JP6296910B2 - 電力需給システム - Google Patents

電力需給システム Download PDF

Info

Publication number
JP6296910B2
JP6296910B2 JP2014119761A JP2014119761A JP6296910B2 JP 6296910 B2 JP6296910 B2 JP 6296910B2 JP 2014119761 A JP2014119761 A JP 2014119761A JP 2014119761 A JP2014119761 A JP 2014119761A JP 6296910 B2 JP6296910 B2 JP 6296910B2
Authority
JP
Japan
Prior art keywords
self
power
bus
voltage
inverter device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014119761A
Other languages
English (en)
Other versions
JP2015233384A (ja
Inventor
国広 仲尾
国広 仲尾
好司 八切
好司 八切
友之 平井
友之 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2014119761A priority Critical patent/JP6296910B2/ja
Publication of JP2015233384A publication Critical patent/JP2015233384A/ja
Application granted granted Critical
Publication of JP6296910B2 publication Critical patent/JP6296910B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Description

本発明は、非ループ状の交流母線と、蓄電装置と、その蓄電装置と交流母線との間を自己接続線を用いて接続する自立インバータ装置とを有し、交流母線には複数の発電装置及び複数の電力消費装置が接続されている電力需給システムに関する。
例えば、電力会社の発電所から需要者へと電力が送られる大規模な電力系統では、通常、電気の流れは発電所から需要者への一方通行である。そのため、上流側の発電所から下流側の需要家へ向かって、電力の電圧は単調に降下する。但し、需要家に供給される電力の電圧が所定の許容電圧範囲(例えば、101V±6Vの範囲)にあるように、そのような電圧降下の発生を見越して、電力系統の途中で電圧の調整が行われている。
特許文献1には、上述のような一般的な大規模な電力系統とは異なる電力需給システムが記載されている。特許文献1に記載されているのは、非ループ状の交流母線と、蓄電装置と、蓄電装置と交流母線との間を自己接続線を用いて接続する自立インバータ装置とを有し、交流母線には複数の発電装置及び複数の電力消費装置が接続されている電力需給システムである。そして、自立インバータ装置は、交流母線に対する接続部位での電力の電圧を、上述した許容電圧範囲内の所定の目標電圧とする制御を行っている。
図5(a)は、特許文献1に記載されている電力需給システムと同様の構成のシステムを示す図である。このシステムでは、一本の交流母線1の一端に自立インバータ装置5が接続され、その自立インバータ接続部位Piでの電力の電圧が目標電圧になるように自立インバータ装置5が電力品質制御を実行する。その結果、交流母線1に接続されている電力需要者Dの電力消費装置6へ、所定の許容電圧範囲内の電圧が供給されることが期待される。
国際公開第2013/175612号
図5(a)に示したような電力需給システムにおいて、交流母線1に対して接続されている複数の発電装置7が、太陽光や風力や地熱などの再生可能エネルギー(自然エネルギー)を利用して発電する装置である場合、それら複数の発電装置7の発電電力は日射量や風量や地熱量などの増減に応じて同時期に増減する。そのため、交流母線1に対して接続されている複数の発電装置7の発電電力が同時期に大きくなった場合、交流母線1では、複数の電力消費装置6の合計消費電力よりも、複数の発電装置7の合計発電電力が大きくなることも起こり得る。その場合、交流母線1での電力の電圧が上昇する状況に至る。図5(b)は、交流母線1上での電力の電圧分布の例を模式的に示す図である。この例では、交流母線1上の一端部にある自立インバータ接続部位Piでの電力の電圧が目標電圧Vt(図中ではVt=101V)になるように自立インバータ装置5が電力品質制御を行っている。また、この例では、発電装置7の発電電力が大きくなっているため、交流母線1上の各接続部位p1〜p4には各発電装置7から電流が流入し、その結果、電圧制御が行われている自立インバータ接続部位Piの電圧を基準として、その自立インバータ接続部位Piから離れるにつれて電圧が目標電圧Vtよりも徐々に高くなっている。そして、接続部位p4では、電圧が許容電圧範囲を上回るという問題が発生している。
本発明は、上記の課題に鑑みてなされたものであり、その目的は、発電装置が接続されている交流母線での電力の電圧の大幅な変動を抑制可能な電力需給システムを提供する点にある。
上記目的を達成するための本発明に係る電力需給システムの特徴構成は、非ループ状の交流母線と、蓄電装置と、前記蓄電装置と前記交流母線との間を自己接続線を用いて接続する自立インバータ装置とを有する自己システムを備え、
前記自己接続線は、前記自立インバータ装置と前記蓄電装置とを接続するための第1自己接続線と、前記自立インバータ装置と前記交流母線とを接続するための第2自己接続線とで構成され、
前記自立インバータ装置に対して、前記第2自己接続線側から前記第1自己接続線側への充電又は前記第1自己接続線側から前記第2自己接続線側への放電を行いながら、当該自立インバータ装置が前記第2自己接続線を介して接続される前記交流母線の自立インバータ接続部位での電力の電圧を目標電圧とし及び周波数を前記蓄電装置の蓄電量に応じて決定される目標周波数とする電力品質制御を行わせる制御装置を備え、
前記交流母線には複数の発電装置及び複数の電力消費装置が接続されている電力需給システムであって、
前記発電装置は、再生可能エネルギーを利用して発電する装置であり、前記複数の発電装置のそれぞれの発電電力は、再生可能エネルギーの増減に応じて同時期に増減し、
前記複数の発電装置及び前記複数の電力消費装置は、前記交流母線上に間隔を置いて並ぶ複数の接続部位において前記交流母線に接続され、及び、前記自立インバータ接続部位は、前記交流母線上において、前記発電装置が接続されている前記接続部位同士の間にあり、
前記制御装置は
特定の前記自己システムの前記蓄電装置の蓄電量の増加率が上限増加率よりも大きいとき又は前記特定の自己システムの前記自立インバータ装置が前記第2自己接続線側から前記第1自己接続線側へ充電する有効電力測定値が所定の充電側閾値よりも大きいとき、前記特定の自己システムの前記自立インバータ装置に対して、前記目標電圧を低下側に変更させる電圧低下処理を実行させ、並びに、
前記特定の自己システムの前記蓄電装置の蓄電量の減少率が上限減少率よりも大きいとき又は前記特定の自己システムの前記自立インバータ装置が前記第1自己接続線側から前記第2自己接続線側へ放電する有効電力測定値が所定の放電側閾値よりも大きいとき、前記特定の自己システムの前記自立インバータ装置に対して、前記目標電圧を増大側に変更させる電圧上昇処理を実行させる点にある。
上記特徴構成によれば、自立インバータ装置が、交流母線での電力の電圧を目標電圧とし及び周波数を蓄電装置の蓄電量に応じて決定される目標周波数とする電力品質制御を行うことで、交流母線に接続される電力消費装置に対して高品質の電力を安定供給できるようになる。
尚、例えば、非ループ状の交流母線上で、自立インバータ装置と、一つの発電装置と、他の一つの発電装置とがその順に並んで接続されているとき、一つの発電装置の接続部位の電圧は、隣接している自立インバータ接続部位の電圧(目標電圧)を基準として変動する。また、他の一つの発電装置の接続部位の電圧は、隣接する一つの発電装置の接続部位の電圧を基準として変動する。更に、発電装置は、再生可能エネルギーを利用して発電する装置であるので、複数の発電装置のそれぞれの発電電力の増減は、その再生可能エネルギーの増減に合わせて同時期に現れることになる。その結果、他の一つの発電装置の接続部位の電圧は、自立インバータ接続部位の電圧(目標電圧)から見ると、一つの発電装置の接続部位の電圧変動分に加えて更なる変動を示すことになる。
ところが本特徴構成によれば、自立インバータ装置は、非ループ状の交流母線上の自立インバータ接続部位に接続され、この自立インバータ接続部位は、発電装置の接続部位同士の間にある。例えば、交流母線に対して一つの発電装置と他の一つの発電装置とが接続されているとき、自立インバータ装置は、一つの発電装置の接続部位と、他の一つの発電装置の接続部位との間の自立インバータ接続部位で交流母線に接続される。その結果、一つの発電装置の接続部位の電圧、及び、他の一つの発電装置の接続部位の電圧は、共に、自立インバータ接続部位での電圧(目標電圧)を基準として変動するため、目標電圧から大幅に変動することを避けることができる。
従って、発電装置が接続されている交流母線での電力の電圧の大幅な変動を抑制可能な電力需給システムを提供できる。
また、蓄電装置の蓄電量の増加率が所定の上限増加率よりも大きいということは、自立インバータ装置が電力品質制御として行っている第2自己接続線側から第1自己接続線側へ充電する(即ち、交流母線側から蓄電装置側へ充電する)有効電力が相対的に大きいことを示している。つまり、交流母線の電圧が目標電圧よりも高いため、交流母線の電圧を下げて目標電圧に近づけようとする制御が行われていることを示している。逆に、蓄電装置の蓄電量の減少率が所定の上限減少率よりも大きいということは、自立インバータ装置が電力品質制御として行っている第1自己接続線側から第2自己接続線側へ放電する(即ち、蓄電装置側から交流母線側へ放電する)有効電力が相対的に大きいことを示している。つまり、交流母線の電圧が目標電圧よりも低いため、交流母線の電圧を上げて目標電圧に近づけようとする制御が行われていることを示している。特に、発電装置は、再生可能エネルギーを利用して発電する装置であるので、複数の発電装置の発電電力の増減は、その再生可能エネルギーの増減に合わせて同時期に現れることになる。その結果、複数の発電装置の発電電力の増減に合わせて、交流母線の電圧の大幅な増減が現れやすくなる。
そこで本特徴構成では、制御装置は、特定の自己システムの蓄電装置の蓄電量の増加率が上限増加率よりも大きいとき又は特定の自己システムの自立インバータ装置が第2自己接続線側から第1自己接続線側へ充電する有効電力測定値が所定の充電側閾値よりも大きいとき、特定の自己システムの自立インバータ装置に対して、目標電圧を低下側に変更させる電圧低下処理を実行させ、並びに、特定の自己システムの蓄電装置の蓄電量の減少率が上限減少率よりも大きいとき又は特定の自己システムの自立インバータ装置が第1自己接続線側から第2自己接続線側へ放電する有効電力測定値が所定の放電側閾値よりも大きいとき、特定の自己システムの自立インバータ装置に対して、目標電圧を増大側に変更させる電圧上昇処理を実行させる。その結果、交流母線での電力の電圧は、目標電圧の増減変更に合わせて全体として増減して、適切な範囲内にあることが確保される。
本発明に係る電力需給システムの別の特徴構成は、非ループ状の交流母線と、蓄電装置と、前記蓄電装置と前記交流母線との間を自己接続線を用いて接続する自立インバータ装置とを有する自己システムを複数個備え、
複数個の前記自己システムが電気的に直列接続されるように、一つの前記自己システムが有する前記蓄電装置と他の一つの前記自己システムが有する前記交流母線との間を相互接続線を用いて接続する融通インバータ装置を前記自己システム同士の間に備え、
前記自己接続線は、前記自立インバータ装置と前記蓄電装置とを接続するための第1自己接続線と、前記自立インバータ装置と前記交流母線とを接続するための第2自己接続線とで構成され、
前記相互接続線は、前記融通インバータ装置と前記蓄電装置とを接続するための第1相互接続線と、前記融通インバータ装置と前記交流母線とを接続するための第2相互接続線とで構成され、
前記自立インバータ装置に対して電力品質制御を行わせ、並びに、前記融通インバータ装置に対して電力融通制御を行わせる制御装置を備え、
前記制御装置は、前記電力品質制御として、前記自立インバータ装置に対して、前記第2自己接続線側から前記第1自己接続線側への充電又は前記第1自己接続線側から前記第2自己接続線側への放電を行いながら、当該自立インバータ装置が前記第2自己接続線を介して接続される前記交流母線の自立インバータ接続部位での電力の電圧を目標電圧とし及び周波数を前記蓄電装置の蓄電量に応じて決定される目標周波数とする制御を行わせ、並びに、前記電力融通制御として、一つの前記自己システムと他の前記自己システムとの間で前記相互接続線を用いて電力を融通するとき、当該相互接続線を構成する前記第1相互接続線と前記第2相互接続線との間に設けられる前記融通インバータ装置に対して、当該一つの自己システム及び当該他の自己システムのそれぞれにおける前記交流母線での前記目標周波数に基づいて、前記蓄電装置の蓄電量が相対的に大きい自己システムから、前記蓄電装置の蓄電量が相対的に小さい自己システムへと電力を融通させる制御を行わせ、
前記交流母線には複数の発電装置及び複数の電力消費装置が接続されている電力需給システムであって、
前記発電装置は、再生可能エネルギーを利用して発電する装置であり、
一つの前記自己システムにおいて、前記複数の発電装置及び前記複数の電力消費装置は、前記交流母線上に間隔を置いて並ぶ複数の接続部位において前記交流母線に接続され、及び、前記自立インバータ接続部位は、前記交流母線上において、前記発電装置が接続されている前記接続部位同士の間にあり、
前記制御装置は、
特定の前記自己システムの前記蓄電装置の蓄電量の増加率が上限増加率よりも大きいとき又は前記特定の自己システムの前記自立インバータ装置が前記第2自己接続線側から前記第1自己接続線側へ充電する有効電力測定値が所定の充電側閾値よりも大きいとき、前記特定の自己システムの前記自立インバータ装置に対して、前記目標電圧を低下側に変更させる電圧低下処理を実行させ、並びに、
前記特定の自己システムの前記蓄電装置の蓄電量の減少率が上限減少率よりも大きいとき又は前記特定の自己システムの前記自立インバータ装置が前記第1自己接続線側から前記第2自己接続線側へ放電する有効電力測定値が所定の放電側閾値よりも大きいとき、前記特定の自己システムの前記自立インバータ装置に対して、前記目標電圧を増大側に変更させる電圧上昇処理を実行させる点にある。
上記特徴構成によれば、自立インバータ装置が、交流母線での電力の電圧を目標電圧とし及び周波数を蓄電装置の蓄電量に応じて決定される目標周波数とする電力品質制御を行うことで、交流母線に接続される電力消費装置に対して高品質の電力を安定供給できるようになる。特に、電力品質制御では、交流母線の電力の周波数が、蓄電装置の蓄電量に応じて決定される目標周波数となるように制御される。つまり、各自己システムの交流母線での電力の周波数(目標周波数)には、蓄電装置の蓄電量に関する情報が与えられていることになる。その結果、融通インバータ装置が、蓄電装置の蓄電量が相対的に大きい自己システムから蓄電装置の蓄電量が相対的に小さい自己システムへ電力を融通させるための電力融通制御を行うとき、それぞれの自己システムの交流母線での電力の周波数を見るだけで、何れの自己システムの蓄電装置の蓄電量が大きいのかを容易に判別できる。また、この電力融通制御が行われることで、各自己システムの蓄電装置の蓄電量の均等化を図ることができる。
尚、例えば、非ループ状の交流母線上で、自立インバータ装置と、一つの発電装置と、他の一つの発電装置とがその順に並んで接続されているとき、一つの発電装置の接続部位の電圧は、隣接している自立インバータ接続部位の電圧(目標電圧)を基準として変動する。また、他の一つの発電装置の接続部位の電圧は、隣接する一つの発電装置の接続部位の電圧を基準として変動する。更に、発電装置は、再生可能エネルギーを利用して発電する装置であるので、複数の発電装置の発電電力の増減は、その再生可能エネルギーの増減に合わせて同時期に現れることになる。その結果、他の一つの発電装置の接続部位の電圧は、自立インバータ接続部位の電圧(目標電圧)から見ると、一つの発電装置の接続部位の電圧変動分に加えて更なる変動を示すことになる。
ところが本特徴構成によれば、自立インバータ装置は、非ループ状の交流母線上の自立インバータ接続部位に接続され、この自立インバータ接続部位は、発電装置の接続部位同士の間にある。例えば、交流母線に対して一つの発電装置と他の一つの発電装置とが接続されているとき、自立インバータ装置は、一つの発電装置の接続部位と、他の一つの発電装置の接続部位との間の自立インバータ接続部位で交流母線に接続される。その結果、一つの発電装置の接続部位の電圧、及び、他の一つの発電装置の接続部位の電圧は、共に、自立インバータ接続部位での電圧(目標電圧)を基準として変動するため、目標電圧から大幅に変動することを避けることができる。
従って、発電装置が接続されている交流母線での電力の電圧の大幅な変動を抑制可能な電力需給システムを提供できる。
また、蓄電装置の蓄電量の増加率が所定の上限増加率よりも大きいということは、自立インバータ装置が電力品質制御として行っている第2自己接続線側から第1自己接続線側へ充電する(即ち、交流母線側から蓄電装置側へ充電する)有効電力が相対的に大きいことを示している。つまり、交流母線の電圧が目標電圧よりも高いため、交流母線の電圧を下げて目標電圧に近づけようとする制御が行われていることを示している。逆に、蓄電装置の蓄電量の減少率が所定の上限減少率よりも大きいということは、自立インバータ装置が電力品質制御として行っている第1自己接続線側から第2自己接続線側へ放電する(即ち、蓄電装置側から交流母線側へ放電する)有効電力が相対的に大きいことを示している。つまり、交流母線の電圧が目標電圧よりも低いため、交流母線の電圧を上げて目標電圧に近づけようとする制御が行われていることを示している。特に、発電装置は、再生可能エネルギーを利用して発電する装置であるので、複数の発電装置の発電電力の増減は、その再生可能エネルギーの増減に合わせて同時期に現れることになる。その結果、複数の発電装置の発電電力の増減に合わせて、交流母線の電圧の大幅な増減が現れやすくなる。
そこで本特徴構成では、制御装置は、特定の自己システムの蓄電装置の蓄電量の増加率が上限増加率よりも大きいとき又は特定の自己システムの自立インバータ装置が第2自己接続線側から第1自己接続線側へ充電する有効電力測定値が所定の充電側閾値よりも大きいとき、特定の自己システムの自立インバータ装置に対して、目標電圧を低下側に変更させる電圧低下処理を実行させ、並びに、特定の自己システムの蓄電装置の蓄電量の減少率が上限減少率よりも大きいとき又は特定の自己システムの自立インバータ装置が第1自己接続線側から第2自己接続線側へ放電する有効電力測定値が所定の放電側閾値よりも大きいとき、特定の自己システムの自立インバータ装置に対して、目標電圧を増大側に変更させる電圧上昇処理を実行させる。その結果、交流母線での電力の電圧は、目標電圧の増減変更に合わせて全体として増減して、適切な範囲内にあることが確保される。
本発明に係る電力需給システムの更に別の特徴構成は、非ループ状の交流母線と、蓄電装置と、前記蓄電装置と前記交流母線との間を自己接続線を用いて接続する自立インバータ装置とを有する自己システムを複数個備え、
複数個の前記自己システムが電気的に直列接続されるように、一つの前記自己システムが有する前記蓄電装置と他の一つの前記自己システムが有する前記交流母線との間を相互接続線を用いて接続する融通インバータ装置を前記自己システム同士の間に備え、
前記自己接続線は、前記自立インバータ装置と前記蓄電装置とを接続するための第1自己接続線と、前記自立インバータ装置と前記交流母線とを接続するための第2自己接続線とで構成され、
前記相互接続線は、前記融通インバータ装置と前記蓄電装置とを接続するための第1相互接続線と、前記融通インバータ装置と前記交流母線とを接続するための第2相互接続線とで構成され、
前記自立インバータ装置に対して電力品質制御を行わせ、並びに、前記融通インバータ装置に対して電力融通制御を行わせる制御装置を備え、
前記制御装置は、前記電力品質制御として、前記自立インバータ装置に対して、前記第2自己接続線側から前記第1自己接続線側への充電又は前記第1自己接続線側から前記第2自己接続線側への放電を行いながら、当該自立インバータ装置が前記第2自己接続線を介して接続される前記交流母線の自立インバータ接続部位での電力の電圧を目標電圧とし及び周波数を前記蓄電装置の蓄電量に応じて決定される目標周波数とする制御を行わせ、並びに、前記電力融通制御として、一つの前記自己システムと他の前記自己システムとの間で前記相互接続線を用いて電力を融通するとき、当該相互接続線を構成する前記第1相互接続線と前記第2相互接続線との間に設けられる前記融通インバータ装置に対して、当該一つの自己システム及び当該他の自己システムのそれぞれにおける前記交流母線での前記目標周波数に基づいて、前記蓄電装置の蓄電量が相対的に大きい自己システムから、前記蓄電装置の蓄電量が相対的に小さい自己システムへと電力を融通させる制御を行わせ、
前記交流母線には複数の発電装置及び複数の電力消費装置が接続されている電力需給システムであって、
前記発電装置は、再生可能エネルギーを利用して発電する装置であり、
一つの前記自己システムにおいて、前記複数の発電装置及び前記複数の電力消費装置は、前記交流母線上に間隔を置いて並ぶ複数の接続部位において前記交流母線に接続され、及び、前記自立インバータ接続部位は、前記交流母線上において、前記発電装置が接続されている前記接続部位同士の間にあり、
前記制御装置は、特定の前記自己システムの前記蓄電装置の蓄電量の増加率が上限増加率よりも大きいとき又は前記特定の自己システムの前記自立インバータ装置が前記第2自己接続線側から前記第1自己接続線側へ充電する有効電力測定値が所定の充電側閾値よりも大きいとき、前記特定の自己システムの前記自立インバータ装置に対して、前記目標電圧を低下側に変更させる電圧低下処理を実行させると共に、前記特定の自己システムの前記交流母線に対して接続されている前記融通インバータ装置に対して、前記特定の自己システムの前記交流母線での電力の電圧が低下するように当該交流母線に供給する無効電力を変化させ、並びに、前記特定の自己システムの前記蓄電装置の蓄電量の減少率が上限減少率よりも大きいとき又は前記特定の自己システムの前記自立インバータ装置が前記第1自己接続線側から前記第2自己接続線側へ放電する有効電力測定値が所定の放電側閾値よりも大きいとき、前記特定の自己システムの前記自立インバータ装置に対して、前記目標電圧を増大側に変更させる電圧上昇処理を実行させると共に、前記特定の自己システムの前記交流母線に対して接続されている前記融通インバータ装置に対して、前記特定の自己システムの前記交流母線での電力の電圧が上昇するように当該交流母線に供給する無効電力を変化させる点にある。
上記特徴構成によれば、自立インバータ装置が、交流母線での電力の電圧を目標電圧とし及び周波数を蓄電装置の蓄電量に応じて決定される目標周波数とする電力品質制御を行うことで、交流母線に接続される電力消費装置に対して高品質の電力を安定供給できるようになる。特に、電力品質制御では、交流母線の電力の周波数が、蓄電装置の蓄電量に応じて決定される目標周波数となるように制御される。つまり、各自己システムの交流母線での電力の周波数(目標周波数)には、蓄電装置の蓄電量に関する情報が与えられていることになる。その結果、融通インバータ装置が、蓄電装置の蓄電量が相対的に大きい自己システムから蓄電装置の蓄電量が相対的に小さい自己システムへ電力を融通させるための電力融通制御を行うとき、それぞれの自己システムの交流母線での電力の周波数を見るだけで、何れの自己システムの蓄電装置の蓄電量が大きいのかを容易に判別できる。また、この電力融通制御が行われることで、各自己システムの蓄電装置の蓄電量の均等化を図ることができる。
尚、例えば、非ループ状の交流母線上で、自立インバータ装置と、一つの発電装置と、他の一つの発電装置とがその順に並んで接続されているとき、一つの発電装置の接続部位の電圧は、隣接している自立インバータ接続部位の電圧(目標電圧)を基準として変動する。また、他の一つの発電装置の接続部位の電圧は、隣接する一つの発電装置の接続部位の電圧を基準として変動する。更に、発電装置は、再生可能エネルギーを利用して発電する装置であるので、複数の発電装置の発電電力の増減は、その再生可能エネルギーの増減に合わせて同時期に現れることになる。その結果、他の一つの発電装置の接続部位の電圧は、自立インバータ接続部位の電圧(目標電圧)から見ると、一つの発電装置の接続部位の電圧変動分に加えて更なる変動を示すことになる。
ところが本特徴構成によれば、自立インバータ装置は、非ループ状の交流母線上の自立インバータ接続部位に接続され、この自立インバータ接続部位は、発電装置の接続部位同士の間にある。例えば、交流母線に対して一つの発電装置と他の一つの発電装置とが接続されているとき、自立インバータ装置は、一つの発電装置の接続部位と、他の一つの発電装置の接続部位との間の自立インバータ接続部位で交流母線に接続される。その結果、一つの発電装置の接続部位の電圧、及び、他の一つの発電装置の接続部位の電圧は、共に、自立インバータ接続部位での電圧(目標電圧)を基準として変動するため、目標電圧から大幅に変動することを避けることができる。
従って、発電装置が接続されている交流母線での電力の電圧の大幅な変動を抑制可能な電力需給システムを提供できる。
また、蓄電装置の蓄電量の増加率が所定の上限増加率よりも大きいということは、自立インバータ装置が電力品質制御として行っている第2自己接続線側から第1自己接続線側へ充電する(即ち、交流母線側から蓄電装置側へ充電する)有効電力が相対的に大きいことを示している。つまり、交流母線の電圧が目標電圧よりも高いため、交流母線の電圧を下げて目標電圧に近づけようとする制御が行われていることを示している。逆に、蓄電装置の蓄電量の減少率が所定の上限減少率よりも大きいということは、自立インバータ装置が電力品質制御として行っている第1自己接続線側から第2自己接続線側へ放電する(即ち、蓄電装置側から交流母線側へ放電する)有効電力が相対的に大きいことを示している。つまり、交流母線の電圧が目標電圧よりも低いため、交流母線の電圧を上げて目標電圧に近づけようとする制御が行われていることを示している。特に、発電装置は、再生可能エネルギーを利用して発電する装置であるので、複数の発電装置の発電電力の増減は、その再生可能エネルギーの増減に合わせて同時期に現れることになる。その結果、複数の発電装置の発電電力の増減に合わせて、交流母線の電圧の大幅な増減が現れやすくなる。
そこで本特徴構成では、制御装置は、特定の前記自己システムの前記蓄電装置の蓄電量の増加率が上限増加率よりも大きいとき又は前記特定の自己システムの前記自立インバータ装置が前記第2自己接続線側から前記第1自己接続線側へ充電する有効電力測定値が所定の充電側閾値よりも大きいとき、前記特定の自己システムの前記自立インバータ装置に対して、前記目標電圧を低下側に変更させる電圧低下処理を実行させると共に、前記特定の自己システムの前記交流母線に対して接続されている前記融通インバータ装置に対して、前記特定の自己システムの前記交流母線での電力の電圧が低下するように当該交流母線に供給する無効電力を変化させ、並びに、前記特定の自己システムの前記蓄電装置の蓄電量の減少率が上限減少率よりも大きいとき又は前記特定の自己システムの前記自立インバータ装置が前記第1自己接続線側から前記第2自己接続線側へ放電する有効電力測定値が所定の放電側閾値よりも大きいとき、前記特定の自己システムの前記自立インバータ装置に対して、前記目標電圧を増大側に変更させる電圧上昇処理を実行させると共に、前記特定の自己システムの前記交流母線に対して接続されている前記融通インバータ装置に対して、前記特定の自己システムの前記交流母線での電力の電圧が上昇するように当該交流母線に供給する無効電力を変化させる。その結果、交流母線での電力の電圧は、目標電圧の増減変更に合わせて全体として増減し、加えて、融通インバータ装置を利用した交流母線での電力の電圧の調整が行われながら、適切な範囲内にあることが確保される。
本発明に係る電力需給システムの更に別の特徴構成は、前記自立インバータ接続部位は、
前記交流母線上に複数設定された、前記自立インバータ接続部位の候補としての接続候補部位のうちの一つの部位であり、
前記交流母線に接続されている前記複数の発電装置の予測発電電力の時間的変化と、前記交流母線に接続されている前記複数の電力消費装置の予測消費電力の時間的変化と、前記交流母線での電圧降下特性についての情報とを参照して、複数の前記接続候補部位のそれぞれに関して、前記接続候補部位で前記自立インバータ装置を前記交流母線に接続したと仮定し且つ前記自立インバータ装置が当該接続候補部位での電力の電圧を前記目標電圧とする前記電力品質制御を行っていると仮定して導出される前記交流母線上での電力の予測電圧の分布の時間的変化が許容電圧範囲内となるような部位に位置する点にある。
上記特徴構成によれば、交流母線に接続されている複数の発電装置の予測発電電力の時間的変化及び複数の電力消費装置の予測消費電力の時間的変化に応じて、交流母線での電力の予測電圧が時間的に変動するとしても、自立インバータ接続部位は、交流母線上での電力の予測電圧の分布の時間的変化が許容電圧範囲内となるような部位に位置する。その結果、交流母線の全体にわたって、電圧を許容電圧範囲内に抑制されることを期待できる。
(a)は第1実施形態の電力需給システムの構成を示す図であり、(b)は交流母線上での電力の電圧分布の例を模式的に示す図である。 交流母線上での自立インバータ接続部位の位置を決定する手法を説明する図である。 (a)は電圧低下処理を説明する図であり、(b)は電圧上昇処理を説明する図である。 第2実施形態の電力需給システムの構成を示す図である。 (a)は従来例と同様の電力需給システムの構成を示す図であり、(b)は交流母線上での電力の電圧分布の例を模式的に示す図である。
<第1実施形態>
以下に図面を参照して第1実施形態の電力需給システムについて説明する。
図1(a)は第1実施形態の電力需給システムの構成を示す図である。この電力需給システムは、非ループ状の交流母線1と、蓄電装置4と、蓄電装置4と交流母線1との間を自己接続線2を用いて接続する自立インバータ装置5とを有する自己システム10を備える。交流母線1には複数の発電装置7及び複数の電力消費装置6が接続されている。加えて、電力需給システムは、自立インバータ装置5に対して後述する電力品質制御を行わせる制御装置Cを備える。自己接続線2は、自立インバータ装置5と蓄電装置4とを接続するための第1自己接続線2aと、自立インバータ装置5と交流母線1とを接続するための第2自己接続線2bとで構成される。図1に示す例では、自立インバータ装置5に対して送配電線8が接続されているが、本実施形態では、自立インバータ装置5は、送配電線8の電力を交流母線1又は蓄電装置4へと供給するような動作や、交流母線1又は蓄電装置4の電力を送配電線8に供給するような動作を行うことはない。
図1(a)に示す例では、複数の発電装置7及び複数の電力消費装置6が、交流母線1上に間隔を置いて並ぶ複数の接続部位p(p1〜p4)において交流母線1に接続されている。具体的には、交流母線1上の接続部位p1に一つの電力需要者Dが接続され、交流母線1上の接続部位p2に一つの発電装置7が接続され、交流母線1上の接続部位p3に別の一つの電力需要者Dが接続され、交流母線1上の接続部位p4に更に別の一つの電力需要者Dが接続されている。つまり、接続部位p1には電力消費装置6と発電装置7とが接続され、接続部位p2には発電装置7が接続され、接続部位p3には電力消費装置6と発電装置7とが接続され、接続部位p4には電力消費装置6と発電装置7とが接続されていることになる。
電力消費装置6は、交流母線1から供給される電力を消費する装置である。電力消費装置6としては、例えば照明装置や空調装置などの一般的な装置だけでなく、その動作のために電力を消費する様々な装置を利用できる。
発電装置7は、発電した電力を外部に供給する装置であり、その発電電力の供給先としては交流母線1や同じ電力需要者D内の電力消費装置6がある。発電装置7としては、太陽光や風力や地熱などの再生可能エネルギー(自然エネルギー)を利用して発電する装置を利用できる。この場合、複数の発電装置7のそれぞれの発電電力の増減は、太陽光や風力や地熱などの再生可能エネルギーの増減に合わせて同時期に現れることになる。そのため、複数の発電装置7の発電電力の増減に合わせて、交流母線1の電圧の大幅な増減が現れやすくなる。
蓄電装置4は、リチウムイオン電池、ニッケル水素電池、鉛電池などの蓄電池(化学電池)を利用できる。
自立インバータ装置5は、入力される電力を、所望の電圧、周波数、位相の電力に変換して出力できる電力変換装置である。例えば、自立インバータ装置5は、半導体スイッチング素子などを有する回路部(図示せず)、及び、その半導体スイッチング素子のスイッチング動作を制御する制御部(図示せず)などで構成される。そして、それらの半導体スイッチング素子のオン・オフが切り換えられることで、入力電力から出力電力への電力変換動作が行われる。
制御装置Cは、上記自立インバータ装置5の動作を制御可能な装置である。例えば、制御装置Cは、情報の入出力機能及び記憶機能及び演算処理機能などを有する装置である。尚、制御装置Cの機能は、自立インバータ装置5が有する制御部(図示せず)により実現することができる。或いは、制御装置Cの機能は、自立インバータ装置5が有する制御部(図示せず)とは別に設けられ、それらの制御部と情報通信可能に構成されるマスター制御部によって実現することができる。
そして、制御装置Cは、自己システム10内での電力品質制御を行う。この電力品質制御は、自己システム10の交流母線1での電力の品質を一定に保つことを目的とする制御である。具体的には、制御装置Cは、電力品質制御として、自立インバータ装置5に対して、第2自己接続線2b側から第1自己接続線2a側への充電又は第1自己接続線2a側から第2自己接続線2b側への放電を行いながら、その自立インバータ装置5が第2自己接続線2bを介して接続される交流母線1の自立インバータ接続部位Piでの電力の電圧を目標電圧とし及び周波数を蓄電装置4の蓄電量に応じて決定される目標周波数とする制御を行わせる。
この電力品質制御について補足すると、交流母線1の電力は、電力需要者Dの電力消費装置6によって消費されるが、電力消費装置6は、通常、この電力需給システムとは別の外部の商用電力系統から供給される電力によって動作することを前提としている。つまり、電力消費装置6は、商用電力系統から供給される電力の周波数に応じて動作するように設計されている。そのため、電力消費装置6に対して供給される電力の周波数が異なれば、厳密にはそれらの装置の動作も異なってしまう。従って、交流母線1での電力の周波数を所定範囲内に保つという電力品質制御を行う必要がある。
そこで、電力品質制御として、制御装置Cは、自立インバータ装置5に対して、その自己システム10が有する蓄電装置4を用いて、その自立インバータ装置5が第2自己接続線2bを用いて接続されている交流母線1での電力の電圧を目標電圧とし及び交流母線1での電力の周波数をその蓄電装置4の蓄電量に応じて決定される目標周波数とする制御を行わせる。蓄電装置4の蓄電量についての情報は、蓄電装置4から自立インバータ装置5に対して伝達されてもよいし、或いは、蓄電装置4から制御装置Cに伝達され、更に制御装置Cから自立インバータ装置5に対して伝達されるように構成されてもよい。
例えば、自己システム10において、複数の発電装置7から交流母線1への合計供給電力が、交流母線1からの複数の電力消費装置6による合計消費電力よりも少ない状態(即ち、交流母線1が負荷過多の状態)であるとき、交流母線1の電力の電圧は目標電圧より小さくなる。その場合、制御装置Cは、自立インバータ装置5から交流母線1へ電力を供給させることで(即ち、蓄電装置4側から自立インバータ装置5を介して交流母線1側への放電を行わせることで)、交流母線1での電圧を上昇させるような電力品質制御を行う。これに対して、自己システム10において、複数の発電装置7から交流母線1への供給電力が、交流母線1からの複数の電力消費装置6による受電電力よりも多い状態(即ち、交流母線1が発電過多の状態)であるとき、交流母線1の電力の電圧は目標電圧より大きくなる。その場合、制御装置Cは、交流母線1から自立インバータ装置5へと電力を引き込むことで(即ち、交流母線1から自立インバータ装置5を介して蓄電装置4側へ充電を行わせることで)、交流母線1での電圧を低下させるような電力品質制御を行う。尚、自立インバータ装置5は、このような有効電力の制御だけでなく、無効電力の制御によっても交流母線1の電圧を調整することができる。
次に、上述した電力品質制御において、目標周波数がどのようにして決定されるのかを説明する。
本実施形態では、自立インバータ装置5は、交流母線1での電力の周波数が蓄電装置4の蓄電量が大きくなるにつれて高くなる関係で決定される目標周波数となるように制御する。この関係式の例としては、蓄電装置4の蓄電量の関数で決定する周波数変動値(例えば蓄電量が大きいほど周波数変動値が大きくなる関係など)を交流母線1の基準周波数(例えば60Hz)に対して加算して得られる値を目標周波数とするようなものがある。この場合、目標周波数:fと、基準周波数:f0と、周波数変動値:Δfとの関係は以下の(数式1)で表すことができる。また、周波数変動分:Δfは、蓄電量(State Of Charge):〔SOC〕と定数A、Bを用いて以下の(数式2)で表すことができる。
f=f0+Δf ・・・・・・・・・・(数式1)
Δf=A×〔SOC〕+B ・・・・・(数式2)
自立インバータ装置5は、蓄電装置4の蓄電量が大きくなるほど交流母線1の目標周波数が大きくなるような上記関係式を予め内部メモリなどに記憶しておき、その関係式に従った制御を行う。このように、交流母線1の実際の周波数(即ち、目標周波数)は、その交流母線1に自立インバータ装置5を介して接続されている蓄電装置4の蓄電量が反映されていることになる。
加えて、本実施形態の電力需給システムでは、複数の発電装置7及び複数の電力消費装置6は、交流母線1上に間隔を置いて並ぶ複数の接続部位pにおいて交流母線1に接続され、及び、自立インバータ接続部位Piは、交流母線1上において、発電装置7が接続されている接続部位p同士の間にある。このようなシステム構成により、交流母線1での電力の電圧の大幅な変動が抑制される。具体的には、図1(a)に示すように、自立インバータ接続部位Piは、交流母線1上において、発電装置7が接続されている接続部位p2と接続部位p3との間(即ち、接続部位p1,p2と接続部位p3,p4との間)にある。
図1(b)は、交流母線1上での電力の電圧分布の例を模式的に示す図である。この例では、交流母線1上の自立インバータ接続部位Piでの電力の電圧が目標電圧Vt(図中ではVt=101V)になるように自立インバータ装置5が電力品質制御を行っている。また、許容電圧範囲を95V〜107Vの範囲(101V±6Vの範囲)に設定している。そして、目標電圧Vtへの電圧制御が行われている自立インバータ接続部位Piを基準として、その自立インバータ接続部位Piから離れるにつれて電圧が目標電圧Vtよりも徐々に高くなっている。これは、発電装置7が、太陽光や風力や地熱などの再生可能エネルギー(自然エネルギー)を利用して発電する装置であるので、複数の発電装置7の発電電力の増加が、その再生可能エネルギーの増加に合わせて同時期に現れていることによる。但し、自立インバータ接続部位Piは、交流母線1上において、発電装置7が接続されている接続部位p1,p2と接続部位p3,p4との間にあるため、自立インバータ接続部位Piよりも接続部位p1,p2側で発生するのは自立インバータ接続部位Piを基準とした電圧上昇であり、自立インバータ接続部位Piよりも接続部位p3,p4側で発生するのは自立インバータ接続部位Piを基準とした電圧上昇である。従って、図4に例示したような場合と比べて、発電装置7が接続されている交流母線1での電力の電圧が、目標電圧Vtから見て大幅な変動することを抑制できる。
次に、交流母線1上での自立インバータ接続部位Piの位置について説明する。
図1に示すような電力需給システムを新たに構築する場合、交流母線1上での自立インバータ接続部位Piの位置を決定する必要がある。図2は、交流母線1上での自立インバータ接続部位Piの位置を決定する手法を説明する図である。上述のように、自立インバータ接続部位Piは、交流母線1上において、発電装置7が接続されている接続部位p同士の間に位置するように設計される。従って、発電装置7が接続されている接続部位p同士の間に、自立インバータ接続部位Piの候補としての接続候補部位Pcが設定される。図2に示す例では、交流母線1上に、複数の接続候補部位Pc1,Pc2,Pc3が設定されている。そして、後述するように、接続候補部位Pc1,Pc2,Pc3のうちの一つの部位が、自立インバータ接続部位Piの位置として決定されることになる。
具体的には、電力需給システムの設計者は、予め、各電力需要者Dが交流母線1に接続する予定の電力消費装置6による予測消費電力の時間的変化についての情報を取得し、コンピュータ装置などに記憶させておく。例えば、電力需要者Dが同様の電力消費装置6を使用した場合の過去の一日間の消費電力の時間的変化についての情報があれば、それを一日間の予測消費電力の時間的変化についての情報としてもよい。或いは、電力需要者Dの家族構成・行動予定や使用する予定の電力消費装置6の種類・定格電力などについての情報に基づいて、一日間の予測消費電力の時間的変化を導出してもよい。
また、電力需給システムの設計者は、予め、交流母線1に接続される予定の発電装置7の予測発電電力の時間的変化についての情報を取得し、コンピュータ装置などに記憶させておく。例えば、発電装置7が太陽光発電装置である場合、その太陽光発電装置の定格発電電力と、設置予定場所の一日間の予測日射量の時間的変化とから、発電装置7の一日間の予測発電電力の時間的変化を導出することができる。
更に、電力需給システムの設計者は、交流母線1での電圧降下特性についての情報を取得し、コンピュータ装置などに記憶させておく。例えば、交流母線1での電圧降下特性についての情報は、以下の数式3に記載するような電圧降下モデルである。即ち、交流母線1に電流が流れると電圧降下が発生する。ここで、交流母線1での、例えば単相3線式の電圧線−中性線間における、距離Lだけ離れた2点間での電圧降下Vdは、自立インバータ接続部位Piから離れる方向に流れる電流Iを正とし、交流母線1のインピーダンスをZ=Rcosθ+Xsinθ(ここで、Rは交流母線1の交流導体抵抗、Xは交流母線1のリアクタンス、cosθは力率)としたとき、以下の数式3のモデルで表すことができる。ここで、交流母線1のインピーダンスZ、各接続部位p同士の間の距離L、自立インバータ接続部位Piと各接続部位pとの間の距離Lは既知であるので、数式3において、交流母線1に流れる電流Iの大きさ及び流れる方向のみが未知数となる。
Vd=I×L×Z ・・・・・・・(数式3)
そして、コンピュータ装置では、上述したような交流母線1に接続される複数の発電装置7の予測発電電力の時間的変化と、交流母線1に接続される複数の電力消費装置6の予測消費電力の時間的変化とが分ると、各接続部位pでの、交流母線1に対する電流の流入量又は交流母線1からの電流の流出量の時間的変化を導出することができる。図2には、接続部位p1〜p4のそれぞれでの、交流母線1に対する電流の流入量の一日間の時間的変化のグラフを示している。例えば、接続部位p1に着目すると、発電装置7の発電電力が電力消費装置6の消費電力よりも大きい時間帯では、電流が交流母線1の接続部位p1に流入し、発電装置7の発電電力が電力消費装置6の消費電力よりも小さい時間帯では、電流が交流母線1の接続部位p1から流出する。また、接続部位p2に着目すると、発電装置7が発電している時間帯では、電流が交流母線1の接続部位p2に流入し、発電装置7が発電していない時間帯では、交流母線1の接続部位p2への電流の流入量はゼロになる。このような解析を行うことで、交流母線1上の各接続部位p(p1〜p4)での電流の流入量及び流出量の時間的変化が導出される。従って、導出した交流母線1上の各接続部位p(p1〜p4)での電流の流入量及び流出量の時間的変化と、上記数式3とを参照すると、自立インバータ接続部位Piでの電圧(目標電圧Vt)を基準とする電圧降下量又は電圧上昇量の時間的変化を導出できる。
このように、電力需給システムの設計者は、コンピュータ装置を用いて、交流母線1に接続されている複数の発電装置7の予測発電電力の時間的変化と、交流母線1に接続されている複数の電力消費装置6の予測消費電力の時間的変化と、交流母線1での電圧降下特性についての情報とを参照して、複数の接続候補部位Pcのそれぞれに関して、接続候補部位Pcで自立インバータ装置5を交流母線1に接続したと仮定し且つ自立インバータ装置5がその接続候補部位Pcでの電力の電圧を目標電圧とする上記電力品質制御を行っていると仮定して導出される交流母線1上での電力の予測電圧の分布の時間的変化を導出する。つまり、導出された時刻別電流パターンと交流母線1での電圧降下特性についての情報より、時刻別・場所別の予測電圧パターンが導出される。それにより、電力需給システムの設計者は、コンピュータ装置による自動判定或いは自らの判定によって、複数の接続候補部位Pcのうち、予測電圧の分布の時間的変化が許容電圧範囲内となるような部位を、自立インバータ接続部位Piの位置として決定できる。
以上のように、本実施形態では、自立インバータ装置5は、非ループ状の交流母線1上の自立インバータ接続部位Piに接続され、この自立インバータ接続部位Piは、発電装置7の接続部位p同士の間に位置する。その結果、自立インバータ接続部位Piを挟む位置にある複数の発電装置7の接続部位pの電圧は、自立インバータ接続部位Piでの電圧(目標電圧)を基準として変動するため、目標電圧から大幅に変動することを避けることができる。
尚、発電装置7から交流母線1へ流入する電流量が大きいと、交流母線1の電圧が目標電圧よりも高くなってしまうことに変わりはない。そして、交流母線1の電圧が目標電圧よりも高くなると、自立インバータ装置5は、上記電力品質制御によって交流母線1の電圧を下げて目標電圧に近づけようとするために、第2自己接続線2b側から第1自己接続線2a側へ充電する(即ち、交流母線1側から蓄電装置4側へ充電する)有効電力が相対的に大きくなる。そして、蓄電装置4の蓄電量の増加率が所定の上限増加率よりも大きくなる。
逆に、交流母線1の電圧が目標電圧よりも低くなると、自立インバータ装置5は、上記電力品質制御によって交流母線1の電圧を上げて目標電圧に近づけようとするために、第1自己接続線2a側から第2自己接続線2b側へ放電する(即ち、蓄電装置4側から交流母線1側へ放電する)有効電力が相対的に大きくなる。そして、蓄電装置4の蓄電量の減少率が所定の上限減少率よりも大きくなる。
特に、本実施形態の発電装置7は、太陽光や風力や地熱などの再生可能エネルギーを利用して発電する装置であるので、複数の発電装置7の発電電力の増減は、その再生可能エネルギーの増減に合わせて同時期に現れることになる。その結果、複数の発電装置7の発電電力の増減に合わせて、交流母線1の電圧の大幅な増減が現れやすくなる。
そこで、本実施形態では、制御装置Cは、自己システム10の蓄電装置4の蓄電量の増加率が上限増加率よりも大きいとき又は自己システム10の自立インバータ装置5が第2自己接続線2b側から第1自己接続線2a側へ充電する有効電力測定値が所定の充電側閾値よりも大きいとき、自己システム10の自立インバータ装置5に対して、自己システム10の交流母線1での電力の電圧を低下させるための電圧低下処理を実行させ、並びに、自己システム10の蓄電装置4の蓄電量の減少率が上限減少率よりも大きいとき又は自己システム10の自立インバータ装置5が第1自己接続線2a側から第2自己接続線2b側へ放電する有効電力測定値が所定の放電側閾値よりも大きいとき、自己システム10の自立インバータ装置5に対して、交流母線1での電力の電圧を上昇させるための電圧上昇処理を実行させる。具体的には、制御装置Cは、蓄電装置4の蓄電量の増加率が上限増加率よりも大きいとき又は自己システム10の自立インバータ装置5が第2自己接続線2b側から第1自己接続線2a側へ充電する有効電力測定値が所定の充電側閾値よりも大きいとき、自立インバータ装置5に対して、目標電圧を低下側に変更させる電圧低下処理を実行させ、蓄電装置4の蓄電量の減少率が上限減少率よりも大きいとき又は自己システム10の自立インバータ装置5が第1自己接続線2a側から第2自己接続線2b側へ放電する有効電力測定値が所定の放電側閾値よりも大きいとき、自立インバータ装置5に対して、目標電圧を増大側に変更させる電圧上昇処理を実行させる。ここで、制御装置Cは、自立インバータ装置5が第2自己接続線2b側から第1自己接続線2a側へ充電する有効電力測定値、及び、自立インバータ装置5が第1自己接続線2a側から第2自己接続線2b側へ放電する有効電力測定値について、例えば、第1自己接続線2a及び第2自己接続線2bに設けた電力計から取得することができる。また、上限増加率、上限減少率、充電側閾値、放電側閾値の値は適宜設定可能である。
図3(a)は電圧低下処理を説明する図であり、図3(b)は電圧上昇処理を説明する図である。
図3(a)に示した例では、細実線で示すように、接続部位p1〜p4の電圧は目標電圧Vt1よりも高くなっている。また、図示は省略するが、制御装置Cは、蓄電装置4の蓄電量の増加率が上限増加率よりも大きい(又は自己システム10の自立インバータ装置5が第2自己接続線2b側から第1自己接続線2a側へ充電する有効電力測定値が所定の充電側閾値よりも大きい)と判定したとする。このとき、制御装置Cは、目標電圧をVt2(<Vt1)へと減少変更させる。その結果、太実線で示すように、交流母線1の電圧を全体的に低下させることができる。
これに対して、図3(b)に示した例では、細実線で示すように、接続部位p1〜p4の電圧は目標電圧Vt1よりも低くなっている。また、図示は省略するが、制御装置Cは、蓄電装置4の蓄電量の減少率が上限減少率よりも大きい(又は自己システム10の自立インバータ装置5が第1自己接続線2a側から第2自己接続線2b側へ放電する有効電力測定値が所定の放電側閾値よりも大きい)と判定したとする。このとき、制御装置Cは、目標電圧をVt3(>Vt1)へと増加変更させる。その結果、太実線で示すように、交流母線1の電圧を全体的に上昇させることができる。
また、制御装置Cは、上述した電圧低下処理を行うことで目標電圧を低下側に変更した後、自己システム10の蓄電装置4の蓄電量の増加率が上記上限増加率以下になったとき又は自己システム10の自立インバータ装置5が第2自己接続線2b側から第1自己接続線2a側へ充電する有効電力測定値が上記充電側閾値以下になったときは、目標電圧を元に戻す。同様に、制御装置Cは、上述した電圧上昇処理を行うことで目標電圧を増大側に変更した後、自己システム10の蓄電装置4の蓄電量の減少率が上記上限減少率以下になったとき又は自己システム10の自立インバータ装置5が第1自己接続線2a側から第2自己接続線2b側へ放電する有効電力測定値が上記放電側閾値以下になったときは、目標電圧を元に戻す。
以上のような電圧低下処理及び電圧上昇処理を実行させることで、交流母線1での電力の電圧は、目標電圧の増減変更に合わせて全体として増減して、適切な範囲内にあることが確保される。
<第2実施形態>
第2実施形態の電力需給システムは、複数の自己システム10が接続された状態で備える点で上記実施形態と異なっている。以下に第2実施形態の電力需給システムについて説明するが、上記実施形態と同様の構成については説明を省略する。
図3は、第2実施形態の電力需給システムの構成を示す図である。本実施形態の電力需給システムは、自己システム10を複数個備え、複数個の自己システム10が電気的に直列接続されるように、一つの自己システム10が有する蓄電装置4と他の一つの自己システム10が有する交流母線1との間を相互接続線3を用いて接続する接続する融通インバータ装置9を自己システム10同士の間に備える。制御装置Cは、自立インバータ装置5に対して電力品質制御を行わせ、並びに、融通インバータ装置9に対して電力融通制御を行わせる。各自己システム10の構成は、第1実施形態で示したのと同様である。相互接続線3は、融通インバータ装置9と蓄電装置4とを接続するための第1相互接続線3aと、融通インバータ装置9と交流母線1とを接続するための第2相互接続線3bとで構成される。そして、制御装置Cは、電力融通制御として、一つの自己システム10と他の自己システム10との間で相互接続線3を用いて電力を融通するとき、その相互接続線3を構成する第1相互接続線3aと第2相互接続線3bとの間に設けられる融通インバータ装置9に対して、一つの自己システム10及び他の自己システム10のそれぞれにおける交流母線1での目標周波数に基づいて、蓄電装置4の蓄電量が相対的に大きい自己システム10から、蓄電装置4の蓄電量が相対的に小さい自己システム10へと電力を融通させる制御を行う。
融通インバータ装置9は、入力される電力を、所望の電圧、周波数、位相の電力に変換して出力できる電力変換装置である。例えば、融通インバータ装置9は、半導体スイッチング素子などを有する回路部(図示せず)、及び、その半導体スイッチング素子のスイッチング動作を制御する制御部(図示せず)などで構成される。そして、それらの半導体スイッチング素子のオン・オフが切り換えられることで、入力電力から出力電力への電力変換動作が行われる。
そして、融通インバータ装置9は、自己システム10Aの交流母線1の周波数fAに関する情報と、自己システム10Bの交流母線1の周波数fBに関する情報とを取得してそれらの値を比較し、その周波数の比較により判明する、蓄電装置4の蓄電量が相対的に大きい自己システム10から、蓄電装置4の蓄電量が相対的に小さい自己システム10へと電力を融通する。ここで、融通インバータ装置9が取得する交流母線1の周波数に関する情報は、各自己システム10A、10Bの交流母線1での実際の電力の周波数(=目標周波数)を検出して得た値であってもよく、或いは、その目標周波数を決定する自立インバータ装置5から伝達される目標周波数値であってもよい。
また、上記第1実施形態と同様に、複数個の自己システム10の夫々において、各自立インバータ装置5は、上述した蓄電装置4の蓄電量の関数で決定する周波数変動分を交流母線1の基準周波数に対して加算して目標周波数を導出する。このとき、蓄電量と周波数変動分との間の関係式は複数個の自己システム10の夫々で各別に設定されている。例えば、複数個の自己システム10の夫々で、上述した数式2における定数A、Bの値は各別に設定されている。そして、各自立インバータ装置5は、交流母線1での電力の電圧が目標電圧となるように、及び、交流母線1での電力の周波数がその目標周波数となるように制御する。
以上のように、本実施形態では、自立インバータ装置5は、非ループ状の交流母線1上の自立インバータ接続部位Piに接続され、この自立インバータ接続部位Piは、発電装置7の接続部位p同士の間に位置する。その結果、自立インバータ接続部位Piを挟む位置にある複数の発電装置7の接続部位pの電圧は、自立インバータ接続部位Piでの電圧(目標電圧)を基準として変動するため、目標電圧から大幅に変動することを避けることができる。加えて、交流母線1の電力の周波数が、蓄電装置4の蓄電量に応じて決定される目標周波数となるように制御されることで、各自己システム10の交流母線1での電力の周波数(目標周波数)には、蓄電装置4の蓄電量に関する情報が与えられていることになる。その結果、融通インバータ装置9が、蓄電装置4の蓄電量が相対的に大きい自己システム10から蓄電装置4の蓄電量が相対的に小さい自己システム10へ電力を融通させるための電力融通制御を行うとき、それぞれの自己システム10の交流母線1での電力の周波数を見るだけで、何れの自己システム10の蓄電装置4の蓄電量が大きいのかを容易に判別できる。
また、本実施形態でも、制御装置Cは、蓄電装置4の蓄電量の増加率が上限増加率よりも大きいとき又は特定の自己システム10の自立インバータ装置5が第2自己接続線2b側から第1自己接続線2a側へ充電する有効電力測定値が所定の充電側閾値よりも大きいとき、交流母線1での電力の電圧を低下させるための電圧低下処理を自立インバータ装置5に実行させ、及び、蓄電装置4の蓄電量の減少率が上限減少率よりも大きいとき又は特定の自己システム10の自立インバータ装置5が第1自己接続線2a側から第2自己接続線2b側へ放電する有効電力測定値が所定の放電側閾値よりも大きいとき、交流母線1での電力の電圧を上昇させるための電圧上昇処理を自立インバータ装置5に実行させる。
例えば、第1実施形態で説明したように、制御装置Cは、蓄電装置4の蓄電量の増加率が上限増加率よりも大きいとき又は特定の自己システム10の自立インバータ装置5が第2自己接続線2b側から第1自己接続線2a側へ充電する有効電力測定値が所定の充電側閾値よりも大きいとき、自立インバータ装置5に対して、目標電圧を低下側に変更させる電圧低下処理を実行させ、蓄電装置4の蓄電量の減少率が上限減少率よりも大きいとき又は特定の自己システム10の自立インバータ装置5が第1自己接続線2a側から第2自己接続線2b側へ放電する有効電力測定値が所定の放電側閾値よりも大きいとき、自立インバータ装置5に対して、目標電圧を増大側に変更させる電圧上昇処理を実行させる。
また、制御装置Cは、上述した自立インバータ装置5を用いた電圧低下処理及び電圧上昇処理を行うと共に、融通インバータ装置9に対して、交流母線に供給する無効電力を変化させる制御を行わせることもできる。即ち、制御装置Cは、特定の自己システム10の蓄電装置4の蓄電量の増加率が上限増加率よりも大きいとき又は特定の自己システム10の自立インバータ装置5が第2自己接続線2b側から第1自己接続線2a側へ充電する有効電力測定値が所定の充電側閾値よりも大きいとき、特定の自己システム10の自立インバータ装置5に対して、目標電圧を低下側に変更させる電圧低下処理を実行させると共に、特定の自己システム10の交流母線1に対して接続されている融通インバータ装置9に対して、特定の自己システム10の交流母線1での電力の電圧が低下するようにその交流母線1に供給する無効電力を変化させ(例えば、遅れ無効電力を供給する)、並びに、特定の自己システム10の蓄電装置4の蓄電量の減少率が上限減少率よりも大きいとき又は特定の自己システム10の自立インバータ装置5が第1自己接続線2a側から第2自己接続線2b側へ放電する有効電力測定値が所定の放電側閾値よりも大きいとき、特定の自己システム10の自立インバータ装置5に対して、目標電圧を増大側に変更させる電圧上昇処理を実行させると共に、特定の自己システム10の交流母線1に対して接続されている融通インバータ装置9に対して、特定の自己システム10の交流母線1での電力の電圧が上昇するようにその交流母線1に供給する無効電力を変化させる(例えば、進み無効電力を供給する)。その結果、交流母線1での電力の電圧は、目標電圧の増減変更に合わせて全体として増減し、加えて、融通インバータ装置9を利用した交流母線1での電力の電圧の調整が行われながら、適切な範囲内にあることが確保される。
更に、制御装置Cは、上述した電圧低下処理を行うことで目標電圧を低下側に変更した後、自己システム10の蓄電装置4の蓄電量の増加率が上記上限増加率以下になったとき又は自己システム10の自立インバータ装置5が第2自己接続線2b側から第1自己接続線2a側へ充電する有効電力測定値が上記充電側閾値以下になったときは、目標電圧を元に戻す。同様に、制御装置Cは、上述した電圧上昇処理を行うことで目標電圧を増大側に変更した後、自己システム10の蓄電装置4の蓄電量の減少率が上記上限減少率以下になったとき又は自己システム10の自立インバータ装置5が第1自己接続線2a側から第2自己接続線2b側へ放電する有効電力測定値が上記放電側閾値以下になったときは、目標電圧を元に戻す。
加えて、制御装置Cは、上述したように自立インバータ装置5を用いた電圧低下処理を行うと共に融通インバータ装置9に対して交流母線1に供給する無効電力を変化させる制御を行わせた後、自己システム10の蓄電装置4の蓄電量の増加率が上記上限増加率以下になったとき又は自己システム10の自立インバータ装置5が第2自己接続線2b側から第1自己接続線2a側へ充電する有効電力測定値が上記充電側閾値以下になったとき、交流母線1に供給する無効電力を元に戻す。同様に、制御装置Cは、上述したように自立インバータ装置5を用いた電圧上昇処理を行うと共に融通インバータ装置9に対して交流母線1に供給する無効電力を変化させる制御を行わせた後、自己システム10の蓄電装置4の蓄電量の減少率が上記上限減少率以下になったとき又は自己システム10の自立インバータ装置5が第1自己接続線2a側から第2自己接続線2b側へ放電する有効電力測定値が上記放電側閾値以下になったときは、交流母線1に供給する無効電力を元に戻す。
<別実施形態>
<1>
上記実施形態において、一つの自己システム10の交流母線1に接続される電力需要者D及び発電装置7の数は図示した例に限定されない。また、電力需要者Dが備える電力消費装置6及び発電装置7の数や組み合わせは図示した例に限定されない。
<2>
上記第2実施形態において、電力需給システムが備える自己システムの数は適宜変更可能である。例えば、自己システムの数は、2個、数十個、数百個など、適宜設定可能である。
<3>
上記実施形態において、許容電圧範囲を95V〜107Vの範囲(101V±6Vの範囲)に設定している例を説明したが、許容電圧範囲の数値は適宜設定可能である。また、自立インバータ装置5が実行する電力品質制御での目標電圧Vtの値も、許容電圧範囲内で適宜設定可能である。
<4>
上記実施形態では、予め得られた情報などに基づいて交流母線1における自立インバータ接続部位Piの位置を固定的に決定する例を示したが、電力需給システムを運用中に自立インバータ接続部位Piの位置が変更されてもよい。
例えば、電力需給システムの運用者は、コンピュータ装置などを用いて、電力需給システムを運用中での各接続部位pの実際の電圧値を参照して交流母線1での電圧分布を決定する。次に、自立インバータ接続部位Piを複数の接続候補部位Pcのそれぞれに位置変更(即ち、交流母線1上で電圧が目標電圧Vtとなる位置を変更)した場合に想定される交流母線1での予測電圧分布を導出し、目標電圧Vtからの最大偏差が最も小さくなるような予測電圧分布が得られるときの自立インバータ接続部位Piの位置を、その時点で最も好ましい自立インバータ接続部位Piの位置として決定して、自立インバータ接続部位Piの位置変更を行ってもよい。
本発明は、発電装置が接続されている交流母線での電力の電圧の大幅な変動を抑制可能な電力需給システムに利用できる。
1 交流母線
2 自己接続線
2a 第1自己接続線
2b 第2自己接続線
3 相互接続線
3a 第1相互接続線
3b 第2相互接続線
4 蓄電装置
5 自立インバータ装置
6 電力消費装置
7 発電装置
8 送配電線
9 融通インバータ装置
10 自己システム
C 制御装置
D 電力需要者
p(p1〜p4) 接続部位
Pc(Pc1〜Pc3) 接続候補部位
Pi 自立インバータ接続部位

Claims (4)

  1. 非ループ状の交流母線と、蓄電装置と、前記蓄電装置と前記交流母線との間を自己接続線を用いて接続する自立インバータ装置とを有する自己システムを備え、
    前記自己接続線は、前記自立インバータ装置と前記蓄電装置とを接続するための第1自己接続線と、前記自立インバータ装置と前記交流母線とを接続するための第2自己接続線とで構成され、
    前記自立インバータ装置に対して、前記第2自己接続線側から前記第1自己接続線側への充電又は前記第1自己接続線側から前記第2自己接続線側への放電を行いながら、当該自立インバータ装置が前記第2自己接続線を介して接続される前記交流母線の自立インバータ接続部位での電力の電圧を目標電圧とし及び周波数を前記蓄電装置の蓄電量に応じて決定される目標周波数とする電力品質制御を行わせる制御装置を備え、
    前記交流母線には複数の発電装置及び複数の電力消費装置が接続されている電力需給システムであって、
    前記発電装置は、再生可能エネルギーを利用して発電する装置であり、前記複数の発電装置のそれぞれの発電電力は、再生可能エネルギーの増減に応じて同時期に増減し、
    前記複数の発電装置及び前記複数の電力消費装置は、前記交流母線上に間隔を置いて並ぶ複数の接続部位において前記交流母線に接続され、及び、前記自立インバータ接続部位は、前記交流母線上において、前記発電装置が接続されている前記接続部位同士の間にあり、
    前記制御装置は
    特定の前記自己システムの前記蓄電装置の蓄電量の増加率が上限増加率よりも大きいとき又は前記特定の自己システムの前記自立インバータ装置が前記第2自己接続線側から前記第1自己接続線側へ充電する有効電力測定値が所定の充電側閾値よりも大きいとき、前記特定の自己システムの前記自立インバータ装置に対して、前記目標電圧を低下側に変更させる電圧低下処理を実行させ、並びに、
    前記特定の自己システムの前記蓄電装置の蓄電量の減少率が上限減少率よりも大きいとき又は前記特定の自己システムの前記自立インバータ装置が前記第1自己接続線側から前記第2自己接続線側へ放電する有効電力測定値が所定の放電側閾値よりも大きいとき、前記特定の自己システムの前記自立インバータ装置に対して、前記目標電圧を増大側に変更させる電圧上昇処理を実行させる電力需給システム。
  2. 非ループ状の交流母線と、蓄電装置と、前記蓄電装置と前記交流母線との間を自己接続線を用いて接続する自立インバータ装置とを有する自己システムを複数個備え、
    複数個の前記自己システムが電気的に直列接続されるように、一つの前記自己システムが有する前記蓄電装置と他の一つの前記自己システムが有する前記交流母線との間を相互接続線を用いて接続する融通インバータ装置を前記自己システム同士の間に備え、
    前記自己接続線は、前記自立インバータ装置と前記蓄電装置とを接続するための第1自己接続線と、前記自立インバータ装置と前記交流母線とを接続するための第2自己接続線とで構成され、
    前記相互接続線は、前記融通インバータ装置と前記蓄電装置とを接続するための第1相互接続線と、前記融通インバータ装置と前記交流母線とを接続するための第2相互接続線とで構成され、
    前記自立インバータ装置に対して電力品質制御を行わせ、並びに、前記融通インバータ装置に対して電力融通制御を行わせる制御装置を備え、
    前記制御装置は、前記電力品質制御として、前記自立インバータ装置に対して、前記第2自己接続線側から前記第1自己接続線側への充電又は前記第1自己接続線側から前記第2自己接続線側への放電を行いながら、当該自立インバータ装置が前記第2自己接続線を介して接続される前記交流母線の自立インバータ接続部位での電力の電圧を目標電圧とし及び周波数を前記蓄電装置の蓄電量に応じて決定される目標周波数とする制御を行わせ、並びに、前記電力融通制御として、一つの前記自己システムと他の前記自己システムとの間で前記相互接続線を用いて電力を融通するとき、当該相互接続線を構成する前記第1相互接続線と前記第2相互接続線との間に設けられる前記融通インバータ装置に対して、当該一つの自己システム及び当該他の自己システムのそれぞれにおける前記交流母線での前記目標周波数に基づいて、前記蓄電装置の蓄電量が相対的に大きい自己システムから、前記蓄電装置の蓄電量が相対的に小さい自己システムへと電力を融通させる制御を行わせ、
    前記交流母線には複数の発電装置及び複数の電力消費装置が接続されている電力需給システムであって、
    前記発電装置は、再生可能エネルギーを利用して発電する装置であり、
    一つの前記自己システムにおいて、前記複数の発電装置及び前記複数の電力消費装置は、前記交流母線上に間隔を置いて並ぶ複数の接続部位において前記交流母線に接続され、及び、前記自立インバータ接続部位は、前記交流母線上において、前記発電装置が接続されている前記接続部位同士の間にあり、
    前記制御装置は、
    特定の前記自己システムの前記蓄電装置の蓄電量の増加率が上限増加率よりも大きいとき又は前記特定の自己システムの前記自立インバータ装置が前記第2自己接続線側から前記第1自己接続線側へ充電する有効電力測定値が所定の充電側閾値よりも大きいとき、前記特定の自己システムの前記自立インバータ装置に対して、前記目標電圧を低下側に変更させる電圧低下処理を実行させ、並びに、
    前記特定の自己システムの前記蓄電装置の蓄電量の減少率が上限減少率よりも大きいとき又は前記特定の自己システムの前記自立インバータ装置が前記第1自己接続線側から前記第2自己接続線側へ放電する有効電力測定値が所定の放電側閾値よりも大きいとき、前記特定の自己システムの前記自立インバータ装置に対して、前記目標電圧を増大側に変更させる電圧上昇処理を実行させる電力需給システム。
  3. 非ループ状の交流母線と、蓄電装置と、前記蓄電装置と前記交流母線との間を自己接続線を用いて接続する自立インバータ装置とを有する自己システムを複数個備え、
    複数個の前記自己システムが電気的に直列接続されるように、一つの前記自己システムが有する前記蓄電装置と他の一つの前記自己システムが有する前記交流母線との間を相互接続線を用いて接続する融通インバータ装置を前記自己システム同士の間に備え、
    前記自己接続線は、前記自立インバータ装置と前記蓄電装置とを接続するための第1自己接続線と、前記自立インバータ装置と前記交流母線とを接続するための第2自己接続線とで構成され、
    前記相互接続線は、前記融通インバータ装置と前記蓄電装置とを接続するための第1相互接続線と、前記融通インバータ装置と前記交流母線とを接続するための第2相互接続線とで構成され、
    前記自立インバータ装置に対して電力品質制御を行わせ、並びに、前記融通インバータ装置に対して電力融通制御を行わせる制御装置を備え、
    前記制御装置は、前記電力品質制御として、前記自立インバータ装置に対して、前記第2自己接続線側から前記第1自己接続線側への充電又は前記第1自己接続線側から前記第2自己接続線側への放電を行いながら、当該自立インバータ装置が前記第2自己接続線を介して接続される前記交流母線の自立インバータ接続部位での電力の電圧を目標電圧とし及び周波数を前記蓄電装置の蓄電量に応じて決定される目標周波数とする制御を行わせ、並びに、前記電力融通制御として、一つの前記自己システムと他の前記自己システムとの間で前記相互接続線を用いて電力を融通するとき、当該相互接続線を構成する前記第1相互接続線と前記第2相互接続線との間に設けられる前記融通インバータ装置に対して、当該一つの自己システム及び当該他の自己システムのそれぞれにおける前記交流母線での前記目標周波数に基づいて、前記蓄電装置の蓄電量が相対的に大きい自己システムから、前記蓄電装置の蓄電量が相対的に小さい自己システムへと電力を融通させる制御を行わせ、
    前記交流母線には複数の発電装置及び複数の電力消費装置が接続されている電力需給システムであって、
    前記発電装置は、再生可能エネルギーを利用して発電する装置であり、
    一つの前記自己システムにおいて、前記複数の発電装置及び前記複数の電力消費装置は、前記交流母線上に間隔を置いて並ぶ複数の接続部位において前記交流母線に接続され、及び、前記自立インバータ接続部位は、前記交流母線上において、前記発電装置が接続されている前記接続部位同士の間にあり、
    前記制御装置は、
    特定の前記自己システムの前記蓄電装置の蓄電量の増加率が上限増加率よりも大きいとき又は前記特定の自己システムの前記自立インバータ装置が前記第2自己接続線側から前記第1自己接続線側へ充電する有効電力測定値が所定の充電側閾値よりも大きいとき、前記特定の自己システムの前記自立インバータ装置に対して、前記目標電圧を低下側に変更させる電圧低下処理を実行させると共に、前記特定の自己システムの前記交流母線に対して接続されている前記融通インバータ装置に対して、前記特定の自己システムの前記交流母線での電力の電圧が低下するように当該交流母線に供給する無効電力を変化させ、並びに、
    前記特定の自己システムの前記蓄電装置の蓄電量の減少率が上限減少率よりも大きいとき又は前記特定の自己システムの前記自立インバータ装置が前記第1自己接続線側から前記第2自己接続線側へ放電する有効電力測定値が所定の放電側閾値よりも大きいとき、前記特定の自己システムの前記自立インバータ装置に対して、前記目標電圧を増大側に変更させる電圧上昇処理を実行させると共に、前記特定の自己システムの前記交流母線に対して接続されている前記融通インバータ装置に対して、前記特定の自己システムの前記交流母線での電力の電圧が上昇するように当該交流母線に供給する無効電力を変化させる電力需給システム。
  4. 前記自立インバータ接続部位は、
    前記交流母線上に複数設定された、前記自立インバータ接続部位の候補としての接続候補部位のうちの一つの部位であり、
    前記交流母線に接続されている前記複数の発電装置の予測発電電力の時間的変化と、前記交流母線に接続されている前記複数の電力消費装置の予測消費電力の時間的変化と、前記交流母線での電圧降下特性についての情報とを参照して、複数の前記接続候補部位のそれぞれに関して、前記接続候補部位で前記自立インバータ装置を前記交流母線に接続したと仮定し且つ前記自立インバータ装置が当該接続候補部位での電力の電圧を前記目標電圧とする前記電力品質制御を行っていると仮定して導出される前記交流母線上での電力の予測電圧の分布の時間的変化が許容電圧範囲内となるような部位に位置する請求項1〜3の何れか一項に記載の電力需給システム。
JP2014119761A 2014-06-10 2014-06-10 電力需給システム Expired - Fee Related JP6296910B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014119761A JP6296910B2 (ja) 2014-06-10 2014-06-10 電力需給システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014119761A JP6296910B2 (ja) 2014-06-10 2014-06-10 電力需給システム

Publications (2)

Publication Number Publication Date
JP2015233384A JP2015233384A (ja) 2015-12-24
JP6296910B2 true JP6296910B2 (ja) 2018-03-20

Family

ID=54934532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014119761A Expired - Fee Related JP6296910B2 (ja) 2014-06-10 2014-06-10 電力需給システム

Country Status (1)

Country Link
JP (1) JP6296910B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6257453B2 (ja) * 2014-06-10 2018-01-10 大阪瓦斯株式会社 電力需給システム
EP3460944B1 (en) * 2016-05-18 2020-04-22 Mitsubishi Electric Corporation Current/voltage control system
CN107069820B (zh) * 2017-05-11 2020-05-22 西安理工大学 分布式可再生能源发电并网功率波动控制系统及控制方法
JP7105216B2 (ja) * 2018-09-19 2022-07-22 東芝三菱電機産業システム株式会社 電力変換装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004088978A (ja) * 2002-08-29 2004-03-18 Toshiba Corp 配電系統電力品質判定装置およびプログラム
JP5213909B2 (ja) * 2010-06-04 2013-06-19 中国電力株式会社 電力供給システムの制御方法、及び電力供給システム
JP5702000B2 (ja) * 2012-01-06 2015-04-15 株式会社日立製作所 電力系統安定化システム及び電力系統安定化方法
CN104662764A (zh) * 2012-05-24 2015-05-27 大阪瓦斯株式会社 电力供给系统

Also Published As

Publication number Publication date
JP2015233384A (ja) 2015-12-24

Similar Documents

Publication Publication Date Title
CN107425518B (zh) 混合电力系统中的负载管理
US9343926B2 (en) Power controller
JP6025197B2 (ja) 電力制御システム及び方法
JP5998454B2 (ja) 制御装置、制御方法および制御システム
JP5995041B2 (ja) 充電制御装置、太陽光発電システム、および充電制御方法
JP2015106962A (ja) 充放電制御装置及び充放電システム
JP6296910B2 (ja) 電力需給システム
US10110004B2 (en) Power management system
JP6166338B2 (ja) エネルギー貯蔵システム
JP2012249500A (ja) 電力系統管理システム及び電力系統の管理方法
JP2017099148A (ja) 電力管理システムおよび電力管理方法
JP2015192586A (ja) マイクログリッドの需給制御システムおよび需給制御方法
Luna et al. Generation-side power scheduling in a grid-connected DC microgrid
Setyawan et al. Optimal Depth-of-Discharge range and capacity settings for battery energy storage in microgrid operation
JP5951747B2 (ja) 電力系統制御装置
JP6187920B2 (ja) 給電制御装置及び配電システム
JP6172868B2 (ja) 電源装置
AU2017356796A1 (en) System and method for operating a mains power grid
JP2017175785A (ja) 蓄電システム、充放電制御装置、その制御方法、およびプログラム
JP2017028969A (ja) 電力管理装置
JP6257388B2 (ja) 電力供給システム
JP6257453B2 (ja) 電力需給システム
JP7203325B2 (ja) 電力システム
JP2005048207A (ja) 水素製造システム
JP6422682B2 (ja) 電力制御装置および電力制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180220

R150 Certificate of patent or registration of utility model

Ref document number: 6296910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees