JP2016194849A - 潮流計算装置、潮流計算方法、及びプログラム - Google Patents

潮流計算装置、潮流計算方法、及びプログラム Download PDF

Info

Publication number
JP2016194849A
JP2016194849A JP2015074955A JP2015074955A JP2016194849A JP 2016194849 A JP2016194849 A JP 2016194849A JP 2015074955 A JP2015074955 A JP 2015074955A JP 2015074955 A JP2015074955 A JP 2015074955A JP 2016194849 A JP2016194849 A JP 2016194849A
Authority
JP
Japan
Prior art keywords
power
power generation
power system
calculation
flow calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015074955A
Other languages
English (en)
Other versions
JP6515640B2 (ja
Inventor
祐一 島崎
Yuichi Shimazaki
祐一 島崎
章弘 大井
Akihiro Oi
章弘 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2015074955A priority Critical patent/JP6515640B2/ja
Publication of JP2016194849A publication Critical patent/JP2016194849A/ja
Application granted granted Critical
Publication of JP6515640B2 publication Critical patent/JP6515640B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】 再生可能エネルギー電源を含む電力系統の運用者に対して、かかる電源の出力変動を考慮した適切な系統運用情報を提供する。
【解決手段】 再生可能エネルギーに係る電源及び複数の発電機を含む電力系統が所定の制約条件の下で運用されるように、前記電力系統を構成する要素の操作量を決定する潮流計算装置であって、所定の時刻における前記電源の複数の発電予測値、前記所定の時刻における前記電力系統の需要予測値、前記所定の制約条件、及び、前記電力系統の運用状態を規定する目的関数に基づいて潮流計算を実行して、前記複数の発電予測値に対応する複数の前記操作量を算出する演算部と、前記演算部の算出結果を出力する出力部と、を備える。
【選択図】図2

Description

本発明は、潮流計算装置、潮流計算方法、及びプログラムに関する。
電力系統を構成する諸要素の操作量(発電機出力,ノード電圧,調相設備の調節量など)を、経済性と信頼性を考慮しつつ決定する技術の1つに、最適潮流計算がある。最適潮流計算とは、系統の運用制約の下で燃料費や送電損失などが最小となるように、上記諸要素の操作量を計算する手法である。燃料費や送電損失などの運用状態を目的関数として与え、系統の運用制約を制約条件として与え、操作量を状態変数として与えたとき、最適潮流計算は、制約条件付き最適化問題となる(例えば特許文献1を参照)。
また、発電機の起動又は停止計画に関し、再生可能エネルギー電源の不確実要素を考慮した運用技術がある(例えば、特許文献2,3)。
特開2006−174564号公報 特開2010−11670号公報 特開2012−34444号公報
最適潮流計算では、最適化問題が、例えば以下の数式1−4のように定式化される。
Figure 2016194849
Figure 2016194849
Figure 2016194849
Figure 2016194849
ただし、数式1におけるfは目的関数、数式2は潮流方程式、数式3は潮流方程式以外の等式制約(変圧器の特性や静止形無効電力補償装置(SVC)の制御ロジックなど)、数式4は不等式制約(電圧の指定値,送電線の潮流値等)である。また、xは電圧解、uは操作量、zは操作量により従属的に決まる変数(発電機の無効電力や変圧器タップ値など)である。数式1〜数式4は非線形最適化問題となり、数理計画法などの手法によって計算される。
数式2で表される潮流方程式は、各ノードにおける指定された有効電力及び無効電力が、各ノードの電圧や線路インピーダンスからなる回路方程式より導かれる有効電力及び無効電力と、それぞれ一致していることを表す。
しかし、近年、太陽光発電装置、風力発電機などの再生可能エネルギーに係る電源の導入が進んでいるところ、かかる電源の出力は不安定であることが知られている。電力系統の運用にあたっては、上述した再生可能エネルギー電源の特性を考慮することが求められるが、上述した特許文献1は、このような事項を考慮していないため、運用者に対して電力系統の運用に関する適切な情報を提供することができない。
また、特許文献2,3では、有効電力のみが考慮され、電力系統の電圧制約や潮流制約は考慮され得ないため、やはり運用者に対して電力系統の運用に関する適切な情報を提供することができない。
上記課題を解決するための手段の一つは、再生可能エネルギーに係る電源及び複数の発電機を含む電力系統が所定の制約条件の下で運用されるように、前記電力系統を構成する要素の操作量を決定する潮流計算装置であって、所定の時刻における前記電源の複数の発電予測値、前記所定の時刻における前記電力系統の需要予測値、前記所定の制約条件、及び、前記電力系統の運用状態を規定する目的関数に基づいて潮流計算を実行して、前記複数の発電予測値に対応する複数の前記操作量を算出する演算部と、前記演算部の算出結果を出力する出力部と、を備える。
その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄の記載、及び図面の記載等により明らかにされる。
本発明によれば、再生可能エネルギー電源を含む電力系統の運用者に対して、かかる電源の出力変動を考慮した適切な系統運用情報を提供することができる。
本実施形態において最適潮流計算が行われる電力系統の一例を示す図である。 本実施形態における最適潮流計算装置の機能を示すブロック図である。 本実施形態における最適潮流計算の流れを示すフローチャートである。 図3に示されるフローチャートにおいて翌日の起動又は停止計画を算出する流れを示すフローチャートである。 図3に示されるフローチャートにおいて当日の起動又は停止計画を算出する流れを示すフローチャートである。 1日の時間帯における電力需要の予測の一例を示すグラフである。 図6と同じ1日の時間帯における太陽光発電装置の発電予測の一例を示すグラフである。 図6と同じ1日の時間帯における見かけ上の需要予測の一例を示すグラフである。 図6と同じ1日の時間帯において太陽光発電装置の発電予測が変動する様子の一例を示すグラフである。 所定の時刻における太陽光発電装置の発電予測の変動と電力系統の発電機の出力との関係を示す図である。 1日の時間帯における太陽光発電装置の発電予測の変動と電力系統の発電機の出力との関係を示す図である。 所定の時刻における太陽光発電装置の複数の発電予測値のうち、1つの発電予測値に対応する発電機の起動又は停止状態を固定して、他の発電予測値に対する最適潮流計算を実行したときの発電機の出力の一例を示す図である。 図12と同様に、1つの発電予測値に対応する発電機の起動又は停止状態を固定して、他の発電予測値に対する最適潮流計算を実行したときの発電機の出力の別例を示す図である。
本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。
===最適潮流計算の対象となる電力系統===
図1を参照して、本実施形態において最適潮流計算の対象となる電力系統について説明する。図1は、本実施形態において最適潮流計算が行われる電力系統の一例を示す。図1に示すように、電力系統200は、発電機211−213と、ノード221−227と、蓄電池230と、調相設備240と、太陽光発電装置250と、上記ノードを相互に接続する線路261−267と、を備える。
具体的には、発電機211−213は、ノード221−227及び線路261−267を介して負荷に電力を供給する。蓄電池230は、ノード223に接続されており、例えば、電力系統200に余剰の電力があると蓄電し、電力系統200に電力が不足すると放電する。調相設備240は、電力系統200に無効電力を供給する設備であり、本実施形態ではノード226に接続されている。なお、蓄電池230及び調相設備240は、他のノードにも設置されてよい。
また、太陽光発電装置250は、再生可能エネルギーに係る電源の一例であり、本実施形態では、負荷ノードであるノード227に接続されている。太陽光発電装置250は、ノード227に接続された複数の太陽光発電設備を代表していてもよいし、更に、風力発電機や燃料電池を含んでいてもよい。なお、太陽光発電装置250は、他のノードにも設けられてよい。
本実施形態では、このような電力系統200について発電機211−213の起動及び停止を計画するべく、需要予測等に基づいて最適潮流計算が実行されるものとする。なお、後述するように、電力系統200では、負荷の電力需要が変化しなくても、太陽光発電装置250の発電量の増減に伴って、発電機211−213側から負荷ノードに供給される電力(以下、見かけ上の電力需要という)は変動する。
===最適潮流計算装置===
図2,図6−図13を参照して、本実施形態における最適潮流計算装置を説明する。図2は最適潮流計算装置の機能を示すブロック図である。図6は、1日の時間帯における電力需要の予測の一例を示す。図7は、図6と同じ1日の時間帯における太陽光発電装置の発電予測の一例を示す。図8は、図6と同じ1日の時間帯における見かけ上の需要予測の一例を示す。図9は、図6と同じ1日の時間帯において太陽光発電装置の発電予測が変動する様子の一例を示す。図10は、所定の時刻における太陽光発電装置の発電予測の変動と電力系統の発電機の出力との関係を示す。図11は、1日の時間帯における太陽光発電装置の発電予測の変動と電力系統の発電機の出力との関係を示す。図12、図13は、所定の時刻における太陽光発電装置の複数の発電予測値のうち、1つの発電予測値に対応する発電機の起動又は停止状態を固定して、他の発電予測値に対する最適潮流計算を実行したときの発電機の出力の例を示す。
<装置構成>
最適潮流計算装置100は、電力系統200が所定の制約条件の下で最適に運用されるように、電力系統200を構成する要素の操作量を決定する装置であって、図2に示されるように、入力部110と、演算部120と、記憶部130と、出力部140と、を含んで構成される。ここで、操作量は、発電機の出力、ノード電圧、調相設備の調節量などを含む。
(入力部)
入力部110は、運用者及び外部の情報機器との間のインターフェイスであり、例えば、電力系統に関する情報、需要予測に関する情報、及び発電予測に関する情報を受信する。
電力系統に関する情報は、電力系統200を構成するノードや線路に関する情報であり、例えば、ノード221−227における電圧v、有効電力P、無効電力Qや、線路261−267の線路インピーダンスZや線路アドミタンスYである。また、発電機、ノード、線路の容量に関する情報が含まれる。このような情報は、運用者によって入力装置(不図示)を介して入力されてもよいし、あるいは、電力系統200の監視装置(不図示)などから自動的に取得されてもよい。
需要予測に関する情報は、電力系統200における電力需要の予測値を示す情報である。かかる情報は、負荷が接続されているノード221−227毎に、図6に示されるように1日における所定の時間帯(例えば1時間)ごとの予測値として与えられる。かかる予測値は、外部サーバ(不図示)から所定の時間間隔(例えば1日毎、12時間毎など)で受信されてもよいし、あるいは、例えば気象庁から提供される気象予報情報と、各負荷ノードに設置された電力測定装置(不図示)の測定結果(需要実績)と、に基づき、多変量解析などの解析手法やニューラルネットワークなどの学習手法を用いて、運用者側で算出されてもよい。
発電予測に関する情報は、太陽光発電装置250の発電量に関する予測値を示す情報であり、ここでは、太陽光発電装置250が接続されているノード221−227のそれぞれについて、1日における所定の時間帯(例えば1時間)毎における予測値として与えられている(図7参照)。発電予測に関する情報は、電力会社などの外部サーバ(不図示)から所定の時間間隔(例えば1日毎、12時間毎など)で取得されてもよいし、あるいは、例えば気象庁から提供される気象情報と、太陽光発電装置250に取り付けられた電力測定装置(不図示)の測定結果(発電実績)と、に基づき、多変量解析などの解析手法やニューラルネットワークなどの学習手法を用いて、運用者側で算出されてもよい。
発電予測に関する情報は、所定の時刻における複数の予測値を含む。このような複数の予測値は、外部サーバ(不図示)から提供される情報に予め含まれてもよいし、あるいは、外部サーバから提供される情報に基づいて運用者側で生成されてもよい。前者の例として、外部サーバから提供される情報が、所定の時刻における予測の最大値、最小値、及び中央値(又は平均値)を含む場合や、所定の時刻における1つの予測値とその変動幅を含む場合などが考えられる。後者の一例として、最適潮流計算装置100は、外部サーバから、所定の時刻における発電予測値と、その時刻に対応する時間帯における過去の発電予測値と発電実績値との差分に対する標準偏差σと、を取得して、例えば「予測値+3σ」及び「予測値−3σ」を生成し、「予測値」、「予測値+3σ」及び「予測値−3σ」をその時刻における複数の予測値とする。また、後者の別例として、最適潮流計算装置100は、外部サーバから提供された過去の発電予測値とそれに対応する発電実績値とを記憶部130に記憶しており、外部サーバから新たな発電予測値が提供されると、記憶された過去の発電予測値及び発電実績値に基づいて標準偏差σを算出し、上述した「予測値+3σ」及び「予測値−3σ」を生成してもよい。このような複数の予測値をある1日における時間帯に即してグラフ化すると、例えば図9のように示される。なお、ここで述べた「3σ」は、発電予測値に不確実性要素として一定の幅を与えるのに好適な一例であるが、「1σ」、「2σ」など、σの任意の倍数が用いられてよい。また、複数の発電予測値は3個に限られず、例えば「予測値」、「予測値+3σ」、「予測値+2σ」、「予測値−2σ」及び「予測値−3σ」の5個でもよい。
ここで、太陽光発電装置250が複数のノードに設置されている場合、上述した予測値、予測値+3σ、及び、予測値−3σは、例えば次のように算出される。例えば、第1の太陽光発電設備がノード227に、第2の太陽光発電設備がノード224に接続されている場合を考える。第1の太陽光発電設備の発電予測値をPV1(t)とし、過去の発電予測値と発電実績値との差分に対する標準偏差をσ1とし、また、第2の太陽光発電設備の発電予測値をPV2(t)とし、過去の発電予測値と発電実績値との差分に対する標準偏差をσ2とする。このとき、上述した「予測値」、「予測値+3σ」、及び、「予測値−3σ」に、それぞれ「PV1(t)+PV2(t)」、「{PV1(t)+3σ1}+{PV2(t)+σ2}」、及び「{PV1(t)−3σ1}+{PV2(t)−3σ2}」を対応させてもよい。
入力部110は、上述のような各種情報を受信ないし生成すると、受信した情報を演算部120に出力するとともに、記憶部130に記憶する。
また、入力部110は、上述した需要予測に関する情報及び発電予測に関する情報を受信ないし生成すると、これら情報に基づいて、見かけ上の需要予測に関する情報を生成する。具体的には、ある時刻における需要予測値から、その時刻における複数の発電予測値のそれぞれを減算して、複数の見かけ上の需要予測値を算出する。例えば、複数の発電予測値が「予測値」、「予測値+3σ」及び「予測値−3σ」の3個で与えられる場合、見かけ上の需要予測値は、1日における各時間帯について3個生成されることになる。なお、発電予測値の個数と見かけ上の需要予測値の個数とが一致する必要はなく、例えば、5個の発電予測値が与えられても、いずれかの発電予測値を用いずに、4個の見かけ上の需要予測値を生成してもよい。
入力部110は、このようにして生成した複数の見かけ上の需要予測値をも演算部120に出力するとともに、記憶部130に記憶する。
(演算部)
演算部120は、最適潮流計算を実行して、複数の発電予測値に対応する複数の操作量を算出する。最適潮流計算は、上述したように、電力系統250の運用制約を維持しつつ、燃料費や送電損失などが最小となるように、電力系統250を構成する要素の操作量を計算する手法である。本実施形態では、所定の時刻における太陽光発電装置250の複数の発電予測値、所定の時刻における電力系統200の見かけ上の需要予測値、所定の制約条件、及び、目的関数に基づいて実行される。複数の発電予測値、及び見かけ上の需要予測値は、上述したように入力部110から提供される。また、所定の制約条件、及び目的関数については後述する。
このような演算部120は、目的関数設定部121、制約条件設定部122、及び最適潮流計算部123を有する。
− 目的関数設定部
目的関数設定部121は、最小化されるべき目的関数を設定する。本実施形態において、目的関数は、例えば燃料費や送電線の送電損失などの、電力系統250の運用状態を規定する関数である(上述の数式1参照)。目的関数設定部121は、特定の関数をデフォルトとして設定することができるとともに、入力部110を介した運用者からの指示に応じて目的関数を変更することもできる。目的関数設定部121によって設定された目的関数は、記憶部130に記憶される。
− 制約条件設定部
制約条件設定部122は、所定の制約条件を設定する。本実施形態において、制約条件の1つは電力系統の潮流方程式である(上述の数式2参照)。潮流方程式は、各ノードで指定した有効電力及び無効電力の供給あるいは消費が、各ノードの電圧や線路インピーダンス(又は線路アドミタンス)で表される回路方程式から得られる有効電力及び無効電力と一致することを示す方程式である。
また、他の制約条件は、潮流方程式以外の等式制約であって(上述の数式3参照)、例えば、電力系統に含まれる変圧器の特性や静止形無効電力補償装置(SVC)の制御ロジックが含まれる。これらの等式制約は、通信回線を介して外部の情報装置(不図示)から取得されてもよいし、あるいは、入力部110を介して運用者によって入力されてもよい。
別の制約条件は、不等式制約であり(上述の数式4参照)、例えば電力系統に含まれるノードにおける電圧の指定値や送電線の潮流値が含まれる。また、発電機の出力の急激な増減を指示するような非現実的な計算結果が生じないように、前後する時間帯における発電機の出力の変化量に制約が加えられてもよい。例えば、発電機iの変化量Δgiの上限をΔgUP i、下限をΔgDOWN iとすると、発電機iの出力の変化量に対する制約条件は以下の数式5のように示される。
Figure 2016194849
これらの不等式制約もまた、通信回線を介して外部の情報装置(不図示)から取得されてもよいし、入力部110を介して運用者によって入力されてもよい。
このようにして設定された各種制約条件は、記憶部130に記憶される。
− 最適潮流計算部
最適潮流計算部123は、制約条件設定部122において設定された制約条件の下で、目的関数設定部121において設定された目的関数を最小化するべく、最適潮流計算を実行する。本実施形態では、発電機211−213の起動又は停止計画を緻密に策定するべく、最適潮流計算は前日と当日の少なくとも2回実行される。もっとも、計算時間の短縮や計算効率の向上の観点から、翌日の計画のための最適潮流計算と、当日の修正計画のための最適潮流計算とで、計算の仕方を変えているので、以下に説明する。
・ 翌日の起動又は停止計画のための最適潮流計算
本実施形態では、太陽光発電装置250の出力の不安定性を考慮して、上述した複数の需要予測値に基づいて最適潮流計算が行われる。よって、最適潮流計算の結果としての解は、所定の時刻に対して複数算出される。例えば図1に示されるように電力系統200に3台の発電機211−213が設けられ、かつ、太陽光発電装置250の発電予測値が時間帯ごとに3個ずつ与えられる場合、各時間帯における最適潮流計算の解は、図10に示されるように、3個の発電予測値のそれぞれに対して、発電機211−213を起動又は停止させるか、及び、どれだけの出力で発電させるか、を示す。ちなみに、図10は、3個の発電予測値のいずれに対しても発電機211,212は起動されるべきこと、及び、発電機213は太陽光発電装置250の発電量が予測値より少ない場合にのみ起動されるべきであることを示す。最適潮流計算部123は、このような最適潮流計算を、1日における所定の時間帯(例えば1時間)毎の複数の需要予測値について行うから、このような需要予測値に対応する発電機の出力の合計は、例えば図11のように複数(3本)の曲線で示される。
ここで、太陽光発電装置250の発電予測値の増減に応じて、特定の発電機の起動又は停止状態が変わることがある。例えば図10は、ある時間帯において、太陽光発電装置250が発電予測値どおりに発電する場合には、発電機211,212を起動させるとともに発電機213を停止させることが最適な運転計画であるが、太陽光発電装置250が発電予測値より3σだけ少なく発電する場合には、発電機213も起動させる必要があることを示している。このような状況が生じれば、該当する時間帯において、特定の発電機の起動が間に合わずに電力の供給が不足し、あるいは、特定の発電機の停止が間に合わずに電力の供給が過剰となるおそれがある。
そこで、本実施形態では、太陽光発電250が発電予測値どおりに発電するとの条件下で計算された発電機211−213の起動又は停止状態を用いて、太陽光発電250が発電予測値より3σだけ多く又は少なく発電する場合に対する最適潮流計算を行う。例えば、ある時刻における「発電予測値」に対応する最適潮流計算の結果が、図10のように発電機211、212の起動及び発電機213の停止を指示する場合、「発電予測値+3σ」及び「発電予測値−3σ」に対応する最適潮流計算は、発電機211,212の起動及び発電機213の停止という条件の下で実行される。なお、ここでは「発電予測値」を基準として選択して最適潮流計算を実行しているが、「発電予測値+3σ」及び「発電予測値−3σ」の一方を基準として選択してもよい。
このとき、「発電予測値+3σ」に対して実行可能な解が得られないことがある。これは、発電機の起動台数が過剰である供給過多の状態を意味する。例えば、ある時刻における「発電予測値」に対する最適潮流計算の結果が、図12のように発電機211−213の起動を指示する場合、「発電予測値+3σ」に対する最適潮流計算は、3台の発電機211−213の起動という条件の下で行われる。しかし、「発電予測値+3σ」に対応する見かけ上の需要予測値は、図12に示されるように発電機211、212の2台の起動で賄われ得る場合、3台の発電機の起動という条件下における最適潮流計算は、解を与えない。この計算結果は、発電機213の起動は供給過剰につながるおそれを示唆する。
一方で、「発電予測−3σ」に対して実行可能な解が得られないことがある。これは、発電機の起動台数が不足する供給不足の状態を意味する。例えば、ある時刻における「発電予測値」に対する最適潮流計算の結果が、図13のように発電機211、212の起動を指示する場合、「発電予測値−3σ」に対する最適潮流計算は、発電機211、212の起動(発電機213の停止)という条件の下で行われる。しかし、図13に示されるように、「発電予測値−3σ」に対応する見かけ上の需要予測値に対して3台の発電機211−213の起動が必要とされると、2台の発電機の起動という条件下における最適潮流計算は、やはり解を与えない。かかる計算結果は、発電機213の停止は供給不足につながるおそれを示唆する。
このように、太陽光発電装置250の発電予測に応じて、発電機211−213の起動又は停止を含めた運用計画の修正が必要となるため、最適潮流計算部123は、事前に運用者に警告するべく出力部140に指示する。
最適潮流計算部123はまた、前日における最適潮流計算の結果を出力部140に出力するとともに、記憶部130に記憶する。
・ 当日の起動又は停止修正計画のための最適潮流計算
最適潮流計算部123は、緻密な起動又は停止計画を策定するべく、前日に実行された最適潮流計算の結果を利用して、当日に改めて最適潮流計算を実行する。そして、最適潮流計算部123は、前日と当日との間の電力需要値及び発電予測値の誤差に伴って当日における発電機211−213の起動又は停止状態が変化すると、前日に策定した起動又は停止計画を修正する。
例えば、前日に策定された起動又は停止計画が、ある時刻において、図10に示すように「発電予測値」、「発電予測値+3σ」及び「発電予測値−3σ」のいずれに対しても発電機211、212の起動を指示しているとする。このとき、当日の最適潮流計算を、最新の需要予測値及び発電予測値に基づき、発電機211、212の起動という条件の下で実行し、発電機213の起動又は停止状態に必要な修正を加える。前日の計画によれば、発電予測値が上下どちらに外れたとしても発電機211、212を常に起動させるのであるから、当日の最適潮流計算において、最適化問題の状態変数となる発電機の起動停止状態を部分的に固定することにより、計画の精度を維持しつつ計算時間の短縮を図るのである。
このようにして算出された当日における発電機の起動又は停止修正計画は、出力部140に出力されるとともに、記憶部130に記憶される。
(記憶部)
記憶部130は、入力部110が受信した需要予測に関する情報及び発電予測に関する情報、これら情報に基づいて生成された見かけ上の需要予測に関する情報、設定された目的関数及び制約条件、算出された前日の起動又は停止計画、当日の起動又は停止修正計画、及びその他の情報を記憶する。また、記憶部130は、前述した又は後述する最適潮流計算装置100の機能を実行するためのプログラムを記憶する。
(出力部)
出力部140は、演算部の算出結果を出力するとともに、最適潮流計算部123からの指示に基づいて警告を出力する。計算結果及び警告は、運用者が把握しやすいように、例えばディスプレイ(不図示)に表示されたり、スピーカを介して音声で通知されたりする。
なお、このような最適潮流計算装置100の機能は、ROM、RAM、CPUを有するコンピュータがプログラムを実行することによって実行される。
<最適潮流計算の手順>
図3−5を参照して、本実施形態における最適潮流計算の手順を説明する。図3は、本実施形態における最適潮流計算の流れを示すフローチャートである。図4及び図5は、図3において前日及び当日の起動又は停止計画を算出する流れを具体的に示すフローチャートである。
本実施形態では、図3に示されるように、ステップS1において、該当日の前日に最適潮流計算を実行して、当該日における発電機の起動又は停止計画(以下、翌日の起動又は停止計画という)を算出し、次いで、ステップS2において、該当日に再度最適潮流計算を実行して、前日に算出した計画に修正(以下、当日の起動又は停止修正計画という)を加える。以下、図4、図5を参照して、ステップS1、S2を詳細に説明する。
(翌日の起動又は停止計画の算出)
図4を参照して、翌日の起動又は停止計画の算出手順S1を説明する。
まず、ステップS11において、最適潮流計算に必要となる電力系統200に関する情報を取得する。この情報は、上述したように入力部110において取得され、例えば線路インピーダンス、発電機ノードの指定電圧、発電機の燃料費(円/kWh等の指標)、ノード電圧の上下限値を含む。併せて、電力系統200のノード221−227ごとに、1日における所定の時間帯毎の需要予測値を取得する。需要予測値は入力部110において取得される。
次いで、ステップS12において、電力系統200のノード221−227ごとに、1日における所定の時間帯毎の太陽光発電装置250の発電予測値を取得する。発電予測値は入力部110において取得される。本実施形態において、所定の時間帯毎の発電予測値は、上述したように複数であり、例えば、算出された発電予測値のほか、太陽光発電装置250が発電予測値よりも多く発電する場合に対応する値「発電予測値+3σ」、太陽光発電装置250が発電予測値よりも少なく発電する場合に対応する値「発電予測値−3σ」の3個である。
翌日における需要予測値と複数の発電予測値とが取得されると、ステップS13において、時間帯ごとに、需要予測値と複数の発電予測値のそれぞれとの差分に相当する複数の見かけ上の需要予測値を算出する。
そして、ステップS14において、目的関数及び制約条件を設定する。目的関数及び制約条件は、演算部120の目的関数設定部121及び制約条件設定部122においてそれぞれ設定される。上述したように、目的関数は、例えば発電機の燃料費や送電損失であり、制約条件としては、潮流方程式のほか、電圧の上下限値、操作量の上下限値などである。また、発電機の出力を急激に変化させることができないことを考慮し、発電機の出力の変化量に制約を加えてもよい。
目的関数及び制約条件が設定されると、ステップS15において、翌日における所定の時間帯毎に、上述した複数の見かけ上の発電予測値のうち1つの値に対して最適潮流計算が実行され、最適な運用状態に対応する操作量、電圧解、及び従属変数、すなわち、発電機の起動又は停止状態が算出される。
その後、ステップS16において、ステップS15で得られた発電機の起動又は停止状態を用いて、翌日の所定の時間帯毎に「発電予測値+3σ」及び「発電予測値−3σ」に対応する最適潮流計算を実行する。
そして、ステップS16における最適潮流計算が、例えば図12、図13に示されるように実行可能な解を与えない場合(ステップS17の「NO」)、ステップS18において警告を出力する。警告は、例えば、解が得られなかった時間帯と発電予測値の別(「発電予測値+3σ」又は「発電予測値−3σ」)とを、図示しないディスプレイに表示することにより行われる。これにより、運用者は事前に、特定の時間帯に特定の発電機の起動又は停止状態の変更があり得ることを認識することができる。
ステップS17においていずれの時間帯においても実行可能な解が得られたとき、及び、ステップS18で警告が出力された後、ステップS19において、ステップS15、S16で得られた時間帯毎の操作量、電圧解、及び従属変数を、複数の発電予測値に対応させて出力する。出力の仕方は、例えば、図10のように特定の時間帯における複数の発電予測値ごとの発電機の出力をグラフ化することや、図11のように、1日を通しての発電機の総出力をグラフ化することを含む。
このようにして翌日の起動又は停止計画が算出されて、ステップS1が終了する。そして、ステップS2では、ステップS1で得られた計画を用いて、当日の起動又は停止修正計画が策定されることになる。
(当日の起動又は停止修正計画の算出)
図5を参照して、当日の起動又は停止修正計画を策定する手順S2を説明する。
ステップS21において当日における需要予測値を取得する手順、ステップS22において当日における太陽光発電装置250の複数の発電予測値を取得する手順、ステップS23において当日における複数の見かけ上の需要予測値を算出する手順、並びに、ステップS24において目的関数及び制約条件を設定する手順は、前日の起動又は停止計画の算出における対応する手順S11−S14と同様である。
そして、ステップS25において、再び最適潮流計算を実行し、当日における時間帯毎の発電機の起動又は停止に関する修正計画を算出する。ここで、本実施形態では、当日における最適潮流計算は、計算時間短縮のため、特定の発電機の起動又は停止状態を固定して実行される。ここでは、前日に策定された発電機の起動又は停止状態が利用される。具体的には、前日に策定された計画中のある時刻において、複数の発電予測値に対応する起動又は停止状態のいずれもが、特定の発電機の起動を指示している場合、当日の該当する時刻についての最適潮流計算では、その発電機の起動を条件に加える。同様に、前日に策定された計画中のある時刻において、複数の発電予測値に対応する起動又は停止状態のいずれもが、特定の発電機の停止を指示している場合、当日の該当する時刻についての最適潮流計算では、その発電機の停止を条件に加える。このように、当日の最適潮流計算は、特定の発電機の起動又は停止状態を固定できるかできないかを時間帯ごとに確認したうえで、実行される。
このようにして発電機の起動又は停止修正計画が求められると、ステップS26において、その修正計画に対応する操作量、電圧解、従属変数が出力される。
かかる実施形態では、再生可能エネルギーに係る電源の一例としての太陽光発電装置250の発電量予測値に幅が与えられることにより、再生可能エネルギー電源の出力の変動を考慮した最適潮流計算を行うことができる。これにより、運用者は事前に、再生可能エネルギーに係る電源の出力変動を考慮した適切な系統運用情報を得ることができるので、再生可能エネルギー電源が予測値どおりに発電しない場合に備えることが可能となる。また、再生可能エネルギーに係る電源が、ある時間帯において発電予測値より多く又は少なく発電することに伴って、特定の発電機の停止又は起動が必要になる場合には、警告が出力されるので、運用者は事前に、そのような事態に準備しておくことが可能となる。例えば、停止させている発電機を直ちに起動させられることができるように準備したり、蓄電池230の放電を手配したりすることが可能となる。また、無効電力の不足が予測されるときには、無効電力の供給を増やすべく調相設備240を稼働させることを予定しておくことができる。
前述したとおり、最適潮流計算装置100は、太陽光発電装置250及び複数の発電機を含む電力系統200が所定の制約条件の下で最適に運用されるように、電力系統200を構成する要素の操作量を決定する最適潮流計算装置であって、所定の時刻における太陽光発電装置250の複数の発電予測値、所定の時刻における電力系統200の需要予測値、所定の制約条件、及び、電力系統200の運用状態を規定する目的関数に基づいて最適潮流計算を実行して、複数の発電予測値に対応する複数の操作量を算出する演算部120と、演算部120の算出結果を出力する出力部140と、を備える。かかる実施形態によれば、太陽光発電装置250の発電量予測値に幅が与えられるので、太陽光発電装置250の出力の変動を考慮した最適潮流計算を行うことができる。よって、運用者は事前に、太陽光発電装置250の出力変動を考慮した適切な系統運用情報を得ることができるので、太陽光発電装置250が予測値どおりに発電しない場合に備えることが可能となる。
また、演算部120は、複数の操作量が示す複数の発電機の起動又は停止状態のうち任意の1つの状態を選択し、1つの状態を用いて最適潮流計算を再度実行することが好ましい。かかる実施形態において、最適潮流計算は、選択された1つの起動又は停止状態とは異なる状態に対して実行可能な解を与えない。つまり、このような場合には、特定の発電機の起動又は停止が必要になることが明らかになるから、運用者は事前にそのような事態に備えることが可能となる。
また、演算部120は、再度実行された最適潮流計算の解が実現可能な操作量を示すかどうかを判定し、演算部120が、解が実現可能な操作量を示していないと判定すると、出力部140は、警告を出力することが好ましい。かかる実施形態によれば、運用者は、特定の発電機の起動又は停止が必要になることを事前に把握することができるから、事前の対策を立てることが可能となる。
また、演算部120は、複数の操作量が示す複数の発電機の起動又は停止状態を判定し、全ての操作量が特定の発電機について起動状態を示していると判定すると、特定の発電機が起動状態にあるものとして最適潮流計算を再度実行することが好ましい。かかる実施形態によれば、再度行われる最適潮流計算の計算量を減らすことができるから、計画の精度を維持しつつ計算時間の短縮及び資源の節約に資する。
また、演算部120は、全ての操作量が特定の発電機について停止状態を示していると判定すると、特定の発電機が停止状態にあるものとして最適潮流計算を再度実行することが好ましい。かかる実施形態によれば、再度行われる最適潮流計算の計算量を減らすことができるから、計画の精度を維持しつつ計算時間の短縮及び資源の節約に資する。
なお、上述した実施の形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明はその趣旨を逸脱することなく変更、改良され得るとともに、本発明にはその等価物も含まれる。
100 最適潮流計算装置
110 入力部
120 演算部
130 記憶部
140 出力部
200 電力系統
211−213 発電機
221−227 ノード
230 蓄電機
240 調相設備
250 太陽光発電装置
261−267 線路

Claims (10)

  1. 再生可能エネルギーに係る電源及び複数の発電機を含む電力系統が所定の制約条件の下で運用されるように、前記電力系統を構成する要素の操作量を決定する潮流計算装置であって、
    所定の時刻における前記電源の複数の発電予測値、前記所定の時刻における前記電力系統の需要予測値、前記所定の制約条件、及び、前記電力系統の運用状態を規定する目的関数に基づいて潮流計算を実行して、前記複数の発電予測値に対応する複数の前記操作量を算出する演算部と、
    前記演算部の算出結果を出力する出力部と、
    を備えることを特徴とする潮流計算装置。
  2. 前記演算部は、前記複数の操作量が示す前記複数の発電機の起動又は停止状態のうち任意の1つの状態を選択し、前記1つの状態を用いて前記潮流計算を再度実行する
    ことを特徴とする請求項1に記載の潮流計算装置。
  3. 前記演算部は、再度実行された前記潮流計算の解が実現可能な操作量を示すかどうかを判定し、
    前記演算部が、前記解が実現可能な操作量を示していないと判定すると、前記出力部は、警告を出力する
    ことを特徴とする請求項2に記載の潮流計算装置。
  4. 前記演算部は、前記複数の操作量が示す前記複数の発電機の起動又は停止状態を判定し、全ての操作量が特定の発電機について起動状態を示していると判定すると、前記特定の発電機が起動状態にあるものとして前記潮流計算を再度実行する
    ことを特徴とする請求項1−3のいずれかに記載の潮流計算装置。
  5. 前記演算部は、全ての操作量が特定の発電機について停止状態を示していると判定すると、前記特定の発電機が停止状態にあるものとして前記潮流計算を再度実行する
    ことを特徴とする請求項4に記載の潮流計算装置。
  6. 前記所定の制約条件は、前記電力系統の潮流方程式、前記電力系統に含まれる変圧器の特性、前記電力系統に含まれる静止形無効電力補償装置の制御ロジック、前記電力系統に含まれるノードにおける電圧の指定値、及び送電線の潮流値のうち少なくとも1つを含む
    ことを特徴とする請求項1−5のいずれかに記載の潮流計算装置。
  7. 前記目的関数は、発電機の燃料費又は前記電力系統に含まれる送電線の送電損失を示す関数である
    ことを特徴とする請求項1−6のいずれかに記載の潮流計算装置。
  8. 前記操作量は、発電機出力、ノード電圧、及び調相設備の調整量のうち少なくとも1つを含む
    ことを特徴とする請求項1−7のいずれかに記載の潮流計算装置。
  9. 再生可能エネルギーに係る電源及び複数の発電機を含む電力系統が所定の制約条件の下で運用されるように、前記電力系統を構成する要素の操作量を決定する潮流計算方法であって、
    所定の時刻における前記電源の複数の発電予測値、前記所定の時刻における前記電力系統の需要予測値、上記所定の制約条件、及び、前記電力系統の運用状態を規定する目的関数に基づいて潮流計算を実行して、前記複数の発電予測値に対応する複数の前記操作量を算出し、
    算出された結果を出力する
    ことを特徴とする潮流計算方法。
  10. 再生可能エネルギーに係る電源及び複数の発電機を含む電力系統が所定の制約条件の下で運用されるように、前記電力系統を構成する要素の操作量を決定するべく、コンピュータに対して、
    所定の時刻における前記電源の複数の発電予測値、前記所定の時刻における前記電力系統の需要予測値、上記所定の制約条件、及び、前記電力系統の運用状態を規定する目的関数に基づいて潮流計算を実行し、前記複数の発電予測値に対応する複数の前記操作量を算出する第1機能と、
    前記第1機能の算出結果を出力する第2機能と、
    を実行させるプログラム。
JP2015074955A 2015-04-01 2015-04-01 潮流計算装置、潮流計算方法、及びプログラム Active JP6515640B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015074955A JP6515640B2 (ja) 2015-04-01 2015-04-01 潮流計算装置、潮流計算方法、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015074955A JP6515640B2 (ja) 2015-04-01 2015-04-01 潮流計算装置、潮流計算方法、及びプログラム

Publications (2)

Publication Number Publication Date
JP2016194849A true JP2016194849A (ja) 2016-11-17
JP6515640B2 JP6515640B2 (ja) 2019-05-22

Family

ID=57323751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015074955A Active JP6515640B2 (ja) 2015-04-01 2015-04-01 潮流計算装置、潮流計算方法、及びプログラム

Country Status (1)

Country Link
JP (1) JP6515640B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018191482A (ja) * 2017-05-11 2018-11-29 三菱電機株式会社 最適潮流計算装置、最適潮流計算方法、および最適潮流計算プログラム
CN109344361A (zh) * 2018-08-27 2019-02-15 南昌大学 一种电力系统潮流计算中雅可比矩阵快速形成的方法
CN110112790A (zh) * 2019-06-06 2019-08-09 南方电网科学研究院有限责任公司 有源配电网运行效率的评价方法、装置、设备及存储介质
JP2020516213A (ja) * 2017-01-23 2020-05-28 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 電力グリッド内の相互に依存する不確かな資源の組み合わされた影響の定量化
JP2020123199A (ja) * 2019-01-31 2020-08-13 中国電力株式会社 予測システム、予測方法
JP2020123200A (ja) * 2019-01-31 2020-08-13 中国電力株式会社 予測システム、予測方法
KR20210046183A (ko) 2019-10-18 2021-04-28 고려대학교 산학협력단 에너지 관리 장치 및 방법
WO2022118495A1 (ja) * 2020-12-04 2022-06-09 株式会社日立製作所 電力系統運用計画作成支援装置および方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006174564A (ja) * 2004-12-14 2006-06-29 Tokyo Electric Power Co Inc:The 最適潮流計算方法及び最適潮流計算装置
WO2011142296A1 (ja) * 2010-05-10 2011-11-17 三菱電機株式会社 発電計画作成装置
JP2012034444A (ja) * 2010-07-28 2012-02-16 Toshiba Corp 電力需給計画装置及びその方法
JP2014064382A (ja) * 2012-09-21 2014-04-10 Hitachi Ltd 系統制御装置および系統制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006174564A (ja) * 2004-12-14 2006-06-29 Tokyo Electric Power Co Inc:The 最適潮流計算方法及び最適潮流計算装置
WO2011142296A1 (ja) * 2010-05-10 2011-11-17 三菱電機株式会社 発電計画作成装置
JP2012034444A (ja) * 2010-07-28 2012-02-16 Toshiba Corp 電力需給計画装置及びその方法
JP2014064382A (ja) * 2012-09-21 2014-04-10 Hitachi Ltd 系統制御装置および系統制御方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7161268B2 (ja) 2017-01-23 2022-10-26 インターナショナル・ビジネス・マシーンズ・コーポレーション 電力グリッド内の相互に依存する不確かな資源の組み合わされた影響の定量化
JP2020516213A (ja) * 2017-01-23 2020-05-28 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 電力グリッド内の相互に依存する不確かな資源の組み合わされた影響の定量化
JP2018191482A (ja) * 2017-05-11 2018-11-29 三菱電機株式会社 最適潮流計算装置、最適潮流計算方法、および最適潮流計算プログラム
CN109344361A (zh) * 2018-08-27 2019-02-15 南昌大学 一种电力系统潮流计算中雅可比矩阵快速形成的方法
CN109344361B (zh) * 2018-08-27 2022-05-20 南昌大学 一种电力系统潮流计算中雅可比矩阵快速形成的方法
JP7206964B2 (ja) 2019-01-31 2023-01-18 中国電力株式会社 予測システム、予測方法
JP2020123199A (ja) * 2019-01-31 2020-08-13 中国電力株式会社 予測システム、予測方法
JP2020123200A (ja) * 2019-01-31 2020-08-13 中国電力株式会社 予測システム、予測方法
JP7206963B2 (ja) 2019-01-31 2023-01-18 中国電力株式会社 予測システム、予測方法
CN110112790A (zh) * 2019-06-06 2019-08-09 南方电网科学研究院有限责任公司 有源配电网运行效率的评价方法、装置、设备及存储介质
CN110112790B (zh) * 2019-06-06 2023-10-20 南方电网科学研究院有限责任公司 有源配电网运行效率的评价方法、装置、设备及存储介质
KR20210046183A (ko) 2019-10-18 2021-04-28 고려대학교 산학협력단 에너지 관리 장치 및 방법
WO2022118495A1 (ja) * 2020-12-04 2022-06-09 株式会社日立製作所 電力系統運用計画作成支援装置および方法
JP7514748B2 (ja) 2020-12-04 2024-07-11 株式会社日立製作所 電力系統運用計画作成支援装置および方法

Also Published As

Publication number Publication date
JP6515640B2 (ja) 2019-05-22

Similar Documents

Publication Publication Date Title
JP2016194849A (ja) 潮流計算装置、潮流計算方法、及びプログラム
Wen et al. Enhanced security-constrained unit commitment with emerging utility-scale energy storage
US8493030B2 (en) Method for operating an energy storage system
JP6187463B2 (ja) グリッド統合制御装置、グリッド制御システム、グリッド制御装置、プログラム、及び制御方法
JP5076157B2 (ja) 分散型電源システム及びこのシステムを用いた系統電圧安定化方法
Zia et al. Energy management system for a hybrid PV-Wind-Tidal-Battery-based islanded DC microgrid: Modeling and experimental validation
Mazidi et al. A model for flexibility analysis of RESS with electric energy storage and reserve
JP6587522B2 (ja) 電圧・無効電力制御装置、方法、および電圧・無効電力制御システム
JP5616385B2 (ja) 電力系統制御装置及び電力系統制御方法
JP6069738B2 (ja) 充放電制御システム、充放電制御方法、および充放電制御プログラム
US9671842B2 (en) Control device for distributed generators
Xu et al. Multi-objective chance-constrained optimal day-ahead scheduling considering BESS degradation
Abdelaziz et al. Economic droop parameter selection for autonomous microgrids including wind turbines
JP2017046506A (ja) 電圧無効電力制御システム
JP2015037371A (ja) 需給制御装置
JP2015171233A (ja) 需要家機器運用管理システムおよび方法
CN115333123A (zh) 新能源发电参与电力系统调频的方法、装置、设备和介质
JP2017050972A (ja) 発電計画作成装置、発電計画作成プログラム及び発電計画作成方法
JP6043576B2 (ja) 蓄電池システム及び発電プラント制御システム
JP2020039222A (ja) 電力需給制御装置、電力需給制御システムおよび電力需給制御方法
JP6296910B2 (ja) 電力需給システム
Abdelaziz et al. Fuel-saving benefit analysis of islanded microgrid central controllers
JP6705319B2 (ja) 統括制御装置、統括制御システム、統括制御方法および統括制御プログラム
JP6212661B2 (ja) 制御装置、制御方法、プログラム、及び水素エネルギー貯蔵システム
JPWO2014167830A1 (ja) 電力制御システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R150 Certificate of patent or registration of utility model

Ref document number: 6515640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250