JP2001066003A - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JP2001066003A
JP2001066003A JP24066299A JP24066299A JP2001066003A JP 2001066003 A JP2001066003 A JP 2001066003A JP 24066299 A JP24066299 A JP 24066299A JP 24066299 A JP24066299 A JP 24066299A JP 2001066003 A JP2001066003 A JP 2001066003A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
target
critical
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24066299A
Other languages
Japanese (ja)
Inventor
Akihiko Takano
明彦 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermal Systems Japan Corp
Original Assignee
Zexel Valeo Climate Control Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Valeo Climate Control Corp filed Critical Zexel Valeo Climate Control Corp
Priority to JP24066299A priority Critical patent/JP2001066003A/en
Publication of JP2001066003A publication Critical patent/JP2001066003A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser

Abstract

PROBLEM TO BE SOLVED: To avoid malfunction such as cavitation phenomena or the like nearby a critical pressure in a refrigeration cycle controlling a high pressure along an optimum control line. SOLUTION: In the case where a target refrigerant pressure for obtaining an optimum coefficient of performance obtained from a refrigerant temperature nearby an upstream side of depressurizing means decreases or increases across a critical pressure, in order for the refrigerant pressure not to be equal to the critical pressure, in the case of decreasing, the target pressure is kept at one time to a first pressure higher than the critical pressure by a specified value, and in the case of increasing, the target pressure is kept at one time to a second pressure lower than the critical pressure by a specified value. Further in the case of decreasing, at a stage where the target pressure reaches the second pressure, the target pressure shifts to the second pressure from the first pressure, and in the case of increasing, at a stage where the target pressure reaches the first pressure, the target pressure shifts to the first pressure from the second pressure. As a result, fluctuations of a high pressure at the critical pressure or nearby the critical pressure are able to be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】この発明は、冷媒が臨界点以
下の領域から臨界点以上の領域まで圧縮される冷凍サイ
クルの制御方法及びこの制御方法を用いた冷凍サイクル
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a refrigeration cycle in which a refrigerant is compressed from a region below a critical point to a region above the critical point and a refrigeration cycle using this control method.

【0002】[0002]

【従来の技術】特開平9−264622号公報は、超臨
界域で作動する蒸気圧縮式冷凍サイクルを効率よく運転
するように、放熱器出口側温度と放熱器の出口側圧力と
を制御する圧力制御弁を開示する。
2. Description of the Related Art Japanese Patent Application Laid-Open No. 9-264622 discloses a pressure for controlling a radiator outlet temperature and a radiator outlet pressure so as to efficiently operate a vapor compression refrigeration cycle operating in a supercritical region. A control valve is disclosed.

【0003】この引例において、前記圧力制御弁は、放
熱器から蒸発器まで至る冷媒流路内に形成され、前記冷
媒流路を上流側空間と下流側空間とに仕切る隔壁部と、
該隔壁部に形成され、前記上流側空間と下流側空間とを
連通させる弁口と、前記上流側空間内に密閉空間を形成
し、前記密閉空間内外の圧力差に応じて変位する変位部
材と、該変位部材に連結され前記弁口を開閉する弁体部
とを有する。そして、前記密閉空間には、前記冷媒が、
前記弁口が閉じた状態の前記密閉空間内体積に対して、
前記冷媒の温度が0℃での飽和液密度から前記冷媒の臨
界点での飽和密度に至る範囲の密度で封入され、これに
よって、放熱器の出口側圧力と放熱器の出口側温度と
は、ほぼ最適制御線に沿って制御される。
[0003] In this reference, the pressure control valve is formed in a refrigerant flow path from the radiator to the evaporator, and partitions the refrigerant flow path into an upstream space and a downstream space.
A valve port formed in the partition wall and communicating the upstream space and the downstream space, and a displacement member that forms a sealed space in the upstream space and is displaced according to a pressure difference between the inside and outside of the sealed space. A valve body connected to the displacement member to open and close the valve port. And, in the closed space, the refrigerant,
For the volume in the closed space with the valve port closed,
The temperature of the refrigerant is sealed at a density ranging from the saturated liquid density at 0 ° C. to the saturated density at the critical point of the refrigerant, whereby the outlet pressure of the radiator and the outlet temperature of the radiator are: It is controlled almost along the optimal control line.

【0004】[0004]

【発明が解決しようとする課題】以上のように、超臨界
冷媒、特に二酸化炭素を用いた冷凍サイクルにおいて、
放熱器の出口側(高圧側)の冷媒温度と冷媒圧力とによ
って決定される最適制御線に沿って前記冷媒の高圧圧力
が制御されることが望ましいが、臨界圧力近傍において
冷凍サイクルがバランスしている状態において、圧力変
動や流量の変動が生じた場合、気泡の発生・消滅を繰り
返すキャビテーション現象が発生するために、熱交換器
等の侵食、破壊が加速されるという不具合が生じる。
As described above, in a refrigeration cycle using a supercritical refrigerant, in particular, carbon dioxide,
It is desirable that the high pressure of the refrigerant is controlled along an optimal control line determined by the refrigerant temperature and the refrigerant pressure on the outlet side (high pressure side) of the radiator. When the pressure and the flow rate fluctuate in a state in which the heat exchanger is present, a cavitation phenomenon that repeats generation and disappearance of air bubbles occurs, which causes a problem that erosion and destruction of the heat exchanger and the like are accelerated.

【0005】このため、この発明は、最適制御線の沿っ
て高圧圧力を制御する冷凍サイクルにおいて、臨界圧力
近傍におけるキャビテーション現象等の不具合を回避す
る冷凍サイクルを提供することにある。
Accordingly, an object of the present invention is to provide a refrigeration cycle for controlling high pressure along an optimal control line, which avoids problems such as cavitation near a critical pressure.

【0006】[0006]

【課題を解決するための手段】したがって、この発明に
係る冷凍サイクルは、冷媒を該冷媒の臨界圧力の上下に
渡る範囲に圧縮する圧縮機と、圧縮された冷媒を冷却す
る放熱器と、該放熱器により冷却された冷媒を減圧する
減圧手段と、該減圧手段によって減圧された冷媒を蒸発
させる蒸発器とによって少なくとも構成され、前記減圧
手段の上流側近傍の冷媒圧力と冷媒温度が最適制御特性
線に沿って制御される冷凍サイクルにおいて、前記減圧
手段の上流側近傍の冷媒温度及び冷媒圧力を検出する検
出手段と、前記冷媒温度に対応して設定される目標冷媒
圧力が前記臨界圧力に向かって下降する場合、前記目標
冷媒圧力を前記臨界圧力よりも所定値高い第1の圧力ま
で低下させた後該第1の圧力で維持し、且つ前記目標冷
媒圧力が前記臨界圧力よりも所定値低い第2の圧力以下
となった場合には、前記目標冷媒圧力を前記第1の圧力
から前記第2の圧力に移行して下降させ、前記冷媒温度
に対応して設定される目標冷媒圧力が前記臨界圧力に向
かって上昇する場合、前記目標冷媒圧力を前記第2の圧
力まで上昇させた後前記第2の圧力で維持し、且つ前記
目標冷媒圧力が前記第1の圧力以上となった場合には、
前記第2の圧力から前記第1の圧力に移行して上昇させ
る目標冷媒圧力設定手段と、前記検出手段によって検出
された冷媒圧力が、前記目標冷媒圧力設定手段によって
設定された目標冷媒圧力と一致するように制御する制御
手段とを具備することにある。
SUMMARY OF THE INVENTION Accordingly, a refrigeration cycle according to the present invention comprises a compressor for compressing a refrigerant to a range above and below a critical pressure of the refrigerant, a radiator for cooling the compressed refrigerant, and a radiator for cooling the compressed refrigerant. The pressure control means comprises at least pressure reducing means for depressurizing the refrigerant cooled by the radiator, and an evaporator for evaporating the refrigerant depressurized by the pressure reducing means. The refrigerant pressure and the refrigerant temperature near the upstream side of the pressure reducing means are optimally controlled. In the refrigeration cycle controlled along the line, detection means for detecting a refrigerant temperature and a refrigerant pressure near the upstream side of the pressure reducing means, and a target refrigerant pressure set corresponding to the refrigerant temperature is directed toward the critical pressure. If the target refrigerant pressure decreases to the first pressure after decreasing the target refrigerant pressure to a first pressure higher than the critical pressure by a predetermined value, the target refrigerant pressure is maintained at the critical pressure. When the pressure becomes equal to or lower than a second pressure lower than a predetermined value, the target refrigerant pressure is shifted from the first pressure to the second pressure and lowered, and is set in accordance with the refrigerant temperature. When the target refrigerant pressure rises toward the critical pressure, the target refrigerant pressure is maintained at the second pressure after increasing the target refrigerant pressure to the second pressure, and the target refrigerant pressure is increased to the first pressure. If this is the case,
Target refrigerant pressure setting means for shifting from the second pressure to the first pressure and increasing the refrigerant pressure, and the refrigerant pressure detected by the detection means coincides with the target refrigerant pressure set by the target refrigerant pressure setting means And control means for performing the control.

【0007】よって、この発明によれば、減圧手段の上
流側近傍の冷媒温度から求められる最適な成績係数を得
るための目標冷媒圧力が、臨界圧力をはさんで下降又は
上昇する場合に、冷媒圧力が臨界圧力とならないよう
に、下降する場合には臨界圧力より所定値高い第1の圧
力で、上昇する場合には臨界圧力よりも所定低い第2の
圧力で目標圧力をいったん保持すると共に、下降する場
合には目標圧力が第2の圧力に到達した段階で第1の圧
力から第2の圧力に移行し、また上昇する場合には目標
圧力が第1の圧力に到達した段階で第2の圧力から第1
の圧力に移行するので、臨界圧力若しくは臨界圧力近傍
での高圧圧力の変動を防止できるため、キャビテーショ
ン現象による不具合を防止できるものである。
Therefore, according to the present invention, when the target refrigerant pressure for obtaining the optimum coefficient of performance obtained from the refrigerant temperature near the upstream side of the pressure reducing means falls or rises across the critical pressure, When the pressure does not become the critical pressure, the target pressure is temporarily held at the first pressure higher than the critical pressure by a predetermined value when the pressure decreases, and the target pressure is temporarily maintained at the second pressure lower than the critical pressure when the pressure rises, When the target pressure reaches the second pressure, the pressure changes from the first pressure to the second pressure when the pressure decreases, and when the target pressure reaches the first pressure, the pressure decreases when the target pressure reaches the first pressure. From the pressure of the first
Since the pressure shifts to the critical pressure, fluctuation of the high pressure near the critical pressure or the critical pressure can be prevented, so that the problem due to the cavitation phenomenon can be prevented.

【0008】[0008]

【発明の実施の形態】以下、この発明の実施の形態につ
いて図面により説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1に示すように、超臨界冷媒、例えば二
酸化炭素を冷媒として使用する冷凍サイクル1は、冷媒
を圧縮する圧縮機2、この圧縮機2によって圧縮された
冷媒を冷却する放熱器3、この放熱器3によって冷却さ
れた冷媒が通過する高圧側熱交換器5および前記圧縮機
2に吸引される冷媒が通過する低圧側熱交換器9からな
り、高圧側の冷媒と低圧側の冷媒との間で熱交換させる
内部熱交換器4、この内部熱交換器4の高圧側熱交換器
5を通過して過冷却された冷媒を膨張させる膨張手段と
しての膨張弁6、この膨張弁6で膨張した冷媒を蒸発さ
せる蒸発器7、蒸発器7によって蒸発された冷媒が流入
すると共に冷凍サイクル1を循環する冷媒量を調整する
アキュムレータ8、及びアキュムレータ8と前記圧縮機
2との間に位置して前記圧縮機2に吸引される冷媒を過
熱する低圧側熱交換器9とによって少なくとも構成され
る。
As shown in FIG. 1, a refrigeration cycle 1 using a supercritical refrigerant, for example, carbon dioxide, as a refrigerant includes a compressor 2 for compressing the refrigerant, and a radiator 3 for cooling the refrigerant compressed by the compressor 2. A high-pressure side heat exchanger 5 through which the refrigerant cooled by the radiator 3 passes and a low-pressure side heat exchanger 9 through which the refrigerant sucked into the compressor 2 passes. And an expansion valve 6 as expansion means for expanding the supercooled refrigerant that has passed through the high-pressure side heat exchanger 5 of the internal heat exchanger 4 and the expansion valve 6. Evaporator 7 for evaporating the refrigerant expanded by the evaporator 7, an accumulator 8 for adjusting the amount of refrigerant into which the refrigerant evaporated by the evaporator 7 flows and circulating through the refrigeration cycle 1, and a position between the accumulator 8 and the compressor 2. I At least constituted by a low-pressure side heat exchanger 9 for heating the refrigerant to be sucked into the compressor 2.

【0010】以上の構成の冷凍サイクル1において、図
3又は図4で示されるモリエル線図a−b−c−dは、
膨張弁12が絞られることによって高圧圧力が超臨界域
(約10MPa)まで上昇した場合を示したものであ
る。この場合、冷媒は、圧縮機2の圧縮行程(a−b)
によって約4MPaから約10MPaまで圧縮され、放
熱器3及び内部熱交換器4の高圧側熱交換器5による冷
却行程(b−c)において冷却されそのエンタルピ
(i)が低下する。尚、超臨界域まで圧縮された場合、
冷媒が液化しないことから、点bでの圧力と点cでの圧
力の間には圧力差が生じるので、膨張弁6による高圧圧
力制御は膨張弁の上流側近傍の圧力によって実行するこ
とが望ましい。
In the refrigeration cycle 1 having the above structure, the Mollier diagram abcd shown in FIG. 3 or FIG.
This shows a case where the high pressure is increased to a supercritical range (about 10 MPa) by the expansion valve 12 being throttled. In this case, the refrigerant passes through the compression stroke (ab) of the compressor 2.
Compressed from about 4 MPa to about 10 MPa, and is cooled in the cooling process (bc) by the radiator 3 and the high-pressure side heat exchanger 5 of the internal heat exchanger 4, and its enthalpy (i) is reduced. When compressed to the supercritical range,
Since the refrigerant does not liquefy, there is a pressure difference between the pressure at the point b and the pressure at the point c. Therefore, the high pressure control by the expansion valve 6 is desirably executed by the pressure near the upstream side of the expansion valve. .

【0011】そして、膨張弁6の膨張行程(c−d)に
おいて冷媒は気液混合領域まで圧力が下げられ、蒸発器
7において蒸発し、さらに内部熱交換器4の低圧側熱交
換器9にて過熱されて圧縮機2に吸入される(d−
a)。これによって、蒸発器7に吸熱した熱を放熱器3
にて放熱する熱交換サイクルが構成される。
In the expansion stroke (cd) of the expansion valve 6, the pressure of the refrigerant is reduced to the gas-liquid mixing region, evaporates in the evaporator 7, and further flows to the low-pressure heat exchanger 9 of the internal heat exchanger 4. Overheated and sucked into the compressor 2 (d-
a). Thus, the heat absorbed by the evaporator 7 is transferred to the radiator 3.
A heat exchange cycle for radiating heat is configured.

【0012】また、図3又は図4で示されるモリエル線
図e−f−g−hは、熱負荷が低い場合に実行される熱
交換サイクルを示すもので、膨張弁12が開放されるこ
とによって高圧圧力が亜臨界域(約6.5MPa)まで
低下した場合を示したものである。この場合、冷媒は、
圧縮機2の圧縮行程(e−f)によって約3.5MPa
から約6.5MPaまで圧縮され、放熱器3及び内部熱
交換器4の高圧側熱交換器5による冷却行程(f−g)
において冷却されそのエンタルピ(i)が低下し、冷媒
は液化する。そして、膨張弁6の膨張行程(g−h)に
おいて冷媒は液相領域から気液混合領域まで圧力が下げ
られ、蒸発器7において蒸発し、さらに内部熱交換器4
の低圧側熱交換器9にて過熱されて圧縮機2に吸入され
る(h−e)。これによって、蒸発器7に吸熱した熱を
放熱器3にて放熱する熱交換サイクルが構成される。
The Mollier diagram effgh shown in FIG. 3 or 4 shows a heat exchange cycle executed when the heat load is low, and the expansion valve 12 is opened. This shows a case where the high pressure has been reduced to a subcritical region (about 6.5 MPa). In this case, the refrigerant is
About 3.5 MPa depending on the compression stroke (ef) of the compressor 2
To about 6.5 MPa, and the cooling process (fg) by the high-pressure side heat exchanger 5 of the radiator 3 and the internal heat exchanger 4
And the enthalpy (i) thereof is reduced, and the refrigerant is liquefied. Then, in the expansion stroke (gh) of the expansion valve 6, the pressure of the refrigerant is reduced from the liquid phase region to the gas-liquid mixing region, the refrigerant evaporates in the evaporator 7, and the internal heat exchanger 4
Is superheated in the low-pressure side heat exchanger 9 and is sucked into the compressor 2 (he). This constitutes a heat exchange cycle in which the heat absorbed by the evaporator 7 is radiated by the radiator 3.

【0013】以上の冷凍サイクル1において、膨張弁6
の入口側近傍の冷媒温度に対応して最適な成績係数(C
OP)を有する冷媒圧力が存在することは公知であり、
その最適なCOPが得られる冷媒温度と冷媒圧力の点を
結んだ線は、図2、図3乃至図4において最適制御線η
max として示される。
In the refrigeration cycle 1 described above, the expansion valve 6
Coefficient of performance (C) corresponding to the refrigerant temperature near the inlet side of
It is known that there is a refrigerant pressure with OP)
A line connecting points of the refrigerant temperature and the refrigerant pressure at which the optimum COP is obtained is an optimum control line η in FIGS. 2, 3 and 4.
Shown as max.

【0014】したがって、高圧側の冷媒温度(Texpin
)から最適制御線ηmax によって目標高圧圧力Phmを
求め、これに実際の高圧圧力を一致させるように前記膨
張弁13の開度を制御することによって最適なCOPで
冷凍サイクルを稼動させることができるものである。
Therefore, the refrigerant temperature on the high pressure side (Texpin
) Obtains the target high-pressure pressure Phm from the optimum control line ηmax, and controls the opening of the expansion valve 13 so that the actual high-pressure pressure coincides with the target high-pressure pressure Phm. It is.

【0015】以上のことから、前記膨張弁6の上流側近
傍には冷媒の圧力を検出する圧力センサ10と冷媒の温
度を検出する温度センサ11とを配して、前記膨張弁6
の上流側近傍の冷媒圧力P及び冷媒温度Texpin を検出
するものである。これによって、温度センサ11によっ
て検出された冷媒温度Texpin がコントロールユニット
(C/U)12に入力され、目標高圧冷媒圧力Phmが求
められ、この目標高圧冷媒圧力Phmと前記圧力センサ1
0によって検出された冷媒圧力Pとの差ΔPが0となる
ように、前記膨張弁13の弁開度を調整する電磁コイル
やアクチュエータ等の駆動手段13に出力信号が出力さ
れるものである。
As described above, the pressure sensor 10 for detecting the pressure of the refrigerant and the temperature sensor 11 for detecting the temperature of the refrigerant are arranged near the upstream side of the expansion valve 6.
The refrigerant pressure P and the refrigerant temperature Texpin in the vicinity of the upstream side are detected. As a result, the refrigerant temperature Texpin detected by the temperature sensor 11 is input to the control unit (C / U) 12, and a target high-pressure refrigerant pressure Phm is obtained.
An output signal is output to drive means 13 such as an electromagnetic coil or an actuator for adjusting the valve opening of the expansion valve 13 so that the difference ΔP from the refrigerant pressure P detected by 0 becomes 0.

【0016】しかしながら、冷媒の高圧圧力が、冷媒の
臨界圧力Pc(二酸化炭素の場合には、約7.34MP
a)近傍で安定した場合、急激な熱負荷の変動等に起因
する圧力の変動や冷媒量の変動が生じた場合、高圧側冷
媒に気泡が生じたり消滅したりするキャビテーション現
象が生じるため、放熱器等の侵食、破壊が加速されると
いう不具合が生じる恐れがある。
However, when the high pressure of the refrigerant is equal to the critical pressure Pc of the refrigerant (in the case of carbon dioxide, it is approximately 7.34MPa).
a) When stable in the vicinity, when pressure fluctuations and refrigerant amounts fluctuate due to rapid heat load fluctuations and the like, cavitation phenomena occur in which bubbles are generated or disappear in the high-pressure side refrigerant, so that heat is released. There is a possibility that erosion and destruction of the vessel may be accelerated.

【0017】このため、本願おいては、図2で示すよう
に、目標高圧圧力Phmを得る最適特性線ηmax に臨界圧
力Pcの近傍において臨界圧力Pcを避けるヒステリシ
スを形成し、目標高圧圧力Phmが臨界圧力Pcとならな
いようにするものである。
For this reason, in the present application, as shown in FIG. 2, a hysteresis for avoiding the critical pressure Pc near the critical pressure Pc is formed on the optimum characteristic line ηmax for obtaining the target high pressure Phm, This is to prevent the pressure from becoming the critical pressure Pc.

【0018】具体的には、冷媒温度Texpin によって設
定される目標高圧圧力Phmが、前記最適制御線ηmax に
沿って臨界圧力Pcに向かって下降する場合には、臨界
圧力Pcより所定値高い第1の圧力Paにおいてそれ以
上下降しないように目標高圧圧力Phmを維持し、さらに
冷媒温度Texpin が低下する場合には、この冷媒温度T
expin (Tb)に対応する目標高圧圧力Phmが前記臨界
圧力Pcより所定値低い第2の圧力Pbと一致した段階
で、目標高圧圧力Phmが第1の圧力Paから第2の圧力
Pbに移行して設定されるようにし、反対に冷媒温度T
expin によって設定される目標高圧圧力Phmが前記最適
制御線ηmax に沿って臨界圧力Pcに向かって上昇する
場合には、前記第2の圧力Pbにおいてそれ以上上昇し
ないように目標高圧圧力Phmを維持し、さらに冷媒温度
Texpin が上昇する場合には、この冷媒温度Texpin
(Ta)に対応する目標高圧圧力Phmが前記第1の圧力
Paと一致した段階で、目標高圧圧力Phmが第2の圧力
Pbから第1の圧力Paに移行して設定されるようにす
るものである。
Specifically, when the target high pressure Phm set by the refrigerant temperature Texpin decreases toward the critical pressure Pc along the optimal control line ηmax, the first higher pressure Phm is higher than the critical pressure Pc by a predetermined value. The target high pressure Phm is maintained so as not to drop any more at the pressure Pa, and when the refrigerant temperature Texpin further decreases, the refrigerant temperature Texpin
At a stage where the target high pressure Phm corresponding to expin (Tb) coincides with the second pressure Pb lower than the critical pressure Pc by a predetermined value, the target high pressure Phm shifts from the first pressure Pa to the second pressure Pb. And, on the contrary, the refrigerant temperature T
When the target high pressure Phm set by expin rises toward the critical pressure Pc along the optimal control line ηmax, the target high pressure Phm is maintained so as not to rise any more at the second pressure Pb. When the refrigerant temperature Texpin further increases, the refrigerant temperature Texpin
When the target high-pressure pressure Phm corresponding to (Ta) coincides with the first pressure Pa, the target high-pressure pressure Phm shifts from the second pressure Pb to the first pressure Pa and is set. It is.

【0019】これによって、前記最適制御線ηmax は、
図3で示すように、圧力Pbから等温線Taにそって圧
力Paに移行し、且つ圧力Paから等温線Tbに沿って
圧力Pbに移行するヒステリシスが形成されることとな
る。
Thus, the optimal control line ηmax is
As shown in FIG. 3, hysteresis is formed in which the pressure changes from the pressure Pb to the pressure Pa along the isotherm Ta, and the pressure changes from the pressure Pa to the pressure Pb along the isotherm Tb.

【0020】また、図4に示す第2の実施の形態は、前
記冷媒温度Texpin からエンタルピiを演算し、このエ
ンタルピiに基づいて目標高圧圧力を制御するようにし
たもので、冷媒温度Texpin から演算されるエンタルピ
iによって設定される目標高圧圧力Phmが、前記最適制
御線ηmax に沿って臨界圧力Pcに向かって下降する場
合には、臨界圧力Pcより所定値高い第1の圧力Paに
おいてそれ以上下降しないように目標高圧圧力Phmを維
持し、さらに冷媒温度Texpin から演算されるエンタル
ピiが低下する場合には、この冷媒温度Texpin から演
算されるエンタルピibに対応する目標高圧圧力Phmが
前記臨界圧力Pcより所定値低い第2の圧力Pbと一致
した段階で、目標高圧圧力Phmが第1の圧力Paから第
2の圧力Pbに移行して設定されるようにし、反対に冷
媒温度Texpin から演算されるエンタルピiによって設
定される目標高圧圧力Phmが前記最適制御線ηmax に沿
って臨界圧力Pcに向かって上昇する場合には、前記第
2の圧力Pbにおいてそれ以上上昇しないように目標高
圧圧力Phmを維持し、さらに冷媒温度Texpin から演算
されるエンタルピiが上昇する場合には、この冷媒温度
Texpin から演算されるエンタルピiaに対応する目標
高圧圧力Phmが前記第1の圧力Paと一致した段階で、
目標高圧圧力Phmが第2の圧力Pbから第1の圧力Pa
に移行して設定されるようにするものである。
In the second embodiment shown in FIG. 4, the enthalpy i is calculated from the refrigerant temperature Texpin, and the target high pressure is controlled based on the enthalpy i. When the target high-pressure pressure Phm set by the calculated enthalpy i decreases toward the critical pressure Pc along the optimal control line ηmax, the target high-pressure pressure Phm becomes higher at the first pressure Pa higher than the critical pressure Pc by a predetermined value. When the target high pressure Phm is maintained so as not to drop, and when the enthalpy i calculated from the refrigerant temperature Texpin decreases, the target high pressure Phm corresponding to the enthalpy ib calculated from the refrigerant temperature Texpin is increased to the critical pressure. At the stage when the target pressure coincides with the second pressure Pb lower than the predetermined pressure Pc, the target high pressure Phm shifts from the first pressure Pa to the second pressure Pb and is set. Conversely, when the target high pressure Phm set by the enthalpy i calculated from the refrigerant temperature Texpin rises toward the critical pressure Pc along the optimal control line ηmax, the second pressure Pb , The enthalpy i calculated from the refrigerant temperature Texpin rises, and the target high-pressure pressure Phm corresponding to the enthalpy ia calculated from the refrigerant temperature Texpin rises. At the stage when the pressure matches the first pressure Pa,
The target high pressure Phm is changed from the second pressure Pb to the first pressure Pa.
To be set.

【0021】これによって、前記最適制御線ηmax は、
図4で示すように、圧力Pbから等エンタルピ線iaに
そって圧力Paに移行し、且つ圧力Paから等エンタル
ピ線ibに沿って圧力Pbに移行するヒステリシスが形
成されることとなる。
Thus, the optimal control line ηmax is
As shown in FIG. 4, hysteresis is formed in which the pressure Pb shifts to the pressure Pa along the isenthalpy line ia, and the pressure Pa shifts to the pressure Pb along the isenthalpy line ib.

【0022】[0022]

【発明の効果】以上説明したように、この発明によれ
ば、目標高圧圧力を臨界圧力からはずして設定し実際の
高圧圧力が臨界圧力とならないようにしたので、キャビ
テーション現象による不具合を防止できるので、熱交換
器等の侵食・破壊を防止できるために、空調機器の寿命
を延ばすことができるものである。
As described above, according to the present invention, the target high pressure is set to be different from the critical pressure so that the actual high pressure does not become the critical pressure, so that the problem due to the cavitation phenomenon can be prevented. In addition, since the erosion and destruction of the heat exchanger and the like can be prevented, the life of the air conditioner can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の実施の形態に係る冷凍サイクルの一
例を示した概略構成図である。
FIG. 1 is a schematic configuration diagram showing an example of a refrigeration cycle according to an embodiment of the present invention.

【図2】本願発明の第1の実施の形態に係るヒステリシ
スを有する最適制御線を示した特性線図である。
FIG. 2 is a characteristic diagram showing an optimal control line having hysteresis according to the first embodiment of the present invention.

【図3】本願発明の第1の実施の形態に係るヒステリシ
スを有する最適制御線及び最適制御線に沿って制御され
た冷凍サイクルのモリエル線図を示した図である。
FIG. 3 is a diagram showing an optimal control line having hysteresis and a Mollier diagram of a refrigeration cycle controlled along the optimal control line according to the first embodiment of the present invention.

【図4】本願発明の第2の実施の形態に係るヒステリシ
スを有する最適制御線及び最適制御線に沿って制御され
た冷凍サイクルのモリエル線図を示した図である。
FIG. 4 is a diagram showing an optimal control line having hysteresis and a Mollier diagram of a refrigeration cycle controlled along the optimal control line according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 冷凍サイクル 2 圧縮機 3 放熱器 4 内部熱交換器 5 高圧側熱交換器 6 膨張弁 7 蒸発器 8 アキュムレータ 9 低圧側熱交換器 10 圧力センサ 11 温度センサ 12 コントロールユニット 13 駆動手段 DESCRIPTION OF SYMBOLS 1 Refrigeration cycle 2 Compressor 3 Radiator 4 Internal heat exchanger 5 High pressure side heat exchanger 6 Expansion valve 7 Evaporator 8 Accumulator 9 Low pressure side heat exchanger 10 Pressure sensor 11 Temperature sensor 12 Control unit 13 Driving means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を該冷媒の臨界圧力の上下に渡る範
囲に圧縮する圧縮機と、圧縮された冷媒を冷却する放熱
器と、該放熱器により冷却された冷媒を減圧する減圧手
段と、該減圧手段によって減圧された冷媒を蒸発させる
蒸発器とによって少なくとも構成され、前記減圧手段の
上流側近傍の冷媒圧力と冷媒温度が最適制御特性線に沿
って制御される冷凍サイクルにおいて、 前記減圧手段の上流側近傍の冷媒温度及び冷媒圧力を検
出する検出手段と、 前記冷媒温度に対応して設定される目標冷媒圧力が前記
臨界圧力に向かって下降する場合、前記目標冷媒圧力を
前記臨界圧力よりも所定値高い第1の圧力まで低下させ
た後該第1の圧力で維持し、且つ前記目標冷媒圧力が前
記臨界圧力よりも所定値低い第2の圧力以下となった場
合には、前記目標冷媒圧力を前記第1の圧力から前記第
2の圧力に移行して下降させ、前記冷媒温度に対応して
設定される目標冷媒圧力が前記臨界圧力に向かって上昇
する場合、前記目標冷媒圧力を前記第2の圧力まで上昇
させた後前記第2の圧力で維持し、且つ前記目標冷媒圧
力が前記第1の圧力以上となった場合には、前記第2の
圧力から前記第1の圧力に移行して上昇させる目標冷媒
圧力設定手段と、 前記検出手段によって検出された冷媒圧力が、前記目標
冷媒圧力設定手段によって設定された目標冷媒圧力と一
致するように制御する制御手段とを具備することを特徴
とする冷凍サイクル。
A compressor for compressing the refrigerant to a range above and below a critical pressure of the refrigerant; a radiator for cooling the compressed refrigerant; a pressure reducing means for depressurizing the refrigerant cooled by the radiator; A refrigeration cycle configured at least by an evaporator for evaporating the refrigerant decompressed by the decompression means, wherein the refrigerant pressure and the refrigerant temperature near the upstream side of the decompression means are controlled along an optimal control characteristic line. Detecting means for detecting a refrigerant temperature and a refrigerant pressure in the vicinity of the upstream side of the refrigerant, and when the target refrigerant pressure set in accordance with the refrigerant temperature decreases toward the critical pressure, the target refrigerant pressure is set higher than the critical pressure. After the pressure is lowered to the first pressure higher than the predetermined pressure, the pressure is maintained at the first pressure, and when the target refrigerant pressure becomes equal to or lower than the second pressure lower than the critical pressure by a predetermined value, When the target refrigerant pressure is shifted from the first pressure to the second pressure and lowered, and the target refrigerant pressure set corresponding to the refrigerant temperature increases toward the critical pressure, the target refrigerant pressure Is maintained at the second pressure after the pressure is increased to the second pressure, and when the target refrigerant pressure is equal to or higher than the first pressure, the first pressure is reduced from the second pressure to the first pressure. And a control means for controlling the refrigerant pressure detected by the detection means to coincide with the target refrigerant pressure set by the target refrigerant pressure setting means. A refrigeration cycle characterized in that:
JP24066299A 1999-08-27 1999-08-27 Refrigeration cycle Pending JP2001066003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24066299A JP2001066003A (en) 1999-08-27 1999-08-27 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24066299A JP2001066003A (en) 1999-08-27 1999-08-27 Refrigeration cycle

Publications (1)

Publication Number Publication Date
JP2001066003A true JP2001066003A (en) 2001-03-16

Family

ID=17062846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24066299A Pending JP2001066003A (en) 1999-08-27 1999-08-27 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JP2001066003A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006087005A1 (en) * 2005-02-18 2006-08-24 Carrier Corporation Method for controlling high-pressure in an intermittently supercritically operating refrigeration circuit
JP2008002706A (en) * 2006-06-20 2008-01-10 Sanden Corp Refrigerating machine
JP2009002614A (en) * 2007-06-22 2009-01-08 Denso Corp Heat pump device
FR2928445A1 (en) * 2008-03-06 2009-09-11 Valeo Systemes Thermiques Expansion member controlling method for heating, ventilating and/or air conditioning installation of motor vehicle, involves considering information of overheat at evaporator exit for controlling member to calculate value of passage section
EP2182304A1 (en) * 2007-07-18 2010-05-05 Mitsubishi Electric Corporation Refrigerating cycle device and method for controlling operation of the same
US8181480B2 (en) 2006-09-11 2012-05-22 Daikin Industries, Ltd. Refrigeration device
JP2015028401A (en) * 2013-07-30 2015-02-12 三菱重工業株式会社 Supercritical heat pump cycle and its control method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006087005A1 (en) * 2005-02-18 2006-08-24 Carrier Corporation Method for controlling high-pressure in an intermittently supercritically operating refrigeration circuit
JP2008530501A (en) * 2005-02-18 2008-08-07 キャリア コーポレイション A method for controlling high pressure in a cooling circuit operating intermittently in supercriticality.
AU2005327829B2 (en) * 2005-02-18 2010-05-13 Carrier Corporation Method for controlling high-pressure in an intermittently supercritically operating refrigeration circuit
EP2273214A3 (en) * 2005-02-18 2011-11-02 Carrier Corporation Method for controlling high-pressure in an intermittently supercritically operating refrigeration circuit
US8186171B2 (en) * 2005-02-18 2012-05-29 Carrier Corporation Method for controlling high-pressure in an intermittently supercritically operating refrigeration circuit
JP2008002706A (en) * 2006-06-20 2008-01-10 Sanden Corp Refrigerating machine
US8181480B2 (en) 2006-09-11 2012-05-22 Daikin Industries, Ltd. Refrigeration device
JP2009002614A (en) * 2007-06-22 2009-01-08 Denso Corp Heat pump device
EP2182304A1 (en) * 2007-07-18 2010-05-05 Mitsubishi Electric Corporation Refrigerating cycle device and method for controlling operation of the same
EP2182304A4 (en) * 2007-07-18 2014-11-19 Mitsubishi Electric Corp Refrigerating cycle device and method for controlling operation of the same
FR2928445A1 (en) * 2008-03-06 2009-09-11 Valeo Systemes Thermiques Expansion member controlling method for heating, ventilating and/or air conditioning installation of motor vehicle, involves considering information of overheat at evaporator exit for controlling member to calculate value of passage section
JP2015028401A (en) * 2013-07-30 2015-02-12 三菱重工業株式会社 Supercritical heat pump cycle and its control method

Similar Documents

Publication Publication Date Title
EP1631773B1 (en) Supercritical pressure regulation of economized refrigeration system
EP2565555B1 (en) Refrigeration cycle apparatus
JP4613916B2 (en) Heat pump water heater
EP2068093B1 (en) Refrigeration device
JPH11193967A (en) Refrigerating cycle
JP2000234814A (en) Vapor compressed refrigerating device
KR20080068137A (en) Freezing device
KR101252173B1 (en) Heat pump and control method of the heat pump
JP2002022295A (en) Ejector cycle
JP2001066003A (en) Refrigeration cycle
JP2006308230A (en) Refrigerating cycle control device
JP2005351529A (en) Pressure control valve and vapor compression refrigerating cycle
JP2002228282A (en) Refrigerating device
KR20130026685A (en) Air conditioner and control method thereof
WO2021048899A1 (en) Outdoor unit and refrigeration cycle device
JP2008096072A (en) Refrigerating cycle device
JP2001108314A (en) Refrigerating cycle controller
TWI807163B (en) Freezing device and operation method of the freezing device
JP7078724B2 (en) Refrigeration cycle device and its control method
JP6740931B2 (en) Ejector type refrigeration cycle
WO2019181244A1 (en) Compressor and heat pump system
JP2009236430A (en) Compression type refrigerating machine and its capacity control method
JP2000320910A (en) Control method for freezing cycle and freezing cycle using this method
JP2000213819A (en) Refrigerating cycle
CN114364929A (en) Outdoor unit and refrigeration cycle device