WO2024009351A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2024009351A1
WO2024009351A1 PCT/JP2022/026588 JP2022026588W WO2024009351A1 WO 2024009351 A1 WO2024009351 A1 WO 2024009351A1 JP 2022026588 W JP2022026588 W JP 2022026588W WO 2024009351 A1 WO2024009351 A1 WO 2024009351A1
Authority
WO
WIPO (PCT)
Prior art keywords
degree
refrigerant
expansion valve
superheat
compressor
Prior art date
Application number
PCT/JP2022/026588
Other languages
French (fr)
Japanese (ja)
Inventor
健太 村田
謙作 畑中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/026588 priority Critical patent/WO2024009351A1/en
Publication of WO2024009351A1 publication Critical patent/WO2024009351A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present disclosure relates to a refrigeration cycle device.
  • Patent Document 1 discloses an example of an air conditioner that performs such injection.
  • an object of the present disclosure is to provide a refrigeration cycle device that can suppress an increase in discharge temperature and suppress a decrease in compressor efficiency.
  • the present disclosure relates to a refrigeration cycle device.
  • the refrigeration cycle device includes a refrigerant circuit and an injection flow path.
  • the refrigerant circuit includes a compressor having a suction port and a discharge port, a condenser, a first expansion valve, a receiver, a second expansion valve, and an evaporator.
  • the refrigerant circuit is configured such that refrigerant circulates in the order of the discharge port of the compressor, the condenser, the first expansion valve, the receiver, the second expansion valve, the evaporator, and the suction port of the compressor.
  • the compressor further has an injection port.
  • the injection flow path includes a third expansion valve, and is configured to send the refrigerant whose pressure has been reduced by the first expansion valve to the injection port via the third expansion valve.
  • the refrigeration cycle device further includes a control device configured to control the second expansion valve so that the dryness of the refrigerant at the suction port is less than 1.
  • the refrigeration cycle device of the present disclosure it is possible to suppress a decrease in compressor efficiency while suppressing an increase in discharge temperature.
  • FIG. 1 is a diagram showing the configuration of a refrigeration cycle device 1 according to a first embodiment.
  • 2 is a schematic diagram showing a cross section of a scroll portion of the compressor 10.
  • FIG. FIG. 2 is a schematic diagram showing a vertical cross section of a scroll portion of the compressor 10.
  • FIG. 2 is a PV diagram showing a variation in the amount of work of the compressor depending on the amount of intermediate pressure refrigerant injected.
  • 7 is a flowchart for explaining control of the first expansion valve LEV1 in the first embodiment.
  • 7 is a flowchart for explaining control of the second expansion valve LEV2 in the first embodiment.
  • 7 is a flowchart for explaining control of the third expansion valve LEV3 in the first embodiment.
  • It is a figure showing the composition of refrigeration cycle device 201 of Embodiment 2.
  • FIG. 2 is a ph diagram of the refrigeration cycle device 201.
  • FIG. 5 is a diagram showing the temperature distribution inside the heat exchanger 50.
  • FIG. 7 is a flowchart for explaining control of the first expansion valve LEV1 in Embodiment 2.
  • FIG. 7 is a flowchart for explaining control of the second expansion valve LEV2 in Embodiment 2.
  • FIG. 7 is a flowchart for explaining control of the third expansion valve LEV3 in the second embodiment. It is a figure showing the composition of refrigeration cycle device 211 of Embodiment 3.
  • 3 is a ph diagram of the refrigeration cycle device 211.
  • FIG. 1 is a diagram showing the configuration of a refrigeration cycle device 1 according to the first embodiment.
  • the refrigeration cycle device 1 includes a refrigerant circuit C1 and an injection flow path F1.
  • the refrigeration cycle device 1 is used, for example, in an air conditioner.
  • the refrigerant circuit C1 includes a compressor 10, a condenser 20, a first expansion valve LEV1, a receiver 30, a second expansion valve LEV2, and an evaporator 40.
  • the refrigerant circuit C1 is configured such that refrigerant circulates in the order of the discharge port PD of the compressor 10, the condenser 20, the first expansion valve LEV1, the receiver 30, the second expansion valve LEV2, the evaporator 40, and the suction port PS of the compressor 10. It is composed of
  • the receiver 30 is an example of a liquid receiver that stores refrigerant.
  • the compressor 10 further includes an injection port PM.
  • the injection flow path F1 includes a third expansion valve LEV3, and is configured to send the refrigerant depressurized by the first expansion valve LEV1 to the injection port PM via the third expansion valve LEV3.
  • the third expansion valve LEV3 may be a flow rate adjustment valve or the like as long as the opening degree can be changed.
  • the refrigeration cycle device 1 further includes a control device 100.
  • the control device 100 includes a CPU (Central Processing Unit) 101, a memory 102 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input/output buffer (not shown), and the like.
  • the CPU 101 expands a program stored in the ROM into a RAM or the like and executes the program.
  • the program stored in the ROM is a program in which the processing procedure of the control device 100 is written.
  • Control device 100 executes control of each element in refrigeration cycle device 1 according to these programs. This control is not limited to processing by software, but can also be performed by dedicated hardware (electronic circuit).
  • the compressor 10 is controlled by an inverter and its operating frequency can be changed.
  • the control device 100 controls the operating frequency of the compressor 10 so that the compressor 10 is controlled in units so that the indoor temperature obtained by a temperature sensor (not shown) becomes a desired temperature (for example, the temperature set by the user). Controls the amount of refrigerant discharged per hour.
  • the control device 100 is configured to control the amount of air per unit time of the fan 22 that blows air to the condenser 20 and the fan 42 that blows air to the evaporator 40.
  • the control device 100 detects the degree of subcooling SC of the refrigerant at the outlet of the condenser 20 based on the outputs of a temperature sensor, a pressure sensor, etc. (not shown).
  • the control device 100 controls the opening degree of the first expansion valve LEV1 so that the degree of subcooling SC of the refrigerant at the outlet of the condenser 20 approaches a target value.
  • the control device 100 By opening the third expansion valve LEV3, the control device 100 injects the low-temperature refrigerant stored in the receiver 30 into the compressor 10, thereby cooling the compressor 10. Thereby, the discharge temperature Td of the compressor 10 can be lowered.
  • the control device 100 acquires the discharge temperature Td of the refrigerant discharged from the compressor 10 from a discharge temperature sensor (not shown).
  • the control device 100 detects the degree of superheating SH of the refrigerant discharged from the compressor 10 based on the outputs of a temperature sensor, a pressure sensor, etc. (not shown).
  • the control device 100 is configured to control the opening degree of the third expansion valve LEV3 so that the degree of superheating SH of the refrigerant discharged from the compressor 10 approaches a target value.
  • the discharge temperature Td is determined by the injection flow rate, so the following control method is adopted as the control method for the second expansion valve LEV2.
  • the refrigeration cycle device 1 further includes a capacitive sensor 111 that detects the dryness of the refrigerant in the suction port PS.
  • the control device 100 is configured to control the second expansion valve LEV2 so that the degree of dryness of the refrigerant in the suction port PS is less than 1.
  • the capacitive sensor 111 is configured to sense the degree of dryness (void ratio of the refrigerant).
  • the sensor 111 is a dryness sensor that uses the fact that the capacitance changes when the dielectric constant between the electrodes of a flat capacitor filled with refrigerant changes with the content of air bubbles in the refrigerant (void ratio). It is a sensor.
  • the control device 100 controls the opening degree of the second expansion valve LEV2 so that the degree of dryness of the refrigerant detected by the sensor 111 becomes a predetermined value of 1 or less.
  • the control device 100 is configured to control the second expansion valve LEV2 so that the output of the sensor 111 approaches the target value.
  • the compressor 10 is configured so that intermediate pressure refrigerant is injected during compression. In other words, it is not a two-stage compressor with two stages of compression sections.
  • the structure of the compressor 10 will be explained below.
  • Compressor 10 is a scroll compressor.
  • FIG. 2 is a schematic diagram showing a cross section of the scroll portion of the compressor 10.
  • FIG. 3 is a schematic diagram showing a longitudinal section of the scroll portion of the compressor 10.
  • the scroll roll section includes a fixed scroll 12 fixed to the lid 15 of the compressor 10, and an orbiting scroll 11 fixed to a pedestal 14 that is arranged so as to partially contact the fixed scroll 12 and rotates by a motor or the like.
  • the compressor 10 is provided with an injection port PM.
  • a check valve 18 is arranged at the injection port PM. Refrigerant is injected from the injection port PM into the crescent-shaped gap during compression. When the refrigerant pressure inside the receiver 30 is higher than the pressure in the crescent-shaped gap during compression, the refrigerant passes through the check valve 18 and flows into the compressor 10 .
  • FIG. 4 is a PV diagram showing variations in the amount of work of the compressor depending on the amount of intermediate pressure refrigerant injected.
  • Waveform W1 shows a case where the amount of injected refrigerant is large
  • waveform W2 shows a case where the amount of injected refrigerant is less by ⁇ INJ. Since the area surrounded by the waveform W2 on the PV diagram is smaller, it can be said that the waveform W2 is energy saving.
  • the first expansion valve LEV1 controls the degree of subcooling SC of the refrigerant at the outlet of the condenser to a target value
  • the second expansion valve LEV2 controls the subcooling degree SC of the refrigerant at the outlet of the condenser to a target value.
  • the discharge temperature Td of No. 10 is controlled to be the target value.
  • the third expansion valve LEV3 is controlled so that the discharge temperature Td of the compressor 10 is set to the target value.
  • the second expansion valve LEV2 is also controlled to bring the discharge temperature Td to the target value, the control will conflict and will not work.
  • the second expansion valve LEV2 controls the superheat degree SH of the suction refrigerant of the compressor 10 to the target value, in order to ensure the superheat degree SH of 0 or more (approximately 3 to 5 K in an actual unit).
  • the opening degree of the second expansion valve LEV2 is controlled to be smaller. If the heating capacity is not changed at this time, the injection flow rate will increase in order to keep the same amount of refrigerant flowing into the condenser.
  • the injection method is port injection and the injection flow rate increases, compressor efficiency deteriorates due to the following factors.
  • the refrigerant which has reached an intermediate pressure in the first stage compression, joins the injection refrigerant and is then compressed in the second stage compressor.
  • the compressor 10 shown in FIGS. 2 and 3 the refrigerant injected from the injection port PM and the refrigerant in the compression chamber mix, and the pressure in the compression chamber increases, resulting in two-stage compression.
  • the compression power corresponding to the first stage increases. In other words, compressor efficiency deteriorates.
  • the capacity is determined by the flow rate of refrigerant passing through the condenser, so if the amount of refrigerant is throttled with the second expansion valve LEV2, the lack of capacity must be made up from the third expansion valve LEV3. No. In that case, as shown by the waveform W1 in FIG. 4, the input to the compressor 10 increases, and energy saving is no longer achieved.
  • a check valve 18 is installed within the compressor to prevent backflow when the pressure inside the compression chamber exceeds the injection pressure.
  • the volume between the check valve 18 and the injection port PM becomes a dead volume in which refrigerant that is not discharged is compressed. If the diameter of the flow path in which the check valve 18 is provided is increased in order to increase the injection flow rate, the dead volume will increase, so the loss of compressing the dead volume will increase.
  • the problem with compressors that inject refrigerant through the injection port is that compressor efficiency deteriorates and power consumption increases due to an increase in the injection flow rate.
  • the control device 100 shown in FIG. 1 controls the opening degree of the first expansion valve LEV1 so that the degree of subcooling SC of the refrigerant at the outlet of the condenser 20 approaches the target degree of supercooling SC*, and the The opening degree of the third expansion valve LEV3 is controlled so that the degree of superheat SH2 of the refrigerant to be heated approaches the target degree of superheat SH2*.
  • FIG. 5 is a flowchart for explaining control of the first expansion valve LEV1 in the first embodiment.
  • the control device 100 detects the degree of subcooling SC of the refrigerant at the outlet of the condenser 20.
  • the degree of supercooling SC can be detected by various known methods. For example, the saturation temperature corresponding to the high pressure detected by the pressure sensor provided between the discharge side of the compressor 10 and the first expansion valve LEV1 and the detection temperature of the temperature sensor that detects the temperature of the refrigerant at the outlet of the condenser 20.
  • the degree of supercooling SC may be determined by the difference between the two. Note that the saturation temperature may be detected by a temperature sensor provided in the two-phase region of the condenser 20.
  • step S12 the current degree of supercooling SC and the target degree of supercooling SC* are compared. If SC>SC* holds true (YES in S12), the control device 100 increases the opening degree of the first expansion valve LEV1 by a certain degree in step S13. On the other hand, if SC>SC* does not hold (NO in S12), the control device 100 decreases the opening degree of the first expansion valve LEV1 by a certain degree in step S14.
  • the degree of supercooling SC at the outlet of the condenser 20 is maintained near the target value SC*.
  • FIG. 6 is a flowchart for explaining control of the second expansion valve LEV2 in the first embodiment.
  • the control device 100 detects the degree of dryness D of the refrigerant sucked into the compressor 10.
  • the capacitive sensor 111 shown in FIG. 1 can detect the degree of dryness D by capturing a change in the void ratio of the refrigerant as a change in capacitance.
  • step S22 the current degree of dryness D and the target degree of dryness D* are compared.
  • the target dryness is set to a value that does not damage the compressor 10 due to liquid compression, that is, a value slightly smaller than 1. Thereby, an increase in the injection flow rate can be suppressed.
  • control device 100 decreases the opening degree of the second expansion valve LEV2 by a certain degree in step S23. On the other hand, if D>D* does not hold (NO in S22), the control device 100 increases the opening degree of the second expansion valve LEV2 by a certain degree in step S24.
  • the dryness D of the refrigerant sucked into the compressor 10 is maintained near the target value D*.
  • FIG. 7 is a flowchart for explaining control of the third expansion valve LEV3 in the first embodiment.
  • the control device 100 detects the degree of superheat SH2 of the refrigerant discharged from the compressor 10.
  • the degree of superheating SH2 is calculated from the difference between the saturation temperature corresponding to the high pressure detected by a pressure sensor provided on the discharge side of the compressor 10 and the temperature detected by a temperature sensor that detects the temperature of the refrigerant discharged from the compressor 10. It's okay.
  • the saturation temperature may be detected by a temperature sensor provided in the two-phase region of the condenser 20.
  • step S32 the current degree of superheat SH2 and the target degree of superheat SH2* are compared. If SH2>SH2* holds true (YES in S32), the control device 100 increases the opening degree of the third expansion valve LEV3 by a constant opening degree in step S33. On the other hand, if SH2>SH2* does not hold (NO in S32), the control device 100 decreases the opening degree of the third expansion valve LEV3 by a certain degree in step S34.
  • the degree of superheating SH2 is maintained near the target value SH2* of the degree of superheating.
  • the injection flow rate can be reduced by controlling the suction dryness D to a target dryness D* smaller than 1 using the second expansion valve LEV2. Therefore, the amount of work required by the compressor to achieve the same capacity (circulation amount) on the condenser side is reduced. In other words, the efficiency of the refrigeration cycle device is improved.
  • FIG. 8 is a diagram showing the configuration of a refrigeration cycle device 201 according to the second embodiment.
  • Embodiment 2 a configuration that is effective when a non-azeotropic mixed refrigerant is employed will be described.
  • the refrigerant flowing through the refrigerant circuit C2 and the injection flow path F1 shown in FIG. 8 is a non-azeotropic mixed refrigerant.
  • the refrigerant circuit C2 includes the discharge port PD of the compressor 10, the condenser 20, the first expansion valve LEV1, the receiver 30, the second expansion valve LEV2, the first flow path of the heat exchanger 50, the evaporator 40, and the heat exchanger 50.
  • the refrigerant is configured to circulate in this order through the second flow path of the compressor 10 and the suction port PS of the compressor 10.
  • the refrigeration cycle device 201 further includes a temperature sensor 112 that measures the saturation temperature of the low-pressure refrigerant flowing through the evaporator 40 and a temperature sensor 113 that measures the refrigerant temperature at the outlet of the evaporator 40.
  • the configuration of other parts of the refrigeration cycle device 201 is the same as that of the refrigeration cycle device 1 shown in FIG. 1, so the description will not be repeated.
  • control device 100 controls the second expansion valve LEV2 so that the degree of superheat SH1 of the refrigerant passing through the evaporator 40 and flowing toward the heat exchanger 50 approaches the target degree of superheat SH1*. configured to do so.
  • the degree of superheat is imparted to the refrigerant anywhere from the outlet of the evaporator 40 to the inlet of the heat exchanger 50. Therefore, the second expansion valve LEV2 can be controlled so that the degree of superheat matches the target value at the location where the degree of superheat is applied.
  • the degree of superheat is given and the degree of dryness of the refrigerant is 1, but since the refrigerant is then cooled by the heat exchanger 50, the degree of dryness of the refrigerant sucked into the compressor 10 increases. degree can be less than 1.
  • FIG. 9 is a ph diagram of the refrigeration cycle device 201.
  • the states of the refrigerant at points A1 to A8 in FIG. 8 are indicated by points A1 to A8 in FIG. 9, respectively.
  • the isotherm line is parallel to the horizontal axis in the two-phase region, but in the case of a non-azeotropic mixed refrigerant, the isotherm line is downward-sloping in the two-phase region.
  • the temperature of the heat exchanger 50 is around temperatures T1 and T2.
  • FIG. 10 is a diagram showing the temperature distribution inside the heat exchanger 50. Since the non-azeotropic refrigerant mixture has a temperature gradient, points A1 and A8 at the evaporator outlet are higher in temperature than points A6 and A7 at the evaporator inlet, respectively.
  • the temperature at point A8 is higher than temperature T2, and points A1, A7, and A6 move away from the isothermal line indicating temperature T2 in the order of temperature T1.
  • This state is as shown in FIG. 10, where the vertical axis is the temperature and the horizontal axis is the position of the flow path of the heat exchanger.
  • the enthalpy decreases from point A8 to point A1, so the refrigerant sucked into the compressor 10 becomes a wet refrigerant with a degree of dryness smaller than 1.
  • the refrigerant sucked into the compressor 10 can be a wet refrigerant.
  • the superheat degree SH1 at the outlet of the evaporator 40 is fed back in the control of the second expansion valve LEV2, a dryness sensor is not required even when the suction dryness is controlled to be wet.
  • FIG. 11 is a flowchart for explaining control of the first expansion valve LEV1 in the second embodiment.
  • the control device 100 detects the degree of subcooling SC of the refrigerant at the outlet of the condenser 20.
  • the degree of supercooling SC can be detected by various known methods. For example, the saturation temperature corresponding to the high pressure detected by the pressure sensor provided between the discharge side of the compressor 10 and the first expansion valve LEV1 and the detection temperature of the temperature sensor that detects the temperature of the refrigerant at the outlet of the condenser 20. You can also find it by the difference between Further, the saturation temperature may be detected by a temperature sensor provided in the two-phase region of the condenser 20.
  • step S112 the current degree of supercooling SC and the target degree of supercooling SC* are compared. If SC>SC* holds true (YES in S112), the control device 100 increases the opening degree of the first expansion valve LEV1 by a constant opening degree in step S113. On the other hand, if SC>SC* does not hold (NO in S112), the control device 100 decreases the opening degree of the first expansion valve LEV1 by a certain degree in step S114.
  • the degree of supercooling SC at the outlet of the condenser 20 is maintained near the target value SC*.
  • FIG. 12 is a flowchart for explaining control of the second expansion valve LEV2 in the second embodiment.
  • the control device 100 detects the degree of superheat SH1 of the refrigerant discharged from the evaporator 40.
  • the degree of superheat SH1 can be determined, for example, by the difference between the saturation temperature corresponding to the low pressure detected by the sensor 112 and the temperature detected by the temperature sensor 113 that detects the temperature of the refrigerant at the outlet of the evaporator 40.
  • step S122 the current degree of superheat SH1 and the target degree of superheat SH1* are compared. If SH1>SH1* holds true (YES in S122), the control device 100 increases the opening degree of the second expansion valve LEV2 by a certain opening degree in step S123. On the other hand, if SH1>SH1* does not hold (NO in S122), the control device 100 decreases the opening degree of the second expansion valve LEV2 by a certain degree in step S124.
  • the degree of superheat SH1 of the refrigerant at the outlet of the evaporator 40 is maintained near the target degree of superheat SH1*.
  • FIG. 13 is a flowchart for explaining control of the third expansion valve LEV3 in the second embodiment.
  • the control device 100 detects the degree of superheat SH2 of the refrigerant discharged from the compressor 10.
  • the degree of superheating SH2 is calculated from the difference between the saturation temperature corresponding to the high pressure detected by a pressure sensor provided on the discharge side of the compressor 10 and the temperature detected by a temperature sensor that detects the temperature of the refrigerant discharged from the compressor 10. It's okay.
  • the saturation temperature may be detected by a temperature sensor provided in the two-phase region of the condenser 20.
  • step S132 the current degree of superheat SH2 and the target degree of superheat SH2* are compared. If SH2>SH2* holds true (YES in S132), the control device 100 increases the opening degree of the third expansion valve LEV3 by a constant opening degree in step S133. On the other hand, if SH2>SH2* does not hold (NO in S132), the control device 100 decreases the opening degree of the third expansion valve LEV3 by a certain degree in step S134.
  • the degree of superheat SH2 is maintained near the target degree of superheat SH2*.
  • the heat exchanger 50 can reduce the enthalpy of the suction refrigerant.
  • the opening degree of the second expansion valve LEV2 is controlled so that the degree of superheating of the refrigerant at the outlet of the evaporator 40 reaches the target value, the degree of dryness of the sucked refrigerant cannot be made smaller than 1 by the heat exchanger 50. It becomes possible.
  • FIG. 14 is a diagram showing the configuration of a refrigeration cycle device 211 according to the third embodiment.
  • the refrigerant piping was provided so as not to pass through the inside of the receiver 30, but the refrigerant piping may be made to pass inside the receiver 30 for heat exchange.
  • the refrigerant flowing through the refrigerant circuit C3 and the injection flow path F1 shown in FIG. 14 is a non-azeotropic mixed refrigerant.
  • It further includes a heat exchanger 50 that exchanges heat with the refrigerant, and includes a receiver 30A instead of the receiver 30.
  • the receiver 30A is configured such that the refrigerant passing through the evaporator 40 and heading toward the heat exchanger 50 and the refrigerant stored in the receiver 30A exchange heat.
  • the refrigerant circuit C3 includes the discharge port PD of the compressor 10, the condenser 20, the first expansion valve LEV1, the reservoir of the receiver 30A, the second expansion valve LEV2, the first flow path of the heat exchanger 50, the evaporator 40, and the receiver.
  • the refrigerant is configured to circulate in the order of the heat exchange channel 30A, the second channel of the heat exchanger 50, and the suction port PS of the compressor 10.
  • the control device 100 shown in FIG. 14 is configured to control the second expansion valve LEV2 so that the degree of superheat of the refrigerant passing through the evaporator 40 and the receiver 30A and flowing toward the heat exchanger 50 approaches a target value. be done.
  • the same control as in FIGS. 11, 12, and 13 is performed in the third embodiment as well.
  • FIG. 15 is a ph diagram of the refrigeration cycle device 211.
  • point A8 is in the gas phase region, but in FIG. 15, it can be seen that point A8 is in the two-phase region.
  • the refrigerant near the exit of the evaporator 40 is a gas refrigerant, but in the third embodiment, the refrigerant up to the exit of the evaporator 40 is a two-phase refrigerant. Since the evaporator generally has better heat exchange performance in the two-phase region than in the gas region, the third embodiment can improve the performance of the evaporator 40 more than the second embodiment.
  • point A8 at the outlet of the evaporator 40 is wet refrigerant, but by exchanging heat with the intermediate pressure refrigerant by the receiver 30A, the refrigerant is heated and given a degree of superheat as shown at point A9. Therefore, the degree of superheat SH1 of the refrigerant at point A9 can be controlled to a target value.
  • the degree of superheat is imparted somewhere from the outlet of the evaporator 40 to the low-pressure side inlet of the heat exchanger 50, and the heat exchanger 50 causes the refrigerant sucked into the compressor 10 to become wet refrigerant.
  • Any refrigerant circuit may be used.
  • the inlet temperature of the evaporator 40 becomes lower than the outlet temperature of the evaporator 40 due to the temperature gradient. Therefore, the enthalpy of the refrigerant sucked into the compressor 10 can be reduced by the heat exchanger 50.
  • the gas phase in the evaporator 40 can be reduced.
  • the performance of the evaporator 40 can be improved.
  • the present disclosure relates to a refrigeration cycle device 1.
  • the refrigeration cycle device 1 shown in FIG. 1 includes a refrigerant circuit C1, an injection flow path F1, and a control device 100.
  • Refrigerant circuit C1 includes a compressor 10 having a suction port PS and a discharge port PD, a condenser 20, a first expansion valve LEV1, a receiver 30, a second expansion valve LEV2, and an evaporator 40.
  • the refrigerant circuit C1 is configured such that refrigerant circulates in the order of the discharge port PD of the compressor 10, the condenser 20, the first expansion valve LEV1, the receiver 30, the second expansion valve LEV2, the evaporator 40, and the suction port PS of the compressor 10.
  • Compressor 10 further includes an injection port PM.
  • the injection flow path F1 includes a third expansion valve LEV3, and is configured to send the refrigerant depressurized by the first expansion valve LEV1 to the injection port PM via the third expansion valve LEV3.
  • the control device 100 is configured to control the second expansion valve LEV2 so that the degree of dryness of the refrigerant in the suction port PS is less than 1.
  • the refrigeration cycle device 1 further includes a capacitive sensor 111 that detects the dryness of the refrigerant in the suction port PS.
  • the control device 100 is configured to control the second expansion valve LEV2 so that the degree of dryness D indicated by the output of the sensor 111 approaches the target degree of dryness D*.
  • the refrigerant flowing through the refrigerant circuits C2 and C3 and the injection flow path F1 shown in FIGS. 8 and 14 is a non-azeotropic mixed refrigerant.
  • the refrigeration cycle devices 201 and 211 include a heat exchanger 50 that exchanges heat between the refrigerant that passes through the second expansion valve LEV2 and goes to the evaporator 40, and the refrigerant that passes through the evaporator 40 and goes to the suction port PS of the compressor 10. Be prepared for more.
  • control device 100 shown in FIGS. 8 and 14 sets the degree of superheat SH1 of the refrigerant passing through the evaporator 40 and flowing toward the heat exchanger 50 as a first target.
  • the second expansion valve LEV2 is configured to be controlled so as to approach the degree of superheat SH1*.
  • the refrigerant flowing through the refrigerant circuit C3 and the injection flow path F1 shown in FIG. 14 is a non-azeotropic mixed refrigerant.
  • the refrigeration cycle device 211 further includes a heat exchanger 50 that exchanges heat between the refrigerant that passes through the second expansion valve LEV2 and heads toward the evaporator 40 and the refrigerant that passes through the evaporator 40 and heads toward the suction port PS of the compressor 10.
  • the receiver 30A is configured such that the refrigerant passing through the evaporator 40 and heading toward the heat exchanger 50 exchanges heat with the refrigerant stored in the receiver 30A.
  • the second expansion valve LEV2 is configured to be controlled so as to approach the degree of superheat SH1*.
  • the control device 100 controls the degree of superheat SH1 of the refrigerant passing through the evaporator 40 and the receiver 30A and flowing toward the heat exchanger 50, as shown in FIG.
  • the degree of superheat is larger than the first target degree of superheat SH1*
  • the opening degree of the second expansion valve LEV2 is increased, and the degree of superheat SH1 of the refrigerant flowing toward the heat exchanger 50 is smaller than the first target degree of superheat SH1*. In this case, the opening degree of the second expansion valve LEV2 is reduced.
  • the control device 100 shown in FIGS. 1, 8, and 14 controls the degree of subcooling of the refrigerant at the outlet of the condenser 20.
  • the opening degree of the first expansion valve LEV1 is controlled so as to approach the target supercooling degree
  • the opening degree of the third expansion valve LEV3 is controlled so that the degree of superheating of the refrigerant discharged by the compressor 10 approaches the second target superheating degree. configured to control.
  • the opening degree of the first expansion valve LEV1 is increased. configured to reduce the degree of As shown in FIG. 7 or 13, when the degree of superheat SH2 of the refrigerant discharged by the compressor 10 is larger than the second target degree of superheat SH2*, the control device 100 controls the opening degree of the third expansion valve LEV3.
  • the opening degree of the third expansion valve LEV3 is decreased.
  • Refrigeration cycle device 10 Compressor, 11 Orbiting scroll, 12 Fixed scroll, 14 Pedestal, 15 Lid, 18 Check valve, 20 Condenser, 22, 42 Fan, 30, 30A receiver, 40 Evaporator, 50 Heat exchanger, 100 Control device, 101 CPU, 102 Memory, 112, 113 Temperature sensor, C1, C2, C3 Refrigerant circuit, F1 Injection flow path, LEV1 First expansion valve, LEV2 Second expansion valve, LEV3 Third expansion Valve, PD discharge port, PM injection port, PS suction port.

Abstract

This refrigeration cycle device (1) comprises a refrigerant circuit (C1) and an injection flow path (F1). The refrigerant circuit (C1) is configured so that a refrigerant circulates in order through a discharge port (PD) of a compressor (10), a condenser (20), a first expansion valve (LEV1), a receiver (30), a second expansion valve (LEV2), an evaporator (40), and a suction port (PS) of the compressor (10). The injection flow path (F1) is configured so as to feed, via a third expansion valve (LEV3), the refrigerant depressurized by the first expansion valve (LEV1) to an injection port (PM). The refrigeration cycle device (1) further comprises a control device (100) that is configured to control the second expansion valve (LEV2) so that the dryness of the refrigerant at the suction port (PS) is less than one.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本開示は、冷凍サイクル装置に関する。 The present disclosure relates to a refrigeration cycle device.
 高圧縮比の条件で冷凍サイクル装置を運転する場合、通常の冷凍サイクルである単段サイクルでは吐出温度が100℃以上となってしまうので、圧縮機等の耐熱温度の問題から、圧縮機への冷媒のインジェクションにより吐出温度を低減させることがある。特開2014-167381号公報(特許文献1)は、このようなインジェクションを行なう空気調和装置の例が開示されている。 When operating a refrigeration cycle device under high compression ratio conditions, the discharge temperature in a single-stage cycle, which is a normal refrigeration cycle, is over 100°C. Refrigerant injection may reduce the discharge temperature. Japanese Unexamined Patent Publication No. 2014-167381 (Patent Document 1) discloses an example of an air conditioner that performs such injection.
特開2014-167381号公報Japanese Patent Application Publication No. 2014-167381
 冷凍サイクル装置において圧縮機に冷媒のインジェクションを行なう場合、インジェクション流量が増加しすぎると、圧縮機効率が悪化し、消費電力が増大してしまう。したがって、どのように冷凍サイクル装置のインジェクション流量を決定するかが問題となる。 When injecting refrigerant into a compressor in a refrigeration cycle device, if the injection flow rate increases too much, compressor efficiency will deteriorate and power consumption will increase. Therefore, the problem is how to determine the injection flow rate of the refrigeration cycle device.
 それゆえに、本開示の目的は、吐出温度の上昇抑制および圧縮機効率の低下の抑制が可能な冷凍サイクル装置を提供することである。 Therefore, an object of the present disclosure is to provide a refrigeration cycle device that can suppress an increase in discharge temperature and suppress a decrease in compressor efficiency.
 本開示は、冷凍サイクル装置に関する。冷凍サイクル装置は、冷媒回路と、インジェクション流路とを備える。冷媒回路は、吸入ポートおよび吐出ポートを有する圧縮機と、凝縮器と、第1膨張弁と、レシーバと、第2膨張弁と、蒸発器とを含む。冷媒回路は、圧縮機の吐出ポート、凝縮器、第1膨張弁、レシーバ、第2膨張弁、蒸発器、圧縮機の吸入ポートの順に冷媒が循環するように構成される。圧縮機は、インジェクションポートをさらに有する。インジェクション流路は、第3膨張弁を含み、第3膨張弁を経由して第1膨張弁で減圧された冷媒をインジェクションポートに送るように構成される。冷凍サイクル装置は、吸入ポートの冷媒の乾き度が1より小さくなるように第2膨張弁を制御するように構成された制御装置をさらに備える。 The present disclosure relates to a refrigeration cycle device. The refrigeration cycle device includes a refrigerant circuit and an injection flow path. The refrigerant circuit includes a compressor having a suction port and a discharge port, a condenser, a first expansion valve, a receiver, a second expansion valve, and an evaporator. The refrigerant circuit is configured such that refrigerant circulates in the order of the discharge port of the compressor, the condenser, the first expansion valve, the receiver, the second expansion valve, the evaporator, and the suction port of the compressor. The compressor further has an injection port. The injection flow path includes a third expansion valve, and is configured to send the refrigerant whose pressure has been reduced by the first expansion valve to the injection port via the third expansion valve. The refrigeration cycle device further includes a control device configured to control the second expansion valve so that the dryness of the refrigerant at the suction port is less than 1.
 本開示の冷凍サイクル装置によれば、吐出温度の上昇を抑制しつつ、圧縮機効率の低下を抑制することができる。 According to the refrigeration cycle device of the present disclosure, it is possible to suppress a decrease in compressor efficiency while suppressing an increase in discharge temperature.
実施の形態1の冷凍サイクル装置1の構成を示す図である。1 is a diagram showing the configuration of a refrigeration cycle device 1 according to a first embodiment. 圧縮機10のスクロール部の横断面を示した概略図である。2 is a schematic diagram showing a cross section of a scroll portion of the compressor 10. FIG. 圧縮機10のスクロール部の縦断面を示した概略図である。FIG. 2 is a schematic diagram showing a vertical cross section of a scroll portion of the compressor 10. FIG. 中間圧冷媒をインジェクションする量による圧縮機の仕事量の変動を示したP-V線図である。FIG. 2 is a PV diagram showing a variation in the amount of work of the compressor depending on the amount of intermediate pressure refrigerant injected. 実施の形態1における第1膨張弁LEV1の制御を説明するためのフローチャートである。7 is a flowchart for explaining control of the first expansion valve LEV1 in the first embodiment. 実施の形態1における第2膨張弁LEV2の制御を説明するためのフローチャートである。7 is a flowchart for explaining control of the second expansion valve LEV2 in the first embodiment. 実施の形態1における第3膨張弁LEV3の制御を説明するためのフローチャートである。7 is a flowchart for explaining control of the third expansion valve LEV3 in the first embodiment. 実施の形態2の冷凍サイクル装置201の構成を示す図である。It is a figure showing the composition of refrigeration cycle device 201 of Embodiment 2. 冷凍サイクル装置201のp-h線図である。2 is a ph diagram of the refrigeration cycle device 201. FIG. 熱交換器50内部の温度分布を示した図である。5 is a diagram showing the temperature distribution inside the heat exchanger 50. FIG. 実施の形態2における第1膨張弁LEV1の制御を説明するためのフローチャートである。7 is a flowchart for explaining control of the first expansion valve LEV1 in Embodiment 2. FIG. 実施の形態2における第2膨張弁LEV2の制御を説明するためのフローチャートである。7 is a flowchart for explaining control of the second expansion valve LEV2 in Embodiment 2. FIG. 実施の形態2における第3膨張弁LEV3の制御を説明するためのフローチャートである。7 is a flowchart for explaining control of the third expansion valve LEV3 in the second embodiment. 実施の形態3の冷凍サイクル装置211の構成を示す図である。It is a figure showing the composition of refrigeration cycle device 211 of Embodiment 3. 冷凍サイクル装置211のp-h線図である。3 is a ph diagram of the refrigeration cycle device 211. FIG.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In addition, the same reference numerals are given to the same or corresponding parts in the drawings, and the description thereof will not be repeated in principle.
 実施の形態1.
 図1は、実施の形態1の冷凍サイクル装置1の構成を示す図である。冷凍サイクル装置1は、冷媒回路C1と、インジェクション流路F1とを備える。冷凍サイクル装置1は、たとえば空調装置に用いられる。
Embodiment 1.
FIG. 1 is a diagram showing the configuration of a refrigeration cycle device 1 according to the first embodiment. The refrigeration cycle device 1 includes a refrigerant circuit C1 and an injection flow path F1. The refrigeration cycle device 1 is used, for example, in an air conditioner.
 冷媒回路C1は、圧縮機10と、凝縮器20と、第1膨張弁LEV1と、レシーバ30と、第2膨張弁LEV2と、蒸発器40とを含む。冷媒回路C1は、圧縮機10の吐出ポートPD、凝縮器20、第1膨張弁LEV1、レシーバ30、第2膨張弁LEV2、蒸発器40、圧縮機10の吸入ポートPSの順に冷媒が循環するように構成される。レシーバ30は、冷媒を貯留する受液器の一実施例である。 The refrigerant circuit C1 includes a compressor 10, a condenser 20, a first expansion valve LEV1, a receiver 30, a second expansion valve LEV2, and an evaporator 40. The refrigerant circuit C1 is configured such that refrigerant circulates in the order of the discharge port PD of the compressor 10, the condenser 20, the first expansion valve LEV1, the receiver 30, the second expansion valve LEV2, the evaporator 40, and the suction port PS of the compressor 10. It is composed of The receiver 30 is an example of a liquid receiver that stores refrigerant.
 圧縮機10は、吸入ポートPSおよび吐出ポートPDに加えて、インジェクションポートPMをさらに有する。インジェクション流路F1は、第3膨張弁LEV3を含み、第3膨張弁LEV3を経由して第1膨張弁LEV1で減圧された冷媒をインジェクションポートPMに送るように構成される。第3膨張弁LEV3は、開度が変更できる弁であれば流量調整弁などであっても良い。 In addition to the suction port PS and the discharge port PD, the compressor 10 further includes an injection port PM. The injection flow path F1 includes a third expansion valve LEV3, and is configured to send the refrigerant depressurized by the first expansion valve LEV1 to the injection port PM via the third expansion valve LEV3. The third expansion valve LEV3 may be a flow rate adjustment valve or the like as long as the opening degree can be changed.
 冷凍サイクル装置1は、制御装置100をさらに備える。制御装置100は、CPU(Central Processing Unit)101と、メモリ102(ROM(Read Only Memory)およびRAM(Random Access Memory))と、入出力バッファ(図示せず)等を含んで構成される。CPU101は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置100の処理手順が記されたプログラムである。制御装置100は、これらのプログラムに従って、冷凍サイクル装置1における各要素の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The refrigeration cycle device 1 further includes a control device 100. The control device 100 includes a CPU (Central Processing Unit) 101, a memory 102 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input/output buffer (not shown), and the like. The CPU 101 expands a program stored in the ROM into a RAM or the like and executes the program. The program stored in the ROM is a program in which the processing procedure of the control device 100 is written. Control device 100 executes control of each element in refrigeration cycle device 1 according to these programs. This control is not limited to processing by software, but can also be performed by dedicated hardware (electronic circuit).
 圧縮機10は、インバータ制御され運転周波数を変更することができる。制御装置100は、圧縮機10の運転周波数を制御することにより、不図示の温度センサによって取得する室内の温度が所望の温度(たとえばユーザによって設定された温度)となるように圧縮機10が単位時間あたりに吐出する冷媒の量を制御する。 The compressor 10 is controlled by an inverter and its operating frequency can be changed. The control device 100 controls the operating frequency of the compressor 10 so that the compressor 10 is controlled in units so that the indoor temperature obtained by a temperature sensor (not shown) becomes a desired temperature (for example, the temperature set by the user). Controls the amount of refrigerant discharged per hour.
 制御装置100は、凝縮器20に送風するファン22および蒸発器40に送風するファン42の単位時間当たりの送風量を制御するように構成される。 The control device 100 is configured to control the amount of air per unit time of the fan 22 that blows air to the condenser 20 and the fan 42 that blows air to the evaporator 40.
 制御装置100は、凝縮器20の出口の冷媒の過冷却度SCを不図示の温度センサおよび圧力センサ等の出力に基づいて検出する。制御装置100は、凝縮器20の出口の冷媒の過冷却度SCを目標値に近づけるように、第1膨張弁LEV1の開度を制御する。 The control device 100 detects the degree of subcooling SC of the refrigerant at the outlet of the condenser 20 based on the outputs of a temperature sensor, a pressure sensor, etc. (not shown). The control device 100 controls the opening degree of the first expansion valve LEV1 so that the degree of subcooling SC of the refrigerant at the outlet of the condenser 20 approaches a target value.
 制御装置100は、第3膨張弁LEV3を開くことによって、レシーバ30に貯留されている低温の冷媒を圧縮機10にインジェクションし、圧縮機10を冷却する。これによって、圧縮機10の吐出温度Tdを下げることができる。制御装置100は、不図示の吐出温度センサから圧縮機10から吐出される冷媒の吐出温度Tdを取得する。 By opening the third expansion valve LEV3, the control device 100 injects the low-temperature refrigerant stored in the receiver 30 into the compressor 10, thereby cooling the compressor 10. Thereby, the discharge temperature Td of the compressor 10 can be lowered. The control device 100 acquires the discharge temperature Td of the refrigerant discharged from the compressor 10 from a discharge temperature sensor (not shown).
 制御装置100は、圧縮機10の吐出冷媒の過熱度SHを不図示の温度センサおよび圧力センサ等の出力に基づいて検出する。制御装置100は、圧縮機10の吐出冷媒の過熱度SHを目標値に近づけるように、第3膨張弁LEV3の開度を制御するように構成される。 The control device 100 detects the degree of superheating SH of the refrigerant discharged from the compressor 10 based on the outputs of a temperature sensor, a pressure sensor, etc. (not shown). The control device 100 is configured to control the opening degree of the third expansion valve LEV3 so that the degree of superheating SH of the refrigerant discharged from the compressor 10 approaches a target value.
 冷媒回路C1にインジェクションが作動した場合、吐出温度Tdはインジェクション流量によって決まるため、第2膨張弁LEV2の制御方法は、以下制御方法を採用する。 When the injection is activated in the refrigerant circuit C1, the discharge temperature Td is determined by the injection flow rate, so the following control method is adopted as the control method for the second expansion valve LEV2.
 冷凍サイクル装置1は、吸入ポートPSの冷媒の乾き度を検出する静電容量式のセンサ111をさらに備える。制御装置100は、吸入ポートPSの冷媒の乾き度が1より小さくなるように第2膨張弁LEV2を制御するように構成される。 The refrigeration cycle device 1 further includes a capacitive sensor 111 that detects the dryness of the refrigerant in the suction port PS. The control device 100 is configured to control the second expansion valve LEV2 so that the degree of dryness of the refrigerant in the suction port PS is less than 1.
 静電容量式のセンサ111は、乾き度(冷媒のボイド率)をセンシングするように構成される。センサ111は、電極間に冷媒が満たされた平板コンデンサの電極間の誘電率が、冷媒中の気泡の含有率(ボイド率)で変化することにより静電容量が変化することを利用した乾き度センサである。制御装置100は、センサ111で検出された冷媒の乾き度が1以下の既定の値となるように、第2膨張弁LEV2の開度を制御する。制御装置100は、センサ111の出力を目標値に近づけるように、第2膨張弁LEV2を制御するように構成される。 The capacitive sensor 111 is configured to sense the degree of dryness (void ratio of the refrigerant). The sensor 111 is a dryness sensor that uses the fact that the capacitance changes when the dielectric constant between the electrodes of a flat capacitor filled with refrigerant changes with the content of air bubbles in the refrigerant (void ratio). It is a sensor. The control device 100 controls the opening degree of the second expansion valve LEV2 so that the degree of dryness of the refrigerant detected by the sensor 111 becomes a predetermined value of 1 or less. The control device 100 is configured to control the second expansion valve LEV2 so that the output of the sensor 111 approaches the target value.
 ここで、圧縮機10は、圧縮している最中に中間圧の冷媒がインジェクションされるように構成される。すなわち、圧縮部が2段階存在する2段圧縮機ではない。以下、圧縮機10の構造について説明する。圧縮機10は、スクロール式圧縮機である。 Here, the compressor 10 is configured so that intermediate pressure refrigerant is injected during compression. In other words, it is not a two-stage compressor with two stages of compression sections. The structure of the compressor 10 will be explained below. Compressor 10 is a scroll compressor.
 図2は、圧縮機10のスクロール部の横断面を示した概略図である。図3は、圧縮機10のスクロール部の縦断面を示した概略図である。 FIG. 2 is a schematic diagram showing a cross section of the scroll portion of the compressor 10. FIG. 3 is a schematic diagram showing a longitudinal section of the scroll portion of the compressor 10.
 スクルロール部は、圧縮機10の蓋15に固定された固定スクロール12と、固定スクロール12に一部が当接するように配置されモータなどで旋回する台座14に固定された旋回スクロール11とを含む。 The scroll roll section includes a fixed scroll 12 fixed to the lid 15 of the compressor 10, and an orbiting scroll 11 fixed to a pedestal 14 that is arranged so as to partially contact the fixed scroll 12 and rotates by a motor or the like.
 旋回スクロール11が旋回することにより、外周部からガス冷媒が取り込まれ、中心部に向けて送られる。図2に示すように、中心に向かうに従って、固定スクロール12と旋回スクロール11との間に形成された三日月型の隙間部の段面積が小さくなり、冷媒ガスが次第に圧縮され、吐出ポートPDから圧縮された冷媒ガスが吐出される。 As the orbiting scroll 11 rotates, gas refrigerant is taken in from the outer periphery and sent toward the center. As shown in FIG. 2, the step area of the crescent-shaped gap formed between the fixed scroll 12 and the orbiting scroll 11 becomes smaller as it goes toward the center, and the refrigerant gas is gradually compressed, and the compressed gas is discharged from the discharge port PD. The refrigerant gas is discharged.
 圧縮機10にはインジェクションポートPMが設けられている。インジェクションポートPMには逆止弁18が配置されている。圧縮途中の三日月型の隙間部にインジェクションポートPMから冷媒がインジェクションされる。レシーバ30の内部の冷媒圧力が圧縮途中の三日月型の隙間部の圧力より高い場合に、逆止弁18を通過して冷媒が圧縮機10に流入する。 The compressor 10 is provided with an injection port PM. A check valve 18 is arranged at the injection port PM. Refrigerant is injected from the injection port PM into the crescent-shaped gap during compression. When the refrigerant pressure inside the receiver 30 is higher than the pressure in the crescent-shaped gap during compression, the refrigerant passes through the check valve 18 and flows into the compressor 10 .
 図4は、中間圧冷媒をインジェクションする量による圧縮機の仕事量の変動を示したP-V線図である。波形W1は、インジェクションする冷媒の量が多い場合を示し、波形W2は、インジェクションする冷媒量がΔINJだけ少ない場合を示す。波形W2の方がP-V線図上で囲まれる面積が小さくなるので、省エネルギーであると言える。 FIG. 4 is a PV diagram showing variations in the amount of work of the compressor depending on the amount of intermediate pressure refrigerant injected. Waveform W1 shows a case where the amount of injected refrigerant is large, and waveform W2 shows a case where the amount of injected refrigerant is less by ΔINJ. Since the area surrounded by the waveform W2 on the PV diagram is smaller, it can be said that the waveform W2 is energy saving.
 ここで、インジェクションする冷媒量がどのように決まるかについて検討する。インジェクション流路を設けない一般的な冷凍サイクル装置では、第1膨張弁LEV1は、凝縮器の出口冷媒の過冷却度SCを目標値にするように制御し、第2膨張弁LEV2は、圧縮機10の吐出温度Tdを目標値にするように制御する。 Here, we will consider how the amount of refrigerant to be injected is determined. In a general refrigeration cycle device without an injection flow path, the first expansion valve LEV1 controls the degree of subcooling SC of the refrigerant at the outlet of the condenser to a target value, and the second expansion valve LEV2 controls the subcooling degree SC of the refrigerant at the outlet of the condenser to a target value. The discharge temperature Td of No. 10 is controlled to be the target value.
 しかし、インジェクション流路F1を設けた冷凍サイクル装置では、圧縮機10の吐出温度Tdを目標値にするように第3膨張弁LEV3を制御する。このため、第2膨張弁LEV2までも吐出温度Tdを目標値にするように制御をすると、制御が競合して成立しなくなってしまう。このため、第2膨張弁LEV2を圧縮機10の吸入冷媒の過熱度SHを目標値にするように制御することが考えられる。 However, in the refrigeration cycle device provided with the injection flow path F1, the third expansion valve LEV3 is controlled so that the discharge temperature Td of the compressor 10 is set to the target value. For this reason, if the second expansion valve LEV2 is also controlled to bring the discharge temperature Td to the target value, the control will conflict and will not work. For this reason, it is conceivable to control the second expansion valve LEV2 so that the degree of superheating SH of the refrigerant sucked into the compressor 10 is set to the target value.
 ここで、第2膨張弁LEV2が圧縮機10の吸入冷媒の過熱度SHを目標値にするように制御する場合、過熱度SHを0以上(実際のユニットでは3~5K程度)確保するために、第2膨張弁LEV2開度を小さく方向に制御が行なわれる。このとき暖房能力を変えないようにする場合だと、凝縮器に流す冷媒量を同じにするために、インジェクション流量が増加してしまう.ここでインジェクションの方式がポートインジェクションの場合において、インジェクション流量が増加した場合、下記要因により、圧縮機効率が悪化する。 Here, when the second expansion valve LEV2 controls the superheat degree SH of the suction refrigerant of the compressor 10 to the target value, in order to ensure the superheat degree SH of 0 or more (approximately 3 to 5 K in an actual unit). , the opening degree of the second expansion valve LEV2 is controlled to be smaller. If the heating capacity is not changed at this time, the injection flow rate will increase in order to keep the same amount of refrigerant flowing into the condenser. Here, when the injection method is port injection and the injection flow rate increases, compressor efficiency deteriorates due to the following factors.
 理想的な二段圧縮の場合は初段圧縮で中間圧となった冷媒がインジェクション冷媒と合流後、後段の圧縮機で圧縮される。これと比べて、図2および図3に示した圧縮機10では、インジェクションポートPMからインジェクションされる冷媒と、圧縮室内の冷媒とが混合し、圧縮室内の圧力が上昇するので、二段圧縮に比べると、初段に相当する圧縮動力が増大する。つまり、圧縮機効率が悪化する。 In the case of ideal two-stage compression, the refrigerant, which has reached an intermediate pressure in the first stage compression, joins the injection refrigerant and is then compressed in the second stage compressor. In contrast, in the compressor 10 shown in FIGS. 2 and 3, the refrigerant injected from the injection port PM and the refrigerant in the compression chamber mix, and the pressure in the compression chamber increases, resulting in two-stage compression. By comparison, the compression power corresponding to the first stage increases. In other words, compressor efficiency deteriorates.
 インジェクション冷媒の流量が大きいほど、圧縮室内の圧力の上昇が大きいので、前述の圧縮動力の増加量が大きくなる。このような理由により、インジェクション冷媒の流量大の方が、図4で説明したように、圧縮機効率の悪化が大きくなる。 The larger the flow rate of the injection refrigerant, the larger the increase in pressure within the compression chamber, and therefore the larger the amount of increase in the compression power described above. For this reason, the larger the flow rate of the injection refrigerant, the greater the deterioration of the compressor efficiency, as explained in FIG. 4.
 つまり、同じ能力を出そうとするときは、凝縮器の通過冷媒の流量で能力が決まるため、第2膨張弁LEV2で冷媒量を絞ると能力不足分は第3膨張弁LEV3から補わなくてはならない。その場合、図4で波形W1に示したように圧縮機10の入力が増えてしまい、省エネルギーではなくなってしまう。 In other words, when trying to produce the same capacity, the capacity is determined by the flow rate of refrigerant passing through the condenser, so if the amount of refrigerant is throttled with the second expansion valve LEV2, the lack of capacity must be made up from the third expansion valve LEV3. No. In that case, as shown by the waveform W1 in FIG. 4, the input to the compressor 10 increases, and energy saving is no longer achieved.
 また、インジェクションポートPMからインジェクションする構成の場合、圧縮室内の圧力がインジェクション圧力を超えた際の逆流を防止するため、逆止弁18が圧縮機内に設置されている。逆止弁18とインジェクションポートPMの間の容積は、吐出されない冷媒が圧縮されてしまうデッドボリュームとなる。インジェクション流量を大きくするために、逆止弁18が設けられる流路の径を大きくすると、デッドボリュームが大きくなるため、デッドボリュームを圧縮する損失が増大してしまう。 Furthermore, in the case of a configuration in which injection is performed from the injection port PM, a check valve 18 is installed within the compressor to prevent backflow when the pressure inside the compression chamber exceeds the injection pressure. The volume between the check valve 18 and the injection port PM becomes a dead volume in which refrigerant that is not discharged is compressed. If the diameter of the flow path in which the check valve 18 is provided is increased in order to increase the injection flow rate, the dead volume will increase, so the loss of compressing the dead volume will increase.
 このように、インジェクション流量が増加することによって、圧縮機効率が悪化し、消費電力が増大してしまうのが、インジェクションポートから冷媒を注入する圧縮機の課題である。 As described above, the problem with compressors that inject refrigerant through the injection port is that compressor efficiency deteriorates and power consumption increases due to an increase in the injection flow rate.
 上記理由により、インジェクション作動時は、圧縮機の吸入冷媒量を増やすために吸入冷媒の乾き度を小さくするようにした方が消費電力は小さくなる。 For the above reasons, during injection operation, power consumption is reduced by reducing the dryness of the refrigerant sucked in to increase the amount of refrigerant sucked into the compressor.
 図1に示す制御装置100は、凝縮器20の出口の冷媒の過冷却度SCを目標過冷却度SC*に近づけるように第1膨張弁LEV1の開度を制御するとともに、圧縮機10が吐出する冷媒の過熱度SH2を目標過熱度SH2*に近づけるように第3膨張弁LEV3の開度を制御するように構成される。 The control device 100 shown in FIG. 1 controls the opening degree of the first expansion valve LEV1 so that the degree of subcooling SC of the refrigerant at the outlet of the condenser 20 approaches the target degree of supercooling SC*, and the The opening degree of the third expansion valve LEV3 is controlled so that the degree of superheat SH2 of the refrigerant to be heated approaches the target degree of superheat SH2*.
 以下に実施の形態1の冷凍サイクル装置1で実行される第1~第3膨張弁の制御について説明する。 The control of the first to third expansion valves executed in the refrigeration cycle device 1 of the first embodiment will be explained below.
 図5は、実施の形態1における第1膨張弁LEV1の制御を説明するためのフローチャートである。まずステップS11において、制御装置100は、凝縮器20の出口冷媒の過冷却度SCを検知する。過冷却度SCは、公知の種々の方法で検知することができる。たとえば、圧縮機10の吐出側から第1膨張弁LEV1の間に設けられた圧力センサで検出した高圧圧力に相当する飽和温度と凝縮器20の出口冷媒の温度を検出する温度センサの検出温度との差で過冷却度SCを求めても良い。なお、飽和温度は、凝縮器20の二相領域に設けられた温度センサで検出しても良い。 FIG. 5 is a flowchart for explaining control of the first expansion valve LEV1 in the first embodiment. First, in step S11, the control device 100 detects the degree of subcooling SC of the refrigerant at the outlet of the condenser 20. The degree of supercooling SC can be detected by various known methods. For example, the saturation temperature corresponding to the high pressure detected by the pressure sensor provided between the discharge side of the compressor 10 and the first expansion valve LEV1 and the detection temperature of the temperature sensor that detects the temperature of the refrigerant at the outlet of the condenser 20. The degree of supercooling SC may be determined by the difference between the two. Note that the saturation temperature may be detected by a temperature sensor provided in the two-phase region of the condenser 20.
 続いて、ステップS12において、現在の過冷却度SCと目標過冷却度SC*とを比較する。SC>SC*が成立する場合(S12でYES)、制御装置100は、ステップS13において、第1膨張弁LEV1の開度を一定開度増加させる。一方、SC>SC*が成立しない場合(S12でNO)、制御装置100は、ステップS14において、第1膨張弁LEV1の開度を一定開度減少させる。 Subsequently, in step S12, the current degree of supercooling SC and the target degree of supercooling SC* are compared. If SC>SC* holds true (YES in S12), the control device 100 increases the opening degree of the first expansion valve LEV1 by a certain degree in step S13. On the other hand, if SC>SC* does not hold (NO in S12), the control device 100 decreases the opening degree of the first expansion valve LEV1 by a certain degree in step S14.
 以上の処理が繰り返されることによって、凝縮器20の出口部分の過冷却度SCが目標値SC*付近に維持される。 By repeating the above process, the degree of supercooling SC at the outlet of the condenser 20 is maintained near the target value SC*.
 図6は、実施の形態1における第2膨張弁LEV2の制御を説明するためのフローチャートである。まずステップS21において、制御装置100は、圧縮機10の吸入冷媒の乾き度Dを検知する。たとえば、図1に示した静電容量式のセンサ111によって、冷媒のボイド率の変化を静電容量の変化として捉えて、乾き度Dを検知することができる。 FIG. 6 is a flowchart for explaining control of the second expansion valve LEV2 in the first embodiment. First, in step S21, the control device 100 detects the degree of dryness D of the refrigerant sucked into the compressor 10. For example, the capacitive sensor 111 shown in FIG. 1 can detect the degree of dryness D by capturing a change in the void ratio of the refrigerant as a change in capacitance.
 続いて、ステップS22において、現在の乾き度Dと目標乾き度D*とを比較する。目標乾き度は、圧縮機10が液圧縮により損傷しない程度の値、すなわち、1よりもやや小さい値に設定される。これにより、インジェクション流量の増加を抑制することができる。 Subsequently, in step S22, the current degree of dryness D and the target degree of dryness D* are compared. The target dryness is set to a value that does not damage the compressor 10 due to liquid compression, that is, a value slightly smaller than 1. Thereby, an increase in the injection flow rate can be suppressed.
 D>D*が成立する場合(S22でYES)、制御装置100は、ステップS23において、第2膨張弁LEV2の開度を一定開度減少させる。一方、D>D*が成立しない場合(S22でNO)、制御装置100は、ステップS24において、第2膨張弁LEV2の開度を一定開度増加させる。 If D>D* holds true (YES in S22), the control device 100 decreases the opening degree of the second expansion valve LEV2 by a certain degree in step S23. On the other hand, if D>D* does not hold (NO in S22), the control device 100 increases the opening degree of the second expansion valve LEV2 by a certain degree in step S24.
 以上の処理が繰り返されることによって、圧縮機10の吸入冷媒の乾き度Dが目標値D*付近に維持される。 By repeating the above process, the dryness D of the refrigerant sucked into the compressor 10 is maintained near the target value D*.
 図7は、実施の形態1における第3膨張弁LEV3の制御を説明するためのフローチャートである。まずステップS31において、制御装置100は、圧縮機10の吐出冷媒の過熱度SH2を検知する。たとえば、圧縮機10の吐出側に設けられた圧力センサで検出した高圧圧力に相当する飽和温度と圧縮機10の吐出冷媒の温度を検出する温度センサの検出温度との差で過熱度SH2を求めても良い。また、飽和温度は、凝縮器20の二相領域に設けられた温度センサで検出しても良い。 FIG. 7 is a flowchart for explaining control of the third expansion valve LEV3 in the first embodiment. First, in step S31, the control device 100 detects the degree of superheat SH2 of the refrigerant discharged from the compressor 10. For example, the degree of superheating SH2 is calculated from the difference between the saturation temperature corresponding to the high pressure detected by a pressure sensor provided on the discharge side of the compressor 10 and the temperature detected by a temperature sensor that detects the temperature of the refrigerant discharged from the compressor 10. It's okay. Further, the saturation temperature may be detected by a temperature sensor provided in the two-phase region of the condenser 20.
 続いて、ステップS32において、現在の過熱度SH2と目標過熱度SH2*とを比較する。SH2>SH2*が成立する場合(S32でYES)、制御装置100は、ステップS33において、第3膨張弁LEV3の開度を一定開度増加させる。一方、SH2>SH2*が成立しない場合(S32でNO)、制御装置100は、ステップS34において、第3膨張弁LEV3の開度を一定開度減少させる。 Subsequently, in step S32, the current degree of superheat SH2 and the target degree of superheat SH2* are compared. If SH2>SH2* holds true (YES in S32), the control device 100 increases the opening degree of the third expansion valve LEV3 by a constant opening degree in step S33. On the other hand, if SH2>SH2* does not hold (NO in S32), the control device 100 decreases the opening degree of the third expansion valve LEV3 by a certain degree in step S34.
 以上の処理が繰り返されることによって、過熱度SH2が過熱度の目標値SH2*付近に維持される。 By repeating the above process, the degree of superheating SH2 is maintained near the target value SH2* of the degree of superheating.
 本実施の形態では、図6に示したように、第2膨張弁LEV2で吸入乾き度Dを1よりも小さい目標乾き度D*に制御することにより、インジェクション流量を減らすことができる。このため、凝縮器側で同じ能力(循環量)を実現するための圧縮機の仕事量が少なくて済む。すなわち冷凍サイクル装置の効率が良くなる。 In this embodiment, as shown in FIG. 6, the injection flow rate can be reduced by controlling the suction dryness D to a target dryness D* smaller than 1 using the second expansion valve LEV2. Therefore, the amount of work required by the compressor to achieve the same capacity (circulation amount) on the condenser side is reduced. In other words, the efficiency of the refrigeration cycle device is improved.
 実施の形態2.
 図8は、実施の形態2の冷凍サイクル装置201の構成を示す図である。実施の形態2では、非共沸混合冷媒を採用した場合に有効な構成について説明する。
Embodiment 2.
FIG. 8 is a diagram showing the configuration of a refrigeration cycle device 201 according to the second embodiment. In Embodiment 2, a configuration that is effective when a non-azeotropic mixed refrigerant is employed will be described.
 図8に示す冷媒回路C2およびインジェクション流路F1を流れる冷媒は、非共沸混合冷媒である。冷凍サイクル装置201は、図1に示した冷凍サイクル装置1の構成に加えて、第2膨張弁LEV2を通過し蒸発器40に向かう冷媒と、蒸発器40を通過し圧縮機10の吸入ポートPSに向かう冷媒とを熱交換させる熱交換器50をさらに備える。冷媒回路C2は、圧縮機10の吐出ポートPD、凝縮器20、第1膨張弁LEV1、レシーバ30、第2膨張弁LEV2、熱交換器50の第1流路、蒸発器40、熱交換器50の第2流路、圧縮機10の吸入ポートPSの順に冷媒が循環するように構成される。 The refrigerant flowing through the refrigerant circuit C2 and the injection flow path F1 shown in FIG. 8 is a non-azeotropic mixed refrigerant. In addition to the configuration of the refrigeration cycle device 1 shown in FIG. It further includes a heat exchanger 50 for exchanging heat with the refrigerant headed for. The refrigerant circuit C2 includes the discharge port PD of the compressor 10, the condenser 20, the first expansion valve LEV1, the receiver 30, the second expansion valve LEV2, the first flow path of the heat exchanger 50, the evaporator 40, and the heat exchanger 50. The refrigerant is configured to circulate in this order through the second flow path of the compressor 10 and the suction port PS of the compressor 10.
 冷凍サイクル装置201は、さらに、蒸発器40を流れる低圧冷媒の飽和温度を計測する温度センサ112と、蒸発器40の出口の冷媒温度を計測する温度センサ113とを備える。 The refrigeration cycle device 201 further includes a temperature sensor 112 that measures the saturation temperature of the low-pressure refrigerant flowing through the evaporator 40 and a temperature sensor 113 that measures the refrigerant temperature at the outlet of the evaporator 40.
 他の部分の冷凍サイクル装置201の構成については、図1に示した冷凍サイクル装置1と同様であるので説明は繰り返さない。 The configuration of other parts of the refrigeration cycle device 201 is the same as that of the refrigeration cycle device 1 shown in FIG. 1, so the description will not be repeated.
 図8に示す構成において、制御装置100は、蒸発器40を通過し、熱交換器50に向かって流れる冷媒の過熱度SH1を目標過熱度SH1*に近づけるように、第2膨張弁LEV2を制御するように構成される。 In the configuration shown in FIG. 8, the control device 100 controls the second expansion valve LEV2 so that the degree of superheat SH1 of the refrigerant passing through the evaporator 40 and flowing toward the heat exchanger 50 approaches the target degree of superheat SH1*. configured to do so.
 この構成では、蒸発器40の出口から熱交換器50の入口までのいずれかの場所で冷媒に過熱度が付与された状態となる。このため、過熱度が付与される箇所でこれを目標値に一致させるように第2膨張弁LEV2を制御できる。 In this configuration, the degree of superheat is imparted to the refrigerant anywhere from the outlet of the evaporator 40 to the inlet of the heat exchanger 50. Therefore, the second expansion valve LEV2 can be controlled so that the degree of superheat matches the target value at the location where the degree of superheat is applied.
 このとき、蒸発器40の出口部においては、過熱度が付与されており冷媒の乾き度が1であるが、その後熱交換器50によって冷媒が冷却されるため、圧縮機10の吸入冷媒の乾き度を1より小さくすることができる。 At this time, at the outlet of the evaporator 40, the degree of superheat is given and the degree of dryness of the refrigerant is 1, but since the refrigerant is then cooled by the heat exchanger 50, the degree of dryness of the refrigerant sucked into the compressor 10 increases. degree can be less than 1.
 図9は、冷凍サイクル装置201のp-h線図である。図8中の点A1~A8における冷媒の状態は、図9中の点A1~A8でそれぞれ示される。p-h線図上において、通常の冷媒の場合には、二相領域では等温線は横軸と平行になるが、非共沸混合冷媒の場合は、二相領域では等温線は右下がりになる。ここで、熱交換器50の温度は、温度T1,T2付近になっている。 FIG. 9 is a ph diagram of the refrigeration cycle device 201. The states of the refrigerant at points A1 to A8 in FIG. 8 are indicated by points A1 to A8 in FIG. 9, respectively. On a pH diagram, in the case of a normal refrigerant, the isotherm line is parallel to the horizontal axis in the two-phase region, but in the case of a non-azeotropic mixed refrigerant, the isotherm line is downward-sloping in the two-phase region. Become. Here, the temperature of the heat exchanger 50 is around temperatures T1 and T2.
 図10は、熱交換器50内部の温度分布を示した図である。非共沸混合冷媒は、温度勾配を有するため、蒸発器出口の点A1,A8の方が蒸発器入口の点A6、A7よりもそれぞれ温度が高い。 FIG. 10 is a diagram showing the temperature distribution inside the heat exchanger 50. Since the non-azeotropic refrigerant mixture has a temperature gradient, points A1 and A8 at the evaporator outlet are higher in temperature than points A6 and A7 at the evaporator inlet, respectively.
 図9において、点A8の温度は温度T2より高く、温度T2を示す等温線からは点A1,A7,A6の順に温度T1に向けて離れていく。この状態は、縦軸を温度、横軸を熱交換器の流路の位置で示すと図10のようになる。 In FIG. 9, the temperature at point A8 is higher than temperature T2, and points A1, A7, and A6 move away from the isothermal line indicating temperature T2 in the order of temperature T1. This state is as shown in FIG. 10, where the vertical axis is the temperature and the horizontal axis is the position of the flow path of the heat exchanger.
 したがって熱交換器50で熱交換されることによって、点A8から点A1でエンタルピが低下するので、圧縮機10の吸入冷媒は、乾き度が1より小さい湿り冷媒となる。 Therefore, by exchanging heat in the heat exchanger 50, the enthalpy decreases from point A8 to point A1, so the refrigerant sucked into the compressor 10 becomes a wet refrigerant with a degree of dryness smaller than 1.
 このようにすれば、蒸発器40の出口部に過熱度を付与しても、圧縮機10の吸入冷媒は湿り冷媒にすることができる。第2膨張弁LEV2の制御においてフィードバックする対象を蒸発器40の出口部の過熱度SH1とすることによって、吸入乾き度を湿りに制御する場合でも、乾き度センサは不要となる。 In this way, even if the exit portion of the evaporator 40 is given a degree of superheat, the refrigerant sucked into the compressor 10 can be a wet refrigerant. By setting the superheat degree SH1 at the outlet of the evaporator 40 to be fed back in the control of the second expansion valve LEV2, a dryness sensor is not required even when the suction dryness is controlled to be wet.
 以下に実施の形態2の冷凍サイクル装置201で実行される第1~第3膨張弁の制御について説明する。 The control of the first to third expansion valves executed in the refrigeration cycle device 201 of the second embodiment will be described below.
 図11は、実施の形態2における第1膨張弁LEV1の制御を説明するためのフローチャートである。まずステップS111において、制御装置100は、凝縮器20の出口冷媒の過冷却度SCを検知する。過冷却度SCは、公知の種々の方法で検知することができる。たとえば、圧縮機10の吐出側から第1膨張弁LEV1の間に設けられた圧力センサで検出した高圧圧力に相当する飽和温度と凝縮器20の出口冷媒の温度を検出する温度センサの検出温度との差で求めても良い。また、飽和温度は、凝縮器20の二相領域に設けられた温度センサで検出しても良い。 FIG. 11 is a flowchart for explaining control of the first expansion valve LEV1 in the second embodiment. First, in step S111, the control device 100 detects the degree of subcooling SC of the refrigerant at the outlet of the condenser 20. The degree of supercooling SC can be detected by various known methods. For example, the saturation temperature corresponding to the high pressure detected by the pressure sensor provided between the discharge side of the compressor 10 and the first expansion valve LEV1 and the detection temperature of the temperature sensor that detects the temperature of the refrigerant at the outlet of the condenser 20. You can also find it by the difference between Further, the saturation temperature may be detected by a temperature sensor provided in the two-phase region of the condenser 20.
 続いて、ステップS112において、現在の過冷却度SCと目標過冷却度SC*とを比較する。SC>SC*が成立する場合(S112でYES)、制御装置100は、ステップS113において、第1膨張弁LEV1の開度を一定開度増加させる。一方、SC>SC*が成立しない場合(S112でNO)、制御装置100は、ステップS114において、第1膨張弁LEV1の開度を一定開度減少させる。 Subsequently, in step S112, the current degree of supercooling SC and the target degree of supercooling SC* are compared. If SC>SC* holds true (YES in S112), the control device 100 increases the opening degree of the first expansion valve LEV1 by a constant opening degree in step S113. On the other hand, if SC>SC* does not hold (NO in S112), the control device 100 decreases the opening degree of the first expansion valve LEV1 by a certain degree in step S114.
 以上の処理が繰り返されることによって、凝縮器20の出口部分の過冷却度SCが目標値SC*付近に維持される。 By repeating the above process, the degree of supercooling SC at the outlet of the condenser 20 is maintained near the target value SC*.
 図12は、実施の形態2における第2膨張弁LEV2の制御を説明するためのフローチャートである。まずステップS121において、制御装置100は、蒸発器40の吐出冷媒の過熱度SH1を検知する。過熱度SH1は、たとえば、センサ112で検出した低圧圧力に相当する飽和温度と蒸発器40の出口冷媒の温度を検出する温度センサ113の検出温度との差で求めることができる。 FIG. 12 is a flowchart for explaining control of the second expansion valve LEV2 in the second embodiment. First, in step S121, the control device 100 detects the degree of superheat SH1 of the refrigerant discharged from the evaporator 40. The degree of superheat SH1 can be determined, for example, by the difference between the saturation temperature corresponding to the low pressure detected by the sensor 112 and the temperature detected by the temperature sensor 113 that detects the temperature of the refrigerant at the outlet of the evaporator 40.
 続いて、ステップS122において、現在の過熱度SH1と目標過熱度SH1*とを比較する。SH1>SH1*が成立する場合(S122でYES)、制御装置100は、ステップS123において、第2膨張弁LEV2の開度を一定開度増加させる。一方、SH1>SH1*が成立しない場合(S122でNO)、制御装置100は、ステップS124において、第2膨張弁LEV2の開度を一定開度減少させる。 Subsequently, in step S122, the current degree of superheat SH1 and the target degree of superheat SH1* are compared. If SH1>SH1* holds true (YES in S122), the control device 100 increases the opening degree of the second expansion valve LEV2 by a certain opening degree in step S123. On the other hand, if SH1>SH1* does not hold (NO in S122), the control device 100 decreases the opening degree of the second expansion valve LEV2 by a certain degree in step S124.
 以上の処理が繰り返されることによって、蒸発器40の出口部の冷媒の過熱度SH1が目標過熱度SH1*付近に維持される。 By repeating the above process, the degree of superheat SH1 of the refrigerant at the outlet of the evaporator 40 is maintained near the target degree of superheat SH1*.
 図13は、実施の形態2における第3膨張弁LEV3の制御を説明するためのフローチャートである。まずステップS131において、制御装置100は、圧縮機10の吐出冷媒の過熱度SH2を検知する。たとえば、圧縮機10の吐出側に設けられた圧力センサで検出した高圧圧力に相当する飽和温度と圧縮機10の吐出冷媒の温度を検出する温度センサの検出温度との差で過熱度SH2を求めても良い。また、飽和温度は、凝縮器20の二相領域に設けられた温度センサで検出しても良い。 FIG. 13 is a flowchart for explaining control of the third expansion valve LEV3 in the second embodiment. First, in step S131, the control device 100 detects the degree of superheat SH2 of the refrigerant discharged from the compressor 10. For example, the degree of superheating SH2 is calculated from the difference between the saturation temperature corresponding to the high pressure detected by a pressure sensor provided on the discharge side of the compressor 10 and the temperature detected by a temperature sensor that detects the temperature of the refrigerant discharged from the compressor 10. It's okay. Further, the saturation temperature may be detected by a temperature sensor provided in the two-phase region of the condenser 20.
 続いて、ステップS132において、現在の過熱度SH2と目標過熱度SH2*とを比較する。SH2>SH2*が成立する場合(S132でYES)、制御装置100は、ステップS133において、第3膨張弁LEV3の開度を一定開度増加させる。一方、SH2>SH2*が成立しない場合(S132でNO)、制御装置100は、ステップS134において、第3膨張弁LEV3の開度を一定開度減少させる。 Subsequently, in step S132, the current degree of superheat SH2 and the target degree of superheat SH2* are compared. If SH2>SH2* holds true (YES in S132), the control device 100 increases the opening degree of the third expansion valve LEV3 by a constant opening degree in step S133. On the other hand, if SH2>SH2* does not hold (NO in S132), the control device 100 decreases the opening degree of the third expansion valve LEV3 by a certain degree in step S134.
 以上の処理が繰り返されることによって、過熱度SH2が目標過熱度SH2*付近に維持される。 By repeating the above process, the degree of superheat SH2 is maintained near the target degree of superheat SH2*.
 以上説明したように、非共沸混合冷媒では温度勾配があるため、蒸発器入口温度<蒸発器出口温度となることから、熱交換器50により、吸入冷媒のエンタルピを低減することができる。 As explained above, since there is a temperature gradient in the non-azeotropic refrigerant mixture, the evaporator inlet temperature is less than the evaporator outlet temperature, so the heat exchanger 50 can reduce the enthalpy of the suction refrigerant.
 このとき、蒸発器40出口の冷媒過熱度が目標値となるように第2膨張弁LEV2の開度を制御しても、熱交換器50によって、吸入冷媒の乾き度を1より小さくすることが可能となる。 At this time, even if the opening degree of the second expansion valve LEV2 is controlled so that the degree of superheating of the refrigerant at the outlet of the evaporator 40 reaches the target value, the degree of dryness of the sucked refrigerant cannot be made smaller than 1 by the heat exchanger 50. It becomes possible.
 実施の形態3.
 図14は、実施の形態3の冷凍サイクル装置211の構成を示す図である。実施の形態1および2では、冷媒配管は、レシーバ30の内部を通らないように設けられていたが、冷媒配管を内部に通過させるようにして熱交換させても良い。
Embodiment 3.
FIG. 14 is a diagram showing the configuration of a refrigeration cycle device 211 according to the third embodiment. In Embodiments 1 and 2, the refrigerant piping was provided so as not to pass through the inside of the receiver 30, but the refrigerant piping may be made to pass inside the receiver 30 for heat exchange.
 図14に示す冷媒回路C3およびインジェクション流路F1を流れる冷媒は、非共沸混合冷媒である。冷凍サイクル装置211は、図1の冷凍サイクル装置1の構成に加えて、第2膨張弁LEV2を通過し蒸発器40に向かう冷媒と、蒸発器40を通過し圧縮機10の吸入ポートPSに向かう冷媒とを熱交換させる熱交換器50をさらに備え、レシーバ30に代えてレシーバ30Aを備える。レシーバ30Aは、蒸発器40を通過し熱交換器50に向かう冷媒とレシーバ30Aが貯留している冷媒とが熱交換するように構成される。冷媒回路C3は、圧縮機10の吐出ポートPD、凝縮器20、第1膨張弁LEV1、レシーバ30Aの貯留部、第2膨張弁LEV2、熱交換器50の第1流路、蒸発器40、レシーバ30Aの熱交換流路、熱交換器50の第2流路、圧縮機10の吸入ポートPSの順に冷媒が循環するように構成される。 The refrigerant flowing through the refrigerant circuit C3 and the injection flow path F1 shown in FIG. 14 is a non-azeotropic mixed refrigerant. In addition to the configuration of the refrigeration cycle device 1 shown in FIG. It further includes a heat exchanger 50 that exchanges heat with the refrigerant, and includes a receiver 30A instead of the receiver 30. The receiver 30A is configured such that the refrigerant passing through the evaporator 40 and heading toward the heat exchanger 50 and the refrigerant stored in the receiver 30A exchange heat. The refrigerant circuit C3 includes the discharge port PD of the compressor 10, the condenser 20, the first expansion valve LEV1, the reservoir of the receiver 30A, the second expansion valve LEV2, the first flow path of the heat exchanger 50, the evaporator 40, and the receiver. The refrigerant is configured to circulate in the order of the heat exchange channel 30A, the second channel of the heat exchanger 50, and the suction port PS of the compressor 10.
 図14に示す制御装置100は、蒸発器40およびレシーバ30Aを通過し、熱交換器50に向かって流れる冷媒の過熱度を目標値に近づけるように、第2膨張弁LEV2を制御するように構成される。第1~第3膨張弁LEV1~LEV3については、実施の形態3においても、図11、図12、図13と同様な制御が実行される。 The control device 100 shown in FIG. 14 is configured to control the second expansion valve LEV2 so that the degree of superheat of the refrigerant passing through the evaporator 40 and the receiver 30A and flowing toward the heat exchanger 50 approaches a target value. be done. Regarding the first to third expansion valves LEV1 to LEV3, the same control as in FIGS. 11, 12, and 13 is performed in the third embodiment as well.
 図15は、冷凍サイクル装置211のp-h線図である。図9では点A8は気相領域にあるが、図15では点A8は二相領域にあることが分かる。これは、実施の形態2では蒸発器40の出口付近の冷媒はガス冷媒となっていたが、実施の形態3では、蒸発器40の出口まで冷媒が二相冷媒であることを意味する。蒸発器は、一般に二相領域の方がガス領域よりも熱交換性能が良いため、実施の形態3では実施の形態2よりも蒸発器40の性能を向上させることができる。 FIG. 15 is a ph diagram of the refrigeration cycle device 211. In FIG. 9, point A8 is in the gas phase region, but in FIG. 15, it can be seen that point A8 is in the two-phase region. This means that in the second embodiment, the refrigerant near the exit of the evaporator 40 is a gas refrigerant, but in the third embodiment, the refrigerant up to the exit of the evaporator 40 is a two-phase refrigerant. Since the evaporator generally has better heat exchange performance in the two-phase region than in the gas region, the third embodiment can improve the performance of the evaporator 40 more than the second embodiment.
 図15では、蒸発器40の出口の点A8は湿り冷媒だが、レシーバ30Aによって中間圧冷媒と熱交換することによって、点A9に示すように冷媒が加熱され過熱度が付与される。したがって、点A9の冷媒の過熱度SH1を目標の値となるように制御することができる。 In FIG. 15, point A8 at the outlet of the evaporator 40 is wet refrigerant, but by exchanging heat with the intermediate pressure refrigerant by the receiver 30A, the refrigerant is heated and given a degree of superheat as shown at point A9. Therefore, the degree of superheat SH1 of the refrigerant at point A9 can be controlled to a target value.
 すなわち、蒸発器40の出口から熱交換器50の低圧側入口に至るまでのいずれかの場所で過熱度が付与され、熱交換器50によって、圧縮機10の吸入冷媒が湿り冷媒となるように構成されている冷媒回路であればよい。 That is, the degree of superheat is imparted somewhere from the outlet of the evaporator 40 to the low-pressure side inlet of the heat exchanger 50, and the heat exchanger 50 causes the refrigerant sucked into the compressor 10 to become wet refrigerant. Any refrigerant circuit may be used.
 実施の形態3でも、非共沸混合冷媒を用いるため、温度勾配によって蒸発器40の入口温度が蒸発器40の出口温度よりも低くなる。このため、熱交換器50によって、圧縮機10の吸入冷媒のエンタルピを低減することができる。 In the third embodiment as well, since a non-azeotropic refrigerant mixture is used, the inlet temperature of the evaporator 40 becomes lower than the outlet temperature of the evaporator 40 due to the temperature gradient. Therefore, the enthalpy of the refrigerant sucked into the compressor 10 can be reduced by the heat exchanger 50.
 このとき、温度センサ113の手前にレシーバ30Aを通過させることによって、過熱度を目標値とするように第2膨張弁LEV2を制御しても、蒸発器40のガス相を減らすことができるため、蒸発器40の性能を向上させることができる。 At this time, by passing the receiver 30A before the temperature sensor 113, even if the second expansion valve LEV2 is controlled to set the degree of superheat to the target value, the gas phase in the evaporator 40 can be reduced. The performance of the evaporator 40 can be improved.
 (まとめ)
 以下に、再び図面を参照して本実施の形態について総括する。
(summary)
The present embodiment will be summarized below with reference to the drawings again.
 (1) 本開示は、冷凍サイクル装置1に関する。図1に示す冷凍サイクル装置1は、冷媒回路C1と、インジェクション流路F1と、制御装置100とを備える。冷媒回路C1は、吸入ポートPSおよび吐出ポートPDを有する圧縮機10と、凝縮器20と、第1膨張弁LEV1と、レシーバ30と、第2膨張弁LEV2と、蒸発器40とを含む。冷媒回路C1は、圧縮機10の吐出ポートPD、凝縮器20、第1膨張弁LEV1、レシーバ30、第2膨張弁LEV2、蒸発器40、圧縮機10の吸入ポートPSの順に冷媒が循環するように構成される。圧縮機10は、インジェクションポートPMをさらに有する。インジェクション流路F1は、第3膨張弁LEV3を含み、第3膨張弁LEV3を経由して第1膨張弁LEV1で減圧された冷媒をインジェクションポートPMに送るように構成される。制御装置100は、吸入ポートPSの冷媒の乾き度が1より小さくなるように第2膨張弁LEV2を制御するように構成される。 (1) The present disclosure relates to a refrigeration cycle device 1. The refrigeration cycle device 1 shown in FIG. 1 includes a refrigerant circuit C1, an injection flow path F1, and a control device 100. Refrigerant circuit C1 includes a compressor 10 having a suction port PS and a discharge port PD, a condenser 20, a first expansion valve LEV1, a receiver 30, a second expansion valve LEV2, and an evaporator 40. The refrigerant circuit C1 is configured such that refrigerant circulates in the order of the discharge port PD of the compressor 10, the condenser 20, the first expansion valve LEV1, the receiver 30, the second expansion valve LEV2, the evaporator 40, and the suction port PS of the compressor 10. It is composed of Compressor 10 further includes an injection port PM. The injection flow path F1 includes a third expansion valve LEV3, and is configured to send the refrigerant depressurized by the first expansion valve LEV1 to the injection port PM via the third expansion valve LEV3. The control device 100 is configured to control the second expansion valve LEV2 so that the degree of dryness of the refrigerant in the suction port PS is less than 1.
 (2) (1)に記載の冷凍サイクル装置において、冷凍サイクル装置1は、吸入ポートPSの冷媒の乾き度を検出する静電容量式のセンサ111をさらに備える。制御装置100は、センサ111の出力が示す乾き度Dを目標乾き度D*に近づけるように、第2膨張弁LEV2を制御するように構成される。 (2) In the refrigeration cycle device described in (1), the refrigeration cycle device 1 further includes a capacitive sensor 111 that detects the dryness of the refrigerant in the suction port PS. The control device 100 is configured to control the second expansion valve LEV2 so that the degree of dryness D indicated by the output of the sensor 111 approaches the target degree of dryness D*.
 (3) (2)に記載の冷凍サイクル装置において、制御装置100は、図6に示すように、センサ111の出力が示す乾き度Dが目標乾き度D*よりも大きい場合には、第2膨張弁LEV2の開度を減少させ、センサ11の出力が示す乾き度Dが目標乾き度D*よりも小さい場合には、第2膨張弁LEV2の開度を増加させるように構成される。 (3) In the refrigeration cycle device described in (2), as shown in FIG. 6, when the dryness D indicated by the output of the sensor 111 is larger than the target dryness D*, the control device The opening degree of the expansion valve LEV2 is decreased, and when the degree of dryness D indicated by the output of the sensor 11 is smaller than the target degree of dryness D*, the degree of opening of the second expansion valve LEV2 is increased.
 (4) (1)に記載の冷凍サイクル装置において、図8、図14に示す冷媒回路C2,C3およびインジェクション流路F1を流れる冷媒は、非共沸混合冷媒である。冷凍サイクル装置201,211は、第2膨張弁LEV2を通過し蒸発器40に向かう冷媒と、蒸発器40を通過し圧縮機10の吸入ポートPSに向かう冷媒とを熱交換させる熱交換器50をさらに備える。 (4) In the refrigeration cycle device described in (1), the refrigerant flowing through the refrigerant circuits C2 and C3 and the injection flow path F1 shown in FIGS. 8 and 14 is a non-azeotropic mixed refrigerant. The refrigeration cycle devices 201 and 211 include a heat exchanger 50 that exchanges heat between the refrigerant that passes through the second expansion valve LEV2 and goes to the evaporator 40, and the refrigerant that passes through the evaporator 40 and goes to the suction port PS of the compressor 10. Be prepared for more.
 (5) (4)に記載の冷凍サイクル装置において、図8、図14に示す制御装置100は、蒸発器40を通過し、熱交換器50に向かって流れる冷媒の過熱度SH1を第1目標過熱度SH1*に近づけるように、第2膨張弁LEV2を制御するように構成される。 (5) In the refrigeration cycle device described in (4), the control device 100 shown in FIGS. 8 and 14 sets the degree of superheat SH1 of the refrigerant passing through the evaporator 40 and flowing toward the heat exchanger 50 as a first target. The second expansion valve LEV2 is configured to be controlled so as to approach the degree of superheat SH1*.
 (6) (5)に記載の冷凍サイクル装置において、制御装置100は、図12に示すように、蒸発器40を通過し、熱交換器50に向かって流れる冷媒の過熱度SH1が第1目標過熱度SH1*よりも大きい場合には、第2膨張弁LEV2の開度を増加させ、熱交換器50に向かって流れる冷媒の過熱度SH1が第1目標過熱度SH1*よりも小さい場合には、第2膨張弁LEV2の開度を減少させるように構成される。 (6) In the refrigeration cycle device described in (5), as shown in FIG. When the superheat degree SH1* is larger than the first target superheat degree SH1*, the opening degree of the second expansion valve LEV2 is increased, and when the superheat degree SH1 of the refrigerant flowing toward the heat exchanger 50 is smaller than the first target superheat degree SH1*. , is configured to reduce the opening degree of the second expansion valve LEV2.
 (7) (1)に記載の冷凍サイクル装置において、図14に示す冷媒回路C3およびインジェクション流路F1を流れる冷媒は、非共沸混合冷媒である。冷凍サイクル装置211は、第2膨張弁LEV2を通過し蒸発器40に向かう冷媒と、蒸発器40を通過し圧縮機10の吸入ポートPSに向かう冷媒とを熱交換させる熱交換器50をさらに備える。レシーバ30Aは、蒸発器40を通過し熱交換器50に向かう冷媒がレシーバ30Aが貯留している冷媒と熱交換するように構成される。 (7) In the refrigeration cycle device described in (1), the refrigerant flowing through the refrigerant circuit C3 and the injection flow path F1 shown in FIG. 14 is a non-azeotropic mixed refrigerant. The refrigeration cycle device 211 further includes a heat exchanger 50 that exchanges heat between the refrigerant that passes through the second expansion valve LEV2 and heads toward the evaporator 40 and the refrigerant that passes through the evaporator 40 and heads toward the suction port PS of the compressor 10. . The receiver 30A is configured such that the refrigerant passing through the evaporator 40 and heading toward the heat exchanger 50 exchanges heat with the refrigerant stored in the receiver 30A.
 (8) (7)に記載の冷凍サイクル装置において、図14に示す制御装置100は、蒸発器40およびレシーバ30Aを通過し、熱交換器50に向かって流れる冷媒の過熱度SH1を第1目標過熱度SH1*に近づけるように、第2膨張弁LEV2を制御するように構成される。 (8) In the refrigeration cycle device described in (7), the control device 100 shown in FIG. The second expansion valve LEV2 is configured to be controlled so as to approach the degree of superheat SH1*.
 (9) (8)に記載の冷凍サイクル装置において、制御装置100は、図12に示すように、蒸発器40およびレシーバ30Aを通過し、熱交換器50に向かって流れる冷媒の過熱度SH1が第1目標過熱度SH1*よりも大きい場合には、第2膨張弁LEV2の開度を増加させ、熱交換器50に向かって流れる冷媒の過熱度SH1が第1目標過熱度SH1*よりも小さい場合には、第2膨張弁LEV2の開度を減少させるように構成される。 (9) In the refrigeration cycle device described in (8), the control device 100 controls the degree of superheat SH1 of the refrigerant passing through the evaporator 40 and the receiver 30A and flowing toward the heat exchanger 50, as shown in FIG. When the degree of superheat is larger than the first target degree of superheat SH1*, the opening degree of the second expansion valve LEV2 is increased, and the degree of superheat SH1 of the refrigerant flowing toward the heat exchanger 50 is smaller than the first target degree of superheat SH1*. In this case, the opening degree of the second expansion valve LEV2 is reduced.
 (10) (1)~(9)のいずれか1項に記載の冷凍サイクル装置において、図1、図8,図14に示す制御装置100は、凝縮器20の出口の冷媒の過冷却度を目標過冷却度に近づけるように第1膨張弁LEV1の開度を制御するとともに、圧縮機10が吐出する冷媒の過熱度を第2目標過熱度に近づけるように第3膨張弁LEV3の開度を制御するように構成される。 (10) In the refrigeration cycle device according to any one of (1) to (9), the control device 100 shown in FIGS. 1, 8, and 14 controls the degree of subcooling of the refrigerant at the outlet of the condenser 20. The opening degree of the first expansion valve LEV1 is controlled so as to approach the target supercooling degree, and the opening degree of the third expansion valve LEV3 is controlled so that the degree of superheating of the refrigerant discharged by the compressor 10 approaches the second target superheating degree. configured to control.
 (11) (10)に記載の冷凍サイクル装置において、図5または図11に示すように、制御装置100は、凝縮器20の出口の冷媒の過冷却度SCが目標過冷却度SC*よりも大きい場合には、第1膨張弁LEV1の開度を増加させ、凝縮器20の出口の冷媒の過冷却度SCが目標過冷却度SC*よりも小さい場合には、第1膨張弁LEV1の開度を減少させるように構成される。図7または図13に示すように、制御装置100は、圧縮機10が吐出する冷媒の過熱度SH2が第2目標過熱度SH2*よりも大きい場合には、第3膨張弁LEV3の開度を増加させ、圧縮機10が吐出する冷媒の過熱度SH2が第2目標過熱度SH2*よりも小さい場合には、第3膨張弁LEV3の開度を減少させるように構成させる。 (11) In the refrigeration cycle device described in (10), as shown in FIG. 5 or FIG. If the degree of subcooling SC of the refrigerant at the outlet of the condenser 20 is smaller than the target degree of subcooling SC*, the opening degree of the first expansion valve LEV1 is increased. configured to reduce the degree of As shown in FIG. 7 or 13, when the degree of superheat SH2 of the refrigerant discharged by the compressor 10 is larger than the second target degree of superheat SH2*, the control device 100 controls the opening degree of the third expansion valve LEV3. When the degree of superheat SH2 of the refrigerant discharged by the compressor 10 is smaller than the second target degree of superheat SH2*, the opening degree of the third expansion valve LEV3 is decreased.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the claims rather than the above description, and it is intended that equivalent meanings to the claims and all changes within the range are included.
 1,201,211 冷凍サイクル装置、10 圧縮機、11 旋回スクロール、12 固定スクロール、14 台座、15 蓋、18 逆止弁、20 凝縮器、22,42 ファン、30,30A レシーバ、40 蒸発器、50 熱交換器、100 制御装置、101 CPU、102 メモリ、112,113 温度センサ、C1,C2,C3 冷媒回路、F1 インジェクション流路、LEV1 第1膨張弁、LEV2 第2膨張弁、LEV3 第3膨張弁、PD 吐出ポート、PM インジェクションポート、PS 吸入ポート。 1,201,211 Refrigeration cycle device, 10 Compressor, 11 Orbiting scroll, 12 Fixed scroll, 14 Pedestal, 15 Lid, 18 Check valve, 20 Condenser, 22, 42 Fan, 30, 30A receiver, 40 Evaporator, 50 Heat exchanger, 100 Control device, 101 CPU, 102 Memory, 112, 113 Temperature sensor, C1, C2, C3 Refrigerant circuit, F1 Injection flow path, LEV1 First expansion valve, LEV2 Second expansion valve, LEV3 Third expansion Valve, PD discharge port, PM injection port, PS suction port.

Claims (11)

  1.  冷媒回路と、インジェクション流路と、制御装置とを備え、
     前記冷媒回路は、吸入ポートおよび吐出ポートを有する圧縮機と、凝縮器と、第1膨張弁と、レシーバと、第2膨張弁と、蒸発器とを含み、前記圧縮機の前記吐出ポート、前記凝縮器、前記第1膨張弁、前記レシーバ、前記第2膨張弁、前記蒸発器、前記圧縮機の前記吸入ポートの順に冷媒が循環するように構成され、
     前記圧縮機は、インジェクションポートをさらに有し、
     前記インジェクション流路は、第3膨張弁を含み、前記第3膨張弁を経由して前記第1膨張弁で減圧された冷媒を前記インジェクションポートに送るように構成され、
     前記制御装置は、前記吸入ポートの冷媒の乾き度が1より小さくなるように前記第2膨張弁を制御するように構成される、冷凍サイクル装置。
    Comprising a refrigerant circuit, an injection flow path, and a control device,
    The refrigerant circuit includes a compressor having a suction port and a discharge port, a condenser, a first expansion valve, a receiver, a second expansion valve, and an evaporator, the discharge port of the compressor, the The refrigerant is configured to circulate in the order of the condenser, the first expansion valve, the receiver, the second expansion valve, the evaporator, and the suction port of the compressor,
    The compressor further includes an injection port,
    The injection flow path includes a third expansion valve, and is configured to send the refrigerant depressurized by the first expansion valve to the injection port via the third expansion valve,
    A refrigeration cycle device, wherein the control device is configured to control the second expansion valve so that the degree of dryness of the refrigerant in the suction port is less than 1.
  2.  前記吸入ポートの冷媒の乾き度を検出する静電容量式のセンサをさらに備え、
     前記制御装置は、前記センサの出力が示す乾き度を目標乾き度に近づけるように、前記第2膨張弁を制御するように構成される、請求項1に記載の冷凍サイクル装置。
    further comprising a capacitive sensor that detects the dryness of the refrigerant in the suction port,
    The refrigeration cycle device according to claim 1, wherein the control device is configured to control the second expansion valve so that the degree of dryness indicated by the output of the sensor approaches a target degree of dryness.
  3.  前記制御装置は、前記センサの出力が示す乾き度が前記目標乾き度よりも大きい場合には、前記第2膨張弁の開度を減少させ、前記センサの出力が示す乾き度が前記目標乾き度よりも小さい場合には、前記第2膨張弁の開度を増加させるように構成される、請求項2に記載の冷凍サイクル装置。 When the degree of dryness indicated by the output of the sensor is larger than the target degree of dryness, the control device reduces the opening degree of the second expansion valve, and the degree of dryness indicated by the output of the sensor is equal to the target degree of dryness. The refrigeration cycle apparatus according to claim 2, wherein the refrigeration cycle apparatus is configured to increase the opening degree of the second expansion valve when the opening degree is smaller than .
  4.  前記冷媒回路および前記インジェクション流路を流れる冷媒は、非共沸混合冷媒であり、
     前記第2膨張弁を通過し前記蒸発器に向かう冷媒と、前記蒸発器を通過し前記圧縮機の前記吸入ポートに向かう冷媒とを熱交換させる熱交換器をさらに備える、請求項1に記載の冷凍サイクル装置。
    The refrigerant flowing through the refrigerant circuit and the injection flow path is a non-azeotropic mixed refrigerant,
    The refrigerant according to claim 1, further comprising a heat exchanger that exchanges heat between the refrigerant passing through the second expansion valve and heading toward the evaporator, and the refrigerant passing through the evaporator heading toward the suction port of the compressor. Refrigeration cycle equipment.
  5.  前記制御装置は、前記蒸発器を通過し、前記熱交換器に向かって流れる冷媒の過熱度を第1目標過熱度に近づけるように、前記第2膨張弁を制御するように構成される、請求項4に記載の冷凍サイクル装置。 The control device is configured to control the second expansion valve so that the degree of superheat of the refrigerant passing through the evaporator and flowing toward the heat exchanger approaches a first target degree of superheat. Item 4. Refrigeration cycle device according to item 4.
  6.  前記制御装置は、前記蒸発器を通過し、前記熱交換器に向かって流れる冷媒の過熱度が前記第1目標過熱度よりも大きい場合には、前記第2膨張弁の開度を増加させ、前記熱交換器に向かって流れる冷媒の過熱度が前記第1目標過熱度よりも小さい場合には、前記第2膨張弁の開度を減少させるように構成される、請求項5に記載の冷凍サイクル装置。 The control device increases the opening degree of the second expansion valve when the degree of superheat of the refrigerant passing through the evaporator and flowing toward the heat exchanger is larger than the first target degree of superheat, The refrigeration system according to claim 5, configured to reduce the opening degree of the second expansion valve when the degree of superheat of the refrigerant flowing toward the heat exchanger is smaller than the first target degree of superheat. cycle equipment.
  7.  前記冷媒回路および前記インジェクション流路を流れる冷媒は、非共沸混合冷媒であり、
     前記第2膨張弁を通過し前記蒸発器に向かう冷媒と、前記蒸発器を通過し前記圧縮機の前記吸入ポートに向かう冷媒とを熱交換させる熱交換器をさらに備え、
     前記レシーバは、前記蒸発器を通過し前記熱交換器に向かう冷媒が前記レシーバが貯留している冷媒と熱交換するように構成される、請求項1に記載の冷凍サイクル装置。
    The refrigerant flowing through the refrigerant circuit and the injection flow path is a non-azeotropic mixed refrigerant,
    Further comprising a heat exchanger for exchanging heat between the refrigerant passing through the second expansion valve and heading to the evaporator, and the refrigerant passing through the evaporator heading towards the suction port of the compressor,
    The refrigeration cycle device according to claim 1, wherein the receiver is configured so that the refrigerant passing through the evaporator and heading toward the heat exchanger exchanges heat with the refrigerant stored in the receiver.
  8.  前記制御装置は、前記蒸発器および前記レシーバを通過し、前記熱交換器に向かって流れる冷媒の過熱度を第1目標過熱度に近づけるように、前記第2膨張弁を制御するように構成される、請求項7に記載の冷凍サイクル装置。 The control device is configured to control the second expansion valve so that the degree of superheat of the refrigerant passing through the evaporator and the receiver and flowing toward the heat exchanger approaches a first target degree of superheat. The refrigeration cycle device according to claim 7.
  9.  前記制御装置は、前記蒸発器および前記レシーバを通過し、前記熱交換器に向かって流れる冷媒の過熱度が第1目標過熱度よりも大きい場合には、前記第2膨張弁の開度を増加させ、前記熱交換器に向かって流れる冷媒の過熱度が第1目標過熱度よりも小さい場合には、前記第2膨張弁の開度を減少させるように構成される、請求項8に記載の冷凍サイクル装置。 The control device increases the opening degree of the second expansion valve when the degree of superheat of the refrigerant passing through the evaporator and the receiver and flowing toward the heat exchanger is larger than a first target degree of superheat. and is configured to reduce the opening degree of the second expansion valve when the degree of superheat of the refrigerant flowing toward the heat exchanger is smaller than the first target degree of superheat. Refrigeration cycle equipment.
  10.  前記制御装置は、前記凝縮器の出口の冷媒の過冷却度を目標過冷却度に近づけるように前記第1膨張弁の開度を制御するとともに、前記圧縮機が吐出する冷媒の過熱度を第2目標過熱度に近づけるように前記第3膨張弁の開度を制御するように構成される、請求項1~9のいずれか1項に記載の冷凍サイクル装置。 The control device controls the opening degree of the first expansion valve so that the degree of supercooling of the refrigerant at the outlet of the condenser approaches the target degree of supercooling, and also controls the degree of superheating of the refrigerant discharged by the compressor to a first degree. 10. The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is configured to control the opening degree of the third expansion valve so as to approach the second target superheat degree.
  11.  前記制御装置は、前記凝縮器の出口の冷媒の過冷却度が前記目標過冷却度よりも大きい場合には、前記第1膨張弁の開度を増加させ、前記凝縮器の出口の冷媒の過冷却度が前記目標過冷却度よりも小さい場合には、前記第1膨張弁の開度を減少させるように構成され、
     前記制御装置は、前記圧縮機が吐出する冷媒の過熱度が前記第2目標過熱度よりも大きい場合には、前記第3膨張弁の開度を増加させ、前記圧縮機が吐出する冷媒の過熱度が前記第2目標過熱度よりも小さい場合には、前記第3膨張弁の開度を減少させるように構成させる、請求項10に記載の冷凍サイクル装置。
    When the degree of subcooling of the refrigerant at the outlet of the condenser is larger than the target degree of subcooling, the control device increases the opening degree of the first expansion valve to reduce the degree of supercooling of the refrigerant at the outlet of the condenser. configured to reduce the opening degree of the first expansion valve when the degree of cooling is smaller than the target degree of supercooling;
    When the degree of superheat of the refrigerant discharged by the compressor is larger than the second target degree of superheat, the control device increases the opening degree of the third expansion valve to reduce the superheat of the refrigerant discharged by the compressor. The refrigeration cycle device according to claim 10, wherein when the degree of superheat is smaller than the second target degree of superheat, the opening degree of the third expansion valve is decreased.
PCT/JP2022/026588 2022-07-04 2022-07-04 Refrigeration cycle device WO2024009351A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026588 WO2024009351A1 (en) 2022-07-04 2022-07-04 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026588 WO2024009351A1 (en) 2022-07-04 2022-07-04 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2024009351A1 true WO2024009351A1 (en) 2024-01-11

Family

ID=89452918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026588 WO2024009351A1 (en) 2022-07-04 2022-07-04 Refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2024009351A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210061A (en) * 1988-06-29 1990-01-12 Hitachi Ltd Air conditioner
JPH0495277U (en) * 1991-01-08 1992-08-18
JPH10325622A (en) * 1997-03-26 1998-12-08 Mitsubishi Electric Corp Refrigerating cycle device
JP2002081767A (en) * 2000-09-07 2002-03-22 Hitachi Ltd Air conditioner
JP2012026610A (en) * 2010-07-21 2012-02-09 Mitsubishi Electric Corp Refrigerant circuit system
WO2013179803A1 (en) * 2012-05-28 2013-12-05 ダイキン工業株式会社 Refrigeration device
JP2014167381A (en) * 2013-01-29 2014-09-11 Daikin Ind Ltd Air conditioning device
JP2016196975A (en) * 2015-04-03 2016-11-24 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle device and expansion valve
JP2021156563A (en) * 2020-03-27 2021-10-07 株式会社富士通ゼネラル Air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210061A (en) * 1988-06-29 1990-01-12 Hitachi Ltd Air conditioner
JPH0495277U (en) * 1991-01-08 1992-08-18
JPH10325622A (en) * 1997-03-26 1998-12-08 Mitsubishi Electric Corp Refrigerating cycle device
JP2002081767A (en) * 2000-09-07 2002-03-22 Hitachi Ltd Air conditioner
JP2012026610A (en) * 2010-07-21 2012-02-09 Mitsubishi Electric Corp Refrigerant circuit system
WO2013179803A1 (en) * 2012-05-28 2013-12-05 ダイキン工業株式会社 Refrigeration device
JP2014167381A (en) * 2013-01-29 2014-09-11 Daikin Ind Ltd Air conditioning device
JP2016196975A (en) * 2015-04-03 2016-11-24 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle device and expansion valve
JP2021156563A (en) * 2020-03-27 2021-10-07 株式会社富士通ゼネラル Air conditioner

Similar Documents

Publication Publication Date Title
JP6242321B2 (en) Air conditioner
KR102242777B1 (en) Air Conditioner
KR102350935B1 (en) Air conditioner
CN109237671B (en) Air conditioner using steam injection cycle and control method thereof
KR20090068968A (en) Air conditioning system
KR101288681B1 (en) Air conditioner
JP2012154616A (en) Air conditioner
US11280525B2 (en) Refrigeration apparatus
JP2006336943A (en) Refrigeration system, and cold insulation box
CN114341567B (en) Outdoor unit and refrigeration cycle device
KR20130026685A (en) Air conditioner and control method thereof
WO2024009351A1 (en) Refrigeration cycle device
JP2008096072A (en) Refrigerating cycle device
TWI807163B (en) Freezing device and operation method of the freezing device
CN112368523B (en) Refrigeration cycle apparatus and control method thereof
JP2001066003A (en) Refrigeration cycle
JP2010014386A (en) Refrigerating device
JP7438363B2 (en) Cold heat source unit and refrigeration cycle equipment
JP7400857B2 (en) air conditioner
Sun et al. Experimental research on the heating performance of a single cylinder refrigerant injection rotary compressor heat pump with flash tank
KR102559522B1 (en) Air conditioner and control method thereof
JP7466645B2 (en) Refrigeration Cycle Equipment
JP7216258B1 (en) air conditioner
JP7367222B2 (en) Refrigeration cycle equipment
JP2018179370A (en) Freezer unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950146

Country of ref document: EP

Kind code of ref document: A1