
バポレータ5に送り出されることになり、エバポレータ
5を流れる冷媒の流量が増加する。これによりエバポレ
ータ5出口部の冷媒の過熱度を所定値以下に下げること
ができる。
The temperature sensitive cylinder 50 is installed at the outlet of the evaporator 5 and detects the temperature of the refrigerant at the outlet of the evaporator 5. In the expansion valve 4 having such a configuration, when the superheat degree of the refrigerant at the outlet of the evaporator 5 becomes equal to or higher than a predetermined value, the temperature of the adsorbent 52 housed in the temperature sensitive tube 50 rises to release the inert gas, and the temperature sensitive The gas pressure in the cylinder 50 is increased. This gas pressure is transmitted through the thin tube 51 to the expansion valve body 40.
Is transmitted to the pressure chamber 42, and the gas pressure in the pressure chamber 42 rises. This gas pressure pushes the diaphragm 41, and when the sum of the refrigerant gas pressure in the pressure equalizing chamber 43 and the urging force of the return spring 49 is overcome, the valve body 45 is pushed down via the valve rod 44. From this, the valve body 45 separates from the valve seat 46,
The valve hole 46a is opened. Therefore, the refrigerant of the receiver 3 is sent out to the evaporator 5 through the inlet connection pipe 47, the valve hole 46a, and the outlet connection pipe 48, and the flow rate of the refrigerant flowing through the evaporator 5 increases. This makes it possible to reduce the degree of superheat of the refrigerant at the outlet of the evaporator 5 to a predetermined value or less.

【0011】逆に、エバポレータ5出口部の冷媒の過熱
度が所定値以下になると、吸着剤52が不活性ガスを吸
着して感温筒50のガス圧を下げ、これにより圧力室4
2のガス圧を下げ、弁体45を弁座46側に近づける。
よって、弁孔46aの開度が絞られ、エバポレータ5に
送り込まれる冷媒の量が減少される。このためエバポレ
ータ5出口部の冷媒の過熱度を所定値以上に引上げるこ
とができる。
On the contrary, when the degree of superheat of the refrigerant at the outlet of the evaporator 5 becomes equal to or lower than a predetermined value, the adsorbent 52 adsorbs the inert gas and lowers the gas pressure in the temperature sensing tube 50, whereby the pressure chamber 4
The gas pressure of 2 is reduced to bring the valve element 45 closer to the valve seat 46 side.
Therefore, the opening degree of the valve hole 46a is narrowed and the amount of the refrigerant sent to the evaporator 5 is reduced. Therefore, the degree of superheat of the refrigerant at the outlet of the evaporator 5 can be increased to a predetermined value or more.

【0012】ところで、上記のような機能を奏する膨脹
弁4において、従来の弁体45は、図5に示すような球
状をなしていた。なお、45aは弁体受けである。上記
のような球状弁体45の場合、弁体45が弁座46から
離れる弁リフト量に対し冷媒流量は図6に示す特性図の
ように、ほぼ直線的に変化する。図6の特性Bは特性A
に比べて大流量の膨脹弁の特性を示しており、球状弁体
の直径を大きくすることにより得られる。
By the way, in the expansion valve 4 having the above-mentioned function, the conventional valve body 45 has a spherical shape as shown in FIG. In addition, 45a is a valve body receiver. In the case of the spherical valve body 45 as described above, the refrigerant flow rate changes substantially linearly with respect to the valve lift amount with which the valve body 45 moves away from the valve seat 46, as shown in the characteristic diagram of FIG. Characteristic B in FIG. 6 is characteristic A
The characteristics of the expansion valve with a large flow rate are shown in comparison with those of (1) and (3), and can be obtained by increasing the diameter of the spherical valve body.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、例えば
車両用空調装置などでは、自動車が高速走行していると
きに冷房負荷が大きくなった場合、エバポレータ5で冷
媒の蒸発が活発になるからエバポレータ出口部の冷媒の
過熱度が増加することになり、多量の冷媒流量を必要と
する。しかし、図6の特性Aをもつ膨脹弁では冷媒流量
を十分に供給することができない。よって、特性Bの膨
脹弁を使用することが要請される。
However, in an air conditioner for a vehicle, for example, when the cooling load becomes large while the vehicle is traveling at high speed, the evaporator 5 actively evaporates the refrigerant, so that the evaporator outlet portion. The superheat degree of the refrigerant is increased, and a large amount of refrigerant flow is required. However, the expansion valve having the characteristic A shown in FIG. 6 cannot supply a sufficient amount of refrigerant. Therefore, it is required to use the expansion valve of characteristic B.

【0014】一方、特性Bの膨脹弁では、冷房負荷が定
格負荷より低い軽負荷の場合、冷媒流量が過剰になって
冷媒の過熱度が小さくなったり、ハンチング等を発生し
易くなり、冷房性能が特性Aの膨脹弁に比べて若干低下
する。さらに、特性Bの膨脹弁の場合、冷媒流量が過剰
になってコンプレッサの起動時に液戻りが発生し易く、
コンプレサの破損の原因となる。このことから、コンプ
レッサの起動時や、軽負荷から定格負荷に亘る運転域で
は特性Aをもつ膨脹弁を使用することが望ましい。
On the other hand, in the expansion valve of the characteristic B, when the cooling load is lower than the rated load, the refrigerant flow rate becomes excessive, the superheat degree of the refrigerant becomes small, and hunting or the like easily occurs. Is slightly lower than that of the expansion valve of characteristic A. Further, in the case of the expansion valve having the characteristic B, the flow rate of the refrigerant becomes excessive and the liquid is likely to return when the compressor is started,
This will cause damage to the compressor. Therefore, it is desirable to use the expansion valve having the characteristic A at the time of starting the compressor or in the operating range from the light load to the rated load.

【0015】したがって本発明の目的とするところは、
冷房負荷の軽負荷から高負荷まで、負荷の変動に応じて
適正な冷媒流量の制御が行え、過熱度が過大になるのを
抑止し、コンプレッサの故障や破損を防止することがで
きる膨脹弁を提供することにある。
Therefore, the object of the present invention is to
From the light load of the cooling load to the high load, it is possible to control the flow rate of the refrigerant appropriately according to the change of the load, prevent the superheat degree from becoming excessive, and prevent the compressor from malfunctioning or being damaged. To provide.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、弁座と弁体とで形成される流路
面積によって冷媒流量を制御する膨脹弁において、前記
弁座および弁体のシール面のうちの少なくとも一方のシ
ール面に、弁体の全閉から全開への弁リフト量に対し冷
媒流量の変化勾配が変化する異なる勾配の複数のシール
面を形成してなることを特徴とする膨脹弁である。
In order to achieve the above object, the invention of claim 1 is an expansion valve for controlling a refrigerant flow rate by a flow passage area formed by a valve seat and a valve body. And at least one of the sealing surfaces of the valve body is formed with a plurality of sealing surfaces having different gradients in which the gradient of the refrigerant flow rate changes with respect to the valve lift amount from the fully closed to the fully opened state of the valve body. It is an expansion valve characterized by that.

【0017】請求項1の発明によれば、弁体が弁座に着
座して弁孔を閉止した状態から弁座より離れる方向へ移
動すると、弁体と弁座との間の間隙の変化割合が上記勾
配の異なるシール面に応じて変化し、冷媒流量の変化が
緩やかになるリフト領域と、冷媒流量の変化が急激にな
るリフト領域とが形成される。よって、弁リストの途中
で冷媒流量の変化割合を変えることができる。
According to the first aspect of the invention, when the valve body is seated on the valve seat and moves in the direction away from the valve seat from the state in which the valve hole is closed, the change ratio of the gap between the valve body and the valve seat is changed. Changes according to the seal surfaces having different slopes, and a lift region in which the refrigerant flow rate changes gradually and a lift region in which the refrigerant flow rate changes rapidly are formed. Therefore, the change rate of the refrigerant flow rate can be changed in the middle of the valve list.

【0018】請求項2の発明は、前記複数のシール面
は、軽負荷から定格負荷域に対応した勾配と、高負荷域
に対応した勾配の少なくとも2つの勾配の異なるシール
面により形成されていることを特徴とする請求項1に記
載の膨脹弁である。
According to a second aspect of the present invention, the plurality of sealing surfaces are formed by at least two sealing surfaces having different slopes, a slope corresponding to a light load to a rated load region and a slope corresponding to a high load region. The expansion valve according to claim 1, wherein:

【0019】請求項2の発明によれば、弁体が弁座に着
座して弁孔を閉止した状態から弁座より離れる方向へ移
動すると、リフト量の少ない領域では冷媒流量の変化が
緩やかになり、軽負荷から定格負荷域に対応した冷媒流
量を得ることができ、またリフト量が定格負荷域を越え
ると冷媒流量の変化が急激になり、高負荷域に対応した
冷媒流量を確保することができる。
According to the second aspect of the invention, when the valve body is seated on the valve seat and moves in the direction away from the valve seat from the state in which the valve hole is closed, the change in the refrigerant flow rate is moderate in the region where the lift amount is small. Therefore, it is possible to obtain a refrigerant flow rate corresponding to the rated load range from a light load, and when the lift amount exceeds the rated load range, the change in the refrigerant flow rate becomes abrupt and the refrigerant flow rate corresponding to the high load range is secured. You can

【0020】[0020]

【発明の実施の形態】以下本発明について、図1および
図2に示す一実施例にもとづき説明する。本実施例は図
3および図4に示す冷凍サイクルに用いられる温度式膨
脹弁4に適用した例を示し、図3および図4に示す部材
と同一であってよい部材は同一番号を付して説明を省略
する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below based on an embodiment shown in FIGS. 1 and 2. This embodiment shows an example applied to the temperature type expansion valve 4 used in the refrigeration cycle shown in FIGS. 3 and 4, and the members which may be the same as those shown in FIGS. 3 and 4 are designated by the same reference numerals. The description is omitted.

【0021】図1は、本実施例の膨脹弁において従来と
異なる箇所のみを示すものであり、同図において100
は弁体である。この弁体100は大略円錐形をなしてお
り、周側面のシール面には緩勾配部101と急勾配部1
02が形成されており、2段勾配になっている。
FIG. 1 shows only the portion of the expansion valve of this embodiment different from the conventional one.
Is a valve body. The valve body 100 has a substantially conical shape, and a gently sloping portion 101 and a steeply sloping portion 1 are provided on the sealing surface on the peripheral side surface.
02 is formed and has a two-step gradient.

【0022】上記弁体100は弁棒44を介して図4に
示すダイアフラム41に連結されている。そして、上記
弁体100にはばね受座103が形成されており、この
ばね受座103にはリターンスプリング49の上端が当
接している。
The valve body 100 is connected to the diaphragm 41 shown in FIG. 4 via the valve rod 44. A spring seat 103 is formed on the valve body 100, and an upper end of a return spring 49 is in contact with the spring seat 103.

【0023】このような構成の実施例における作用を説
明する。弁体100が弁座46に当接して弁孔46aを
閉止している状態から、エバポレータ5出口部の冷媒の
過熱度に応じて感熱筒50のガス圧が変化すると、この
ガス圧に応答してダイアフラム41が作動し、これによ
り弁棒44が下向きに押されると、弁体100は弁座4
6から離れ、弁孔46aを開く。
The operation of the embodiment having such a configuration will be described. When the gas pressure of the heat-sensitive cylinder 50 changes according to the degree of superheat of the refrigerant at the outlet of the evaporator 5 from the state where the valve body 100 abuts the valve seat 46 and closes the valve hole 46a, the gas pressure responds to this gas pressure. When the diaphragm 41 is actuated and the valve rod 44 is pushed downwards by this, the valve body 100 moves to the valve seat 4
6 and the valve hole 46a is opened.

【0024】弁体100のリフト量が小さな軽負荷から
定格負荷までの運転域では、弁体100と弁座46との
間の開口面積は緩勾配部101の緩傾斜シート面に支配
される。このため、弁体100のリフト量に対する弁孔
46aの開口面積の変化割合は比較的緩やかであり、図
2のaに示すように、冷媒流量の変化具合も緩やかにな
る。
In the operating range from a light load to a rated load where the lift amount of the valve body 100 is small, the opening area between the valve body 100 and the valve seat 46 is dominated by the gently sloping seat surface of the gently sloping portion 101. Therefore, the rate of change of the opening area of the valve hole 46a with respect to the lift amount of the valve body 100 is relatively gradual, and as shown in FIG.

【0025】弁体100のリフト量が定格負荷を越える
大きな運転域では、弁体100と弁座46との間の開口
面積は急勾配部102の急傾斜シート面に支配される。
このため、弁体100のリフト量に対する弁孔46aの
開口面積の変化割合は急激に変化するようになり、よっ
て図2のbに示すように、冷媒流量の変化具合も急激に
なる。
In a large operating range in which the lift amount of the valve body 100 exceeds the rated load, the opening area between the valve body 100 and the valve seat 46 is governed by the steeply inclined seat surface of the steep slope portion 102.
For this reason, the rate of change of the opening area of the valve hole 46a with respect to the lift amount of the valve body 100 rapidly changes, so that the refrigerant flow rate also changes rapidly as shown in FIG. 2B.

【0026】このような構成によれば、軽負荷から定格
負荷までの運転域では、冷媒流量の変化具合が緩やかで
あるから冷媒流量が過剰にならず、よってエバポレータ
5出口部における冷媒の過熱度の低下が抑止され、過熱
度の低下に起因する冷房性能の低下を防止することがで
きる。また、冷媒流量が過剰にならないから、コンプレ
ッサ1起動時の液戻りを防止することができる。
According to this structure, in the operating range from the light load to the rated load, the change in the refrigerant flow rate is gradual, so that the refrigerant flow rate does not become excessive. Therefore, the degree of superheat of the refrigerant at the outlet of the evaporator 5 is high. It is possible to prevent the deterioration of the cooling performance due to the decrease in the degree of superheat. Further, since the flow rate of the refrigerant does not become excessive, it is possible to prevent the liquid from returning when the compressor 1 is started.

【0027】そして、定格負荷を越える大きなリフト量
域では、冷媒流量の変化具合が急激になり、冷媒流量を
増加させることができる。これにより、例えば自動車が
高速走行するときにコンプレッサ1が高速回転となりか
つ冷房負荷が大きい運転条件では、冷媒流量を大幅に増
加させることができる。このためエバポレータ5出口部
の冷媒過熱度の増加を抑止することができ、コンプレッ
サ1の過熱を防止することができる。
In a large lift amount range exceeding the rated load, the change rate of the refrigerant flow rate becomes abrupt and the refrigerant flow rate can be increased. As a result, for example, when the automobile travels at high speed, the compressor 1 rotates at high speed and the refrigerant flow rate can be significantly increased under operating conditions in which the cooling load is large. Therefore, it is possible to prevent the refrigerant superheat degree at the outlet of the evaporator 5 from increasing and prevent the compressor 1 from overheating.

【0028】したがって、1個の膨脹弁で流量特性の切
換えが自動的におこなえ、構造が簡単であるとともに、
弁体100の動きもシンプルであるから確実な作動がな
され、流量特性を確実に切換えることができるようにな
る。
Therefore, the flow rate characteristic can be automatically switched by one expansion valve, and the structure is simple and
Since the movement of the valve body 100 is also simple, a reliable operation is performed, and the flow rate characteristics can be reliably switched.

【0029】なお、上記実施例では、本発明の温度式膨
脹弁を車両用空調装置の冷凍サイクルに適用した例を説
明したが、本発明の膨脹弁は種々の冷凍サイクルに実施
可能である。
In the above embodiments, the temperature type expansion valve of the present invention is applied to the refrigeration cycle of the vehicle air conditioner, but the expansion valve of the present invention can be applied to various refrigeration cycles.

【0030】[0030]

【発明の効果】以上説明したように請求項1の発明によ
れば、所定のリフト量を越えると冷媒流量の変化割合が
自動的に変わるようになり、簡単な構造で冷房負荷に応
じた冷媒流量を得ることができる。
As described above, according to the first aspect of the present invention, when the predetermined lift amount is exceeded, the rate of change of the refrigerant flow rate automatically changes, and the refrigerant having a simple structure and adapted to the cooling load is obtained. The flow rate can be obtained.

【0031】請求項2の発明によれば、リフト量が少な
い領域では冷媒流量の変化が緩やかになり、軽負荷から
定格負荷域に対応した冷媒流量を得ることができ、また
リフト量が定格負荷域を越えると冷媒流量の変化が急激
になり、高負荷域に対応した冷媒流量を確保することが
できる。したがって、自動的に冷房負荷に応じた冷媒流
量を設定することができ、コンプレッサの過熱故障など
が防止されるようになる。
According to the second aspect of the present invention, the change of the refrigerant flow rate becomes gentle in the region where the lift amount is small, and the refrigerant flow amount corresponding to the rated load region can be obtained from the light load, and the lift amount is the rated load. When it exceeds the range, the change of the refrigerant flow rate becomes rapid, and the refrigerant flow rate corresponding to the high load area can be secured. Therefore, the refrigerant flow rate can be automatically set according to the cooling load, and overheat failure of the compressor can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す温度式膨脹弁の弁体部
分の構成図。
FIG. 1 is a configuration diagram of a valve body portion of a thermal expansion valve showing an embodiment of the present invention.

【図2】同実施例の温度式膨脹弁を用いた弁リフト量と
冷媒流量の関係を示す特性図。
FIG. 2 is a characteristic diagram showing a relationship between a valve lift amount and a refrigerant flow rate using the temperature type expansion valve of the embodiment.

【図3】本発明および従来の温度式膨脹弁を用いた車両
用空調装置の冷凍サイクルを示す構成図。
FIG. 3 is a configuration diagram showing a refrigerating cycle of a vehicle air conditioner using the present invention and a conventional temperature type expansion valve.

【図4】本発明および従来の温度式膨脹弁の全体構造を
示す図。
FIG. 4 is a diagram showing the entire structures of the present invention and a conventional thermal expansion valve.

【図5】従来の温度式膨脹弁の弁体部分の構成図。FIG. 5 is a configuration diagram of a valve body portion of a conventional temperature type expansion valve.

【図6】従来の温度式膨脹弁を用いた弁リフト量と冷媒
流量の関係を示す特性図。
FIG. 6 is a characteristic diagram showing a relationship between a valve lift amount and a refrigerant flow rate using a conventional thermal expansion valve.

【符号の説明】[Explanation of symbols]

1…コンプレッサ 2…コンデンサ 3…レシーバ 4…膨脹弁 5…エバポレータ 40…膨脹弁本体 41…ダイアフラム 42…圧力室 46…弁座 46a…弁孔 50…感温筒 100…弁体 101…緩勾配部 102…急勾配部 DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Condenser 3 ... Receiver 4 ... Expansion valve 5 ... Evaporator 40 ... Expansion valve main body 41 ... Diaphragm 42 ... Pressure chamber 46 ... Valve seat 46a ... Valve hole 50 ... Temperature sensing cylinder 100 ... Valve body 101 ... Gradient part 102 ... steep slope

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 弁座と弁体とで形成される流路面積によ
って冷媒流量を制御する膨脹弁において、 前記弁座および弁体のシール面のうちの少なくとも一方
のシール面に、弁体の全閉から全開への弁リフト量に対
し冷媒流量の変化勾配が変化する異なる勾配の複数のシ
ール面を形成してなることを特徴とする膨脹弁。
1. An expansion valve for controlling a refrigerant flow rate according to a flow passage area formed by a valve seat and a valve body, wherein at least one of the sealing surfaces of the valve seat and the valve body has a sealing surface of the valve body. An expansion valve comprising a plurality of sealing surfaces having different gradients in which a gradient of a refrigerant flow rate varies depending on a valve lift amount from a fully closed state to a fully opened state.
【請求項2】 前記複数のシール面は、軽負荷から定格
負荷域に対応した勾配と高負荷域に対応した勾配の少な
くとも2つの勾配の異なるシール面により形成されてい
ることを特徴とする請求項1に記載の膨脹弁。
2. The plurality of sealing surfaces are formed by at least two sealing surfaces having different slopes, a slope corresponding to a light load to a rated load region and a slope corresponding to a high load region. The expansion valve according to Item 1.
JP7289922A 1995-11-08 1995-11-08 Expansion valve Withdrawn JPH09133435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7289922A JPH09133435A (en) 1995-11-08 1995-11-08 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7289922A JPH09133435A (en) 1995-11-08 1995-11-08 Expansion valve

Publications (1)

Publication Number Publication Date
JPH09133435A true JPH09133435A (en) 1997-05-20

Family

ID=17749510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7289922A Withdrawn JPH09133435A (en) 1995-11-08 1995-11-08 Expansion valve

Country Status (1)

Country Link
JP (1) JPH09133435A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1069385A2 (en) * 1999-07-12 2001-01-17 TGK Co., Ltd. An expansion valve in a refrigerating cycle
WO2001027543A1 (en) * 1999-10-08 2001-04-19 Zexel Valeo Climate Control Corporation Refrigerating cycle
EP1722176A3 (en) * 2005-05-13 2007-09-19 Behr GmbH & Co. KG Differential pressure valve
CN100441924C (en) * 2005-08-12 2008-12-10 浙江三花制冷集团有限公司 Temp. expansion valve
CN102606481A (en) * 2011-01-25 2012-07-25 广东美芝制冷设备有限公司 Anti-overheating device for rotary compressor
JP2013068368A (en) * 2011-09-22 2013-04-18 Fuji Koki Corp Valve device
CN103075566A (en) * 2011-09-22 2013-05-01 株式会社不二工机 Valve device
CN103375408A (en) * 2012-04-16 2013-10-30 丹佛斯(天津)有限公司 Temperature control device and method for compressor, compressor components and refrigerating system
JP2016196975A (en) * 2015-04-03 2016-11-24 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle device and expansion valve
JP2021021439A (en) * 2019-07-26 2021-02-18 株式会社鷺宮製作所 Expansion valve and refrigeration cycle system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1069385A2 (en) * 1999-07-12 2001-01-17 TGK Co., Ltd. An expansion valve in a refrigerating cycle
EP1069385A3 (en) * 1999-07-12 2002-01-02 TGK Co., Ltd. An expansion valve in a refrigerating cycle
WO2001027543A1 (en) * 1999-10-08 2001-04-19 Zexel Valeo Climate Control Corporation Refrigerating cycle
JP2001174076A (en) * 1999-10-08 2001-06-29 Zexel Valeo Climate Control Corp Refrigeration cycle
EP1722176A3 (en) * 2005-05-13 2007-09-19 Behr GmbH & Co. KG Differential pressure valve
CN100441924C (en) * 2005-08-12 2008-12-10 浙江三花制冷集团有限公司 Temp. expansion valve
CN102606481A (en) * 2011-01-25 2012-07-25 广东美芝制冷设备有限公司 Anti-overheating device for rotary compressor
JP2013068368A (en) * 2011-09-22 2013-04-18 Fuji Koki Corp Valve device
CN103075566A (en) * 2011-09-22 2013-05-01 株式会社不二工机 Valve device
CN107035912A (en) * 2011-09-22 2017-08-11 株式会社不二工机 Valve gear
CN103375408A (en) * 2012-04-16 2013-10-30 丹佛斯(天津)有限公司 Temperature control device and method for compressor, compressor components and refrigerating system
JP2016196975A (en) * 2015-04-03 2016-11-24 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle device and expansion valve
JP2021021439A (en) * 2019-07-26 2021-02-18 株式会社鷺宮製作所 Expansion valve and refrigeration cycle system

Similar Documents

Publication Publication Date Title
US3564865A (en) Automotive air-conditioning system
US20080053125A1 (en) Expansion device
JP2004270966A (en) Vapor compression type refrigerator
US3667247A (en) Refrigeration system with evaporator outlet control valve
JPH09133435A (en) Expansion valve
US4632305A (en) Expansion valve
US3388558A (en) Refrigeration systems employing subcooling control means
JP2004093106A (en) Expansion valve
JP2000310461A (en) Thermostatic refrigerant expansion valve
US3803864A (en) Air conditioning control system
US5931377A (en) Air conditioning system for a vehicle incorporating therein a block type expansion valve
JPH09133436A (en) Temperature type expansion valve and air-conditioning device for vehicle using the valve
JP3712828B2 (en) Refrigeration system, refrigerant flow rate correction bypass valve and temperature expansion valve
KR960002567B1 (en) Refrigeration circuit
US5913891A (en) Thermal expansion valve and system including such device and method for making such device
JP3146722B2 (en) Expansion valve
JP2701598B2 (en) Freezer refrigerator
JPH05118711A (en) Expansion valve
JP3932621B2 (en) Thermal expansion valve
JPH11223426A (en) Expansion valve for automotive air conditioner
JPH10325479A (en) Cold storage and refrigerating device, refrigerant bypass valve for correcting flow rate, and temperature expansion valve
JP2005265385A (en) Decompression device
JP2738082B2 (en) Refrigeration expansion valve
JP2554541Y2 (en) Expansion valve
JPS63251760A (en) Refrigerator

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204