JP2016191084A - Surface treated copper fine particle and manufacturing method therefor - Google Patents

Surface treated copper fine particle and manufacturing method therefor Download PDF

Info

Publication number
JP2016191084A
JP2016191084A JP2015070121A JP2015070121A JP2016191084A JP 2016191084 A JP2016191084 A JP 2016191084A JP 2015070121 A JP2015070121 A JP 2015070121A JP 2015070121 A JP2015070121 A JP 2015070121A JP 2016191084 A JP2016191084 A JP 2016191084A
Authority
JP
Japan
Prior art keywords
copper fine
group
fine particles
fine particle
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015070121A
Other languages
Japanese (ja)
Other versions
JP6475541B2 (en
Inventor
秀樹 古澤
Hideki Furusawa
秀樹 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2015070121A priority Critical patent/JP6475541B2/en
Publication of JP2016191084A publication Critical patent/JP2016191084A/en
Application granted granted Critical
Publication of JP6475541B2 publication Critical patent/JP6475541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface treated copper fine particle excellent in oxidation resistance, capable of forming sintered film having good conductivity even with sintering at low temperature and capable of being manufactured with simple processes.SOLUTION: There is provided a surface treated copper fine particle excellent in oxidation resistance and having low temperature sinterability and having average particle diameter of 0.1 to 1.0 μm by mixing a copper fine particle obtained by conducting a chemical reduction method or a disproportionation reaction in a presence of a particle growth inhibitor with a solution containing a nitrogen containing organic article of 0.03 to 10 wt.% based on the copper fine particle after mixing with diluted sulfuric acid or without mixing with diluted sulfuric acid. There is provided a surface treated copper fine particle where the nitrogen containing organic article is a compound exemplified by the following formula.SELECTED DRAWING: None

Description

本発明は、表面処理された銅微粒子及びその製造方法に関する。   The present invention relates to a surface-treated copper fine particle and a method for producing the same.

[金属粉ペースト]
従来の電子部品における電極、回路は、絶縁基板に銅箔を貼りあわせるか、基板全面にめっきで金属層を形成した後にエッチング、または絶縁基板にパターニングを利用した無電解めっきにより形成される。近年は省資源、コストの観点から、必要なところに必要な分だけ金属源を供給できる金属粉ペーストによる電極、回路の形成が注目されている。
[Metal powder paste]
Electrodes and circuits in conventional electronic components are formed by bonding a copper foil to an insulating substrate, or forming a metal layer by plating on the entire surface of the substrate and then etching or electroless plating using patterning on the insulating substrate. In recent years, from the viewpoint of resource saving and cost, attention has been paid to the formation of electrodes and circuits using a metal powder paste that can supply a metal source as much as necessary.

[金属粉の性質]
製造コスト、材料への熱負荷の観点からは、金属粉ペーストは低温で焼成することが望まれる。このためには、金属粉は小さいものが好ましい。
[Characteristics of metal powder]
From the viewpoint of manufacturing cost and heat load on the material, the metal powder paste is desired to be fired at a low temperature. For this purpose, small metal powder is preferable.

[銀粉ペースト]
金属粉ペーストの中でも、銀粉ペーストは、電気抵抗が低く、大気下でも焼成できる。しかし、銀粉ペーストで電極、回路を形成すると、マイグレーションの懸念がある。また、貴金属なので材料コストがかさむ。そこで、銅粉ペーストが検討されている。
[Silver powder paste]
Among metal powder pastes, silver powder paste has low electrical resistance and can be fired even in the atmosphere. However, when electrodes and circuits are formed with silver powder paste, there is a concern about migration. Moreover, since it is a noble metal, material cost increases. Therefore, a copper powder paste has been studied.

[銅粉ペースト]
一方で、銅は銀よりも酸化しやすい。よって銅粉は銀粉よりも酸化しやすい。サイズが小さくなることで表面積が増えているので、小さい銅粉は酸化しやすく、表面の酸化銅層が焼結障害となる。銅粉ペーストを低温で焼結させるために、銅粉の酸化を防ぐための処理が検討されている。
[Copper powder paste]
On the other hand, copper is more easily oxidized than silver. Therefore, copper powder is easier to oxidize than silver powder. Since the surface area is increased by reducing the size, the small copper powder is easily oxidized, and the surface copper oxide layer becomes a sintering obstacle. In order to sinter the copper powder paste at a low temperature, a treatment for preventing oxidation of the copper powder has been studied.

[銅粉の酸化を防ぐ処理]
銅粉の酸化を防ぐ処理として、銅粉の表面に物質を吸着させる処理がある。特許文献1は、銅粉の表面にオレイン酸等の脂肪酸を吸着させる技術を開示している。これらは水に溶け難いので、有機溶媒に分散させた後に銅粉に吸着させる必要がある。あるいは、反応場を有機溶媒とし、予め銅粉表面に被覆させる有機物を溶媒に分散させた上で、製粉反応時において、核発生後の成長段階で前記有機物を銅粉表面に付着させる。有機溶媒自身を被覆物として作用させる方法もある(特許文献2、特許文献3)。あるいは、ポリビニルピロリドン等の水溶性高分子を保護コロイドとして反応場に存在させて、銅酸化物を還元剤で還元し、銅微粒子を得る方法がある(特許文献3、4)。
[Treatment to prevent oxidation of copper powder]
As a process for preventing the oxidation of the copper powder, there is a process for adsorbing a substance on the surface of the copper powder. Patent Document 1 discloses a technique for adsorbing fatty acids such as oleic acid on the surface of copper powder. Since these are difficult to dissolve in water, they must be adsorbed on copper powder after being dispersed in an organic solvent. Alternatively, the reaction field is an organic solvent, and an organic substance to be coated on the copper powder surface is dispersed in the solvent in advance, and then the organic substance is attached to the copper powder surface in the growth stage after the nucleation during the milling reaction. There is also a method in which an organic solvent itself acts as a coating (Patent Documents 2 and 3). Alternatively, there is a method in which a water-soluble polymer such as polyvinylpyrrolidone is present in the reaction field as a protective colloid, and copper oxide is reduced with a reducing agent to obtain copper fine particles (Patent Documents 3 and 4).

特開2002−332502号公報JP 2002-332502 A 特開2012−072418号公報JP 2012-072418 A 国際公開WO2007/013393号International Publication No. WO2007 / 013393 特開2004−256857号公報JP 2004-256857 A

低温焼結用ペーストの銅粉は、サイズがサブミクロンであるので、電解法やアトマイズ法では対応できず、化学反応を利用して得る。この製粉反応において、粒子の粗大化を防ぐために、銅粉表面には粒成長抑制剤を付着させる。この粒成長抑制剤として、天然樹脂、多糖類、ゼラチン等が例として挙げられる。本発明者は、銅粉の酸化の防止のために有機物を付着させる場合には、これらの粒成長抑制剤を除去する必要があるとの知見を得た。このためには、有機溶剤、またはアルカリ水溶液による除去操作の工程が必要となり、工程数の増加をもたらす。そこで、工程数の増加をもたらすことなく、粒成長抑制剤を除去できれば望ましい。   Since the copper powder of the paste for low-temperature sintering is submicron in size, it cannot be handled by an electrolytic method or an atomizing method, and is obtained using a chemical reaction. In this milling reaction, a grain growth inhibitor is adhered to the surface of the copper powder in order to prevent coarsening of the particles. Examples of the grain growth inhibitor include natural resins, polysaccharides, gelatin and the like. The present inventor has obtained knowledge that it is necessary to remove these grain growth inhibitors when an organic substance is adhered to prevent oxidation of copper powder. For this purpose, a removal operation step using an organic solvent or an alkaline aqueous solution is required, resulting in an increase in the number of steps. Therefore, it is desirable that the grain growth inhibitor can be removed without increasing the number of steps.

また、従来技術のように、銅酸化物または銅化合物を還元剤で還元して銅微粒子を得る場合、反応温度を60℃以上にしなければならない。このように温度が高くなると、反応場における粒成長抑制剤、表面処理剤が、銅微粒子に吸着しにくくなる。このため、予め過剰に粒成長抑制剤、表面処理剤を反応場に加えなければならない。しかし、過剰に加えると、銅微粒子に直接吸着している分だけでなく、銅微粒子に吸着した化合物にさらに物理的に吸着している分が存在するので、銅微粒子を被覆する有機物量としては多くなる。これは焼結の障害となる可能性がある。さらに、多量の粒成長抑制剤、表面処理剤を要するので、廃液中の余剰の有機物の処理工程を要する。そこで、粒成長抑制剤、表面処理剤を過剰に使用することなく、銅粉の酸化を防ぐことができれば望ましい。   Further, as in the prior art, when copper fine particles are obtained by reducing copper oxide or a copper compound with a reducing agent, the reaction temperature must be 60 ° C. or higher. Thus, when temperature rises, the particle growth inhibitor in a reaction field and a surface treating agent will become difficult to adsorb | suck to copper fine particles. For this reason, it is necessary to add a grain growth inhibitor and a surface treatment agent to the reaction field excessively beforehand. However, if added in excess, not only the amount adsorbed directly on the copper fine particles, but also the amount physically adsorbed on the compound adsorbed on the copper fine particles exists, so the amount of organic matter covering the copper fine particles is Become more. This can be an obstacle to sintering. Furthermore, since a large amount of grain growth inhibitor and surface treatment agent are required, a process for treating excess organic matter in the waste liquid is required. Therefore, it is desirable that the oxidation of the copper powder can be prevented without excessively using the grain growth inhibitor and the surface treatment agent.

したがって、本発明の目的は、平均粒径が1μm以下あって、耐酸化性に優れ、低温で焼結しても良好な導電性を有する焼成膜を形成でき、簡素な工程によって製造できる、表面処理された銅微粒子を提供することにある。   Accordingly, the object of the present invention is to provide a surface having an average particle diameter of 1 μm or less, excellent in oxidation resistance, capable of forming a fired film having good conductivity even when sintered at a low temperature, and manufactured by a simple process. The object is to provide treated copper particulates.

本発明者は、これまでの鋭意研究の結果、特定の窒素含有有機物を含む水溶液と銅微粒子を混合することによって表面処理を行うと、簡素な工程であるにもかかわらず、耐酸化性、低温焼結性を兼ね備えた、表面処理された銅微粒子が得られることを見いだして、本発明に到達した。   As a result of diligent research so far, the present inventor has conducted a surface treatment by mixing an aqueous solution containing a specific nitrogen-containing organic substance and copper fine particles. The inventors have found that surface-treated copper fine particles having sinterability can be obtained, and reached the present invention.

したがって、本発明は以下の(1)以下を含む。
(1)
粒成長抑制剤の存在下で化学還元法又は不均化反応を行って得られた銅微粒子を、
銅微粒子に対して0.03〜10重量%の窒素含有有機物を含む水溶液と混合して得られた、表面処理された銅微粒子。
(2)
粒成長抑制剤の存在下で化学還元法又は不均化反応を行って得られた銅微粒子を、希硫酸と混合した後に、
さらに、銅微粒子に対して0.03〜10重量%の窒素含有有機物を含む水溶液と混合して得られた、表面処理された銅微粒子。
(3)
窒素含有有機物を含む水溶液が、アルカリ性の水溶液である、(1)又は(2)に記載の表面処理された銅微粒子。
(4)
窒素含有有機物が、
アミノ酸;又は
以下のいずれかの基:
−CH(OH)−CH2−NR12
(ただし、R1及びR2はそれぞれ独立に、
C1〜C8のアルキル基、C1〜C8のヒドロキシアルキル基、C2〜C8のアルコキシアルキル基、C7〜C10の置換又は無置換のフェニルアルキル基、C6〜C8の置換又は無置換のフェニル基、C12〜C16の置換又は無置換のナフチル基、C3〜C8の直鎖又は分枝のアルケニル基からなる群から選択された基である。)
又は
−CH(OH)−CH2−[N+123]X1 -
(ただし、R1、R2及びR3はそれぞれ独立に、
C1〜C8のアルキル基、C1〜C8のヒドロキシアルキル基、C2〜C8のアルコキシアルキル基、C7〜C10の置換又は無置換のフェニルアルキル基、C6〜C8の置換又は無置換のフェニル基、C12〜C16の置換又は無置換のナフチル基、C3〜C8の直鎖又は分枝のアルケニル基からなる群から選択された基であり、
1 -は、ハロゲン化物イオン、CH3SO4 -からなる群から選択された1価のアニオンである)
を1個以上有するアミン化合物
である、(1)〜(3)のいずれかに記載の表面処理された銅微粒子。
(5)
窒素含有有機物が、次の式I:
(ただし、式中、nは、1〜8の整数であり、
R基は、以下のいずれかの基である:
−NR12
(ただし、R1及びR2はそれぞれ独立に、
C1〜C8のアルキル基、C1〜C8のヒドロキシアルキル基、C2〜C8のアルコキシアルキル基、C7〜C10の置換又は無置換のフェニルアルキル基、C6〜C8の置換又は無置換のフェニル基、C12〜C16の置換又は無置換のナフチル基、C3〜C8の直鎖又は分枝のアルケニル基からなる群から選択された基である。)
又は
−[N+123]X1 -
(ただし、R1、R2及びR3はそれぞれ独立に、
C1〜C8のアルキル基、C1〜C8のヒドロキシアルキル基、C2〜C8のアルコキシアルキル基、C7〜C10の置換又は無置換のフェニルアルキル基、C6〜C8の置換又は無置換のフェニル基、C12〜C16の置換又は無置換のナフチル基、C3〜C8の直鎖又は分枝のアルケニル基からなる群から選択された基であり、
1 -は、ハロゲン化物イオン、CH3SO4 -からなる群から選択された1価のアニオンである))
で表される窒素含有有機物である、(1)〜(4)のいずれかに記載の表面処理された銅微粒子。
(6)
粒成長抑制剤が、天然樹脂、多糖類、及びゼラチンから選択された1種以上である、(1)〜(5)のいずれかに記載の表面処理された銅微粒子。
(7)
銅微粒子の平均粒径が、0.1〜1.0μmの範囲にある、(1)〜(6)のいずれかに記載の表面処理された銅微粒子。
(8)
銅微粒子が、粒子表面の少なくとも一部に亜酸化銅層を有する、(1)〜(7)のいずれかに記載の表面処理された銅微粒子。
(9)
(1)〜(8)のいずれかに記載の表面処理された銅微粒子;及び
沸点250℃以下であるアルコール又はグリコール
を含んでなる、銅微粒子ペースト。
(10)
さらにアクリル樹脂、又はロジンを含む(9)に記載の銅微粒子ペースト。
(11)
(9)又は(10)に記載の銅微粒子ペーストを非酸化性雰囲気下で350℃以下で焼成して得られた、50μΩcm以下の比抵抗である焼成体。
Accordingly, the present invention includes the following (1).
(1)
Copper fine particles obtained by performing a chemical reduction method or disproportionation reaction in the presence of a grain growth inhibitor,
Surface-treated copper fine particles obtained by mixing with an aqueous solution containing 0.03 to 10% by weight of a nitrogen-containing organic substance with respect to the copper fine particles.
(2)
After mixing copper fine particles obtained by performing chemical reduction method or disproportionation reaction in the presence of a grain growth inhibitor with dilute sulfuric acid,
Furthermore, the surface-treated copper fine particle obtained by mixing with the aqueous solution containing 0.03-10 weight% of nitrogen containing organic substance with respect to copper fine particle.
(3)
The surface-treated copper fine particles according to (1) or (2), wherein the aqueous solution containing a nitrogen-containing organic substance is an alkaline aqueous solution.
(4)
Nitrogen-containing organic matter
An amino acid; or any of the following groups:
—CH (OH) —CH 2 —NR 1 R 2 group (where R 1 and R 2 are each independently
C1-C8 alkyl group, C1-C8 hydroxyalkyl group, C2-C8 alkoxyalkyl group, C7-C10 substituted or unsubstituted phenylalkyl group, C6-C8 substituted or unsubstituted phenyl group, C12- It is a group selected from the group consisting of a C16 substituted or unsubstituted naphthyl group and a C3 to C8 linear or branched alkenyl group. )
Or —CH (OH) —CH 2 — [N + R 1 R 2 R 3 ] X 1 group (where R 1 , R 2 and R 3 are each independently
C1-C8 alkyl group, C1-C8 hydroxyalkyl group, C2-C8 alkoxyalkyl group, C7-C10 substituted or unsubstituted phenylalkyl group, C6-C8 substituted or unsubstituted phenyl group, C12- A group selected from the group consisting of a C16 substituted or unsubstituted naphthyl group, a C3-C8 linear or branched alkenyl group,
X 1 is a monovalent anion selected from the group consisting of a halide ion and CH 3 SO 4 )
The surface-treated copper fine particles according to any one of (1) to (3), which are amine compounds having one or more of
(5)
Nitrogen-containing organics have the following formula I:
(Where n is an integer of 1 to 8,
The R group is any of the following groups:
—NR 1 R 2 group (where R 1 and R 2 are each independently
C1-C8 alkyl group, C1-C8 hydroxyalkyl group, C2-C8 alkoxyalkyl group, C7-C10 substituted or unsubstituted phenylalkyl group, C6-C8 substituted or unsubstituted phenyl group, C12- It is a group selected from the group consisting of a C16 substituted or unsubstituted naphthyl group and a C3 to C8 linear or branched alkenyl group. )
Or-[N + R 1 R 2 R 3 ] X 1 - group (wherein R 1 , R 2 and R 3 are each independently
C1-C8 alkyl group, C1-C8 hydroxyalkyl group, C2-C8 alkoxyalkyl group, C7-C10 substituted or unsubstituted phenylalkyl group, C6-C8 substituted or unsubstituted phenyl group, C12- A group selected from the group consisting of a C16 substituted or unsubstituted naphthyl group, a C3-C8 linear or branched alkenyl group,
X 1 is a monovalent anion selected from the group consisting of halide ions and CH 3 SO 4 ))
The surface-treated copper fine particle according to any one of (1) to (4), which is a nitrogen-containing organic substance represented by:
(6)
The surface-treated copper fine particles according to any one of (1) to (5), wherein the grain growth inhibitor is at least one selected from natural resins, polysaccharides, and gelatin.
(7)
The surface-treated copper fine particles according to any one of (1) to (6), wherein the average particle diameter of the copper fine particles is in the range of 0.1 to 1.0 μm.
(8)
The surface-treated copper fine particles according to any one of (1) to (7), wherein the copper fine particles have a cuprous oxide layer on at least a part of the particle surface.
(9)
A surface-treated copper fine particle according to any one of (1) to (8); and a copper fine particle paste comprising alcohol or glycol having a boiling point of 250 ° C. or lower.
(10)
Furthermore, the copper fine particle paste as described in (9) containing an acrylic resin or rosin.
(11)
A fired body having a specific resistance of 50 μΩcm or less, obtained by firing the copper fine particle paste according to (9) or (10) at 350 ° C. or less in a non-oxidizing atmosphere.

(21)
粒成長抑制剤の存在下で化学還元法又は不均化反応を行って得られた銅微粒子を、
銅微粒子に対して0.03〜10重量%の窒素含有有機物を含む水溶液と混合する工程、
を含む、表面処理された銅微粒子を製造する方法。
(22)
粒成長抑制剤の存在下で化学還元法又は不均化反応を行って得られた銅微粒子を、希硫酸と混合して、希硫酸処理銅微粒子を得る工程、
希硫酸処理銅微粒子を、銅微粒子に対して0.03〜10重量%の窒素含有有機物を含む水溶液と混合する工程、
を含む、表面処理された銅微粒子を製造する方法。
(23)
(21)又は(22)に記載の方法によって製造された表面処理された銅微粒子を、沸点250℃以下であるアルコール又はグリコールと混合して銅微粒子ペーストを得る工程、
を含む、銅微粒子ペーストを製造する方法。
(24)
(21)又は(22)に記載の方法によって製造された表面処理された銅微粒子を、沸点250℃以下であるアルコール又はグリコール、アクリル樹脂、又はロジンと混合して銅微粒子ペーストを得る工程、
を含む、銅微粒子ペーストを製造する方法。
(25)
(23)又は(24)に記載の方法によって製造された銅微粒子ペーストを、非酸化性雰囲気下で350℃以下で焼成して焼成体を得る工程、
を含む、焼成体を製造する方法。
(21)
Copper fine particles obtained by performing a chemical reduction method or disproportionation reaction in the presence of a grain growth inhibitor,
A step of mixing with an aqueous solution containing 0.03 to 10% by weight of nitrogen-containing organic matter with respect to the copper fine particles,
A method for producing surface-treated copper fine particles.
(22)
A step of mixing copper fine particles obtained by performing a chemical reduction method or a disproportionation reaction in the presence of a grain growth inhibitor with dilute sulfuric acid to obtain dilute sulfuric acid-treated copper fine particles,
Mixing the dilute sulfuric acid-treated copper fine particles with an aqueous solution containing 0.03 to 10% by weight of nitrogen-containing organic matter with respect to the copper fine particles,
A method for producing surface-treated copper fine particles.
(23)
(21) or a step of mixing the surface-treated copper fine particles produced by the method according to (22) with an alcohol or glycol having a boiling point of 250 ° C. or lower to obtain a copper fine particle paste;
A method for producing a copper fine particle paste.
(24)
(21) or a step of mixing the surface-treated copper fine particles produced by the method according to (22) with an alcohol or glycol having a boiling point of 250 ° C. or lower, an acrylic resin, or rosin to obtain a copper fine particle paste;
A method for producing a copper fine particle paste.
(25)
A step of obtaining a fired body by firing the copper fine particle paste produced by the method according to (23) or (24) at 350 ° C. or lower in a non-oxidizing atmosphere;
A method for producing a fired body.

本発明によれば、耐酸化性と低温焼結性に優れた、表面処理された銅微粒子を、簡素な工程によって得ることができる。本発明によれば、低温で焼結しても良好な導電性を有する焼成膜を形成可能な、導電性ペーストを、経済性の高い銅微粒子を使用して、得ることができる。   According to the present invention, surface-treated copper fine particles having excellent oxidation resistance and low-temperature sinterability can be obtained by a simple process. According to the present invention, a conductive paste capable of forming a fired film having good conductivity even when sintered at a low temperature can be obtained using highly economical copper fine particles.

以下に本発明を実施の態様をあげて詳細に説明する。本発明は以下にあげる具体的な実施の態様に限定されるものではない。
[表面処理された銅微粒子の製造]
本発明による表面処理された銅微粒子は、粒成長抑制剤の存在下で化学還元法又は不均化反応を行って得られた銅微粒子を、銅微粒子に対して0.03〜10重量%の窒素含有有機物を含む水溶液と混合する工程、を含む方法によって、製造することができる。
The present invention will be described in detail below with reference to embodiments. The present invention is not limited to the specific embodiments described below.
[Production of surface-treated copper fine particles]
The surface-treated copper fine particles according to the present invention comprise 0.03 to 10% by weight of copper fine particles obtained by performing a chemical reduction method or a disproportionation reaction in the presence of a grain growth inhibitor. It can manufacture by the method of including the process of mixing with the aqueous solution containing nitrogen-containing organic substance.

また、本発明による表面処理された銅微粒子は、粒成長抑制剤の存在下で化学還元法又は不均化反応を行って得られた銅微粒子を、希硫酸と混合して、希硫酸処理銅微粒子を得る工程、希硫酸処理銅微粒子を、銅微粒子に対して0.03〜10重量%の窒素含有有機物を含む水溶液と混合する工程、を含む方法によって、製造することができる。   Further, the surface-treated copper fine particles according to the present invention are obtained by mixing copper fine particles obtained by chemical reduction method or disproportionation reaction in the presence of a grain growth inhibitor with dilute sulfuric acid. It can be produced by a method comprising a step of obtaining fine particles and a step of mixing dilute sulfuric acid-treated copper fine particles with an aqueous solution containing 0.03 to 10% by weight of a nitrogen-containing organic substance with respect to the copper fine particles.

[銅微粒子]
本発明で表面処理される銅微粒子は、粒成長抑制剤の存在下で化学還元法又は不均化反応を行って得られた銅微粒子である。銅微粒子は、粒子表面の少なくとも一部に亜酸化銅層を有していてもよく、有していなくてもよい。
[Copper fine particles]
The copper fine particles to be surface-treated in the present invention are copper fine particles obtained by performing a chemical reduction method or a disproportionation reaction in the presence of a grain growth inhibitor. The copper fine particles may or may not have a cuprous oxide layer on at least a part of the particle surface.

[化学還元法、不均化反応]
化学還元法又は不均化反応は、公知の手段によって行って、微細なサイズの銅微粒子を得ることができる。
[Chemical reduction, disproportionation reaction]
The chemical reduction method or the disproportionation reaction can be performed by a known means to obtain fine copper particles.

[平均粒径]
好適な実施の態様において、銅微粒子の平均粒径が、例えば0.1〜1.0μmの範囲にある銅微粒子を、好適に表面処理することができる。
[Average particle size]
In a preferred embodiment, copper fine particles having an average particle diameter of copper fine particles in the range of, for example, 0.1 to 1.0 μm can be suitably surface-treated.

[粒成長抑制剤]
化学還元法又は不均化反応では、微細なサイズの銅微粒子を得るために、粒成長抑制剤が使用される。粒成長抑制剤としては、水溶性高分子であれば特に制限がないが、例えば、天然樹脂、多糖類、及びゼラチンから選択された1種以上を挙げることができる。
[Grain growth inhibitor]
In the chemical reduction method or the disproportionation reaction, a grain growth inhibitor is used in order to obtain fine copper particles. The grain growth inhibitor is not particularly limited as long as it is a water-soluble polymer, and examples thereof include one or more selected from natural resins, polysaccharides, and gelatin.

[希硫酸処理銅微粒子]
好適な実施の態様において、粒成長抑制剤の存在下で化学還元法又は不均化反応を行って得られた銅微粒子を、希硫酸と混合して、希硫酸処理銅微粒子とした後に、表面処理される銅微粒子として、使用することができる。希硫酸との混合は、例えば0.1N〜30Nの範囲の希硫酸を、銅粉と撹拌や超音波を照射しながら混合することで行うことができる。希硫酸処理した銅微粒子は、公知の手段によって希硫酸を含むスラリーのなかから分離して、その後の窒素含有有機物を含む水溶液との混合処理に、供することができる。
[Diluted sulfuric acid-treated copper fine particles]
In a preferred embodiment, the copper fine particles obtained by performing a chemical reduction method or a disproportionation reaction in the presence of a grain growth inhibitor are mixed with dilute sulfuric acid to form dilute sulfuric acid-treated copper fine particles, and then the surface It can be used as copper fine particles to be treated. Mixing with dilute sulfuric acid can be performed, for example, by mixing dilute sulfuric acid in the range of 0.1N to 30N while irradiating copper powder with stirring or ultrasonic waves. The copper fine particles treated with dilute sulfuric acid can be separated from the slurry containing dilute sulfuric acid by a known means and then subjected to a mixing treatment with an aqueous solution containing a nitrogen-containing organic substance.

[窒素含有有機物を含む水溶液]
好適な実施の態様において、窒素含有有機物を含む水溶液が、アルカリ性の水溶液である。
[Aqueous solution containing nitrogen-containing organic substances]
In a preferred embodiment, the aqueous solution containing a nitrogen-containing organic substance is an alkaline aqueous solution.

[窒素含有有機物]
好適な実施の態様において、窒素含有有機物は、アミノ酸又はアミン化合物である。窒素含有有機物は、銅微粒子に対して、例えば0.03〜10重量%、0.05〜10重量%、0.1〜10重量%、0.4〜10重量%の比率となるように使用できる。粒成長抑制剤の存在下で化学還元法又は不均化反応を行って銅微粒子を得る工程から、窒素含有有機物を含む水溶液と混合する工程までを、一貫して湿式で行う場合等においては、作業性の観点から、窒素含有有機物を、銅微粒子に対して上記重量%の範囲の使用量で使用することに代えて、窒素含有有機物を、銅微粒子の原料となる銅化合物(例えば亜酸化銅、酸化銅等)に対して上記重量%の範囲の使用量で使用することもできる。
[Nitrogen-containing organic matter]
In a preferred embodiment, the nitrogen-containing organic substance is an amino acid or an amine compound. The nitrogen-containing organic substance is used so as to have a ratio of, for example, 0.03 to 10% by weight, 0.05 to 10% by weight, 0.1 to 10% by weight, and 0.4 to 10% by weight with respect to the copper fine particles. it can. From the step of obtaining copper fine particles by performing chemical reduction method or disproportionation reaction in the presence of a grain growth inhibitor to the step of mixing with an aqueous solution containing a nitrogen-containing organic substance, etc. From the viewpoint of workability, instead of using the nitrogen-containing organic substance in an amount within the above-mentioned range of the weight percent with respect to the copper fine particles, the nitrogen-containing organic substance is used as a copper compound (for example, cuprous oxide) as a raw material for the copper fine particles , Copper oxide, etc.) can be used in an amount within the above-mentioned range of weight%.

[アミノ酸]
アミノ酸としては、いわゆる天然のアミノ酸であってもよく、非天然の人工アミノ酸であってもよく、側鎖としてさらにアミノ基又はイミノ基を有するアミノ酸が好ましい。アミノ酸として、例えば、Trp、Asn、Arg、His、Lysを挙げることができる。アミノ酸として、これらのアミノ酸のポリマーを使用することもできる。好適な実施の態様において、アミノ酸のポリマーは全体として水溶性を有するものとできる。
[amino acid]
The amino acid may be a so-called natural amino acid or a non-natural artificial amino acid, and an amino acid further having an amino group or imino group as a side chain is preferable. Examples of amino acids include Trp, Asn, Arg, His, and Lys. As amino acids, polymers of these amino acids can also be used. In a preferred embodiment, the amino acid polymer as a whole can be water-soluble.

[アミン化合物]
アミン化合物としては、3級アミン化合物、又は4級アミン化合物を使用することができる。このようなアミン化合物として、−CH(OH)−CH2−NR12基、又は−CH(OH)−CH2−[N+123]X1 -基を有するアミン化合物を挙げることができる。これらの基は、例えば、1個又は2個以上、あるいは3個〜16個、3個〜12個、3個〜8個、4〜6個を、アミン化合物中に有していてもよい。
[Amine compound]
As the amine compound, a tertiary amine compound or a quaternary amine compound can be used. As such an amine compound, an amine compound having a —CH (OH) —CH 2 —NR 1 R 2 group or a —CH (OH) —CH 2 — [N + R 1 R 2 R 3 ] X 1 group Can be mentioned. These groups may have, for example, one or more, or 3 to 16, 3 to 12, 3 to 8, and 4 to 6 in the amine compound.

[好適なアミン化合物の骨格]
このようなアミン化合物として、次の式I:
(ただし、式中、R基は、次のいずれかの基である: −NR12基 又は −[N+123]X1 -基)
を好適に使用することができる。式中、nは、1〜8の整数、好ましくは1〜6の整数、2〜4の整数とすることができる。
[Suitable amine compound skeleton]
Such amine compounds include the following formula I:
(Wherein, the R group is any of the following groups: -NR 1 R 2 group or-[N + R 1 R 2 R 3 ] X 1 - group)
Can be preferably used. In the formula, n can be an integer of 1 to 8, preferably an integer of 1 to 6, and an integer of 2 to 4.

[R1、R2、R3
上記のR1及びR2はそれぞれ独立に、あるいは上記のR1、R2及びR3はそれぞれ独立に、C1〜C8のアルキル基、C1〜C8のヒドロキシアルキル基、C2〜C8のアルコキシアルキル基、C7〜C10の置換又は無置換のフェニルアルキル基、C6〜C8の置換又は無置換のフェニル基、C12〜C16の置換又は無置換のナフチル基、C3〜C8の直鎖又は分枝のアルケニル基からなる群から選択された基とすることができる。好適な実施の態様において、R1及びR2を同じ基とすることができる。好適な実施の態様において、R3を、例えば芳香族環を有する基とすることができる。好適な実施の態様において、これらの置換基は、アミン化合物が全体として水溶性を有するように、選択される。
[R 1 , R 2 , R 3 ]
R 1 and R 2 are each independently, or R 1 , R 2 and R 3 are each independently a C1-C8 alkyl group, a C1-C8 hydroxyalkyl group, a C2-C8 alkoxyalkyl group. C7 to C10 substituted or unsubstituted phenylalkyl group, C6 to C8 substituted or unsubstituted phenyl group, C12 to C16 substituted or unsubstituted naphthyl group, C3 to C8 linear or branched alkenyl group A group selected from the group consisting of In a preferred embodiment, R 1 and R 2 can be the same group. In a preferred embodiment, R 3 can be, for example, a group having an aromatic ring. In preferred embodiments, these substituents are selected such that the amine compound as a whole has water solubility.

アルキル基は、例えばC1〜C8(炭素数1個から8個)、C1〜C6、C1〜C3、C1〜C2とできる。ヒドロキシアルキル基は、例えばC1〜C8、C1〜C6、C1〜C3、C1〜C2とできる。アルコキシアルキル基は、例えばC1〜C8、C1〜C6、C1〜C3、C1〜C2とでき、例えばメトキシアルキル基、エトキシアルキル基、プロポキシアルキル基とできる。フェニルアルキル基は、例えばC7〜C10、C7〜C8とでき、フェニルアルキル基のフェニル基が置換又は無置換のフェニル基であってもよく、例えばフェニルアルキル基のフェニル基は、C1〜C3のアルキル基によって1個又は2個置換されていてもよい。フェニル基は、例えばC6〜C8、C6〜C7とでき、置換又は無置換のフェニル基であってもよく、例えばC1〜C3のアルキル基によって1個又は2個置換されていてもよい。ナフチル基は、例えばC12〜C16、C12〜C14とでき、置換又は無置換のナフチル基であってもよく、例えばC1〜C3のアルキル基によって1個又は2個置換されていてもよい。アルケニル基は、例えばC3〜C8、C3〜C6、C3〜C4とでき、直鎖又は分枝の骨格を有していてもよい。   An alkyl group can be made into C1-C8 (C1-C8), C1-C6, C1-C3, C1-C2, for example. The hydroxyalkyl group can be, for example, C1-C8, C1-C6, C1-C3, C1-C2. The alkoxyalkyl group can be, for example, C1-C8, C1-C6, C1-C3, C1-C2, and can be, for example, a methoxyalkyl group, an ethoxyalkyl group, or a propoxyalkyl group. The phenylalkyl group can be, for example, C7 to C10 and C7 to C8, and the phenyl group of the phenylalkyl group may be a substituted or unsubstituted phenyl group. For example, the phenyl group of the phenylalkyl group is a C1 to C3 alkyl group. One or two groups may be substituted with a group. The phenyl group may be, for example, C6 to C8 or C6 to C7, and may be a substituted or unsubstituted phenyl group, and may be substituted by one or two, for example, a C1 to C3 alkyl group. A naphthyl group can be made into C12-C16, C12-C14, for example, may be a substituted or unsubstituted naphthyl group, for example, may be substituted 1 or 2 by a C1-C3 alkyl group. The alkenyl group can be, for example, C3-C8, C3-C6, C3-C4, and may have a linear or branched skeleton.

[X1 -
上記のX1 -は、ハロゲン化物イオン、CH3SO4 -からなる群から選択された1価のアニオンである。
[X 1 -]
X 1 is a monovalent anion selected from the group consisting of halide ions and CH 3 SO 4 .

[アミン化合物の例示]
上記式Iの骨格のアミン化合物に加えて、例えば、以下の骨格のアミン化合物を例示することができる:
[Examples of amine compounds]
In addition to the above amine compounds of the formula I, for example, the following backbone amine compounds can be exemplified:

A11:
A11:

A12:
A12:

A13:
A13:

A14:
A14:

A15:
A15:

A16:
A16:

A17:
A17:

A18:
A18:

B11:
B11:

B12:
B12:

B13:
B13:

B14:
B14:

B15:
B15:

B16:
B16:

B17:
B17:

B18:
B18:

上記例示されるアミン化合物において、R1、R2、R3及びX1 -としては、上述したR1、R2、R3及びX1 -を使用することができる。 In the amine compounds exemplified above, R 1 , R 2 , R 3 and X 1 described above can be used as R 1 , R 2 , R 3 and X 1 .

[表面処理された銅微粒子]
銅微粒子は、窒素含有有機物を含む水溶液と混合することによって表面処理された後に、公知の手段によって適宜水溶液から分離し、必要に応じて乾燥や解砕を行って、その後の導電性ペースト(銅微粒子ペースト)の製造に適した形態として、表面処理された銅微粒子を得ることができる。
[Surface treated copper fine particles]
After the copper fine particles are surface-treated by mixing with an aqueous solution containing a nitrogen-containing organic substance, the copper fine particles are appropriately separated from the aqueous solution by known means, dried and crushed as necessary, and then the conductive paste (copper) As a form suitable for the production of a fine particle paste), surface-treated copper fine particles can be obtained.

[低温焼結性]
本発明の表面処理された銅微粒子は、低温焼結性に優れ、例えば銅微粒子ペーストとした場合に、例えば400℃以下、350℃以下、300℃以下、250℃以下の焼結温度、例えば200℃以上、230℃以上、250℃以上の焼結温度で、優れた焼成体を得ることができる。
[Low temperature sintering]
The surface-treated copper fine particles of the present invention are excellent in low temperature sinterability. For example, when a copper fine particle paste is used, for example, a sintering temperature of 400 ° C. or lower, 350 ° C. or lower, 300 ° C. or lower, 250 ° C. or lower, for example 200 An excellent fired body can be obtained at a sintering temperature of not lower than 230 ° C, not lower than 230 ° C, and not lower than 250 ° C.

[銅微粒子ペースト]
表面処理された銅微粒子を使用して、公知の手段によって、導電性ペースト(銅微粒子ペースト)を製造することができる。好適な実施の態様において、例えば表面処理された銅微粒子を、沸点250℃以下であるアルコール又はグリコールと混合して銅微粒子ペーストを得ることができる。ペーストには粘度調整のためにバインダー樹脂を加えてもよい。銅微粒子は非酸化性雰囲気下又は還元性雰囲気下で焼成されるので、バインダー樹脂としては熱分解型のバインダー樹脂が好ましい。好適なバインダー樹脂として、アクリル樹脂、ロジンが挙げられる。あるいは、所望に応じて、優れた低温焼結性を妨げない範囲内で、公知の溶剤、添加剤、ガラスフリットを使用してもよい。ガラスフリットは銅微粒子よりも大きいと、平坦な塗膜を形成する際の障害となることから、銅微粒子のD50の20倍未満のD50であることが望ましい。混合は、公知の手段によって行うことができ、1段階又は2段階以上の混練によって行ってもよい。
[Copper fine particle paste]
By using the surface-treated copper fine particles, a conductive paste (copper fine particle paste) can be produced by a known means. In a preferred embodiment, for example, surface-treated copper fine particles can be mixed with alcohol or glycol having a boiling point of 250 ° C. or lower to obtain a copper fine particle paste. A binder resin may be added to the paste to adjust the viscosity. Since the copper fine particles are baked in a non-oxidizing atmosphere or a reducing atmosphere, the binder resin is preferably a pyrolytic binder resin. Suitable binder resins include acrylic resins and rosins. Or you may use a well-known solvent, an additive, and a glass frit if it desires in the range which does not prevent the outstanding low-temperature sintering property. If the glass frit is larger than the copper fine particles, it becomes an obstacle when a flat coating film is formed. Therefore, the D50 is preferably less than 20 times the D50 of the copper fine particles. Mixing can be carried out by known means, and may be carried out by one stage or two or more stages of kneading.

[焼成体]
銅微粒子ペーストを使用して、公知の手段によって、塗工等を行い、焼成を行って、焼成体を製造することができる。好適な実施の態様において、例えば銅微粒子ペーストを、非酸化性雰囲気下で350℃以下で焼成して焼成体を得ることができる。
[Firing body]
Using the copper fine particle paste, it is possible to produce a fired body by performing coating or the like and firing by a known means. In a preferred embodiment, for example, a copper fine particle paste can be fired at 350 ° C. or lower in a non-oxidizing atmosphere to obtain a fired body.

[雰囲気]
焼結は、例えば非酸化性雰囲気下又は還元性雰囲気下で行うことができる。非酸化性雰囲気下とは、酸化性気体が含まれない又は低減された雰囲気をいい、例えば酸素が完全又は十分に除去された雰囲気をいう。還元性雰囲気は、雰囲気中にCO、H2S、SO2、H2、HCHO、HCOOH、H2O等の還元性気体が、0.5vol%以上、好ましくは1.0vol%以上で含まれる雰囲気をいう。還元性雰囲気としては、例えば、大気圧の気体窒素及び気体水素を含む雰囲気を挙げることができる。
[atmosphere]
Sintering can be performed, for example, in a non-oxidizing atmosphere or a reducing atmosphere. The non-oxidizing atmosphere refers to an atmosphere in which an oxidizing gas is not contained or reduced, for example, an atmosphere in which oxygen is completely or sufficiently removed. The reducing atmosphere contains 0.5 vol% or more, preferably 1.0 vol% or more of a reducing gas such as CO, H 2 S, SO 2 , H 2 , HCHO, HCOOH, and H 2 O in the atmosphere. Say the atmosphere. As reducing atmosphere, the atmosphere containing gaseous nitrogen and gaseous hydrogen of atmospheric pressure can be mentioned, for example.

[比抵抗]
本発明による銅微粒子ペーストは、表面処理された銅微粒子の優れた低温焼結性を反映して、低温での焼結によっても、比抵抗に優れた焼成体を製造することができる。焼成体の比抵抗[μΩ・cm]は、実施例に記載の手段によって、測定することができる。好適な実施の態様において、比抵抗の値は、例えば、焼結温度350℃で15μΩ・cm以下、焼結温度300℃で20μΩ・cm以下、焼結温度250℃で44μΩ・cm以下とすることができる。
[Resistivity]
The copper fine particle paste according to the present invention reflects the excellent low-temperature sinterability of the surface-treated copper fine particles, and can produce a fired body excellent in specific resistance even by sintering at a low temperature. The specific resistance [μΩ · cm] of the fired body can be measured by the means described in the examples. In a preferred embodiment, the specific resistance value is, for example, 15 μΩ · cm or less at a sintering temperature of 350 ° C., 20 μΩ · cm or less at a sintering temperature of 300 ° C., and 44 μΩ · cm or less at a sintering temperature of 250 ° C. Can do.

以下に実施例をあげて、本発明をさらに詳細に説明する。本発明は、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.

(例1:アミンの合成(A1〜A6))
窒素含有有機物(有機物)として以下の手順でアミン化合物(A1〜A6)を合成した。エポキシ化合物(デナコールEX−521(ナカセケムテックス株式会社製))10.0gとジエタノールアミン5.72gを三口フラスコに投入し、ドライアイス−メタノールを冷却媒体とした冷却管を用意して、60℃で3時間反応を行い、ジエタノールアミンで変性した化合物を得た。得られたジエタノールアミン化合物の構造は下記の通りである。
(Example 1: Synthesis of amine (A1 to A6))
Amine compounds (A1 to A6) were synthesized as nitrogen-containing organic substances (organic substances) by the following procedure. 10.0 g of epoxy compound (Denacol EX-521 (manufactured by Nakase ChemteX Corporation)) and 5.72 g of diethanolamine were put into a three-necked flask, and a cooling tube using dry ice-methanol as a cooling medium was prepared. The reaction was carried out for 3 hours to obtain a compound modified with diethanolamine. The structure of the obtained diethanolamine compound is as follows.

同様にして、ビス(2−エトキシエチル)アミン、ジベンジルアミン、ジフェニルアミン、ジアリルアミン、ジメチルアミンでそれぞれ変性した化合物を経た。FT−IR、1H−NMR、13C−NMRで生成物の構造を特定した。以下、ジエタノールアミン化合物、ジメチルアミン化合物、ビス(2−エトキシエチル)アミン化合物、ジベンジルアミン化合物、ジフェニルアミン化合物、ジアリルアミン化合物をそれぞれA1〜A6と表記する。   In the same manner, compounds modified with bis (2-ethoxyethyl) amine, dibenzylamine, diphenylamine, diallylamine, and dimethylamine, respectively, were passed. The structure of the product was identified by FT-IR, 1H-NMR, and 13C-NMR. Hereinafter, a diethanolamine compound, a dimethylamine compound, a bis (2-ethoxyethyl) amine compound, a dibenzylamine compound, a diphenylamine compound, and a diallylamine compound are denoted as A1 to A6, respectively.

(例2:アミンの合成(B1〜B6))
窒素含有有機物(有機物)として以下の手順でアミン化合物(B1〜B6)を合成した。エポキシ化合物(デナコールEX−521(ナカセケムテックス株式会社製))10.0gとジエタノールアミン5.72gを三口フラスコに投入し、ドライアイス−メタノールを冷却媒体とした冷却管を用意して、60℃で3時間反応を進行させた。その後、冷却管を取り外して、窒素ガスを反応液に吹き込んで余剰のジエタノールアミンを除去した。最後にベンジルクロライドを6.88g反応液に追加し、100℃で3時間反応を行った。FT−IR、1H−NMR、13C−NMRで生成物の構造を特定した。得られたジエタノールアミン化合物の構造は下記の通りである。
(Example 2: Synthesis of amine (B1 to B6))
Amine compounds (B1 to B6) were synthesized as nitrogen-containing organic substances (organic substances) by the following procedure. 10.0 g of epoxy compound (Denacol EX-521 (manufactured by Nakase ChemteX Corporation)) and 5.72 g of diethanolamine were put into a three-necked flask, and a cooling tube using dry ice-methanol as a cooling medium was prepared. The reaction was allowed to proceed for 3 hours. Thereafter, the cooling pipe was removed, and nitrogen gas was blown into the reaction solution to remove excess diethanolamine. Finally, 6.88 g of benzyl chloride was added to the reaction solution and reacted at 100 ° C. for 3 hours. The structure of the product was identified by FT-IR, 1H-NMR, and 13C-NMR. The structure of the obtained diethanolamine compound is as follows.

同様にして、ビス(2−エトキシエチル)アミン、ジベンジルアミン、ジフェニルアミン、ジアリルアミン、ジメチルアミンでそれぞれ変性した化合物を経た。FT−IR、1H−NMR、13C−NMRで生成物の構造を特定した。以下、ジエタノールアミン化合物、ジメチルアミン化合物、ビス(2−エトキシエチル)アミン化合物、ジベンジルアミン化合物、ジフェニルアミン化合物、ジアリルアミン化合物をそれぞれB1〜B6と表記する。   In the same manner, compounds modified with bis (2-ethoxyethyl) amine, dibenzylamine, diphenylamine, diallylamine, and dimethylamine, respectively, were passed. The structure of the product was identified by FT-IR, 1H-NMR, and 13C-NMR. Hereinafter, a diethanolamine compound, a dimethylamine compound, a bis (2-ethoxyethyl) amine compound, a dibenzylamine compound, a diphenylamine compound, and a diallylamine compound are denoted as B1 to B6, respectively.

上記合成した化合物A1〜A6及びB1〜B6の構造は、以下の式Iにおいて、n=3であり、R基がそれぞれ下記の表1の通りに置換された構造式である。   The structures of the synthesized compounds A1 to A6 and B1 to B6 are structural formulas in which n = 3 in the following formula I and the R group is substituted as shown in Table 1 below.

式I:
Formula I:

(例3:実施例1、30)
1Lビーカー内に亜酸化銅粉50gと保護剤(粒成長抑制剤)としてアラビアゴムまたは魚から精製した動物性ニカワを0.25gを350mLの純水に分散させ、そこに体積比率25%の希硫酸100mLを瞬間的に添加し、不均化反応を行った。このスラリーからデカンテーション、水洗を繰り返し、D50 0.2μmの銅微粒子20gを得た。この銅微粒子20gと、有機物(窒素含有有機物)としてアミンA2を1gを含む水溶液100mLを300rpmで1時間混合した後、銅微粉を回収した。その後、窒素中で70℃で1時間乾燥させた後、解砕し、表面処理された銅微粒子を得た。この銅微粒子を金属比率が85%となるように、ジエチレングリコールと3本ロールで混ぜ合わせ、乾燥塗膜厚で約10μmとなるようにガラス基板上にスクリーン印刷をした。これをN2中で350℃、300℃、250℃の各温度で30分焼成し、得られた焼成体の比抵抗を測定した。
(Example 3: Examples 1 and 30)
In a 1 L beaker, 50 g of cuprous oxide powder and 0.25 g of animal glue made from gum arabic or fish as a protective agent (grain growth inhibitor) are dispersed in 350 mL of pure water, and a volume ratio of 25% 100 mL of sulfuric acid was added instantaneously to carry out a disproportionation reaction. Decantation and water washing were repeated from this slurry to obtain 20 g of copper fine particles having a D50 of 0.2 μm. After 20 g of this copper fine particle and 100 mL of an aqueous solution containing 1 g of amine A2 as an organic substance (nitrogen-containing organic substance) were mixed at 300 rpm for 1 hour, copper fine powder was recovered. Then, after drying at 70 degreeC in nitrogen for 1 hour, it was crushed and the surface-treated copper fine particle was obtained. The copper fine particles were mixed with diethylene glycol and three rolls so that the metal ratio was 85%, and screen-printed on a glass substrate so that the dry coating thickness was about 10 μm. This was fired in N 2 at each temperature of 350 ° C., 300 ° C., and 250 ° C. for 30 minutes, and the specific resistance of the obtained fired body was measured.

(例4:実施例2〜29、31、比較例2〜7、参考例1〜6)
1Lビーカー内に亜酸化銅粉50gと保護剤(粒成長抑制剤)としてアラビアゴムまたは魚から精製した動物性ニカワ0.25gを350mLの純水に分散させ、そこに体積比率25%の希硫酸100mLを瞬間的に添加し、不均化反応を行った。このスラリーからデカンテーション、水洗を繰り返し、D50 0.2μmの銅微粒子20gを得た。この銅微粒子を0.1mol/Lの希硫酸に10分分散させ、同じくデカンテーションにより銅微粒子を回収した。この銅微粒子20gと、有機物(窒素含有有機物)として各種化合物を所定量含む水溶液100mLを300rpmで1時間混合した後、銅微粉を回収した。その後、窒素中で70℃で1時間乾燥させた後、解砕し、表面処理された銅微粒子を得た。例3の手順でペーストを調整し、焼成体の抵抗を測定した。
(Example 4: Examples 2-29 and 31, Comparative Examples 2-7, Reference Examples 1-6)
In a 1 L beaker, 50 g of cuprous oxide powder and 0.25 g of animal glue made from gum arabic or fish as a protective agent (grain growth inhibitor) are dispersed in 350 mL of pure water, and diluted in sulfuric acid with a volume ratio of 25%. 100 mL was added instantaneously to carry out a disproportionation reaction. Decantation and water washing were repeated from this slurry to obtain 20 g of copper fine particles having a D50 of 0.2 μm. The copper fine particles were dispersed in 0.1 mol / L dilute sulfuric acid for 10 minutes, and the copper fine particles were recovered by decantation. After 20 g of this copper fine particle and 100 mL of an aqueous solution containing various compounds as organic substances (nitrogen-containing organic substances) were mixed at 300 rpm for 1 hour, copper fine powder was recovered. Then, after drying at 70 degreeC in nitrogen for 1 hour, it was crushed and the surface-treated copper fine particle was obtained. The paste was prepared by the procedure of Example 3, and the resistance of the fired body was measured.

(例5:実施例32)
2Lビーカー内に酸化銅粉末79.6gと保護剤(粒成長抑制剤)としてアラビアゴム0.40gを500mLの純水に分散させ、液温50℃においてpHを8.5±0.1に水酸化ナトリウムを加えて調整した。これにヒドラジン一水和物50.5gを含む500mLの水溶液を瞬間的に添加し、30分間液を300rpmで撹拌した。この間、液温を50℃±0.1℃、pHを8.5±0.1に保持した。その後、デカンテーション、水洗を繰り返して銅微粒子63gを得た。この銅微粒子と有機物(窒素含有有機物)としてアミンA2を1.59g含む水溶液100mLを300rpmで1時間混合した後、銅微粉を回収した。その後、窒素中で70℃で1時間乾燥させた後、解砕し、表面処理された銅微粒子を得た。例3の手順でペーストを調整し、焼成体の抵抗を測定した。
(Example 5: Example 32)
In a 2 L beaker, 79.6 g of copper oxide powder and 0.40 g of gum arabic as a protective agent (grain growth inhibitor) are dispersed in 500 mL of pure water, and water is adjusted to pH 8.5 ± 0.1 at a liquid temperature of 50 ° C. Sodium oxide was added for adjustment. To this, 500 mL of an aqueous solution containing 50.5 g of hydrazine monohydrate was added instantaneously, and the solution was stirred at 300 rpm for 30 minutes. During this time, the liquid temperature was maintained at 50 ° C. ± 0.1 ° C. and the pH at 8.5 ± 0.1. Thereafter, decantation and water washing were repeated to obtain 63 g of copper fine particles. After mixing 100 mL of an aqueous solution containing 1.59 g of amine A2 as an organic substance (nitrogen-containing organic substance) at 300 rpm for 1 hour, copper fine powder was recovered. Then, after drying at 70 degreeC in nitrogen for 1 hour, it was crushed and the surface-treated copper fine particle was obtained. The paste was prepared by the procedure of Example 3, and the resistance of the fired body was measured.

(例9:実施例33〜35)
実施例8、14、24の銅微粒子を金属比率が85%となるように、アクリル樹脂0.8%、残部がジヒドロターピネオールの組成で、例3の手順でペーストを調整し、焼成体を得た。
(Example 9: Examples 33 to 35)
The copper fine particles of Examples 8, 14, and 24 were prepared by adjusting the paste in the procedure of Example 3 with a composition of 0.8% acrylic resin and the balance dihydroterpineol so that the metal ratio was 85%, and a fired body was obtained. It was.

(例10:実施例36〜38)
実施例8、14、24の銅微粒子を金属比率が85%となるように、ロジン0.8%、残部がターピネオールの組成で、例3の手順でペーストを調整し、焼成体を得た。
(Example 10: Examples 36 to 38)
The paste was prepared by the procedure of Example 3 with the composition of the copper fine particles of Examples 8, 14, and 24 having a rosin of 0.8% and the balance of terpineol so that the metal ratio was 85%, and a fired body was obtained.

(例11:比較例1)
1Lビーカー内に亜酸化銅粉50gと保護剤(粒成長抑制剤)としてアラビアゴム0.25gを350mLの純水に分散させ、そこに体積比率25%の希硫酸100mLを瞬間的に添加し、不均化反応を行った。このスラリーからデカンテーション、水洗を繰り返し、D50 0.2μmの銅微粒子20gを回収した。この銅微粒子を、液温25℃、pH9.0の水酸化ナトリウム水溶液350mLと10分間混合し、デカンテーションにより銅微粒子を分離した。この銅微粒子とBTA0.2gを含む水溶液100mLと30分間混合し、吸引ろ過により銅微粒子を回収した。例3の手順で解砕された銅微粒子をペーストに加工し、焼成体の抵抗を測定した。
(Example 11: Comparative Example 1)
In a 1 L beaker, 50 g of cuprous oxide powder and 0.25 g of gum arabic as a protective agent (grain growth inhibitor) are dispersed in 350 mL of pure water, and 100 mL of dilute sulfuric acid with a volume ratio of 25% is added instantaneously thereto, A disproportionation reaction was performed. Decantation and water washing were repeated from this slurry to recover 20 g of copper fine particles having a D50 of 0.2 μm. The copper fine particles were mixed with 350 mL of a sodium hydroxide aqueous solution having a liquid temperature of 25 ° C. and pH 9.0 for 10 minutes, and the copper fine particles were separated by decantation. The copper fine particles and 100 mL of an aqueous solution containing 0.2 g of BTA were mixed for 30 minutes, and the copper fine particles were recovered by suction filtration. The copper fine particles crushed by the procedure of Example 3 were processed into a paste, and the resistance of the fired body was measured.

これらの結果を次の表2に示す。   These results are shown in Table 2 below.

ただし、上記表中の記号等は以下の通りである。
*A1;ジエタノールアミン変性物
A2;ジメチルアミン変性物
A3;ビス(2−エトキシエチル)アミン変性物
A4;ジベンジルアミン変性物
A5;ジフェニルアミン変性物
A6;ジアリルアミン変性物
**Trp;トリプトファン、Asn;アスパラギン、Arg;アルギニン、His;ヒスチジン
***B1;ジエタノールアミンベンジルクロライド変性物
B2;ジメチルアミンベンジルクロライド変性物
B3;ビス(2−エトキシエチル)アミンベンジルクロライド変性物
B4;ジベンジルアミンベンジルクロライド変性物
B5;ジフェニルアミンベンジルクロライド変性物
B6;ジアリルアミンベンジルクロライド変性物
However, symbols in the above table are as follows.
* A1; Diethanolamine-modified product A2; Dimethylamine-modified product A3; Bis (2-ethoxyethyl) amine-modified product A4; Dibenzylamine-modified product A5; Diphenylamine-modified product A6; Diallylamine-modified product ** Trp: Tryptophan, Asn; Asparagine Arg; Arginine, His; Histidine *** B1; Diethanolamine benzyl chloride modified B2; Dimethylamine benzyl chloride modified B3; Bis (2-ethoxyethyl) amine benzyl chloride modified B4; Dibenzylamine benzyl chloride modified B5 Modified diphenylamine benzyl chloride B6; modified diallylamine benzyl chloride

また、上記表中の「測定不可」は、測定範囲を超えて比抵抗が大きかったことを示す。   In addition, “not measurable” in the above table indicates that the specific resistance was large beyond the measurement range.

本発明によれば、耐酸化性と低温焼結性に優れた、表面処理された銅微粒子を、簡素な工程によって得ることができる。本発明は産業上有用な発明である。   According to the present invention, surface-treated copper fine particles having excellent oxidation resistance and low-temperature sinterability can be obtained by a simple process. The present invention is industrially useful.

Claims (16)

粒成長抑制剤の存在下で化学還元法又は不均化反応を行って得られた銅微粒子を、
銅微粒子に対して0.03〜10重量%の窒素含有有機物を含む水溶液と混合して得られた、表面処理された銅微粒子。
Copper fine particles obtained by performing a chemical reduction method or disproportionation reaction in the presence of a grain growth inhibitor,
Surface-treated copper fine particles obtained by mixing with an aqueous solution containing 0.03 to 10% by weight of a nitrogen-containing organic substance with respect to the copper fine particles.
粒成長抑制剤の存在下で化学還元法又は不均化反応を行って得られた銅微粒子を、希硫酸と混合した後に、
さらに、銅微粒子に対して0.03〜10重量%の窒素含有有機物を含む水溶液と混合して得られた、表面処理された銅微粒子。
After mixing copper fine particles obtained by performing chemical reduction method or disproportionation reaction in the presence of a grain growth inhibitor with dilute sulfuric acid,
Furthermore, the surface-treated copper fine particle obtained by mixing with the aqueous solution containing 0.03-10 weight% of nitrogen containing organic substance with respect to copper fine particle.
窒素含有有機物を含む水溶液が、アルカリ性の水溶液である、請求項1又は2に記載の表面処理された銅微粒子。   The surface-treated copper fine particles according to claim 1 or 2, wherein the aqueous solution containing a nitrogen-containing organic substance is an alkaline aqueous solution. 窒素含有有機物が、
アミノ酸;又は
以下のいずれかの基:
−CH(OH)−CH2−NR12
(ただし、R1及びR2はそれぞれ独立に、
C1〜C8のアルキル基、C1〜C8のヒドロキシアルキル基、C2〜C8のアルコキシアルキル基、C7〜C10の置換又は無置換のフェニルアルキル基、C6〜C8の置換又は無置換のフェニル基、C12〜C16の置換又は無置換のナフチル基、C3〜C8の直鎖又は分枝のアルケニル基からなる群から選択された基である。)
又は
−CH(OH)−CH2−[N+123]X1 -
(ただし、R1、R2及びR3はそれぞれ独立に、
C1〜C8のアルキル基、C1〜C8のヒドロキシアルキル基、C2〜C8のアルコキシアルキル基、C7〜C10の置換又は無置換のフェニルアルキル基、C6〜C8の置換又は無置換のフェニル基、C12〜C16の置換又は無置換のナフチル基、C3〜C8の直鎖又は分枝のアルケニル基からなる群から選択された基であり、
1 -は、ハロゲン化物イオン、CH3SO4 -からなる群から選択された1価のアニオンである)
を1個以上有するアミン化合物
である、請求項1〜3のいずれかに記載の表面処理された銅微粒子。
Nitrogen-containing organic matter
An amino acid; or any of the following groups:
—CH (OH) —CH 2 —NR 1 R 2 group (where R 1 and R 2 are each independently
C1-C8 alkyl group, C1-C8 hydroxyalkyl group, C2-C8 alkoxyalkyl group, C7-C10 substituted or unsubstituted phenylalkyl group, C6-C8 substituted or unsubstituted phenyl group, C12- It is a group selected from the group consisting of a C16 substituted or unsubstituted naphthyl group and a C3 to C8 linear or branched alkenyl group. )
Or —CH (OH) —CH 2 — [N + R 1 R 2 R 3 ] X 1 group (where R 1 , R 2 and R 3 are each independently
C1-C8 alkyl group, C1-C8 hydroxyalkyl group, C2-C8 alkoxyalkyl group, C7-C10 substituted or unsubstituted phenylalkyl group, C6-C8 substituted or unsubstituted phenyl group, C12- A group selected from the group consisting of a C16 substituted or unsubstituted naphthyl group, a C3-C8 linear or branched alkenyl group,
X 1 is a monovalent anion selected from the group consisting of a halide ion and CH 3 SO 4 )
The surface-treated copper fine particles according to any one of claims 1 to 3, which is an amine compound having one or more of the following.
窒素含有有機物が、次の式I:
(ただし、式中、nは、1〜8の整数であり、
R基は、以下のいずれかの基である:
−NR12
(ただし、R1及びR2はそれぞれ独立に、
C1〜C8のアルキル基、C1〜C8のヒドロキシアルキル基、C2〜C8のアルコキシアルキル基、C7〜C10の置換又は無置換のフェニルアルキル基、C6〜C8の置換又は無置換のフェニル基、C12〜C16の置換又は無置換のナフチル基、C3〜C8の直鎖又は分枝のアルケニル基からなる群から選択された基である。)
又は
−[N+123]X1 -
(ただし、R1、R2及びR3はそれぞれ独立に、
C1〜C8のアルキル基、C1〜C8のヒドロキシアルキル基、C2〜C8のアルコキシアルキル基、C7〜C10の置換又は無置換のフェニルアルキル基、C6〜C8の置換又は無置換のフェニル基、C12〜C16の置換又は無置換のナフチル基、C3〜C8の直鎖又は分枝のアルケニル基からなる群から選択された基であり、
1 -は、ハロゲン化物イオン、CH3SO4 -からなる群から選択された1価のアニオンである))
で表される窒素含有有機物である、請求項1〜4のいずれかに記載の表面処理された銅微粒子。
Nitrogen-containing organics have the following formula I:
(Where n is an integer of 1 to 8,
The R group is any of the following groups:
—NR 1 R 2 group (where R 1 and R 2 are each independently
C1-C8 alkyl group, C1-C8 hydroxyalkyl group, C2-C8 alkoxyalkyl group, C7-C10 substituted or unsubstituted phenylalkyl group, C6-C8 substituted or unsubstituted phenyl group, C12- It is a group selected from the group consisting of a C16 substituted or unsubstituted naphthyl group and a C3 to C8 linear or branched alkenyl group. )
Or-[N + R 1 R 2 R 3 ] X 1 - group (wherein R 1 , R 2 and R 3 are each independently
C1-C8 alkyl group, C1-C8 hydroxyalkyl group, C2-C8 alkoxyalkyl group, C7-C10 substituted or unsubstituted phenylalkyl group, C6-C8 substituted or unsubstituted phenyl group, C12- A group selected from the group consisting of a C16 substituted or unsubstituted naphthyl group, a C3-C8 linear or branched alkenyl group,
X 1 is a monovalent anion selected from the group consisting of halide ions and CH 3 SO 4 ))
The surface-treated copper fine particle in any one of Claims 1-4 which is a nitrogen-containing organic substance represented by these.
粒成長抑制剤が、天然樹脂、多糖類、及びゼラチンから選択された1種以上である、請求項1〜5のいずれかに記載の表面処理された銅微粒子。   The surface-treated copper fine particles according to any one of claims 1 to 5, wherein the grain growth inhibitor is at least one selected from natural resins, polysaccharides, and gelatin. 銅微粒子の平均粒径が、0.1〜1.0μmの範囲にある、請求項1〜6のいずれかに記載の表面処理された銅微粒子。   The surface-treated copper fine particles according to any one of claims 1 to 6, wherein the average particle size of the copper fine particles is in the range of 0.1 to 1.0 µm. 銅微粒子が、粒子表面の少なくとも一部に亜酸化銅層を有する、請求項1〜7のいずれかに記載の表面処理された銅微粒子。   The surface-treated copper fine particle according to any one of claims 1 to 7, wherein the copper fine particle has a cuprous oxide layer on at least a part of the particle surface. 請求項1〜8のいずれかに記載の表面処理された銅微粒子;及び
沸点250℃以下であるアルコール又はグリコール
を含んでなる、銅微粒子ペースト。
A surface-treated copper fine particle according to any one of claims 1 to 8; and a copper fine particle paste comprising alcohol or glycol having a boiling point of 250 ° C or lower.
さらにアクリル樹脂、又はロジンを含む請求項9に記載の銅微粒子ペースト。   Furthermore, the copper fine particle paste of Claim 9 containing an acrylic resin or a rosin. 請求項9又は10に記載の銅微粒子ペーストを非酸化性雰囲気下で350℃以下で焼成して得られた、50μΩcm以下の比抵抗である焼成体。   A fired body having a specific resistance of 50 μΩcm or less, obtained by firing the copper fine particle paste according to claim 9 or 10 at 350 ° C. or less in a non-oxidizing atmosphere. 粒成長抑制剤の存在下で化学還元法又は不均化反応を行って得られた銅微粒子を、
銅微粒子に対して0.03〜10重量%の窒素含有有機物を含む水溶液と混合する工程、
を含む、表面処理された銅微粒子を製造する方法。
Copper fine particles obtained by performing a chemical reduction method or disproportionation reaction in the presence of a grain growth inhibitor,
A step of mixing with an aqueous solution containing 0.03 to 10% by weight of nitrogen-containing organic matter with respect to the copper fine particles,
A method for producing surface-treated copper fine particles.
粒成長抑制剤の存在下で化学還元法又は不均化反応を行って得られた銅微粒子を、希硫酸と混合して、希硫酸処理銅微粒子を得る工程、
希硫酸処理銅微粒子を、銅微粒子に対して0.03〜10重量%の窒素含有有機物を含む水溶液と混合する工程、
を含む、表面処理された銅微粒子を製造する方法。
A step of mixing copper fine particles obtained by performing a chemical reduction method or a disproportionation reaction in the presence of a grain growth inhibitor with dilute sulfuric acid to obtain dilute sulfuric acid-treated copper fine particles,
Mixing the dilute sulfuric acid-treated copper fine particles with an aqueous solution containing 0.03 to 10% by weight of nitrogen-containing organic matter with respect to the copper fine particles,
A method for producing surface-treated copper fine particles.
請求項12又は13に記載の方法によって製造された表面処理された銅微粒子を、沸点250℃以下であるアルコール又はグリコールと混合して銅微粒子ペーストを得る工程、
を含む、銅微粒子ペーストを製造する方法。
Mixing the surface-treated copper fine particles produced by the method according to claim 12 or 13 with an alcohol or glycol having a boiling point of 250 ° C. or lower to obtain a copper fine particle paste;
A method for producing a copper fine particle paste.
請求項12又は13に記載の方法によって製造された表面処理された銅微粒子を、沸点250℃以下であるアルコール又はグリコール、アクリル樹脂、又はロジンと混合して銅微粒子ペーストを得る工程、
を含む、銅微粒子ペーストを製造する方法。
Mixing the surface-treated copper fine particles produced by the method according to claim 12 or 13 with an alcohol or glycol having a boiling point of 250 ° C. or lower, an acrylic resin, or rosin to obtain a copper fine particle paste;
A method for producing a copper fine particle paste.
請求項14又は15に記載の方法によって製造された銅微粒子ペーストを、非酸化性雰囲気下で350℃以下で焼成して焼成体を得る工程、
を含む、焼成体を製造する方法。
A step of firing the copper fine particle paste produced by the method according to claim 14 or 15 at 350 ° C. or less in a non-oxidizing atmosphere to obtain a fired body,
A method for producing a fired body.
JP2015070121A 2015-03-30 2015-03-30 Surface-treated copper fine particles and method for producing the same Active JP6475541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015070121A JP6475541B2 (en) 2015-03-30 2015-03-30 Surface-treated copper fine particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015070121A JP6475541B2 (en) 2015-03-30 2015-03-30 Surface-treated copper fine particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016191084A true JP2016191084A (en) 2016-11-10
JP6475541B2 JP6475541B2 (en) 2019-02-27

Family

ID=57246597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015070121A Active JP6475541B2 (en) 2015-03-30 2015-03-30 Surface-treated copper fine particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP6475541B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI677488B (en) * 2017-09-12 2019-11-21 日商Jx金屬股份有限公司 Manufacturing method of low-temperature sinterable surface-treated copper fine particles
KR20200060460A (en) 2017-10-04 2020-05-29 제이엑스금속주식회사 Method for producing surface-treated copper fine particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117959A (en) * 2004-10-19 2006-05-11 Fukuda Metal Foil & Powder Co Ltd Copper powder for electronic material
JP2015036445A (en) * 2013-08-13 2015-02-23 Jx日鉱日石金属株式会社 Metal powder paste and method for producing the same
JP2015036441A (en) * 2013-08-13 2015-02-23 Jx日鉱日石金属株式会社 Surface-treated metal powder and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117959A (en) * 2004-10-19 2006-05-11 Fukuda Metal Foil & Powder Co Ltd Copper powder for electronic material
JP2015036445A (en) * 2013-08-13 2015-02-23 Jx日鉱日石金属株式会社 Metal powder paste and method for producing the same
JP2015036441A (en) * 2013-08-13 2015-02-23 Jx日鉱日石金属株式会社 Surface-treated metal powder and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI677488B (en) * 2017-09-12 2019-11-21 日商Jx金屬股份有限公司 Manufacturing method of low-temperature sinterable surface-treated copper fine particles
KR20200060460A (en) 2017-10-04 2020-05-29 제이엑스금속주식회사 Method for producing surface-treated copper fine particles
KR102288667B1 (en) 2017-10-04 2021-08-11 제이엑스금속주식회사 Method for producing surface-treated copper fine particles
CN114178523A (en) * 2017-10-04 2022-03-15 Jx金属株式会社 Method for producing surface-treated copper fine particles
CN114178523B (en) * 2017-10-04 2024-03-01 Jx金属株式会社 Method for producing surface-treated copper microparticles

Also Published As

Publication number Publication date
JP6475541B2 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
JP5843821B2 (en) Metal powder paste and method for producing the same
JP5176824B2 (en) Silver-coated copper fine particles, dispersion thereof, and production method thereof
JP5720693B2 (en) Method for producing conductive copper particles
JP5712635B2 (en) Silver-containing composition
JP2014220244A (en) Sliver-coated copper powder
JP2007239077A (en) Method for producing particulate silver particle, and particulate silver particle obtained by the method
JP5701695B2 (en) Silver-coated copper powder and method for producing the same
TW201227754A (en) Conductive paste and base with conductive film
JP6509770B2 (en) Conductive metal powder paste
JP2016145299A (en) Conductive material and conductor using it
WO2014013557A1 (en) Silver-containing composition, and base for use in formation of silver element
JPWO2012077548A1 (en) Conductive paste, base material with conductive film using the same, and method for producing base material with conductive film
JP6475541B2 (en) Surface-treated copper fine particles and method for producing the same
JP6278969B2 (en) Silver coated copper powder
JP2016130365A (en) Silver-coated copper powder and method for producing the same
WO2012063659A1 (en) Silver particle-containing composition, dispersion liquid, paste, and production method for each
JP6567921B2 (en) Silver-coated copper powder and method for producing the same
JP6159505B2 (en) Flat copper particles
KR101803956B1 (en) Method for preparing copper nanoparticle which is capable of being calcined under atmospheric pressure
JP5439995B2 (en) Method for producing surface-modified copper particles, composition for forming conductor, method for producing conductor film and article
JP2015160964A (en) Nickel powder and method for producing the same
JP2004183060A (en) Polyaniline-based resin coated copper powder, its manufacturing method, and conductive paste obtained by using the powder
WO2017179524A1 (en) Silver-coated copper powder and method for producing same
TWI553661B (en) Silver powder and its use of conductive paste, conductive paint, conductive film
JP5445659B2 (en) Silver-coated copper fine particles, dispersion thereof, and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190201

R150 Certificate of patent or registration of utility model

Ref document number: 6475541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250