JP2013001966A - Metal fine particle dispersion liquid and method for producing the same - Google Patents

Metal fine particle dispersion liquid and method for producing the same Download PDF

Info

Publication number
JP2013001966A
JP2013001966A JP2011134613A JP2011134613A JP2013001966A JP 2013001966 A JP2013001966 A JP 2013001966A JP 2011134613 A JP2011134613 A JP 2011134613A JP 2011134613 A JP2011134613 A JP 2011134613A JP 2013001966 A JP2013001966 A JP 2013001966A
Authority
JP
Japan
Prior art keywords
fatty acid
metal fine
fine particle
particle dispersion
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011134613A
Other languages
Japanese (ja)
Other versions
JP5778494B2 (en
Inventor
Hikotake Tada
彦剛 多田
Natsuki Hashimoto
夏樹 橋本
Masato Osawa
正人 大澤
Yoshiaki Hayashi
義明 林
Shigeo Hayashi
茂雄 林
Kyuko Tei
久紅 鄭
Susumu Sakio
進 崎尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011134613A priority Critical patent/JP5778494B2/en
Publication of JP2013001966A publication Critical patent/JP2013001966A/en
Application granted granted Critical
Publication of JP5778494B2 publication Critical patent/JP5778494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal fine particle dispersion liquid capable of preventing the occurrence of cracks in firing even if the metal fine particle dispersion liquid is relatively thickly coated on a surface of a base material.SOLUTION: The metal fine particle dispersion liquid is obtained by dispersing a metal fine particle having a surface coated with a fatty acid and an aliphatic amine in a hydrophobic solvent to which a fatty acid derivative is added. A concentration of the fatty acid derivative is preferably in a range of 0.1-5 wt.%. The fatty acid derivative is preferably a fatty acid ester, and the fatty acid ester is preferably a fatty acid methyl ester or a fatty acid ethyl ester.

Description

本発明は、金属微粒子を孤立状態で溶媒中に分散させてなる金属微粒子分散液及びその製造方法に関する。   The present invention relates to a metal fine particle dispersion obtained by dispersing metal fine particles in a solvent in an isolated state and a method for producing the same.

半導体デバイスの製造工程において、金属配線膜や透明導電膜等の所定膜の形成に所謂インクジェット法を用いることが従来から知られている。このものでは、インジェット式の塗布装置を用い、金属微粒子を分散させてなる分散液を基材表面に直接塗布し、この塗布した分散液を乾燥、焼成することで所定膜を得る。これによれば、リソグラフィー工程やエッチング工程等が省略でき、設備コストや生産コストを低減できるという利点がある。   In the manufacturing process of a semiconductor device, it is conventionally known to use a so-called inkjet method for forming a predetermined film such as a metal wiring film or a transparent conductive film. In this apparatus, a predetermined film is obtained by directly applying a dispersion liquid in which metal fine particles are dispersed to the substrate surface using an in-jet type coating apparatus, and drying and baking the applied dispersion liquid. According to this, a lithography process, an etching process, etc. can be skipped, and there exists an advantage that equipment cost and production cost can be reduced.

上記金属微粒子を製造する方法としては、ガス中蒸発法を用いることが例えば特許文献1で知られている。この方法では、槽内に金属原料と所定の有機溶媒とを収容し、減圧下で、金属原料を蒸発させ、蒸発させた金属蒸気を冷却捕集する際に、有機溶媒の蒸気を導入して金属が粒成長する段階においてその表面を有機溶媒と接触させ、得られる金属微粒子が単独でかつ均一に有機溶媒中にコロイド状に分散した金属微粒子含有液を得る。そして、得られた金属微粒子含有液に、金属微粒子の分散安定性を改善するためにアルキルアミン、カルボン酸アミド、アミノカルボン酸塩の中から選ばれた少なくとも1種を添加、混合する。次いで、低分子量の極性溶媒を加えて該金属微粒子を沈降させ、その上澄み液をデカンテーションなどにより流出させる工程を複数回繰り返して有機溶媒を除去する。これにより、粒径100nm以下の金属微粒子が回収される。回収された沈降物たる金属微粒子には孤立状態の金属微粒子分散用の溶媒1種以上が加えられ、分散液が得られる。   As a method for producing the metal fine particles, for example, Patent Document 1 discloses the use of a gas evaporation method. In this method, a metal raw material and a predetermined organic solvent are housed in a tank, the metal raw material is evaporated under reduced pressure, and the vapor of the organic solvent is introduced when the evaporated metal vapor is cooled and collected. The surface of the metal is brought into contact with an organic solvent at the stage of grain growth to obtain a metal fine particle-containing liquid in which the obtained metal fine particles are singly and uniformly dispersed in a colloidal form in the organic solvent. Then, in order to improve the dispersion stability of the metal fine particles, at least one selected from alkylamine, carboxylic acid amide, and aminocarboxylate is added to and mixed with the obtained metal fine particle-containing liquid. Next, a step of adding a low molecular weight polar solvent to precipitate the metal fine particles and allowing the supernatant liquid to flow out by decantation is repeated a plurality of times to remove the organic solvent. Thereby, metal fine particles having a particle size of 100 nm or less are recovered. One or more solvents for dispersing the fine metal particles in an isolated state are added to the collected metal fine particles as the precipitate, and a dispersion is obtained.

ここで、分散液に含まれる金属微粒子の粒径は100nm以下と小さく、基板表面に塗布された分散液を焼成すると、焼成の前後でその塗布されたものが大きな体積収縮を起こす。基板表面に分散液を比較的薄く塗布すると、その焼成後の厚みが一層薄くなるため、電気抵抗が増大するという不具合が生じる。   Here, the particle size of the metal fine particles contained in the dispersion is as small as 100 nm or less, and when the dispersion applied to the substrate surface is baked, the applied one causes a large volume shrinkage before and after baking. When the dispersion liquid is applied relatively thinly on the substrate surface, the thickness after firing is further reduced, resulting in a problem that the electrical resistance increases.

その解決策として、基板表面に分散液を比較的厚く塗布することが考えられる。然し、分散液を比較的厚く塗布すると、焼成後にクラックが生じて断線を引き起こすという問題がある。   As a solution, it is conceivable to apply the dispersion liquid relatively thickly on the substrate surface. However, when the dispersion liquid is applied relatively thick, there is a problem that cracks occur after firing and disconnection occurs.

特開2002−121606号公報JP 2002-121606 A 特開2008−150701号公報JP 2008-150701 A

本発明は、以上の点に鑑み、基材表面に金属微粒子分散液を比較的厚く塗布しても、焼成時にクラックが発生することを防止できる金属微粒子分散液を提供することをその課題とする。   In view of the above points, it is an object of the present invention to provide a metal fine particle dispersion that can prevent cracking during firing even when the metal fine particle dispersion is applied to the surface of the substrate relatively thickly. .

上記課題を解決するために、本発明者らが鋭意検討した結果、脂肪酸と脂肪族アミンとで表面が被覆された金属微粒子を、疎水性溶媒中に分散させた後、この疎水性溶媒中に脂肪酸誘導体を添加することにより得られた金属微粒子分散液を用いると、この金属微粒子分散液を比較的厚く塗布しても、焼成後にクラックが発生しないことを知見するに至った。   In order to solve the above-mentioned problems, the present inventors diligently studied. As a result, metal fine particles whose surfaces are coated with a fatty acid and an aliphatic amine are dispersed in a hydrophobic solvent, and then the hydrophobic solvent is used. When the metal fine particle dispersion obtained by adding the fatty acid derivative is used, it has been found that even if the metal fine particle dispersion is applied relatively thick, no cracks are generated after firing.

本発明の金属微粒子分散液は、脂肪酸と脂肪族アミンとで表面が被覆された金属微粒子を、脂肪酸誘導体が添加された疎水性溶媒中に分散させてなることを特徴とする。   The metal fine particle dispersion of the present invention is characterized in that metal fine particles whose surfaces are coated with a fatty acid and an aliphatic amine are dispersed in a hydrophobic solvent to which a fatty acid derivative is added.

本発明によれば、疎水性溶媒中に添加した脂肪酸誘導体により、焼成時に起こる急激な体積収縮が緩和されるため、当該金属微粒子分散液を基材表面に比較的厚く塗布しても、焼成後にクラックが発生することを防止することができる。   According to the present invention, the fatty acid derivative added in the hydrophobic solvent alleviates the rapid volume shrinkage that occurs during firing, so even if the metal fine particle dispersion is applied to the substrate surface relatively thickly, Generation of cracks can be prevented.

本発明においては、金属微粒子分散液中の脂肪酸誘導体の濃度を0.1重量%〜5重量%の範囲内で設定することが好ましい。脂肪酸誘導体の濃度が0.1重量%未満だと、クラックの発生を確実に防ぐことができない場合がある。一方で、5重量%を超えると、焼成時に界面活性剤が脱離し難くなる。このため、最終的に得られる金属配線の導電性が低下する、または、焼成時間が長くなりデバイスの生産性が低下するという不具合がある。   In the present invention, the concentration of the fatty acid derivative in the metal fine particle dispersion is preferably set in the range of 0.1 wt% to 5 wt%. If the concentration of the fatty acid derivative is less than 0.1% by weight, the occurrence of cracks may not be reliably prevented. On the other hand, if it exceeds 5% by weight, it becomes difficult for the surfactant to be detached during firing. For this reason, there exists a malfunction that the electroconductivity of the metal wiring finally obtained falls, or the baking time becomes long and the productivity of a device falls.

本発明においては、脂肪酸誘導体として、脂肪酸エステルを用いることが好ましく、脂肪酸メチルエステル又は脂肪酸エチルエステルを用いることがより好ましい。また、脂肪酸エステルとして、不飽和結合を有するものを用いると、クラックの発生をより一層抑制できてよい。脂肪族エステルとしては、炭素数12〜20のものを用いることが好ましい。脂肪族エステルの炭素数が12未満であると、クラックを抑制する効果が低下するという不具合がある一方で、脂肪族エステルの炭素数が20を超えると、界面活性剤が脱離し難くなるという不具合がある。   In the present invention, it is preferable to use a fatty acid ester as the fatty acid derivative, and it is more preferable to use a fatty acid methyl ester or a fatty acid ethyl ester. Moreover, generation | occurrence | production of a crack may be further suppressed when what has an unsaturated bond is used as fatty acid ester. As the aliphatic ester, those having 12 to 20 carbon atoms are preferably used. When the carbon number of the aliphatic ester is less than 12, there is a problem that the effect of suppressing cracks is reduced, while when the carbon number of the aliphatic ester exceeds 20, the surfactant is difficult to desorb. There is.

本発明において、脂肪酸及び脂肪族アミンの少なくともいずれか一方としては、炭素数が6〜18のものを用いることが好ましい。炭素数が6未満であると、金属微粒子の分散安定性が低下することがあり、また、金属微粒子を得るために用いられる槽から脂肪酸及び脂肪族アミンの少なくともいずれか一方が排気され、金属微粒子の表面が脂肪酸及び脂肪族アミンの少なくともいずれか一方で被覆できなくなることがある。一方、炭素数が18を超えると、焼成時に低温で金属微粒子表面から脂肪酸及び脂肪族アミンの少なくともいずれか一方が脱離し難くなり、焼成温度の上昇を招くことがある。   In the present invention, it is preferable to use a fatty acid and an aliphatic amine having 6 to 18 carbon atoms. If the number of carbon atoms is less than 6, the dispersion stability of the metal fine particles may be reduced, and at least one of fatty acid and aliphatic amine is exhausted from the tank used to obtain the metal fine particles, and the metal fine particles In some cases, the surface of the substrate cannot be coated with at least one of fatty acid and aliphatic amine. On the other hand, when the number of carbon atoms exceeds 18, at least one of fatty acid and aliphatic amine is hardly detached from the surface of the metal fine particles at a low temperature during firing, which may increase the firing temperature.

本発明において用いられる金属は、Ag、Au、Cu、Ni、Pd、In、Sn、Al、Zn及びPtから選択された少なくとも1種の金属又はこれらの金属の少なくとも2種の合金であり、目的・用途に応じて適宜選択することができる。   The metal used in the present invention is at least one metal selected from Ag, Au, Cu, Ni, Pd, In, Sn, Al, Zn, and Pt or an alloy of at least two of these metals. -It can select suitably according to a use.

また、本発明の金属微粒子分散液の製造方法は、脂肪酸と少なくとも1種の脂肪族アミンとで表面が被覆された金属微粒子を得る第1工程と、第1工程で得られた金属微粒子を疎水性溶媒中に分散させる第2工程と、疎水性溶媒中に脂肪酸誘導体を添加する第3工程と、を含むことを特徴とする。   The method for producing a metal fine particle dispersion according to the present invention includes a first step of obtaining metal fine particles whose surfaces are coated with a fatty acid and at least one aliphatic amine, and the metal fine particles obtained in the first step are hydrophobicized. A second step of dispersing in an organic solvent and a third step of adding a fatty acid derivative in the hydrophobic solvent.

本発明によれば、疎水性溶媒中に脂肪酸誘導体を添加するという第3工程を付加し、分散させるだけで、基材表面に比較的厚く塗布しても焼成後にクラックが発生することがない金属微粒子分散液を簡単に得ることができる。   According to the present invention, the third step of adding a fatty acid derivative in a hydrophobic solvent is added and dispersed, and even if it is applied relatively thickly on the substrate surface, it does not generate cracks after firing. A fine particle dispersion can be easily obtained.

本発明の実施形態の金属微粒子分散液を用いて形成された配線パターンを実体顕微鏡で観察した像。The image which observed the wiring pattern formed using the metal microparticle dispersion liquid of embodiment of this invention with the stereomicroscope. 従来方法で形成された配線パターンを実体顕微鏡で観察した像。An image obtained by observing a wiring pattern formed by a conventional method with a stereomicroscope.

以下、本発明の実施形態の金属微粒子分散液について説明する。本実施形態の金属微粒子分散液は、表面が少なくとも1種の脂肪酸と少なくとも1種の脂肪族アミンとで被覆された金属微粒子を、脂肪酸誘導体が添加された疎水性溶媒中に分散させてなる。   Hereinafter, the metal fine particle dispersion of the embodiment of the present invention will be described. The metal fine particle dispersion of this embodiment is obtained by dispersing metal fine particles, the surface of which is coated with at least one fatty acid and at least one aliphatic amine, in a hydrophobic solvent to which a fatty acid derivative is added.

界面活性剤たる脂肪酸としては、直鎖式、分岐鎖式及び環式から選択された少なくとも1種の構造を有する炭素数が6〜18のものを用いることができる。具体的には、炭素数6のヘキサン酸、2−エチル酪酸;炭素数7のヘプタン酸、2−メチルヘキサン酸、シクロヘキサンカルボン酸;炭素数8のオクタン酸、ネオへキサン酸、2−エチルヘキサン酸;炭素数9のノナン酸;炭素数10のネオオクタン酸、デカン酸(カプリン酸);炭素数11のウンデカン酸;炭素数12のネオデカン酸、ドデカン酸;炭素数14のテトラデカン酸;炭素数16のパルミチン酸;及び炭素数18のオレイン酸、リノール酸、リノレン酸、イソステアリン酸から選択された少なくとも1種を用いることが好ましい。脂肪酸の炭素数が6未満であると、金属微粒子の分散安定性が低下するという不具合がある一方で、脂肪酸の炭素数が18を超えると、焼成時に低温で金属微粒子表面から脂肪酸及が脱離脱離し難くなり、焼成温度の上昇を招く。   As the fatty acid serving as the surfactant, those having 6 to 18 carbon atoms and having at least one structure selected from linear, branched and cyclic can be used. Specifically, C6 hexanoic acid, 2-ethylbutyric acid; C7 heptanoic acid, 2-methylhexanoic acid, cyclohexanecarboxylic acid; C8 octanoic acid, neohexanoic acid, 2-ethylhexane Nonanoic acid having 9 carbon atoms; Neooctanoic acid having 10 carbon atoms, decanoic acid (capric acid); Undecanoic acid having 11 carbon atoms; Neodecanoic acid having 12 carbon atoms; Dodecanoic acid having 14 carbon atoms; Tetradecanoic acid having 14 carbon atoms; And at least one selected from oleic acid having 18 carbon atoms, linoleic acid, linolenic acid, and isostearic acid. If the number of carbon atoms of the fatty acid is less than 6, there is a problem that the dispersion stability of the metal fine particles is lowered. On the other hand, if the number of carbon atoms of the fatty acid exceeds 18, the fatty acids are detached from the surface of the metal fine particles at a low temperature during firing. It becomes difficult to separate, causing an increase in firing temperature.

界面活性剤たる脂肪族アミンとしては、直鎖式及び分岐鎖式から選択された少なくとも1種の構造を有する炭素数6〜18のものを用いることができる。具体的には、炭素数6のヘキシルアミン;炭素数7のヘプチルアミン;炭素数8のオクチルアミン、2−エチルへキシルアミン;炭素数9のノニルアミン;炭素数10のデシルアミン;炭素数12のドデシルアミン;及び炭素数18のオレイルアミンから選択された少なくとも1種のアミンを用いることが好ましい。脂肪族アミンの炭素数が6未満であると、金属微粒子の分散安定性が低下することがあり、また、金属微粒子を得るために用いられる槽からアミンが排気され、金属微粒子の表面がアミンで被覆できなくなることがある。一方、脂肪族アミンの炭素数が18を超えると、焼成時に低温で金属微粒子表面からアミンが脱離し難くなり、焼成温度の上昇を招く。   As the aliphatic amine serving as the surfactant, those having 6 to 18 carbon atoms and having at least one structure selected from a linear type and a branched type can be used. Specifically, C6 hexylamine; C7 heptylamine; C8 octylamine, 2-ethylhexylamine; C9 nonylamine; C10 decylamine; C12 dodecylamine And at least one amine selected from oleylamine having 18 carbon atoms. When the number of carbon atoms of the aliphatic amine is less than 6, the dispersion stability of the metal fine particles may be reduced, and the amine is exhausted from the tank used for obtaining the metal fine particles, and the surface of the metal fine particles is amine. It may become impossible to coat. On the other hand, when the number of carbon atoms of the aliphatic amine exceeds 18, it is difficult for the amine to be detached from the surface of the metal fine particles at a low temperature during firing, leading to an increase in the firing temperature.

疎水性溶媒としては、例えば、トルエン、ヘキサン、テトラデカン、シクロドデセン、ドデシルベンゼン、オクタン、シクロヘキシルベンゼン、シクロドデカン、デカヒドロナフタレン、テトラリンを用いることができる。そして、疎水性溶媒に含まれる脂肪酸誘導体としては、脂肪酸エステルを用いることができ、脂肪酸メチルエステル又は脂肪酸エチルエステルを用いることができる。   As the hydrophobic solvent, for example, toluene, hexane, tetradecane, cyclododecene, dodecylbenzene, octane, cyclohexylbenzene, cyclododecane, decahydronaphthalene, and tetralin can be used. And as a fatty acid derivative contained in a hydrophobic solvent, fatty acid ester can be used and fatty acid methyl ester or fatty acid ethyl ester can be used.

脂肪酸メチルエステルの具体例としては、炭素数3の酢酸メチル;炭素数7のヘキサン酸メチル;炭素数12のウンデカン酸メチル、ウンデセン酸メチル;炭素数13のラウリン酸メチル;炭素数15のミリスチン酸メチル;及び炭素数19のオレイン酸メチル、リノール酸メチル、リノレン酸メチルから選択された少なくとも1種を用いることができる。これらの脂肪酸メチルエステルのうち炭素数が12〜20のもの、例えば、ウンデカン酸メチル、ウンデセン酸メチル、ラウリン酸メチル、ミリスチン酸メチル、オレイン酸メチル、リノール酸メチル及びリノレン酸メチルから選択された少なくとも1種を用いることが特に好ましい。脂肪酸メチルエステルの炭素数が12未満であると、クラックを抑制する効果が低下することがある一方で、炭素数が20を超えると、焼成後の塗膜中に脂肪酸メチルエステルが残存してしまい、最終的に得られる金属配線の導電性が低下する。   Specific examples of fatty acid methyl esters include: methyl acetate having 3 carbon atoms; methyl hexanoate having 7 carbon atoms; methyl undecanoate and methyl undecenoate having 12 carbon atoms; methyl laurate having 13 carbon atoms; myristic acid having 15 carbon atoms Methyl; and at least one selected from methyl oleate having 19 carbon atoms, methyl linoleate, and methyl linolenate can be used. Among these fatty acid methyl esters, those having 12 to 20 carbon atoms, for example, at least selected from methyl undecanoate, methyl undecenoate, methyl laurate, methyl myristate, methyl oleate, methyl linoleate and methyl linolenate It is particularly preferable to use one type. When the number of carbon atoms of the fatty acid methyl ester is less than 12, the effect of suppressing cracks may be reduced, whereas when the number of carbon atoms exceeds 20, the fatty acid methyl ester remains in the fired coating film. The conductivity of the finally obtained metal wiring is lowered.

脂肪酸エチルエステルの具体例としては、炭素数4の酢酸エチル;炭素数8のヘキサン酸エチル;炭素数10のオクタン酸エチル;炭素数13のウンデカン酸エチル、ウンデセン酸エチル;炭素数14のラウリン酸エチル;炭素数16のミリスチン酸エチル;及び炭素数20のオレイン酸エチル、リノール酸エチル、リノレン酸エチルから選択された少なくとも1種を用いることができる。これらの脂肪酸エチルエステルのうち炭素数が12〜20のもの、例えば、ウンデカン酸エチル、ウンデセン酸エチル、ラウリン酸エチル、ミリスチン酸エチル、オレイン酸エチル、リノール酸エチル及びリノレン酸エチルから選択された少なくとも1種を用いることが特に好ましい。上記脂肪酸メチルエステルと同様、脂肪酸エチルエステルの炭素数が12未満であると、クラックを抑制する効果が低下することがある一方で、炭素数が20を超えると、焼成後の塗膜中に脂肪酸エチルエステルが残存してしまい、最終的に得られる金属配線の導電性が低下する。   Specific examples of the fatty acid ethyl ester include: ethyl acetate having 4 carbon atoms; ethyl hexanoate having 8 carbon atoms; ethyl octanoate having 10 carbon atoms; ethyl undecanoate and ethyl undecenoate having 13 carbon atoms; lauric acid having 14 carbon atoms At least one selected from ethyl; ethyl myristate having 16 carbon atoms; and ethyl oleate, ethyl linoleate, and ethyl linolenate having 20 carbon atoms can be used. Among these fatty acid ethyl esters, those having 12 to 20 carbon atoms, for example, at least selected from ethyl undecanoate, ethyl undecenoate, ethyl laurate, ethyl myristate, ethyl oleate, ethyl linoleate and ethyl linolenate It is particularly preferable to use one type. Similarly to the fatty acid methyl ester, if the number of carbon atoms of the fatty acid ethyl ester is less than 12, the effect of suppressing cracks may be reduced. On the other hand, if the number of carbon atoms exceeds 20, the fatty acid is included in the coating film after firing. The ethyl ester remains, and the conductivity of the finally obtained metal wiring is lowered.

脂肪酸メチルエステル又は脂肪酸エチルエステルとしては、不飽和結合を有する不飽和脂肪酸メチルエステル又は不飽和脂肪酸エチルエステル、具体的には、ウンデセン酸メチル、オレイン酸メチル、オレイン酸エチル、リノール酸メチル及びリノレン酸メチルを用いることが特に好ましい。この脂肪酸メチルエステル又は不飽和脂肪酸エチルエステルが有する不飽和結合により、クラックの抑制効果がより向上することが確認された。   As fatty acid methyl ester or fatty acid ethyl ester, unsaturated fatty acid methyl ester or unsaturated fatty acid ethyl ester having an unsaturated bond, specifically, methyl undecenoate, methyl oleate, ethyl oleate, methyl linoleate and linolenic acid It is particularly preferred to use methyl. It was confirmed that the effect of suppressing cracks was further improved by the unsaturated bond of this fatty acid methyl ester or unsaturated fatty acid ethyl ester.

脂肪酸エステルの濃度としては、0.1重量%以上5重量%以下であることが好ましい。0.1重量%未満であると、クラックを抑制する効果が低下することがある一方で、5重量%を超えると、焼成時間が長くなりデバイスの生産性が低下する。   The concentration of the fatty acid ester is preferably from 0.1% by weight to 5% by weight. If it is less than 0.1% by weight, the effect of suppressing cracks may be reduced, whereas if it exceeds 5% by weight, the firing time becomes longer and the productivity of the device is lowered.

金属原料としては、例えば、Ag、Au、Ni、Pd、Rh、Ru、In,Sn,Cu及びPtから選択された少なくとも1種の金属又はこれらの金属の少なくとも2種からなる合金を、目的や用途に応じて適宜選択することができる。例えば、メッキ用としてAuを選択することができ、配線用としてAgを選択することができる。   Examples of the metal raw material include at least one metal selected from Ag, Au, Ni, Pd, Rh, Ru, In, Sn, Cu, and Pt, or an alloy composed of at least two of these metals. It can select suitably according to a use. For example, Au can be selected for plating, and Ag can be selected for wiring.

以下、金属微粒子分散液の製造方法について、Ag微粒子分散液を製造する場合を例に説明する。第1工程に先立ち、アセトンとアミンであるドデシルアミンとを反応させ脱水縮合して得たイミンを槽内に収容しておく。第1工程にて、10Pa以下の圧力下で高周波誘導加熱を用いる蒸発法によりAg微粒子を作製する。この第1工程では、槽内で、Ag原料(250g)を蒸発させることにより生成過程のAg微粒子に脂肪酸たるオレイン酸(60g)及び上記イミン(150g)を接触させた後、冷却捕集することで、Ag微粒子の表面がオレイン酸及び上記イミンがAg微粒子表面と接触する際に加水分解することで生成されるドデシルアミンで覆われたAg微粒子の生成液を得る。得られたAg微粒子の生成液に低分子量の極性溶媒であるアセトンを加えて撹拌し、静置して、Ag微粒子を沈降させた後、上澄み液を除去する。このようにアセトンを用いたAg微粒子の洗浄を繰り返し、オレイン酸及び上記イミンがAg微粒子表面と接触する際に加水分解することで生成されるドデシルアミンで表面が覆われたAg微粒子を得る。   Hereinafter, a method for producing a metal fine particle dispersion will be described by taking as an example the case of producing an Ag fine particle dispersion. Prior to the first step, an imine obtained by reacting acetone and dodecylamine, which is an amine, and dehydrating and condensing is stored in a tank. In the first step, Ag fine particles are produced by an evaporation method using high-frequency induction heating under a pressure of 10 Pa or less. In this first step, the Ag raw material (250 g) is evaporated in the tank to bring the oleic acid (60 g), which is a fatty acid, and the imine (150 g) into contact with the Ag fine particles in the production process, and then cooled and collected. Thus, a solution of Ag fine particles covered with dodecylamine produced by hydrolysis of the surface of the Ag fine particles when oleic acid and the imine come into contact with the surface of the Ag fine particles is obtained. Acetone, which is a low molecular weight polar solvent, is added to the resulting Ag fine particle production liquid, stirred and allowed to settle to precipitate the Ag fine particles, and then the supernatant is removed. In this way, washing of the Ag fine particles using acetone is repeated, and Ag fine particles whose surface is covered with dodecylamine generated by hydrolysis when oleic acid and the imine come into contact with the Ag fine particle surface are obtained.

次いで、第2工程にて、上記得られたAg微粒子を疎水性溶媒たるテトラデカン中に分散させる。このようにして得たAg微粒子分散液を加熱して55重量%の濃度に濃縮してインクジェット法で使用可能なAg微粒子分散液を得る。そして、第3工程にて、疎水性溶媒中に脂肪酸誘導体たるオレイン酸メチルを添加してAg微粒子分散液を得る。   Next, in the second step, the obtained Ag fine particles are dispersed in tetradecane, which is a hydrophobic solvent. The Ag fine particle dispersion thus obtained is heated and concentrated to a concentration of 55% by weight to obtain an Ag fine particle dispersion that can be used in the ink jet method. Then, in the third step, methyl oleate, which is a fatty acid derivative, is added to a hydrophobic solvent to obtain an Ag fine particle dispersion.

オレイン酸メチルを添加したAg微粒子分散液をインクジェット法によりガラスの表面に直接塗布し、この塗布した分散液を乾燥し、300℃以下の低温で焼成してAg配線を形成する。   An Ag fine particle dispersion added with methyl oleate is directly applied to the glass surface by an ink jet method, and the applied dispersion is dried and baked at a low temperature of 300 ° C. or lower to form an Ag wiring.

ここで、分散液に含まれるAg微粒子の粒径は100nm以下と小さく、焼成の前後で塗布されたものが大きな体積収縮を起こすため、分散液を比較的厚く塗布している。然し、分散液を厚く塗布すると、焼成後にクラックが生じてAg配線の断線を引き起こす虞がある。   Here, the particle diameter of the Ag fine particles contained in the dispersion liquid is as small as 100 nm or less, and the one applied before and after firing causes large volume shrinkage, so that the dispersion liquid is applied relatively thickly. However, if the dispersion is applied thickly, cracks may occur after firing, which may cause disconnection of the Ag wiring.

本実施形態のAg微粒子分散液は、脂肪酸誘導体が添加された疎水性溶媒中にAg微粒子を分散させているため、Ag微粒子分散液を比較的厚く塗布しても、焼成後にクラックが発生することを防止することができる。   In the Ag fine particle dispersion of this embodiment, Ag fine particles are dispersed in a hydrophobic solvent to which a fatty acid derivative is added. Therefore, even if the Ag fine particle dispersion is applied relatively thick, cracks occur after firing. Can be prevented.

次に、上記実施形態の効果を確認するために、下記の実験(実験1)を行った。本実験1では、蒸発法を用いて、表面がオレイン酸及びドデシルアミンで覆われたAg微粒子を得た。そして、このAg微粒子をテトラデカンに分散させ、加熱して55重量%の濃度に濃縮し、さらに0.5重量%のオレイン酸メチルを添加してAg微粒子分散液を得た(発明品)。この発明品を基材表面にインクジェット法により塗布し、乾燥させた後、大気雰囲気中でホットプレートにより230℃の温度で60分焼成することにより、線幅及び間隔が300μmであるAg配線パターンを形成した。このAg配線パターンを実体顕微鏡にて撮像したところ、図1に示すように、クラックが発生していないことが確認された。一方、発明品とは、オレイン酸メチルを添加していない点のみが相違するものを比較品とし、この比較品を用いて形成したAg配線パターンを実体顕微鏡にて撮像したところ、図2に示すように、クラックの発生が確認された。   Next, in order to confirm the effect of the above embodiment, the following experiment (Experiment 1) was performed. In this experiment 1, Ag fine particles whose surfaces were covered with oleic acid and dodecylamine were obtained using an evaporation method. Then, the Ag fine particles were dispersed in tetradecane, heated and concentrated to a concentration of 55% by weight, and 0.5% by weight of methyl oleate was added to obtain an Ag fine particle dispersion (invention product). After applying this invention product to the substrate surface by an ink jet method and drying it, the Ag wiring pattern having a line width and interval of 300 μm is baked at a temperature of 230 ° C. for 60 minutes in an air atmosphere by a hot plate. Formed. When this Ag wiring pattern was imaged with a stereomicroscope, it was confirmed that no cracks occurred as shown in FIG. On the other hand, what is different from the product of the invention only in that methyl oleate is not added is a comparative product, and an Ag wiring pattern formed using this comparative product is imaged with a stereomicroscope and is shown in FIG. Thus, the occurrence of cracks was confirmed.

なお、本発明は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々変形して実施することができる。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

また、上記実施形態では、蒸発法により金属微粒子を得ているが、化学還元法のような他の方法を用いてもよい。
Moreover, in the said embodiment, although metal microparticles are obtained by the evaporation method, you may use other methods like a chemical reduction method.

Claims (9)

脂肪酸と脂肪族アミンとで表面が被覆された金属微粒子を、脂肪酸誘導体が添加された疎水性溶媒中に分散させてなることを特徴とする金属微粒子分散液。   A metal fine particle dispersion, wherein metal fine particles whose surfaces are coated with a fatty acid and an aliphatic amine are dispersed in a hydrophobic solvent to which a fatty acid derivative is added. 前記脂肪酸誘導体の濃度が0.1重量%〜5重量%の範囲内であることを特徴とする請求項1記載の金属微粒子分散液。   The metal fine particle dispersion according to claim 1, wherein the concentration of the fatty acid derivative is in the range of 0.1 wt% to 5 wt%. 前記脂肪酸誘導体が脂肪酸エステルであることを特徴とする請求項1又は2記載の金属微粒子分散液。   3. The metal fine particle dispersion according to claim 1, wherein the fatty acid derivative is a fatty acid ester. 前記脂肪酸エステルが脂肪酸メチルエステル又は脂肪酸エチルエステルであることを特徴とする請求項3記載の金属微粒子分散液。   4. The metal fine particle dispersion according to claim 3, wherein the fatty acid ester is a fatty acid methyl ester or a fatty acid ethyl ester. 前記脂肪酸エステルが不飽和結合を有することを特徴とする請求項3又は4記載の金属微粒子分散液。   5. The metal fine particle dispersion according to claim 3, wherein the fatty acid ester has an unsaturated bond. 前記脂肪酸エステルの炭素数が12〜20であることを特徴とする請求項3〜5のいずれか1項記載の金属微粒子分散液。   6. The metal fine particle dispersion according to claim 3, wherein the fatty acid ester has 12 to 20 carbon atoms. 前記脂肪酸及び前記脂肪族アミンの少なくともいずれか一方の炭素数が6〜18であることを特徴とする請求項1〜6のいずれか1項記載の金属微粒子分散液。   The metal fine particle dispersion according to any one of claims 1 to 6, wherein at least one of the fatty acid and the aliphatic amine has 6 to 18 carbon atoms. 前記金属微粒子の原料が、Ag、Au、Cu、Ni、Pd、In、Sn、Al、Zn及びPtから選択された少なくとも1種の金属又はこれらの金属の少なくとも2種の合金であることを特徴とする請求項1〜7のいずれか1項記載の金属微粒子分散液。   The raw material of the metal fine particles is at least one metal selected from Ag, Au, Cu, Ni, Pd, In, Sn, Al, Zn, and Pt, or at least two alloys of these metals. The metal fine particle dispersion according to any one of claims 1 to 7. 脂肪酸と少なくとも1種の脂肪族アミンとで表面が被覆された金属微粒子を得る第1工程と、
第1工程で得られた金属微粒子を疎水性溶媒中に分散させる第2工程と、
疎水性溶媒中に脂肪酸誘導体を添加する第3工程と、を含むことを特徴とする金属微粒子分散液の製造方法。
A first step of obtaining fine metal particles having a surface coated with a fatty acid and at least one aliphatic amine;
A second step of dispersing the metal fine particles obtained in the first step in a hydrophobic solvent;
And a third step of adding a fatty acid derivative to the hydrophobic solvent.
JP2011134613A 2011-06-16 2011-06-16 Metal fine particle dispersion and method for producing the same Active JP5778494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011134613A JP5778494B2 (en) 2011-06-16 2011-06-16 Metal fine particle dispersion and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011134613A JP5778494B2 (en) 2011-06-16 2011-06-16 Metal fine particle dispersion and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013001966A true JP2013001966A (en) 2013-01-07
JP5778494B2 JP5778494B2 (en) 2015-09-16

Family

ID=47670852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011134613A Active JP5778494B2 (en) 2011-06-16 2011-06-16 Metal fine particle dispersion and method for producing the same

Country Status (1)

Country Link
JP (1) JP5778494B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145299A (en) * 2015-02-09 2016-08-12 日立化成株式会社 Conductive material and conductor using it
JP2017088734A (en) * 2015-11-10 2017-05-25 株式会社アルバック Conductive metal ink
US10941304B2 (en) 2016-04-04 2021-03-09 Nichia Corporation Metal powder sintering paste and method of producing the same, and method of producing conductive material
US12125607B2 (en) 2016-04-04 2024-10-22 Nichia Corporation Metal powder sintering paste and method of producing the same, and method of producing conductive material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315871A (en) * 2003-04-15 2004-11-11 Asahi Kasei Corp Method for producing metal hyperfine particle and production apparatus for metal hyperfine particle
JP2007265801A (en) * 2006-03-28 2007-10-11 Sumitomo Bakelite Co Ltd Conductive powder and forming method of conductive powder
JP2008084620A (en) * 2006-09-26 2008-04-10 Dowa Electronics Materials Co Ltd Silver particle powder and its manufacturing method
JP2009001883A (en) * 2007-06-22 2009-01-08 Mitsuboshi Belting Ltd Dispersion liquid containing fine metal particle, and thin metal film
JP2009024191A (en) * 2007-07-17 2009-02-05 Nippon Shokubai Co Ltd Dispersion of metallic nanoparticle and metallic coating film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315871A (en) * 2003-04-15 2004-11-11 Asahi Kasei Corp Method for producing metal hyperfine particle and production apparatus for metal hyperfine particle
JP2007265801A (en) * 2006-03-28 2007-10-11 Sumitomo Bakelite Co Ltd Conductive powder and forming method of conductive powder
JP2008084620A (en) * 2006-09-26 2008-04-10 Dowa Electronics Materials Co Ltd Silver particle powder and its manufacturing method
JP2009001883A (en) * 2007-06-22 2009-01-08 Mitsuboshi Belting Ltd Dispersion liquid containing fine metal particle, and thin metal film
JP2009024191A (en) * 2007-07-17 2009-02-05 Nippon Shokubai Co Ltd Dispersion of metallic nanoparticle and metallic coating film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145299A (en) * 2015-02-09 2016-08-12 日立化成株式会社 Conductive material and conductor using it
JP2017088734A (en) * 2015-11-10 2017-05-25 株式会社アルバック Conductive metal ink
US10941304B2 (en) 2016-04-04 2021-03-09 Nichia Corporation Metal powder sintering paste and method of producing the same, and method of producing conductive material
US11634596B2 (en) 2016-04-04 2023-04-25 Nichia Corporation Metal powder sintering paste and method of producing the same, and method of producing conductive material
US12125607B2 (en) 2016-04-04 2024-10-22 Nichia Corporation Metal powder sintering paste and method of producing the same, and method of producing conductive material

Also Published As

Publication number Publication date
JP5778494B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5007020B2 (en) Method for forming metal thin film and metal thin film
JP5623861B2 (en) Metal nanoparticle dispersion composition
JP2005081501A (en) Metallic nano particle and its manufacturing method, metallic nano particle dispersion fluid and its manufacturing method, and metallic thin line, metallic membrane and their manufacturing method
JP2007321215A (en) Dispersion of metallic nanoparticle and metallic coating film
JP2005183054A (en) Forming method for transparent conductive film, and transparent electrode
JP5778494B2 (en) Metal fine particle dispersion and method for producing the same
JP2008069374A (en) Metallic nanoparticle dispersion and metallic film
JP2007197755A (en) Method for producing metal nanoparticle, metal nanoparticle, electrically conductive composition and electronic device
JP5957187B2 (en) Method for producing metal fine particles
JP5084145B2 (en) Method for storing and transporting nanoparticle dispersion
JP5736244B2 (en) Method for producing metal fine particles
JP2017088734A (en) Conductive metal ink
JP5976368B2 (en) Conductive metal paste
JP2013218836A (en) Conductive metal paste
JP4277976B2 (en) Method for forming plating seed pattern and conductive film pattern
JP2009024191A (en) Dispersion of metallic nanoparticle and metallic coating film
CN116113664A (en) Conductive composition, die-bonding material, pressure-sintered die-bonding material, and electronic component
JP5222486B2 (en) Method for forming transparent conductive film
JP5982156B2 (en) Metal fine particle dispersion
JP5875437B2 (en) Method for producing metal fine particles
KR20170044433A (en) Electromagnetic interference shielding anisotropic film and flexible printed circuit board compring the same
KR101744549B1 (en) Method for manufacturing electromagnetic interference shielding anisotropic film
JP2016145397A (en) Producing method of copper membrane and conductor obtained thereby
JP6758059B2 (en) Conductive metal ink for letterpress reversal printing and method for forming metal wiring using it
JP5934560B2 (en) Conductive metal paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150709

R150 Certificate of patent or registration of utility model

Ref document number: 5778494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250