JP2016145299A - Conductive material and conductor using it - Google Patents

Conductive material and conductor using it Download PDF

Info

Publication number
JP2016145299A
JP2016145299A JP2015023190A JP2015023190A JP2016145299A JP 2016145299 A JP2016145299 A JP 2016145299A JP 2015023190 A JP2015023190 A JP 2015023190A JP 2015023190 A JP2015023190 A JP 2015023190A JP 2016145299 A JP2016145299 A JP 2016145299A
Authority
JP
Japan
Prior art keywords
copper
fatty acid
conductive material
alkylamine
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015023190A
Other languages
Japanese (ja)
Inventor
元気 米倉
Genki Yonekura
元気 米倉
航介 浦島
Kosuke Urashima
航介 浦島
恭 神代
Yasushi Kamishiro
恭 神代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015023190A priority Critical patent/JP2016145299A/en
Publication of JP2016145299A publication Critical patent/JP2016145299A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide conductive material capable of providing conducting substance at a low temperature and a conductor produced with the conductive material obtained by the present invention.SOLUTION: There is provided a conductive material containing a copper containing particle in which alkylamine is used as a protecting agent, organic solvent and fatty acid A. It is preferable that the fatty acid A contains at least one fatty acid having 9 or less of carbon atoms. It is preferable that the fatty acid A is contained at 0.01 to 40.0 parts by mass relatively to 100 parts by mass of the copper containing particle. It is preferable that the copper containing particle in which alkylamine is used as a protecting agent is one obtained by a step of heating a mixture of a salt compound of fatty acid B and copper (fatty acid copper), a reducing compound and alkylamine. It is preferable that the reducing compound comprises at least one compound selected from a group consisting of hydrazine, hydrazine derivative, hydroxylamine and hydroxylamine derivative. There is also provided a conductor obtained by heating the conductive material at 250°C or less.SELECTED DRAWING: None

Description

本発明は導電材料及びそれを用いた導電体に関する。   The present invention relates to a conductive material and a conductor using the same.

金属パターンの形成方法として、銅等の金属粒子を含むインク、ペースト等の導電材料をインクジェット印刷、スクリーン印刷等により基材上に付与する工程と、導電材料を加熱して金属粒子を焼結させ、導電性を発現させる導体化工程とを含む方法が知られている。導電材料に含まれる金属粒子としては、金属の酸化を抑制して保存性を高めるために表面に保護剤としての有機物を付着させたものが知られている。   As a method for forming a metal pattern, a step of applying a conductive material such as ink or paste containing metal particles such as copper onto a substrate by ink jet printing, screen printing, etc., and heating the conductive material to sinter the metal particles In addition, a method including a conductor-forming step for developing conductivity is known. As the metal particles contained in the conductive material, those in which an organic substance as a protective agent is attached to the surface in order to suppress the oxidation of the metal and enhance the storage stability are known.

特許文献1には、低温で焼結でき、良好な導電性を発現する被覆銅粒子及びその製造方法が記載されている。特許文献1に記載の銅粒子は、シュウ酸銅等の銅前駆体とヒドラジン等の還元性化合物とを混合して複合化合物を得る工程と、前記複合化合物をアルキルアミンの存在下で加熱する工程とを有する方法によって製造されるものである。特許文献1の実施例では、作製した銅粒子を含むインクをアルゴン雰囲気中、60℃/分で300℃まで加熱して30分保持することで導体化を達成している。   Patent Document 1 describes a coated copper particle that can be sintered at a low temperature and exhibits good conductivity and a method for producing the same. The copper particles described in Patent Document 1 are obtained by mixing a copper precursor such as copper oxalate and a reducing compound such as hydrazine to obtain a composite compound, and heating the composite compound in the presence of an alkylamine. It is manufactured by the method which has these. In the example of Patent Document 1, the ink containing the produced copper particles is heated to 300 ° C. at 60 ° C./min in an argon atmosphere and held for 30 minutes to achieve a conductor.

特開2012−72418号公報JP 2012-72418 A

金属粒子は金属の酸化を抑制して保存性を高めるため、表面に保護剤を付着させている。しかし、導電性を発現させるためには、導体化工程で金属粒子から保護剤を脱離させ、金属表面が剥き出しの状態にして粒子同士を焼結させる必要がある。現在、この金属粒子から保護剤を脱離させる際に高温を必要とすることが問題となっている。   In order to suppress the metal oxidation and increase the storage stability, the metal particles have a protective agent attached to the surface. However, in order to develop conductivity, it is necessary to sinter the particles by removing the protective agent from the metal particles in the conductorization step so that the metal surface is exposed. Currently, a problem is that a high temperature is required when the protective agent is desorbed from the metal particles.

近年、生産効率の向上、使用する基材の種類の多様化等の観点から、より低温(例えば、150℃以下)での金属粒子の導体化を可能にする技術の開発が求められている。従って、特許文献1に記載されている温度よりもさらに低い温度で実施できる導体化方法の開発が求められている。
本発明は上記課題を解決するため、低温で導体を得ることのできる導電材料、及び本発明で得た導体材料によって製造された導電体を提供することを目的とする。
In recent years, from the viewpoints of improving production efficiency and diversifying the types of base materials to be used, development of a technology that enables metal particles to be made conductive at a lower temperature (for example, 150 ° C. or lower) has been demanded. Accordingly, there is a need for the development of a conductorization method that can be performed at a temperature lower than the temperature described in Patent Document 1.
In order to solve the above-described problems, an object of the present invention is to provide a conductive material capable of obtaining a conductor at a low temperature and a conductor manufactured using the conductive material obtained in the present invention.

本発明の導電材料は、アルキルアミンを保護剤とする銅含有粒子を有機溶媒と混合し、さらに脂肪酸を添加したものである。これによって、粒子に付着したアルキルアミンに対して脂肪酸が付加して、アルキルアミンと粒子の結合力が弱くなり低温での導体化が可能となる。   The conductive material of the present invention is obtained by mixing copper-containing particles having an alkylamine as a protective agent with an organic solvent and further adding a fatty acid. As a result, fatty acids are added to the alkylamine adhering to the particles, the bond strength between the alkylamine and the particles is weakened, and a conductor can be formed at a low temperature.

本発明は、[1]アルキルアミンを保護剤とする銅含有粒子、有機溶媒及び脂肪酸Aを含有する導電材料に関する。
また、本発明は、[2]脂肪酸Aが、炭素数9以下の脂肪酸を少なくとも1種以上を含む上記[1]に記載の導電材料に関する。
また、本発明は、[3]前記脂肪酸Aを、銅含有粒子の100質量部に対して0.01〜40.0質量部含有する上記[1]又は[2]に記載の導電材料に関する。
また、本発明は、[4]前記アルキルアミンを保護剤とする銅含有粒子が、脂肪酸Bと銅の塩化合物(脂肪酸銅)、還元性化合物、及びアルキルアミンの混合物を加熱する工程を有して得られる上記[1]〜[3]のいずれか一項に記載の導電材料に関する。
また、本発明は、[5]前記脂肪酸Bが、炭素数9以下の脂肪酸を少なくとも1種以上を含む上記[4]に記載の導電材料に関する。
また、本発明は、[6]前記還元性化合物が、ヒドラジン、ヒドラジン誘導体、ヒドロキシルアミン及びヒドロキシルアミン誘導体からなる群より選択される少なくとも1種を含む上記[4]又は[5]に記載の導電材料に関する。
また、本発明は、[7]上記[1]〜[6]のいずれか一項に記載の導電材料を、250℃以下で加熱することで得られる導電体に関する。
The present invention relates to [1] a conductive material containing copper-containing particles having an alkylamine as a protective agent, an organic solvent, and fatty acid A.
The present invention also relates to [2] the conductive material according to the above [1], wherein the fatty acid A contains at least one fatty acid having 9 or less carbon atoms.
Moreover, this invention relates to the electrically-conductive material as described in said [1] or [2] which contains 0.01-40.0 mass parts of [3] the said fatty acid A with respect to 100 mass parts of copper containing particles.
Moreover, this invention has the process in which the copper containing particle | grains which use [4] the said alkylamine as a protecting agent heat the mixture of the fatty acid B and the salt compound (fatty acid copper) of copper, a reducing compound, and an alkylamine. It relates to the conductive material according to any one of [1] to [3] obtained above.
The present invention also relates to [5] the conductive material according to the above [4], wherein the fatty acid B contains at least one fatty acid having 9 or less carbon atoms.
Further, the present invention provides [6] The conductive material according to [4] or [5], wherein the reducing compound includes at least one selected from the group consisting of hydrazine, hydrazine derivatives, hydroxylamine, and hydroxylamine derivatives. Regarding materials.
Moreover, this invention relates to the conductor obtained by heating the conductive material as described in any one of [7] said [1]-[6] at 250 degrees C or less.

本発明は、アルキルアミンを保護剤とする銅含有粒子、有機溶媒及び脂肪酸Aを含有することで、低温で導体化可能な導電材料及び低温で製造可能な導電体を提供することができる。
また、脂肪酸Aの炭素数を変えることで導体化時の脂肪酸Aの揮発性を調整することができる。
また、アルキルアミンを保護剤とする銅含有粒子に対する脂肪酸Aの配合量を変えることで保護剤の脱離しやすさを調整することができる。
This invention can provide the electroconductive material which can be manufactured at low temperature, and the conductor which can be manufactured at low temperature by containing the copper containing particle | grains which use alkylamine as a protective agent, the organic solvent, and the fatty acid A.
Moreover, the volatility of the fatty acid A at the time of conductorization can be adjusted by changing the carbon number of the fatty acid A.
Moreover, the ease of removal | elimination of a protective agent can be adjusted by changing the compounding quantity of the fatty acid A with respect to the copper containing particle | grains which use an alkylamine as a protective agent.

<導電材料>
本発明の導電材料は、表面の少なくとも一部に有機物であるアルキルアミンが存在する銅含有粒子、有機溶媒及び脂肪酸Aを含有する。
<Conductive material>
The electrically conductive material of this invention contains the copper containing particle | grains in which the alkylamine which is organic substance exists in at least one part of the surface, the organic solvent, and the fatty acid A.

<脂肪酸A>
本発明に使用される脂肪酸Aは、銅含有粒子表面の保護剤であるアルキルアミンに付加して、銅含有粒子とアルキルアミンの結合力を弱めて低温でも脱離し易くできる。脂肪酸Aは1種のみでも、2種以上であってもよい。
<Fatty acid A>
Fatty acid A used in the present invention can be added to alkylamine, which is a protective agent for the surface of the copper-containing particles, to weaken the bonding force between the copper-containing particles and the alkylamine and to be easily detached even at low temperatures. The fatty acid A may be only one type or two or more types.

前記脂肪酸Aは、RCOOHで表されるカルボン酸である。Rは炭化水素基であり、飽和脂肪酸でも不飽和脂肪酸であってもよく、直鎖状でも分岐状であってもよい。本発明で使用される脂肪酸Aは低温導体化で良好な導電性を得る観点から、導体への残存量が少なくなるように低沸点な分岐状の脂肪酸が好ましい。   The fatty acid A is a carboxylic acid represented by RCOOH. R is a hydrocarbon group, which may be a saturated fatty acid or an unsaturated fatty acid, and may be linear or branched. The fatty acid A used in the present invention is preferably a branched fatty acid having a low boiling point so that the amount remaining in the conductor is reduced from the viewpoint of obtaining good conductivity at low temperature.

前記脂肪酸Aが、炭素数9以下の脂肪酸であると好ましい。炭素数が9以下である飽和脂肪酸としては、酢酸(炭素数2)、プロピオン酸(炭素数3)、酪酸及びイソ酪酸(炭素数4)、吉草酸及びイソ吉草酸(炭素数5)、カプロン酸及びイソカプロン酸(炭素数6)、エナント酸及びイソエナント酸(炭素数7)、カプリル酸及びイソカプリル酸、イソカプロン酸(炭素数8)、ノナン酸及びイソノナン酸(炭素数9)等を挙げることができる。良好な導電性を得る観点から、低沸点な脂肪酸である炭素数が6以下の脂肪酸が好ましい。炭素数が2以下の脂肪酸がより好ましい。炭素数が9以下である不飽和脂肪酸としては、上記の飽和脂肪酸の炭化水素基中に1つ以上の二重結合を有するものを挙げることができる。   The fatty acid A is preferably a fatty acid having 9 or less carbon atoms. Examples of saturated fatty acids having 9 or less carbon atoms include acetic acid (2 carbon atoms), propionic acid (3 carbon atoms), butyric acid and isobutyric acid (4 carbon atoms), valeric acid and isovaleric acid (5 carbon atoms), capron Examples include acids and isocaproic acid (6 carbon atoms), enanthic acid and isoenanthic acid (7 carbon atoms), caprylic acid and isocaprilic acid, isocaproic acid (8 carbon atoms), nonanoic acid and isononanoic acid (9 carbon atoms). it can. From the viewpoint of obtaining good conductivity, a fatty acid having 6 or less carbon atoms, which is a low boiling fatty acid, is preferred. A fatty acid having 2 or less carbon atoms is more preferred. Examples of the unsaturated fatty acid having 9 or less carbon atoms include those having one or more double bonds in the hydrocarbon group of the saturated fatty acid.

前記脂肪酸Aは、銅含有粒子の100質量部に対して0.01〜40.0質量部である。脂肪酸Aの配合量が多いほどアルキルアミンを銅含有粒子から脱離させ易くなるため好ましいが、多過ぎると脂肪酸Aが導電体中に残存し良好な導電性が得られなくなる。そのため、脂肪酸Aの構造や導体化温度にもよるが、脂肪酸Aは銅含有粒子の100質量部に対して1〜30.0質量部がより好ましい。炭素数が多く高沸点なノナン酸等の脂肪酸の場合は1〜20.0質量部が好ましい。   The fatty acid A is 0.01 to 40.0 parts by mass with respect to 100 parts by mass of the copper-containing particles. The larger the amount of fatty acid A, the easier it is to desorb alkylamine from the copper-containing particles. However, when the amount is too large, fatty acid A remains in the conductor and good conductivity cannot be obtained. Therefore, although depending on the structure of fatty acid A and the conductorization temperature, the fatty acid A is more preferably 1 to 30.0 parts by mass with respect to 100 parts by mass of the copper-containing particles. In the case of fatty acids such as nonanoic acid having a high carbon number and a high boiling point, 1 to 20.0 parts by mass are preferred.

<アルキルアミンを保護剤とする銅含有粒子>
本発明に使用されるアルキルアミンを保護剤とする銅含有粒子は、銅を含有する粒子表面の少なくとも一部にアルキルアミンあるいはアルキルアミンに由来する物質を含む。アルキルアミンの炭素数を変えることで、得られる銅含有粒子の粒径や形状、溶媒中における粒子の分散性、金属粒子の酸化抑制、保護剤の脱離し易さを調整することができる。
<Copper-containing particles using alkylamine as protective agent>
The copper containing particle | grains which use the alkylamine used as a protective agent for this invention contain the substance derived from alkylamine or an alkylamine in at least one part of the particle | grain surface containing copper. By changing the carbon number of the alkylamine, it is possible to adjust the particle size and shape of the obtained copper-containing particles, the dispersibility of the particles in the solvent, the suppression of oxidation of the metal particles, and the ease of desorption of the protective agent.

本発明において、アルキルアミンは、RNH(Rは炭化水素基であり、環状又は分岐状であってもよい)で表される1級アミン、RNH(R及びRは同じであっても異なっていてもよい炭化水素基であり、環状又は分岐状であってもよい)で表される2級アミン、炭化水素鎖に2つのアミノ基が置換したジアミン等を意味する。アルキルアミンは、1つ以上の二重結合を有していてもよく、酸素、ケイ素、窒素、イオウ、リン等の原子を有していてもよい。アルキルアミンは、1種のみであっても2種以上であってもよい。 In the present invention, the alkylamine is a primary amine represented by RNH 2 (R is a hydrocarbon group and may be cyclic or branched), and R 1 R 2 NH (R 1 and R 2 are the same). Or a different amine group, which may be cyclic or branched, and a diamine having two amino groups substituted on the hydrocarbon chain. The alkylamine may have one or more double bonds, and may have atoms such as oxygen, silicon, nitrogen, sulfur, and phosphorus. The alkylamine may be only one type or two or more types.

アルキルアミンの炭化水素基の炭素数は、7以下であることが好ましい。アルキルアミンの炭化水素基の炭素数が7以下であると分子量が小さく低沸点で脱離し易いため、導体化工程で加熱した際に良好な導体化が達成できる傾向にある。より良好な導体化を達成する観点からは、アルキルアミンの炭化水素基の炭素数は6以下であることがより好ましい。ただし、アルキルアミンの炭化水素基の炭素数が3以下であると脱離し易くなり過ぎて銅粒子の保存性が悪くなるため、炭素数は4〜6の範囲が更に好ましい。   The hydrocarbon group of the alkylamine preferably has 7 or less carbon atoms. When the hydrocarbon group of the alkylamine has 7 or less carbon atoms, the molecular weight is small, and it is easy to desorb at a low boiling point. Therefore, good conductorization tends to be achieved when heated in the conductorization step. From the viewpoint of achieving better conductorization, the hydrocarbon group of the alkylamine preferably has 6 or less carbon atoms. However, when the carbon number of the hydrocarbon group of the alkylamine is 3 or less, the carbon group is more preferably in the range of 4 to 6 because it is easily detached and the storage stability of the copper particles is deteriorated.

本発明の方法に使用される1級アミンとして具体的には、メチルアミン、エチルアミン、2−エトキシエチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、イソブチルアミン、ペンチルアミン、イソペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、3−ヒドロキシプロピルアミン、3−メトキシプロピルアミン、3−エトキシプロピルアミン等を挙げることができる。   Specific examples of the primary amine used in the method of the present invention include methylamine, ethylamine, 2-ethoxyethylamine, propylamine, isopropylamine, butylamine, isobutylamine, pentylamine, isopentylamine, hexylamine, and cyclohexylamine. , Heptylamine, octylamine, nonylamine, decylamine, dodecylamine, 3-hydroxypropylamine, 3-methoxypropylamine, 3-ethoxypropylamine and the like.

本発明の方法に使用される2級アミンとして具体的には、ジメチルアミン、エチルメチルアミン、ジエチルアミン、エチルプロピルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、エチルプロピルアミン、エチルペンチルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン等を挙げることができる。   Specific examples of the secondary amine used in the method of the present invention include dimethylamine, ethylmethylamine, diethylamine, ethylpropylamine, dipropylamine, diisopropylamine, dibutylamine, ethylpropylamine, ethylpentylamine, dibutylamine. , Dipentylamine, dihexylamine and the like.

本発明の方法に使用されるジアミンとして具体的には、エチレンジアミン、N,N−ジメチルエチレンジアミン、N,N´−ジメチルエチレンジアミン、N,N−ジエチルエチレンジアミン、N,N´−ジエチルエチレンジアミン、1,3−プロパンジアミン、2,2−ジメチル−1,3−プロパンジアミン、N,N−ジメチル−1,3−ジアミノプロパン、N,N´−ジメチル−1,3−ジアミノプロパン、N,N−ジエチル−1,3−ジアミノプロパン、1,4−ジアミノブタン、1,5−ジアミノ−2−メチルペンタン、1,6−ジアミノへキサン、N,N´−ジメチル−1,6−ジアミノへキサン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,9−ジアミノノナン、1,12−ジアミノドデカン等を挙げることができる。   Specific examples of the diamine used in the method of the present invention include ethylenediamine, N, N-dimethylethylenediamine, N, N′-dimethylethylenediamine, N, N-diethylethylenediamine, N, N′-diethylethylenediamine, 1,3. -Propanediamine, 2,2-dimethyl-1,3-propanediamine, N, N-dimethyl-1,3-diaminopropane, N, N'-dimethyl-1,3-diaminopropane, N, N-diethyl- 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diamino-2-methylpentane, 1,6-diaminohexane, N, N′-dimethyl-1,6-diaminohexane, 1, Examples include 7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,12-diaminododecane, and the like. .

銅含有粒子表面の少なくとも一部に存在する有機物(アルキルアミン、脂肪酸A等)は、その割合が金属粒子及び有機物の合計に対して0.1〜20質量部であることが好ましい。有機物の割合が0.1質量部以上であると、充分な耐酸化性が得られる傾向にある。有機物の割合が20質量部以下であると、低温での導体化が容易に達成される傾向にある。金属粒子及び有機物の合計に対する有機物の割合は0.3〜10質量部であることがより好ましく、0.5〜5質量部であることが更に好ましい。   The organic substance (alkylamine, fatty acid A, etc.) present on at least a part of the surface of the copper-containing particle is preferably 0.1 to 20 parts by mass with respect to the total of the metal particles and the organic substance. When the ratio of the organic substance is 0.1 parts by mass or more, sufficient oxidation resistance tends to be obtained. When the proportion of the organic substance is 20 parts by mass or less, conductorization at a low temperature tends to be easily achieved. As for the ratio of the organic substance with respect to the sum total of a metal particle and organic substance, it is more preferable that it is 0.3-10 mass parts, and it is still more preferable that it is 0.5-5 mass parts.

本発明で用いる銅含有粒子の粒径は、特に制限されないが、用途に応じて選択することができる。粒子は小粒径ほど表面エネルギーが高く、低温加熱でも焼結して導電性を発現し易いため、一般に無作為に選択される200個の銅含有粒子の長軸長さの中央値が1〜500nmの範囲内が好ましい。小粒径ほど低温でも導体化しやすいが、粒径が小さ過ぎると粒子が酸化され易く保存性が悪くなってしまう。粒子の酸化を抑えつつ焼結しやすくするためには、10〜300nmの粒径がより好ましい。   The particle size of the copper-containing particles used in the present invention is not particularly limited, but can be selected according to the application. The smaller the particle size, the higher the surface energy, and the easier it is to sinter even when heated at low temperature, so that the median major axis length of 200 copper-containing particles selected at random is generally 1 to 1. A range of 500 nm is preferable. The smaller the particle size, the easier it is to conduct at a low temperature. However, if the particle size is too small, the particles are easily oxidized and the storage stability is deteriorated. In order to facilitate sintering while suppressing the oxidation of the particles, a particle size of 10 to 300 nm is more preferable.

本発明で用いる銅含有粒子の形状は特に制限されず、例えば球状、長粒状、円盤状、板状、繊維状等を挙げることができる。形状は銅含有粒子の用途にあわせて選択でき、導電性の観点からは粒子同士の接触面が大きく導電性が得易い円盤状、板状が好ましい。導電材料の印刷性の観点からは、球状、長粒状であることが好ましい。
本発明において長軸の長さとは、粒子に外接し、互いに平行である二平面の間の距離が最大となるように選ばれる二平面間の距離を意味する。本発明において長軸の長さの中央値とは、200個の銅含有粒子の長軸の長さの値の平均値を意味し、長軸の長さの値を小さい順に並べたときに中央に位置する2つの値(100番目及び101番目)の算術平均値を意味する。銅含有粒子の長軸の長さは、電子顕微鏡による観察等の通常の方法によって測定できる。
The shape of the copper-containing particles used in the present invention is not particularly limited, and examples thereof include a spherical shape, a long granular shape, a disc shape, a plate shape, and a fiber shape. The shape can be selected in accordance with the use of the copper-containing particles, and from the viewpoint of conductivity, a disk shape or a plate shape in which the contact surface between the particles is large and conductivity is easily obtained is preferable. From the viewpoint of printability of the conductive material, it is preferably spherical or long granular.
In the present invention, the length of the major axis means the distance between two planes selected so that the distance between the two planes circumscribing the particle and parallel to each other is maximized. In the present invention, the median value of the length of the major axis means the average value of the lengths of the major axes of 200 copper-containing particles, and the median when the values of the major axis lengths are arranged in ascending order. Means the arithmetic average value of the two values (100th and 101st) located at. The length of the major axis of the copper-containing particles can be measured by a usual method such as observation with an electron microscope.

本発明で用いる銅含有粒子は、少なくとも金属銅を含み、必要に応じてその他の物質を含んでもよい。金属銅以外にも脂肪酸銅、酸化銅、塩化銅等の銅化合物が導電性に悪影響を及ぼさない範囲で含まれていてもよい。銅以外の物質としては、金、銀、白金、錫、ニッケル、亜鉛、チタン等の金属又はこれらの金属元素を含む化合物等を挙げることができる。導電性に優れる銅パターンを形成する観点からは、銅含有粒子中の金属銅の含有率は50質量部以上であることが好ましく、60質量部以上であることがより好ましく、70質量部以上であることが更に好ましい。   The copper-containing particles used in the present invention contain at least metallic copper, and may contain other substances as necessary. Besides metallic copper, copper compounds such as fatty acid copper, copper oxide, and copper chloride may be contained within a range that does not adversely affect conductivity. Examples of substances other than copper include metals such as gold, silver, platinum, tin, nickel, zinc, and titanium, and compounds containing these metal elements. From the viewpoint of forming a copper pattern with excellent conductivity, the content of copper metal in the copper-containing particles is preferably 50 parts by mass or more, more preferably 60 parts by mass or more, and 70 parts by mass or more. More preferably it is.

<脂肪酸B>
本発明に使用するアルキルアミンを保護剤とする銅含有粒子の製造方法は、脂肪酸Bと銅から成る塩化合物(脂肪酸銅)、還元性化合物、及びアルキルアミンを含む混合物を加熱する工程を有する方法によって製造される。
<Fatty acid B>
The method for producing a copper-containing particle using an alkylamine as a protective agent for use in the present invention comprises a step of heating a salt compound (fatty acid copper) comprising a fatty acid B and copper, a reducing compound, and a mixture containing the alkylamine. Manufactured by.

前記方法は、銅粒子原料として、脂肪酸Bと銅から成る塩化合物を使用するものである。これにより、脂肪酸Bを用いずに銅粒子原料としてシュウ酸銅等を用いる特許文献1に記載の方法と比較して、脂肪酸Bの炭素数を変えることで、得られる銅含有粒子の粒径や形状、溶媒中における粒子の分散性、金属粒子の酸化抑制、保護剤の脱離し易さを調整することができる。   The method uses a salt compound comprising fatty acid B and copper as the copper particle raw material. Thereby, compared with the method of patent document 1 which uses copper oxalate etc. as a copper particle raw material, without using the fatty acid B, the particle size of the copper containing particle | grains obtained by changing the carbon number of the fatty acid B, and The shape, the dispersibility of the particles in the solvent, the suppression of the oxidation of the metal particles, and the ease of desorption of the protective agent can be adjusted.

前記脂肪酸Bは、RCOOHで表されるカルボン酸(Rは炭化水素基であり、直鎖状でも分岐状であってもよい)である。本発明で使用される脂肪酸Bは、飽和脂肪酸でも不飽和脂肪酸であってもよい。粒子の良好な被覆による酸化防止及び有機溶媒中への粒子分散の観点からは、直鎖状の飽和脂肪酸が好ましい。低温導体化の観点からは分岐状の飽和脂肪酸が低沸点であるため好ましい。脂肪酸は1種のみでも、2種以上であってもよい。   The fatty acid B is a carboxylic acid represented by RCOOH (R is a hydrocarbon group, which may be linear or branched). The fatty acid B used in the present invention may be a saturated fatty acid or an unsaturated fatty acid. From the viewpoint of oxidation prevention by good coating of particles and dispersion of particles in an organic solvent, linear saturated fatty acids are preferred. From the viewpoint of low-temperature conductorization, branched saturated fatty acids are preferred because of their low boiling points. Only one type or two or more types of fatty acids may be used.

前記脂肪酸Bの炭素数は、9以下であることが好ましい。炭素数が9以下である飽和脂肪酸としては、酢酸(炭素数2)、プロピオン酸(炭素数3)、酪酸及びイソ酪酸(炭素数4)、吉草酸及びイソ吉草酸(炭素数5)、カプロン酸(炭素数6)、エナント酸及びイソエナント酸(炭素数7)、カプリル酸、イソカプリル酸及びイソカプロン酸(炭素数8)、ノナン酸及びイソノナン酸(炭素数9)等を挙げることができる。炭素数が9以下である不飽和脂肪酸としては、上記の飽和脂肪酸の炭化水素基中に1つ以上の二重結合を有するものを挙げることができる。   The fatty acid B preferably has 9 or less carbon atoms. Examples of saturated fatty acids having 9 or less carbon atoms include acetic acid (2 carbon atoms), propionic acid (3 carbon atoms), butyric acid and isobutyric acid (4 carbon atoms), valeric acid and isovaleric acid (5 carbon atoms), capron Examples include acids (carbon number 6), enanthic acid and isoenanthic acid (carbon number 7), caprylic acid, isocaprilic acid and isocaproic acid (carbon number 8), nonanoic acid and isononanoic acid (carbon number 9). Examples of the unsaturated fatty acid having 9 or less carbon atoms include those having one or more double bonds in the hydrocarbon group of the saturated fatty acid.

銅含有粒子の製造に使用される前記脂肪酸Bは、得られる銅含有粒子の分散媒への分散性、焼結性等の性質に影響しうる。このため、銅含有粒子の用途に応じて脂肪酸の種類を選択することが好ましい。粒子形状の均一化の観点からは、炭素数が9以下である脂肪酸と、炭素数が4以下である脂肪酸とを併用することが好ましい。例えば、炭素数が9であるノナン酸と、炭素数が2である酢酸とを併用することが好ましい。炭素数が9以下である脂肪酸と炭素数が4以下である脂肪酸とを併用する場合の比率は、特に制限されない。   The said fatty acid B used for manufacture of copper containing particle | grains can affect properties, such as the dispersibility to the dispersion medium of the copper containing particle | grains obtained, and sinterability. For this reason, it is preferable to select the kind of fatty acid according to the use of copper-containing particles. From the viewpoint of homogenizing the particle shape, it is preferable to use a fatty acid having 9 or less carbon atoms and a fatty acid having 4 or less carbon atoms in combination. For example, nonanoic acid having 9 carbon atoms and acetic acid having 2 carbon atoms are preferably used in combination. The ratio in particular when using together the fatty acid having 9 or less carbon atoms and the fatty acid having 4 or less carbon atoms is not limited.

前記脂肪酸Bと銅との塩化合物(脂肪酸銅)を得る方法は特に制限されない。例えば、水酸化銅と脂肪酸とを溶媒中で混合することで得てもよく、市販されている脂肪酸銅を用いてもよい。あるいは、水酸化銅、脂肪酸及び還元性化合物を溶媒中で混合することで、脂肪酸銅の生成と、脂肪酸銅と還元性化合物との間で形成される錯体の生成とを同じ工程中で行ってもよい。   The method for obtaining the salt compound of fatty acid B and copper (fatty acid copper) is not particularly limited. For example, it may be obtained by mixing copper hydroxide and a fatty acid in a solvent, or commercially available fatty acid copper may be used. Alternatively, by mixing copper hydroxide, a fatty acid and a reducing compound in a solvent, the formation of fatty acid copper and the formation of a complex formed between the fatty acid copper and the reducing compound are performed in the same process. Also good.

<還元性化合物>
前記銅含有粒子の製造方法に使用される還元性化合物であるヒドラジン、ヒドラジン誘導体、ヒドロキシルアミン及びヒドロキシルアミン誘導体からなる群として具体的には、ヒドラジン及びメチルヒドラジン等を含むヒドラジン誘導体、塩酸ヒドラジン、硫酸ヒドラジン、抱水ヒドラジン等のヒドラジン化合物、ヒドロキシルアミン及びメチルヒドロキシルアミン等のヒドロキシルアミン誘導体、水素化ホウ素ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、次亜リン酸ナトリウム等のナトリウム化合物などを挙げることができる。製造される銅含有粒子の純度の観点から、還元反応で生じる副生成物が窒素やメタン等分離の容易なヒドラジン又はメチルヒドラジン等の還元性化合物が好ましい。還元性化合物は1種を単独で用いても、2種以上を併用してもよい。
<Reducing compound>
As a group consisting of hydrazine, hydrazine derivatives, hydroxylamine and hydroxylamine derivatives which are reducing compounds used in the method for producing copper-containing particles, specifically, hydrazine derivatives including hydrazine and methylhydrazine, hydrazine hydrochloride, sulfuric acid Examples include hydrazine compounds such as hydrazine and hydrazine hydrate, hydroxylamine derivatives such as hydroxylamine and methylhydroxylamine, sodium compounds such as sodium borohydride, sodium sulfite, sodium bisulfite, sodium thiosulfate, and sodium hypophosphite. be able to. From the viewpoint of the purity of the copper-containing particles to be produced, a reducing compound such as hydrazine or methylhydrazine in which the by-product generated in the reduction reaction is easily separated such as nitrogen and methane is preferable. A reducing compound may be used individually by 1 type, or may use 2 or more types together.

ヒドラジン又はヒドロキシルアミン誘導体から好適なものを選択することで、脂肪酸銅との反応性を変えることができ、銅含有粒子の粒径や粒度分布を調整できる。ヒドラジン誘導体としては、メチルヒドラジン、エチルヒドラジン、n−プロピルヒドラジン、イソプロピルヒドラジン、n−ブチルヒドラジン、イソブチルヒドラジン、sec−ブチルヒドラジン、t−ブチルヒドラジン、n−ペンチルヒドラジン、イソペンチルヒドラジン、neo−ペンチルヒドラジン、t−ペンチルヒドラジン、n−ヘキシルヒドラジン、イソヘキシルヒドラジン、n−ヘプチルヒドラジン、n−オクチルヒドラジン、n−ノニルヒドラジン、n−デシルヒドラジン、n−ウンデシルヒドラジン、n−ドデシルヒドラジン、シクロヘキシルヒドラジン、フェニルヒドラジン、4−メチルフェニルヒドラジン、ベンジルヒドラジン、2−フェニルエチルヒドラジン、2−ヒドラジノエタノール、アセトヒドラジン等を挙げることができる。ヒドロキシルアミンの誘導体としては、N,N−ジ(スルホエチル)ヒドロキシルアミン、モノメチルヒドロキシルアミン、ジメチルヒドロキシルアミン、モノエチルヒドロキシルアミン、ジエチルヒドロキシルアミン、N,N−ジ(カルボキシエチル)ヒドロキシルアミン等を挙げることができる。   By selecting a suitable one from hydrazine or hydroxylamine derivatives, the reactivity with fatty acid copper can be changed, and the particle size and particle size distribution of the copper-containing particles can be adjusted. Examples of hydrazine derivatives include methyl hydrazine, ethyl hydrazine, n-propyl hydrazine, isopropyl hydrazine, n-butyl hydrazine, isobutyl hydrazine, sec-butyl hydrazine, t-butyl hydrazine, n-pentyl hydrazine, isopentyl hydrazine, and neo-pentyl hydrazine. , T-pentylhydrazine, n-hexylhydrazine, isohexylhydrazine, n-heptylhydrazine, n-octylhydrazine, n-nonylhydrazine, n-decylhydrazine, n-undecylhydrazine, n-dodecylhydrazine, cyclohexylhydrazine, phenyl Examples include hydrazine, 4-methylphenylhydrazine, benzylhydrazine, 2-phenylethylhydrazine, 2-hydrazinoethanol, and acetohydrazine. Rukoto can. Examples of hydroxylamine derivatives include N, N-di (sulfoethyl) hydroxylamine, monomethylhydroxylamine, dimethylhydroxylamine, monoethylhydroxylamine, diethylhydroxylamine, N, N-di (carboxyethyl) hydroxylamine and the like. Can do.

銅の塩化合物(脂肪酸銅)に含まれる銅と還元性化合物の比率は、所望の錯体が形成される条件であれば特に制限されない。例えば、前記比率(銅:還元性化合物)はモル基準で1:1〜1:4の範囲とすることができ、1:1〜1:3の範囲とすることが好ましく、1:1〜1:2の範囲とすることがより好ましい。   The ratio of the copper and the reducing compound contained in the copper salt compound (fatty acid copper) is not particularly limited as long as a desired complex is formed. For example, the ratio (copper: reducing compound) can be in the range of 1: 1 to 1: 4 on a molar basis, preferably in the range of 1: 1 to 1: 3, and 1: 1 to 1 : The range of 2 is more preferable.

<アルキルアミンを保護剤とする銅含有粒子の製造方法>
前記方法において、銅の塩化合物(脂肪酸銅)、還元性化合物及びアルキルアミンを含む組成物を加熱する工程を実施するための方法は特に制限されない。例えば、脂肪酸銅と還元性化合物とを溶媒に混合した後にアルキルアミンを添加して加熱する方法、脂肪酸銅とアルキルアミンとを溶媒と混合した後にさらに還元性化合物を添加して加熱する方法、脂肪酸銅の出発物質である水酸化銅、脂肪酸、還元性化合物及びアルキルアミンを溶媒に混合して加熱する方法、脂肪酸銅とアルキルアミンとを溶媒に混合した後に還元性化合物を添加して加熱する方法等を挙げることができる。
<Method for producing copper-containing particles using alkylamine as protective agent>
In the said method, the method in particular for implementing the process of heating the composition containing a copper salt compound (fatty acid copper), a reducing compound, and an alkylamine is not restrict | limited. For example, a method in which fatty acid copper and a reducing compound are mixed in a solvent and then heated by adding an alkylamine, a method in which fatty acid copper and an alkylamine are mixed with a solvent, and then a method in which a reducing compound is further added and heated, a fatty acid A method of heating copper hydroxide, a fatty acid, a reducing compound, and an alkylamine, which are copper starting materials, in a solvent, a method of heating, a method of mixing a fatty acid copper and an alkylamine in a solvent, and then adding a reducing compound and heating Etc.

脂肪酸銅、還元性化合物及びアルキルアミンを含む組成物は、さらに溶媒を含んでもよい。脂肪酸銅と還元性化合物による錯体の形成を促進する観点からは、極性溶媒を含むことが好ましい。ここで極性溶媒とは、25℃で水に溶解するものであることが好ましく、アルコール溶媒であることがより好ましい。溶媒としてアルコールを用いることで錯体の形成が促進される理由は明らかではないが、固体である脂肪酸銅を溶解させながら水溶性である還元性化合物との接触が促進されるためと考えられる。溶媒は1種でも、2種以上を併用してもよい。   The composition containing fatty acid copper, a reducing compound and an alkylamine may further contain a solvent. From the viewpoint of promoting the formation of a complex of fatty acid copper and a reducing compound, it is preferable to include a polar solvent. Here, the polar solvent is preferably one that dissolves in water at 25 ° C., and more preferably an alcohol solvent. The reason why the formation of the complex is promoted by using alcohol as the solvent is not clear, but it is considered that the contact with the water-soluble reducing compound is promoted while dissolving the solid fatty acid copper. The solvent may be used alone or in combination of two or more.

溶媒として用いるアルコールとして具体的には、1−プロパノール、2−プロパノール、ブタノール、ペンタノール、ヘキサノール等を挙げることができる。中でも極性の強い1−プロパノール、2−プロパノールがより好ましい。メタノール、エタノール等は極性が強すぎて生成した銅含有粒子が酸化されてしまうため好ましくない。   Specific examples of the alcohol used as the solvent include 1-propanol, 2-propanol, butanol, pentanol, and hexanol. Among these, 1-propanol and 2-propanol having strong polarity are more preferable. Methanol, ethanol, and the like are not preferable because the copper-containing particles generated due to too strong polarity are oxidized.

<導電材料(インク又はペースト状組成物)>
本発明の導電材料とは、アルキルアミンを保護剤とする銅含有粒子及び有機溶媒、脂肪酸Aを混合して得られる導電性インク又は導電性ペーストを含むものである。必要に応じて粒子の分散状態を保つ分散安定剤やその他の成分を含んでもよい。インク又はペースト化することで、各種印刷方法に対応することができる。
<Conductive material (ink or paste composition)>
The conductive material of the present invention includes a conductive ink or a conductive paste obtained by mixing copper-containing particles having an alkylamine as a protective agent, an organic solvent, and a fatty acid A. If necessary, a dispersion stabilizer that keeps the particles dispersed and other components may be included. By making ink or paste, various printing methods can be supported.

本発明でインク又はペースト化する際に用いる有機溶媒は特に制限されず、導電インク、導電ペースト等の作製に一般に用いられる有機溶剤から用途に応じて選択できる。例えば、粘度コントロールの観点からはテルピネオール、イソボルニルシクロヘキサノール、ジヒドロターピネオール、ジヒドロターピネオールアセテート等が好ましい。   The organic solvent used in forming the ink or paste in the present invention is not particularly limited, and can be selected from organic solvents generally used for producing a conductive ink, a conductive paste and the like according to the use. For example, terpineol, isobornylcyclohexanol, dihydroterpineol, dihydroterpineol acetate and the like are preferable from the viewpoint of viscosity control.

本発明の導電材料の状態は特に制限されず、用途に応じて選択できる。例えば、導電材料をスクリーン印刷法に適用する場合は、用いる温度で粘度が0.1〜30Pa・sの導電性インクであることが好ましく、1〜30Pa・sであることがより好ましい。導電材料をインクジェット印刷法に適用する場合は、用いる温度で粘度が0.1〜30mPa・sの導電性インクであることが好ましく、5〜20mPa・sであることがより好ましい。粘度を調整する際には用いる有機溶媒の粘度や導電材料の濃度等で制御できる。   The state of the conductive material of the present invention is not particularly limited and can be selected according to the application. For example, when the conductive material is applied to the screen printing method, it is preferably a conductive ink having a viscosity of 0.1 to 30 Pa · s, more preferably 1 to 30 Pa · s at the temperature used. When the conductive material is applied to the ink jet printing method, it is preferably a conductive ink having a viscosity of 0.1 to 30 mPa · s, more preferably 5 to 20 mPa · s at the temperature used. When adjusting the viscosity, it can be controlled by the viscosity of the organic solvent used, the concentration of the conductive material, or the like.

<導体化>
本発明において「導体化」とは、金属含有粒子を焼結させて導電性を有する物体に変化させることをいう。本発明の導電材料を導体化する方法において、加熱工程が実施される雰囲気中の成分は特に制限されず、通常の導体の製造工程で用いられる窒素、アルゴン等から選択できる。
<Conductivity>
In the present invention, “conducting” means that the metal-containing particles are sintered to be changed into a conductive object. In the method for converting the conductive material of the present invention into a conductor, the components in the atmosphere in which the heating step is carried out are not particularly limited, and can be selected from nitrogen, argon, and the like used in a normal conductor manufacturing step.

本発明の導電材料を導体化する方法において、250℃以下で加熱することで導電体を得ることができる。好ましくは200℃以下、更に好ましくは150℃以下である。加熱工程は一定の昇温速度で行っても、不規則に変化させてもよい。加熱工程の時間は特に制限されず、加熱温度、加熱雰囲気、銅含有粒子の量等を考慮して選択できる。この加熱により銅含有粒子を保護しているアルキルアミンに脂肪酸Aが付加して、アルキルアミンと粒子の結合力が弱くなり脱離され易く、銅含有粒子表面が剥き出しとなり粒子同士が焼結して導電体を形成する。   In the method for converting a conductive material of the present invention into a conductor, a conductor can be obtained by heating at 250 ° C. or lower. Preferably it is 200 degrees C or less, More preferably, it is 150 degrees C or less. The heating process may be performed at a constant rate of temperature rise or may be changed irregularly. The time for the heating step is not particularly limited, and can be selected in consideration of the heating temperature, the heating atmosphere, the amount of copper-containing particles, and the like. Fatty acid A is added to the alkylamine that protects the copper-containing particles by this heating, and the binding force between the alkylamine and the particles becomes weak and easily detached, and the surface of the copper-containing particles is exposed and the particles are sintered together. A conductor is formed.

本発明の導電材料を導体化する場合、必要に応じて加熱以外の工程を含むあるいは用いてもよい。その他の工程としては、加熱前又は加熱中、加熱後のいずれかの工程において、還元雰囲気中で加熱して銅含有粒子又は導体中の酸化銅を還元する工程、光焼成で有機物成分を除去する工程、荷重をかける工程等を挙げることができる。   When the conductive material of the present invention is made into a conductor, steps other than heating may be included or used as necessary. As other processes, before heating, during heating, or any process after heating, heating in a reducing atmosphere to reduce copper-containing particles or copper oxide in the conductor, removing organic components by light firing A process, a process of applying a load, etc. can be mentioned.

導体化する際の基材は特に制限されず、導電性を有していても有していなくてもよい。例えば、Cu、Au、Pt、Pd、Ag、Zn、Ni、Co、Fe、Al、Sn等の金属、これら金属の合金、ITO、ZnO、SnO、Si等の半導体、ガラス、黒鉛、グラファイト等のカーボン材料、樹脂、紙などを挙げることができる。本発明の導電材料は、低温で加熱して導電体を得られるため、特に、耐熱性が比較的低い材質からなる基板を用いる場合に好適に適用することができる。このような材質としては、熱可塑性樹脂が挙げられる。熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン樹脂、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド樹脂等が挙げられる。基板の形状は特に制限されず、板状、棒状、ロール状、フィルム状等であってよい。   The base material in particular when making into a conductor is not restrict | limited, It does not need to have even if it has electroconductivity. For example, metals such as Cu, Au, Pt, Pd, Ag, Zn, Ni, Co, Fe, Al, Sn, alloys of these metals, semiconductors such as ITO, ZnO, SnO, Si, glass, graphite, graphite, etc. A carbon material, resin, paper, etc. can be mentioned. Since the conductive material of the present invention can be obtained by heating at a low temperature, it can be suitably applied particularly when a substrate made of a material having relatively low heat resistance is used. An example of such a material is a thermoplastic resin. Examples of the thermoplastic resin include polyolefin resins such as polyethylene, polypropylene, and polymethylpentene, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polycarbonate, and polyimide resins. The shape of the substrate is not particularly limited, and may be a plate shape, a rod shape, a roll shape, a film shape, or the like.

<導電体>
「導電体」とは、導電性を有する物体をいう。本発明の導電材料(導電性インク・ペースト)により製造される導電体の形状は特に制限されず、薄膜状、パターン状等を挙げることができる。本発明の導電材料により製造される導電体は、種々の電子部品の配線や熱伝導路等に使用できる。特に、本発明の導電材料により製造される導電体は低温で製造できるため、樹脂等の耐熱性の低い基板上に金属箔、配線パターン等を形成する用途に好適に用いられる。配線パターンの形成以外にも金属表面間の導電性接着剤としての用途にも好適に用いられる。
<Conductor>
The “conductor” refers to an object having conductivity. The shape of the conductor produced by the conductive material (conductive ink / paste) of the present invention is not particularly limited, and examples thereof include a thin film shape and a pattern shape. The conductor manufactured by the conductive material of the present invention can be used for wiring of various electronic parts, heat conduction paths, and the like. In particular, since a conductor manufactured using the conductive material of the present invention can be manufactured at a low temperature, it is suitably used for applications in which a metal foil, a wiring pattern, or the like is formed on a substrate having low heat resistance such as a resin. In addition to the formation of wiring patterns, it is also suitably used for applications as a conductive adhesive between metal surfaces.

本発明の導電体が使用される電子部品の配線や熱伝導路等は種々の装置に使用できる。配線板やディスプレイ、センサ、照明、太陽電池用途に好適に用いられる。特に、本発明の導電材料により製造される導電体は低温で製造できるため、耐熱性の低いフレキシブルディスプレイ、フレキシブルセンサなどのフレキシブルデバイスにより好適に用いられる。   The wiring and heat conduction paths of electronic parts in which the conductor of the present invention is used can be used in various devices. It is suitably used for wiring boards, displays, sensors, lighting, and solar cell applications. In particular, since the conductor manufactured using the conductive material of the present invention can be manufactured at a low temperature, it is preferably used for flexible devices such as flexible displays and flexible sensors with low heat resistance.

以下、本発明の導電材料と導電体について実施例をもとに説明するが、本発明はこれらの実施例に何ら限定されるものではない。   Hereinafter, although the conductive material and the conductor of the present invention will be described based on examples, the present invention is not limited to these examples.

<実施例1>
[1.1]ノナン酸銅の合成
水酸化銅(関東化学株式会社、特級)91.5g(0.94mol)に1−プロパノール(関東化学株式会社、特級)150mLを加えて撹拌し、これにノナン酸(関東化学株式会社、純度90質量%以上)370.9g(2.34mol)を加えた。得られた混合物を、セパラブルフラスコ中で90℃、30分間加熱撹拌した。得られた溶液を加熱したままろ過して未溶解物を除去した。その後放冷し、生成したノナン酸銅を吸引ろ過し、洗浄液が透明になるまでヘキサンで洗浄した。得られた粉体を50℃の防爆オーブンで3時間乾燥してノナン酸銅(II)を得た。収量は340g(収率96質量%)であった。
<Example 1>
[1.1] Synthesis of copper nonanoate To 91.5 g (0.94 mol) of copper hydroxide (Kanto Chemical Co., Ltd., special grade), 150 mL of 1-propanol (Kanto Chemical Co., Ltd., special grade) was added and stirred. 370.9 g (2.34 mol) of nonanoic acid (Kanto Chemical Co., Inc., purity 90 mass% or more) was added. The obtained mixture was heated and stirred at 90 ° C. for 30 minutes in a separable flask. The obtained solution was filtered while heated to remove undissolved substances. Thereafter, the mixture was allowed to cool, and the produced copper nonanoate was suction filtered and washed with hexane until the washing liquid became transparent. The obtained powder was dried in an explosion-proof oven at 50 ° C. for 3 hours to obtain copper (II) nonanoate. The yield was 340 g (yield 96 mass%).

[1.2]銅粒子の合成
上記で得られたノナン酸銅(II)60.02g(0.159mol)と酢酸銅(II)無水物(関東化学株式会社、特級)28.84g(0.159mol)をセパラブルフラスコに入れ、1−プロパノール150mLとヘキシルアミン(東京化成工業株式会社、純度99質量%)131.17g(1.28mol)を添加して溶解させた。氷浴に移し、内温が5℃になるまで冷却した後、ヒドラジン一水和物(関東化学株式会社、特級)31.79g(0.64mol)を脂肪酸銅の溶液に加え、氷浴中で撹拌した。なお、銅:ヘキシルアミンのモル比は1:4である。次いで、オイルバス中125℃で加熱撹拌した。その際、発泡を伴う還元反応が進み、20分以内で反応が終了した。セパラブルフラスコの内壁が銅光沢を呈し、溶液が暗赤色に変化した。遠心分離を9000min−1(回転/分)で10分間実施して固体物を得た。固形物を更にヘキサン400mLで洗浄する工程を3回繰り返し、酸残渣を除去して、銅光沢を有する銅粒子の粉体を含む銅ケークを得た。
[1.2] Synthesis of copper particles 60.02 g (0.159 mol) of nonanoate copper (II) obtained above and copper (II) acetate anhydride (Kanto Chemical Co., Ltd., special grade) 28.84 g (0. 159 mol) was put into a separable flask, and 150 mL of 1-propanol and 131.17 g (1.28 mol) of hexylamine (Tokyo Chemical Industry Co., Ltd., purity 99 mass%) were added and dissolved. After transferring to an ice bath and cooling to an internal temperature of 5 ° C., 31.79 g (0.64 mol) of hydrazine monohydrate (Kanto Chemical Co., Ltd., special grade) was added to the solution of fatty acid copper, and in the ice bath. Stir. The molar ratio of copper: hexylamine is 1: 4. Subsequently, it heated and stirred at 125 degreeC in the oil bath. At that time, the reduction reaction accompanied with foaming proceeded, and the reaction was completed within 20 minutes. The inner wall of the separable flask had a copper luster and the solution turned dark red. Centrifugation was performed at 9000 min −1 (rotation / min) for 10 minutes to obtain a solid material. The step of further washing the solid with 400 mL of hexane was repeated three times to remove the acid residue, thereby obtaining a copper cake containing copper powder powder having copper luster.

前記銅ケーク(50質量部)、有機溶媒としてテルピネオール(25質量部)、及びイソボルニルシクロヘキサノール(商品名:テルソルブMTPH、日本テルペン化学株式会社)(25質量部)、脂肪酸Aとして前記銅ケーク100質量部に対して酢酸(20質量部)を混合して導電性ペーストを作製した。得られた導電性ペーストをポリエチレンナフタレート(PEN)フィルム上に塗布し、加熱して金属銅の薄膜を形成した。加熱は、圧力500Pa窒素中の酸素濃度を0.0ppmとした雰囲気のオーブン内、140℃で60分間保持することによって行った。   The copper cake (50 parts by mass), terpineol (25 parts by mass) as an organic solvent, and isobornylcyclohexanol (trade name: Tersolve MTPH, Nippon Terpene Chemical Co., Ltd.) (25 parts by mass), the copper cake as a fatty acid A Acetic acid (20 parts by mass) was mixed with 100 parts by mass to prepare a conductive paste. The obtained conductive paste was applied onto a polyethylene naphthalate (PEN) film and heated to form a thin film of metallic copper. Heating was carried out by holding at 140 ° C. for 60 minutes in an oven having an atmosphere with an oxygen concentration of 0.0 ppm at a pressure of 500 Pa nitrogen.

<実施例2>
前記銅ケーク100質量部に対して酢酸(5質量部)を混合した以外は実施例1と同様に実施した。
<Example 2>
The same operation as in Example 1 was carried out except that acetic acid (5 parts by mass) was mixed with 100 parts by mass of the copper cake.

<実施例3>
酢酸の代わりにノナン酸(20質量部)を混合した以外は実施例1と同様に実施した。
<Example 3>
It implemented like Example 1 except having mixed nonanoic acid (20 mass parts) instead of acetic acid.

<実施例4>
導体化時に200℃で加熱した以外は実施例1と同様に実施した。
<Example 4>
It implemented like Example 1 except having heated at 200 degreeC at the time of conductorization.

<実施例5>
導体化時に200℃で加熱した以外は実施例1と同様に実施した。
<Example 5>
It implemented like Example 1 except having heated at 200 degreeC at the time of conductorization.

<比較例1>
酢酸を混合しない以外は実施例1と同様に実施した。
<Comparative Example 1>
The same procedure as in Example 1 was performed except that acetic acid was not mixed.

<比較例2>
導体化時に200℃で加熱した以外は比較例1と同様に実施した。
<Comparative example 2>
It carried out similarly to the comparative example 1 except having heated at 200 degreeC at the time of conductorization.

<評価>
各実施例、各比較例で得られた金属銅の薄膜の体積抵抗率を、4端針面抵抗測定器で測定した面抵抗値と、非接触表面・層断面形状計測システム(VertScan、株式会社菱化システム)で求めた膜厚とから計算した結果を、表1〜3に示した。
<Evaluation>
The surface resistivity measured by a four-end needle surface resistance measuring instrument and the volume resistivity of the metallic copper thin film obtained in each example and each comparative example, and a non-contact surface / layer cross-sectional shape measurement system (VertScan, Inc.) Tables 1 to 3 show the results calculated from the film thickness obtained by Ryoka System.

Figure 2016145299
脂肪酸Aとして酢酸を使用した本発明の導電材料は140℃の低温処理でも良好な導電性を発現し、添加量が多いほど良好な導電性を得られる傾向を示した。
Figure 2016145299
The conductive material of the present invention using acetic acid as the fatty acid A exhibited good conductivity even at a low temperature treatment of 140 ° C., and showed a tendency to obtain better conductivity as the addition amount increased.

Figure 2016145299
Figure 2016145299

Figure 2016145299

表2より、脂肪酸Aとして炭素数の多いノナン酸を使用した本発明の導電材料は140℃の低温導体化では良好な導電性を発現しなかった(実施例3)。しかし、表3に示したように、200℃の比較的低温の導体化であれば炭素数が多いノナン酸でも導電性を良好にすることが分かった。
以上より本発明の導電材料によって低温の導体化で良好な導電性を発現することが判明した。
Figure 2016145299

From Table 2, the conductive material of the present invention using nonanoic acid having a large number of carbon atoms as the fatty acid A did not exhibit good conductivity when made into a low-temperature conductor at 140 ° C. (Example 3). However, as shown in Table 3, it was found that if the conductor was made at a relatively low temperature of 200 ° C., even nonanoic acid having a large number of carbon atoms would improve conductivity.
From the above, it has been found that the conductive material of the present invention exhibits good conductivity at low temperature.

Claims (7)

アルキルアミンを保護剤とする銅含有粒子、有機溶媒及び脂肪酸Aを含有する導電材料。   A conductive material containing copper-containing particles having an alkylamine as a protective agent, an organic solvent, and fatty acid A. 前記脂肪酸Aが、炭素数9以下の脂肪酸の少なくとも1種以上を含む請求項1に記載の導電材料。   The conductive material according to claim 1, wherein the fatty acid A contains at least one fatty acid having 9 or less carbon atoms. 前記脂肪酸Aを、銅含有粒子の100質量部に対して0.01〜40.0質量部含有する請求項1又は請求項2に記載の導電材料。   The conductive material according to claim 1, wherein the fatty acid A is contained in an amount of 0.01 to 40.0 parts by mass with respect to 100 parts by mass of the copper-containing particles. 前記アルキルアミンを保護剤とする銅含有粒子が、脂肪酸Bと銅の塩化合物(脂肪酸銅)、還元性化合物、及びアルキルアミンの混合物を加熱する工程を有して得られる請求項1〜3のいずれか一項に記載の導電材料。   The copper-containing particle | grains which use the said alkylamine as a protective agent are obtained by having the process of heating the mixture of the fatty acid B and the copper salt compound (fatty acid copper), a reducing compound, and an alkylamine. The conductive material according to any one of the above. 前記脂肪酸Bが、炭素数9以下の脂肪酸を少なくとも1種以上を含む請求項4に記載の導電材料。   The conductive material according to claim 4, wherein the fatty acid B contains at least one fatty acid having 9 or less carbon atoms. 前記還元性化合物が、ヒドラジン、ヒドラジン誘導体、ヒドロキシルアミン及びヒドロキシルアミン誘導体からなる群より選択される少なくとも1種を含む、請求項4又は請求項5に記載の導電材料。   The conductive material according to claim 4 or 5, wherein the reducing compound includes at least one selected from the group consisting of hydrazine, hydrazine derivatives, hydroxylamine, and hydroxylamine derivatives. 請求項1〜6のいずれか一項に記載の導電材料を、250℃以下で加熱することで得られる導電体。   The conductor obtained by heating the electrically-conductive material as described in any one of Claims 1-6 at 250 degrees C or less.
JP2015023190A 2015-02-09 2015-02-09 Conductive material and conductor using it Pending JP2016145299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015023190A JP2016145299A (en) 2015-02-09 2015-02-09 Conductive material and conductor using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023190A JP2016145299A (en) 2015-02-09 2015-02-09 Conductive material and conductor using it

Publications (1)

Publication Number Publication Date
JP2016145299A true JP2016145299A (en) 2016-08-12

Family

ID=56685323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023190A Pending JP2016145299A (en) 2015-02-09 2015-02-09 Conductive material and conductor using it

Country Status (1)

Country Link
JP (1) JP2016145299A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106397178A (en) * 2016-08-31 2017-02-15 江苏辉丰农化股份有限公司 Preparation method of multi-carbon straight chain carboxylic acid copper
JP2018145501A (en) * 2017-03-08 2018-09-20 株式会社Adeka Manufacturing method of copper powder, resin composition, method for forming cured article and cured article
CN109796327A (en) * 2019-04-01 2019-05-24 成都蓉橙九天生物科技有限公司 A kind of preparation method of 2 ethyl hexanoic acid copper
CN109824505A (en) * 2019-04-02 2019-05-31 成都蓉橙九天生物科技有限公司 A kind of synthetic method of cupric octoate
JP2020100888A (en) * 2018-12-25 2020-07-02 京セラ株式会社 Copper particle, producing method for copper particle, copper paste, and semiconductor device and electric/electronic component
WO2021215428A1 (en) 2020-04-22 2021-10-28 日華化学株式会社 Nucleic acid detection method and oligonucleotide probe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061208A (en) * 2009-09-10 2011-03-24 Samsung Electronics Co Ltd Metal pattern forming composition and method of forming metal pattern using the same
JP2013001966A (en) * 2011-06-16 2013-01-07 Ulvac Japan Ltd Metal fine particle dispersion liquid and method for producing the same
JP2013007076A (en) * 2011-06-23 2013-01-10 Ulvac Japan Ltd Method for producing metal fine particle
WO2013096664A1 (en) * 2011-12-23 2013-06-27 The Board Of Trustees Of The University Of Illinois Ink composition for making a conductive silver structure
WO2013147442A1 (en) * 2012-03-29 2013-10-03 주식회사 동진쎄미켐 Copper paste composition for printing, and method of forming metal pattern using same
WO2013147535A1 (en) * 2012-03-30 2013-10-03 Korea Research Institute Of Chemical Technology Synthetic method of suppressing metal nano-particle from having oxidized film and method of manufacturing conductive metal thin film via solution-processed
JP2014148732A (en) * 2013-02-04 2014-08-21 Yamagata Univ Novel coated copper fine particle and production method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061208A (en) * 2009-09-10 2011-03-24 Samsung Electronics Co Ltd Metal pattern forming composition and method of forming metal pattern using the same
JP2013001966A (en) * 2011-06-16 2013-01-07 Ulvac Japan Ltd Metal fine particle dispersion liquid and method for producing the same
JP2013007076A (en) * 2011-06-23 2013-01-10 Ulvac Japan Ltd Method for producing metal fine particle
WO2013096664A1 (en) * 2011-12-23 2013-06-27 The Board Of Trustees Of The University Of Illinois Ink composition for making a conductive silver structure
WO2013147442A1 (en) * 2012-03-29 2013-10-03 주식회사 동진쎄미켐 Copper paste composition for printing, and method of forming metal pattern using same
WO2013147535A1 (en) * 2012-03-30 2013-10-03 Korea Research Institute Of Chemical Technology Synthetic method of suppressing metal nano-particle from having oxidized film and method of manufacturing conductive metal thin film via solution-processed
JP2014148732A (en) * 2013-02-04 2014-08-21 Yamagata Univ Novel coated copper fine particle and production method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106397178A (en) * 2016-08-31 2017-02-15 江苏辉丰农化股份有限公司 Preparation method of multi-carbon straight chain carboxylic acid copper
JP2018145501A (en) * 2017-03-08 2018-09-20 株式会社Adeka Manufacturing method of copper powder, resin composition, method for forming cured article and cured article
JP2020100888A (en) * 2018-12-25 2020-07-02 京セラ株式会社 Copper particle, producing method for copper particle, copper paste, and semiconductor device and electric/electronic component
WO2020137377A1 (en) * 2018-12-25 2020-07-02 京セラ株式会社 Copper particle, method for producing copper particle, copper paste, semiconductor device, and electrical/electronic component
CN109796327A (en) * 2019-04-01 2019-05-24 成都蓉橙九天生物科技有限公司 A kind of preparation method of 2 ethyl hexanoic acid copper
CN109824505A (en) * 2019-04-02 2019-05-31 成都蓉橙九天生物科技有限公司 A kind of synthetic method of cupric octoate
WO2021215428A1 (en) 2020-04-22 2021-10-28 日華化学株式会社 Nucleic acid detection method and oligonucleotide probe

Similar Documents

Publication Publication Date Title
JP2016145299A (en) Conductive material and conductor using it
JP6241908B2 (en) Coated fine metal particles and production method thereof
TWI696509B (en) Copper-containing particles, composition for forming conductor, method of producing conductor, conductor and electronic component
JP2008176951A (en) Silver-based particulate ink paste
JPWO2006109410A1 (en) Ink composition and metallic material
JP2017123253A (en) Conductor forming composition, method for producing conductor, conductor and device
JP2016146291A (en) Method for producing conductive film, conductor obtained thereby, and device produced using the conductive film
JP6414085B2 (en) Method for producing metal nanoparticles
JP2017101307A (en) Copper-containing particle, conductor forming composition, method for producing conductor, conductor and electronic component
JP6627228B2 (en) Copper-containing particles, conductor-forming composition, method for producing conductor, conductor and device
JP6476639B2 (en) Copper-containing particles
JP2018170227A (en) Conductor-forming composition, conductor and method for producing the same, laminate and device
JP6902321B2 (en) Method for manufacturing copper film and conductor obtained by it
JP5124822B2 (en) Method for producing composite metal powder and dispersion thereof
CN110809806B (en) Conductive paste
JP7031187B2 (en) Conductor and its forming method, as well as structure and its manufacturing method
JP2016160455A (en) Copper-containing particle, conductor forming composition, method for producing conductor, conductor and device
JP2016146289A (en) Conductive composition, conductive material using it and conductor
JP2017197658A (en) Conductor-forming composition, method for producing conductor, method for producing plating layer, conductor, laminate and device
JP2017204371A (en) Conductor-forming composition, method for producing conductor, method for producing plating layer, conductor, laminate, and device
JP7187835B2 (en) COMPOSITION FOR CONDUCTOR-FORMING AND MANUFACTURING METHOD THEREOF, AND ARTICLE HAVING CONDUCTOR LAYER AND MANUFACTURING METHOD THEREOF
TWI791829B (en) Photosintering composition and method of forming conductive film using the same
JP6970378B2 (en) Nickel powder dispersant and nickel powder slurry
TW201802256A (en) Silver-coated copper powder and method for producing same
JP2016037628A (en) Process for making copper-containing particle into conductor, method for manufacturing conductor, and conductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190328