JP5875437B2 - Method for producing metal fine particles - Google Patents

Method for producing metal fine particles Download PDF

Info

Publication number
JP5875437B2
JP5875437B2 JP2012075680A JP2012075680A JP5875437B2 JP 5875437 B2 JP5875437 B2 JP 5875437B2 JP 2012075680 A JP2012075680 A JP 2012075680A JP 2012075680 A JP2012075680 A JP 2012075680A JP 5875437 B2 JP5875437 B2 JP 5875437B2
Authority
JP
Japan
Prior art keywords
acid
fine particles
amine
metal fine
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012075680A
Other languages
Japanese (ja)
Other versions
JP2013204106A (en
Inventor
久紅 鄭
久紅 鄭
林 義明
義明 林
林 茂雄
茂雄 林
正人 大澤
正人 大澤
夏樹 橋本
夏樹 橋本
崎尾 進
進 崎尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2012075680A priority Critical patent/JP5875437B2/en
Publication of JP2013204106A publication Critical patent/JP2013204106A/en
Application granted granted Critical
Publication of JP5875437B2 publication Critical patent/JP5875437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、金属微粒子の製造方法に関し、特に、マイクロコンタクトプリント法やインクジェット法にて金属配線や透明導電膜等の所定膜を形成するのに利用される金属微粒子の製造方法に関する。   The present invention relates to a method for producing metal fine particles, and more particularly to a method for producing metal fine particles used for forming a predetermined film such as a metal wiring or a transparent conductive film by a microcontact printing method or an ink jet method.

電子デバイスの製造工程において、金属配線膜や透明導電膜等の所定膜の形成に所謂インクジェット法を用いることが従来から知られている。このものでは、インクジェット式の塗布装置を用い、金属微粒子が分散した分散液を基材表面に直接塗布し、この塗布した分散液を乾燥、焼成する。分散液を焼成することで、金属微粒子の表面を覆う分散剤が脱離して金属微粒子同士が焼結し、上記所定膜が得られる。   In the manufacturing process of electronic devices, it is conventionally known to use a so-called inkjet method for forming a predetermined film such as a metal wiring film or a transparent conductive film. In this apparatus, an ink jet type coating apparatus is used, and a dispersion liquid in which metal fine particles are dispersed is directly applied to the surface of the substrate, and the applied dispersion liquid is dried and baked. By firing the dispersion, the dispersing agent covering the surface of the metal fine particles is detached, and the metal fine particles are sintered together to obtain the predetermined film.

上記インクジェット法では実現することが難しいサブミクロンサイズの導電パターンの形成に、マイクロコンタクトプリント法を用いることが提案されている(例えば、非特許文献1参照)。このものでは、例えばポリジメチルシロキサン(PDMS)からなり、導電パターンに対応する凹凸形状を有する版を用い、この版の凸部に分散液を塗布し、分散液を塗布した凸部を基材表面に密着させる。これにより、基材表面に上記凸部に対応した分散液が転写される。転写された分散液を焼成することで、分散剤が脱離して金属微粒子同士が焼結し、上記導電パターンが得られる。   It has been proposed to use a microcontact printing method for forming a submicron-size conductive pattern that is difficult to achieve with the ink jet method (see, for example, Non-Patent Document 1). In this case, for example, a plate made of polydimethylsiloxane (PDMS) and having a concavo-convex shape corresponding to a conductive pattern is used, and a dispersion is applied to the convex portion of the plate, and the convex portion to which the dispersion is applied is formed on the surface of the substrate. Adhere to. Thereby, the dispersion liquid corresponding to the said convex part is transcribe | transferred on the base-material surface. By firing the transferred dispersion, the dispersant is desorbed and the metal fine particles are sintered to obtain the conductive pattern.

このようなインクジェット法やマイクロコンタクトプリント法で用いられる金属微粒子を製造する方法としては、ガス中蒸発法や化学還元法を用いることが例えば特許文献1で知られている。ガス中蒸発法では、槽内に金属原料を収容し、減圧下で金属原料を蒸発させ、この蒸発させた金属蒸気を冷却捕集する際に、分散剤たる有機溶媒の蒸気を導入して金属が粒成長する段階においてその表面を有機溶媒と接触させ、得られる金属微粒子が単独でかつ均一に有機溶媒中にコロイド状に分散した金属微粒子含有液を得る。また、化学還元法では、有機金属化合物を非極性溶媒に溶解して得た液に分散剤たる還元剤を添加し、必要に応じて加熱することで、金属微粒子が分散した金属微粒子含有液を得る。   As a method for producing metal fine particles used in such an ink jet method or a microcontact printing method, it is known in Patent Document 1 to use a gas evaporation method or a chemical reduction method, for example. In the gas evaporation method, a metal raw material is housed in a tank, the metal raw material is evaporated under reduced pressure, and when the evaporated metal vapor is cooled and collected, an organic solvent vapor as a dispersant is introduced into the metal. At the stage of grain growth, the surface is brought into contact with an organic solvent to obtain a metal fine particle-containing liquid in which the obtained metal fine particles are singly and uniformly dispersed in a colloidal form in the organic solvent. In the chemical reduction method, a reducing agent as a dispersant is added to a solution obtained by dissolving an organometallic compound in a nonpolar solvent, and heated as necessary to obtain a metal fine particle-containing liquid in which metal fine particles are dispersed. obtain.

そして、このように得られた金属微粒子含有液に、金属微粒子の分散安定性を改善するためにアルキルアミン、カルボン酸アミド、アミノカルボン酸塩の中から選ばれた少なくとも1種を添加、混合する。次に、低分子量の極性溶媒を加えて該金属微粒子を沈降させ、その上澄み液をデカンテーションなどにより流出させる工程を複数回繰り返して有機溶媒を除去する。これにより、粒径100nm以下の金属微粒子が回収される。   Then, in order to improve the dispersion stability of the metal fine particles, at least one selected from alkylamines, carboxylic acid amides, and aminocarboxylates is added to and mixed with the metal fine particle-containing liquid thus obtained. . Next, a step of adding a low molecular weight polar solvent to precipitate the metal fine particles and allowing the supernatant liquid to flow out by decantation is repeated a plurality of times to remove the organic solvent. Thereby, metal fine particles having a particle size of 100 nm or less are recovered.

ところで、近年では、基材として、ガラス基板以外に樹脂や紙製等の耐熱性の低いものが利用されている。上記非特許文献1には、基材として樹脂フィルムを用い、この樹脂フィルム上に電子ペーパーやフレキシブルディスプレイを駆動する有機TFTをマイクロコンタクトプリント法により形成することが記載されている。耐熱性の低い基材を用いる場合、分散液の焼成温度を150℃以下にする所謂低温焼成化が求められる。   By the way, in recent years, materials having low heat resistance such as resin and paper are used as the base material in addition to the glass substrate. Non-Patent Document 1 describes that a resin film is used as a base material and an organic TFT for driving electronic paper or a flexible display is formed on the resin film by a microcontact printing method. In the case of using a substrate having low heat resistance, so-called low-temperature firing is required to make the firing temperature of the dispersion liquid 150 ° C. or lower.

低温焼成化を達成するために、表面が脂肪酸で覆われた金属微粒子を生成し、この脂肪酸の一部を炭素数1〜7のアミンで置換し、このアミンを炭素数8〜20のアミンで更に置換する方法が例えば特許文献2で知られている。脂肪酸の分解温度よりも炭素数8〜20のアミンの分解温度の方が低いため、焼成温度を低くすることができるものの、このように脂肪酸の一部を炭素数8〜20のアミンに置換するだけでは、充分な低温焼成化を達成できない場合がある。   In order to achieve low-temperature baking, metal fine particles whose surfaces are covered with fatty acids are generated, a part of the fatty acids are substituted with amines having 1 to 7 carbon atoms, and the amines are replaced with amines having 8 to 20 carbon atoms. A method for further replacement is known from Patent Document 2, for example. Since the decomposition temperature of amines having 8 to 20 carbon atoms is lower than the decomposition temperature of fatty acids, the calcination temperature can be lowered, but in this way a part of fatty acids is substituted with amines having 8 to 20 carbon atoms. In some cases, sufficient low-temperature firing cannot be achieved.

ここで、分散液の焼成温度は、金属微粒子の表面を覆う脂肪酸(例えばカルボン酸)やアミンのような分散剤の分子量に依存する。このため、一層の低温焼成化を達成するには、金属微粒子の表面を分子量の小さい分散剤で覆うことが考えられる。   Here, the firing temperature of the dispersion depends on the molecular weight of a dispersant such as a fatty acid (for example, carboxylic acid) or amine that covers the surface of the metal fine particles. For this reason, in order to achieve further low-temperature firing, it is conceivable to cover the surface of the metal fine particles with a dispersant having a low molecular weight.

然し、例えばガス中蒸発法により金属微粒子を生成する場合に分子量の小さいカルボン酸を分散剤として用いると、このようなカルボン酸は蒸気圧が高いことから、蒸発中に槽内の圧力が上昇して金属微粒子が蒸発しなくなり、金属微粒子を安定に生成できないという問題があった。他方、例えば化学還元法により金属微粒子を生成する場合に分子量の小さい分散剤を用いると、金属微粒子の分散が不均一になり(金属微粒子の分散安定性が低下し)、金属微粒子を安定に生成できないという問題があった。このような金属微粒子の分散が不均一な分散液を、例えばインクジェット法で塗布するインクとして用いる場合、インクジェットヘッドの微細なノズルから安定に吐出させることが困難となる。   However, for example, when producing fine metal particles by gas evaporation method, if a carboxylic acid having a low molecular weight is used as a dispersant, such a carboxylic acid has a high vapor pressure. As a result, the metal fine particles do not evaporate and the metal fine particles cannot be stably generated. On the other hand, for example, when a metal fine particle is produced by a chemical reduction method, if a dispersant having a low molecular weight is used, the dispersion of the metal fine particle becomes non-uniform (the dispersion stability of the metal fine particle is lowered), and the metal fine particle is stably produced. There was a problem that I could not. When such a dispersion liquid in which metal fine particles are not uniformly dispersed is used as an ink applied by, for example, an ink jet method, it is difficult to stably discharge the ink from fine nozzles of an ink jet head.

特開2002−121606号公報JP 2002-121606 A 特開2008−150701号公報JP 2008-150701 A

八瀬 清志、他1名、“フレキシブル基板へ有機薄膜トランジスタアレイを印刷”、2008年6月9日、独立行政法人産業技術総合研究所、インターネット(URL:http://www.aist.go.jp/aist_j/press_release/pr2008/pr20080609/pr20080609.html)Kiyoshi Yase and one other, “Printing organic thin film transistor array on flexible substrate”, June 9, 2008, National Institute of Advanced Industrial Science and Technology, Internet (URL: http://www.aist.go.jp) /aist_j/press_release/pr2008/pr20080609/pr20080609.html)

本発明は、以上の点に鑑み、金属微粒子を安定に生成でき、金属微粒子の分散液を焼成するときに150℃以下の焼成温度で焼成可能な金属微粒子の製造方法を提供することをその課題とするものである。   In view of the above, the present invention provides a method for producing metal fine particles that can stably produce metal fine particles and can be fired at a firing temperature of 150 ° C. or lower when firing a dispersion of metal fine particles. It is what.

上記課題を解決するために、本発明の金属微粒子の製造方法は、直鎖又は分岐構造を有する炭素数6〜18の第1のカルボン酸と直鎖又は分岐構造を有する炭素数6〜18の第1のアミンで表面が覆われた金属微粒子を生成する第1工程と、第1工程で生成された金属微粒子を、前記第1のカルボン酸とは異なる、ネオ分岐構造を有する炭素数5〜22の第2のカルボン酸と混合し、金属微粒子の表面を覆う第1のカルボン酸を第2のカルボン酸に置換する第2工程と、表面が第2のカルボン酸及び第1のアミンで覆われた金属微粒子を、前記第1のアミンとは異なる、直鎖又は分岐構造を有する炭素数4〜22の1級アミンである第2のアミンと混合し、表面が第2のカルボン酸及び第2のアミンで覆われた金属微粒子を得る第3工程と、を含むことを特徴とする。 In order to solve the above problems, the method for producing fine metal particles of the present invention includes a first carboxylic acid having 6 to 18 carbon atoms having a linear or branched structure and a 6 to 18 carbon atoms having a linear or branched structure. The first step of generating metal fine particles whose surface is covered with the first amine, and the metal fine particles generated in the first step are different from the first carboxylic acid and have 5 to 5 carbon atoms having a neo-branched structure. A second step of substituting the second carboxylic acid with the second carboxylic acid and replacing the first carboxylic acid covering the surface of the metal fine particles with the second carboxylic acid, and covering the surface with the second carboxylic acid and the first amine. The broken metal fine particles are mixed with a second amine which is a primary amine having 4 to 22 carbon atoms having a linear or branched structure different from the first amine, and the surface is mixed with the second carboxylic acid and the second amine. A third step of obtaining metal fine particles covered with 2 amine; Characterized in that it contains.

本発明によれば、第1工程において金属微粒子の生成に適した第1のカルボン酸及び第1のアミンを分散剤として用いるため、金属微粒子を安定に生成することができる。このように生成した金属微粒子を第2のカルボン酸と混合することで、金属微粒子の表面を覆う第1のカルボン酸が第2のカルボン酸に置換される(第2工程)。さらに、第2のカルボン酸に置換された金属微粒子を、金属微粒子の分散に適した第2のアミンと混合することで、金属微粒子の表面が更に1級アミンによっても覆われるため、金属微粒子の高い分散安定性が得られる。このようにして得られた金属微粒子の表面は第2のカルボン酸で被覆されているため、金属微粒子に分散用の溶媒を加えて得た金属微粒子分散液を基材に塗布して焼成するときに150℃以下の低温で焼成しても、導電性に優れた導電膜及び導電配線パターンを形成することが可能となる。なお、本発明において、金属微粒子とは、平均粒径が100nm以下(代表的な粒径が1nm〜10nm)であるものをいう。また、本発明において、金属微粒子分散液とは、金属微粒子インクや金属微粒子ペーストを含むものとする。   According to the present invention, since the first carboxylic acid and the first amine suitable for generating metal fine particles are used as the dispersant in the first step, the metal fine particles can be generated stably. By mixing the metal fine particles thus generated with the second carboxylic acid, the first carboxylic acid covering the surface of the metal fine particles is replaced with the second carboxylic acid (second step). Furthermore, by mixing the metal fine particles substituted with the second carboxylic acid with a second amine suitable for the dispersion of the metal fine particles, the surface of the metal fine particles is further covered with the primary amine. High dispersion stability can be obtained. Since the surface of the metal fine particles obtained in this way is coated with the second carboxylic acid, when the metal fine particle dispersion obtained by adding a dispersion solvent to the metal fine particles is applied to the substrate and baked Even when firing at a low temperature of 150 ° C. or lower, it is possible to form a conductive film and a conductive wiring pattern having excellent conductivity. In the present invention, the metal fine particles mean those having an average particle size of 100 nm or less (typical particle size is 1 nm to 10 nm). In the present invention, the metal fine particle dispersion includes metal fine particle ink and metal fine particle paste.

本発明において、第2のカルボン酸として、ネオペンタン酸(ピバリン酸)、ネオヘキサン酸、ネオへプタン酸、ネオオクタン酸、ネオノナン酸、ネオデカン酸、ネオトリデカン酸、ネオドデカン酸から選択された少なくとも1つを用いることが好ましい。また、第1のカルボン酸として、ヘキサン酸、2メチルヘプタン酸、オクタン酸、2エチルへキサン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、ミリスチン酸、パルミチン酸、2へキシルデカン酸、ステアリン酸、オレイン酸、イソステアリン酸から選択された少なくとも1つを用いることが好ましい。   In the present invention, at least one selected from neopentanoic acid (pivalic acid), neohexanoic acid, neoheptanoic acid, neooctanoic acid, neononanoic acid, neodecanoic acid, neotridecanoic acid, and neododecanoic acid is used as the second carboxylic acid. It is preferable. As the first carboxylic acid, hexanoic acid, 2-methylheptanoic acid, octanoic acid, 2-ethylhexanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, myristic acid, palmitic acid, 2-hexyldecanoic acid, stearin It is preferable to use at least one selected from acids, oleic acid, and isostearic acid.

本発明において、第2のアミンとして、へキシルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、テトラデシルアミン及びオレイルアミンから選択された少なくとも1つの1級アミンを用いることが好ましい。また、第1のアミンとして、へキシルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、テトラデシルアミン及びオレイルアミンから選択された少なくとも1つを用いることが好ましい。   In the present invention, it is preferable to use at least one primary amine selected from hexylamine, octylamine, nonylamine, decylamine, dodecylamine, tetradecylamine and oleylamine as the second amine. Further, it is preferable to use at least one selected from hexylamine, octylamine, nonylamine, decylamine, dodecylamine, tetradecylamine and oleylamine as the first amine.

本発明において用いられる金属は、Ag、Au、Ni、Pd、Rh、Ru、In,Sn,Cu及びPtから選択された少なくとも1種の金属又はこれらの金属の少なくとも2種からなる合金であり、目的・用途に応じて適宜選択することができる。本発明は、導電性の高いAg微粒子を形成する場合に適している。   The metal used in the present invention is at least one metal selected from Ag, Au, Ni, Pd, Rh, Ru, In, Sn, Cu and Pt, or an alloy composed of at least two of these metals. It can be appropriately selected depending on the purpose and application. The present invention is suitable for forming highly conductive Ag fine particles.

以下、本発明の実施形態の金属微粒子の製造方法について、導電性に優れたAg微粒子を製造する場合を例に説明する。尚、金属としては、Agのほかに、Au、Ni、Pd、Rh、Ru、In、Sn、Cu及びPtから選択された少なくとも1種の金属又はこれらの金属の少なくとも2種からなる合金を用いることができる。   Hereinafter, a method for producing metal fine particles according to an embodiment of the present invention will be described by taking an example of producing Ag fine particles having excellent conductivity. As the metal, in addition to Ag, at least one metal selected from Au, Ni, Pd, Rh, Ru, In, Sn, Cu and Pt or an alloy made of at least two of these metals is used. be able to.

先ず、第1工程にて、10Pa以下の圧力下で高周波誘導加熱を用いる蒸発法により金属微粒子を生成する。この第1工程では、槽内で、Agを蒸発させることにより生成過程のAg微粒子に第1のカルボン酸と第1のアミンとを接触させた後、冷却捕集する。これにより、表面が第1のカルボン酸及び第1のアミンで覆われたAg微粒子の生成液が得られる。Ag微粒子の生成液にアセトンのような低分子量の極性溶媒を加えて撹拌し、静置して、Ag微粒子を沈降させた後、上澄み液を除去する。このような極性溶媒を用いたAg微粒子の洗浄を繰り返し、第1のカルボン酸及び第1のアミンで表面が覆われたAg微粒子を得る。   First, in the first step, metal fine particles are generated by an evaporation method using high-frequency induction heating under a pressure of 10 Pa or less. In this first step, Ag is evaporated in the tank to bring the first carboxylic acid and the first amine into contact with the Ag fine particles in the production process, and then cooled and collected. Thereby, the production | generation liquid of Ag microparticles | fine-particles with which the surface was covered with the 1st carboxylic acid and the 1st amine is obtained. A polar solvent having a low molecular weight such as acetone is added to the Ag fine particle production solution, and the mixture is stirred and allowed to stand to precipitate the Ag fine particles, and then the supernatant is removed. Washing of the Ag fine particles using such a polar solvent is repeated to obtain Ag fine particles whose surface is covered with the first carboxylic acid and the first amine.

ここで、第1のカルボン酸及び第1のアミンとしては、Ag微粒子を安定して生成するのに適した、直鎖又は分岐構造を有する炭素数6〜18のものを用いることができる。第1のカルボン酸としては、例えば、ヘキサン酸、2メチルヘプタン酸、オクタン酸、2エチルへキサン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、ミリスチン酸、パルミチン酸、2へキシルデカン酸、ステアリン酸、オレイン酸、イソステアリン酸から選択された少なくとも1つを用いることができる。第1のアミンとしては、例えば、へキシルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、テトラデシルアミン及びオレイルアミンから選択された少なくとも1つを用いることができる。   Here, as the first carboxylic acid and the first amine, those having 6 to 18 carbon atoms having a linear or branched structure suitable for stably producing Ag fine particles can be used. Examples of the first carboxylic acid include hexanoic acid, 2-methylheptanoic acid, octanoic acid, 2-ethylhexanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, myristic acid, palmitic acid, 2-hexyldecanoic acid, At least one selected from stearic acid, oleic acid, and isostearic acid can be used. As the first amine, for example, at least one selected from hexylamine, octylamine, nonylamine, decylamine, dodecylamine, tetradecylamine and oleylamine can be used.

第2工程(酸処理工程)では、上記第1工程で得られたAg微粒子を、ネオ分岐構造を有する炭素数5〜22の第2のカルボン酸と混合し、攪拌する。これにより、Ag微粒子の表面を覆う第1のカルボン酸が第2のカルボン酸に置換され、表面が第2のカルボン酸と第1のアミンで被覆されたAg微粒子を含有するAg微粒子含有液が得られる。ここで、第2のカルボン酸の添加量は、Ag微粒子100重量部に対して10〜100重量部の範囲とすることが好ましい。第2のカルボン酸としては、例えば、ネオペンタン酸(ピバリン酸)、ネオヘキサン酸、ネオへプタン酸、ネオオクタン酸、ネオノナン酸、ネオデカン酸、ネオトリデカン酸、ネオドデカン酸から選択された少なくとも1つを用いることができる。   In the second step (acid treatment step), the Ag fine particles obtained in the first step are mixed with the second carboxylic acid having 5 to 22 carbon atoms having a neo-branched structure and stirred. Thereby, the first carboxylic acid covering the surface of the Ag fine particle is substituted with the second carboxylic acid, and the Ag fine particle-containing liquid containing the Ag fine particle whose surface is coated with the second carboxylic acid and the first amine is obtained. can get. Here, the addition amount of the second carboxylic acid is preferably in the range of 10 to 100 parts by weight with respect to 100 parts by weight of the Ag fine particles. As the second carboxylic acid, for example, at least one selected from neopentanoic acid (pivalic acid), neohexanoic acid, neoheptanoic acid, neooctanoic acid, neononanoic acid, neodecanoic acid, neotridecanoic acid, and neododecanoic acid is used. Can do.

第2工程における撹拌を効率良く行うためには、超音波振動(例えば45kHz)を加えることが好ましい。第2のカルボン酸への置換率を高めるためには、第2工程を数回繰り返すことが好ましい。   In order to efficiently perform the stirring in the second step, it is preferable to apply ultrasonic vibration (for example, 45 kHz). In order to increase the substitution rate with the second carboxylic acid, the second step is preferably repeated several times.

ところで、第2工程中、Ag微粒子と第2のカルボン酸とが反応すると、第1のカルボン酸から第2のカルボン酸への置換効率が低下するという不具合が生じる。Ag微粒子と第2のカルボン酸との反応を抑制するために、第2工程の処理時間を2時間以下にすることが好ましく、また、処理温度を50℃以下にすることが好ましく、室温以下にすることがより好ましい。第2工程にて第2のカルボン酸と共にアミンを添加することによっても、Ag微粒子と第2のカルボン酸との反応を抑制できる。この場合、第2のカルボン酸とアミンとを反応させて得た反応物を添加してもよい。   By the way, when Ag fine particle and 2nd carboxylic acid react in a 2nd process, the malfunction that the substitution efficiency from 1st carboxylic acid to 2nd carboxylic acid falls arises. In order to suppress the reaction between the Ag fine particles and the second carboxylic acid, the treatment time of the second step is preferably 2 hours or less, the treatment temperature is preferably 50 ° C. or less, and the room temperature or less. More preferably. The reaction between the Ag fine particles and the second carboxylic acid can also be suppressed by adding an amine together with the second carboxylic acid in the second step. In this case, a reaction product obtained by reacting the second carboxylic acid with the amine may be added.

上記第2工程で第2のカルボン酸に置換されたAg微粒子を、上記方法を用いて洗浄する。この場合、アセトンの添加量は、Ag微粒子含有液1容量に対して10容量とする。そして、第3工程(アミン処理工程)では、洗浄後のAg微粒子を、さらに、炭素数4〜22の第2のアミンと混合し、攪拌する。これにより、Ag微粒子の表面を覆う第1のアミンが第2のアミンに置換され、この第2のアミンと第2のカルボン酸とで表面が覆われたAg微粒子が得られる。ここで、第2のアミンとしては、Ag微粒子を分散させるのに適した炭素数6のへキシルアミン、炭素数8のオクチルアミン、炭素数9のノニルアミン、炭素数10のデシルアミン、炭素数12のドデシルアミン、炭素数14のテトラデシルアミン及び炭素数18のオレイルアミンから選択された少なくとも1つを用いることが好ましい。   The Ag fine particles substituted with the second carboxylic acid in the second step are washed using the above method. In this case, the addition amount of acetone is 10 volumes with respect to 1 volume of the Ag fine particle-containing liquid. In the third step (amine treatment step), the washed Ag fine particles are further mixed with a second amine having 4 to 22 carbon atoms and stirred. Thereby, the 1st amine which covers the surface of Ag particulates is replaced by the 2nd amine, and Ag particulates where the surface was covered with this 2nd amine and the 2nd carboxylic acid are obtained. Here, as the second amine, hexylamine having 6 carbon atoms suitable for dispersing Ag fine particles, octylamine having 8 carbon atoms, nonylamine having 9 carbon atoms, decylamine having 10 carbon atoms, dodecyl having 12 carbon atoms. It is preferable to use at least one selected from an amine, tetradecylamine having 14 carbon atoms, and oleylamine having 18 carbon atoms.

第3工程における攪拌を効率的に行うために、攪拌時に超音波振動を加えることが好ましい。第2のアミンへの置換率を高めるためには、第3工程を数回繰り返すことが好ましい。   In order to efficiently perform the stirring in the third step, it is preferable to apply ultrasonic vibration during the stirring. In order to increase the substitution rate with the second amine, the third step is preferably repeated several times.

以上説明した実施形態によれば、真空蒸着法により、表面がAg微粒子の生成に適した第1のカルボン酸及び第1のアミンで覆われたAg微粒子を生成する。これにより、Ag微粒子の生成時に高い分散安定性が得られ、Ag微粒子を安定に生成することができる。このように生成したAg微粒子を、Ag微粒子分散液の調整に適した(即ち、低温焼成化に適した)ネオ分岐構造を有する第2のカルボン酸と混合して、Ag微粒子表面を覆う第1のカルボン酸を第2のカルボン酸に置換する。さらに、この第2のカルボン酸に置換されたAg微粒子を、Ag微粒子分散液の調整に適した第2のアミンと混合して、Ag微粒子表面を覆う第1のアミンを第2のアミンに置換する。このようにして得られたAg微粒子の表面は、Ag微粒子分散液の調整に適したネオ分岐構造を有する第2のカルボン酸と第2のアミンとで覆われることとなる。これにより、Ag微粒子をトルエン等の低極性溶媒に高い分散安定性で分散させることができるため、インクジェット法やマイクロコンタクトプリント法を用いて塗布或いは転写したAg微粒子分散液を、150℃以下の低温にて焼成することができる。また、インクジェット法を用いる場合、インクジェットヘッドの微細なノズルから安定に吐出させることができる。   According to the embodiment described above, the Ag fine particles whose surface is covered with the first carboxylic acid and the first amine suitable for the production of Ag fine particles are generated by the vacuum deposition method. Thereby, high dispersion stability is obtained at the time of production of Ag fine particles, and Ag fine particles can be produced stably. The Ag fine particles thus produced are mixed with a second carboxylic acid having a neo-branched structure suitable for adjusting the Ag fine particle dispersion (that is, suitable for low-temperature firing) to cover the surface of the Ag fine particles. The carboxylic acid is replaced with a second carboxylic acid. Further, the Ag fine particle substituted with the second carboxylic acid is mixed with a second amine suitable for adjusting the Ag fine particle dispersion, and the first amine covering the surface of the Ag fine particle is replaced with the second amine. To do. The surface of the Ag fine particles thus obtained is covered with the second carboxylic acid having a neo-branched structure suitable for the preparation of the Ag fine particle dispersion and the second amine. As a result, the Ag fine particles can be dispersed in a low polarity solvent such as toluene with high dispersion stability. Therefore, the Ag fine particle dispersion applied or transferred by using the ink jet method or the microcontact printing method can be dispersed at a low temperature of 150 ° C. or lower. Can be fired. Moreover, when using an inkjet method, it can discharge stably from the fine nozzle of an inkjet head.

Ag微粒子を孤立状態で分散させて分散液を得るための低極性溶媒としては、主鎖の炭素数が6〜18である有機溶媒を用いることが好ましく、上記のトルエン以外に、例えば、ヘキサン、へプタン、オクタン、デカン、ウンデカン、ドデカン、トリデカン、トリメチルデカンのような長鎖アルカンや、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロドデセンのような環状アルカン、ベンゼン、キシレン、トリメチルベンゼン、ドデシルベンゼンのような芳香族炭化水素、ヘキサノール、ヘプタノール、オクタノール、デカノール、シクロヘキサノール、テルピネオールのようなアルコール、ジエチルエーテル、ジブチルエーテル、ジヘキシルエーテル、テトラヒドロフラン、シクロペンチルメチルエーテルのようなエーテルを単独で又は混合して用いることができる。   As a low polarity solvent for dispersing Ag fine particles in an isolated state to obtain a dispersion, it is preferable to use an organic solvent having 6 to 18 carbon atoms in the main chain. Long-chain alkanes such as heptane, octane, decane, undecane, dodecane, tridecane, trimethyldecane, cyclic alkanes such as cyclohexane, cycloheptane, cyclooctane, cyclododecene, such as benzene, xylene, trimethylbenzene, dodecylbenzene Aromatic hydrocarbons, hexanol, heptanol, octanol, decanol, cyclohexanol, ethers such as terpineol, ethers such as diethyl ether, dibutyl ether, dihexyl ether, tetrahydrofuran, cyclopentyl methyl ether It can be used or in combination Germany.

以下、本発明の実施例について、ネオ分岐構造を有するカルボン酸で被覆されたAg微粒子を得て、このAg微粒子を含有するAg微粒子分散液をインクジェット法を用いてガラス基板上に塗布し、150℃以下の温度で焼成してAg薄膜を作製する場合を例に説明する。   Hereinafter, for the examples of the present invention, Ag fine particles coated with a carboxylic acid having a neo-branched structure were obtained, and an Ag fine particle dispersion containing the Ag fine particles was applied onto a glass substrate using an ink jet method. A case where an Ag thin film is produced by baking at a temperature not higher than ° C. will be described as an example.

(実施例1)
第1工程にて、蒸発法により、表面が2エチルヘキサン酸及び2エチルヘキシルアミンで覆われた平均粒径4nmのAg微粒子(アルバック製の商品名「Agナノメタル分散インク」)を得た。本発明者の実験では、このAg微粒子を含むAg微粒子分散液は、150℃で焼成しても導通が得られないことを確認した。上記Ag微粒子をトルエンに分散させてAg分散液を20g得た。この分散液中のAg含有量は6gであり、Ag濃度を30wt%とした。このAg分散液20gにネオペンタン酸を1.2g(Ag固形分に対して、20wt%)添加し、混合し、氷浴状態で30分の超音波処理を行ってAg微粒子含有液を得た(第2工程)。このAg微粒子含有液1容量に対し、アセトンを10容量添加して上記洗浄工程を複数回繰り返し、遠心分離処理により溶媒を除去することで、Ag微粒子の表面を覆う2エチルヘキサン酸がネオペンタン酸に置換された。このようにネオペンタン酸に置換されたAg微粒子を、トルエン14g及びドデシルアミン1.2gと混合し、室温で1時間攪拌してAg微粒子含有液を得た(第3工程)。このAg微粒子含有液1容量に対してアセトンを10容量添加して行う上記洗浄工程を複数回繰り返し、遠心分離処理により溶媒を除去することで、表面がネオペンタン酸とドデシルアミンで覆われたAg微粒子が得られた。
Example 1
In the first step, Ag fine particles having an average particle diameter of 4 nm (trade name “Ag nanometal dispersion ink” manufactured by ULVAC) whose surface was covered with 2 ethylhexanoic acid and 2 ethylhexylamine were obtained by an evaporation method. In the experiment of the present inventor, it was confirmed that the Ag fine particle dispersion containing the Ag fine particles could not obtain conduction even when baked at 150 ° C. The Ag fine particles were dispersed in toluene to obtain 20 g of Ag dispersion. The Ag content in this dispersion was 6 g, and the Ag concentration was 30 wt%. 1.2 g of neopentanoic acid (20 wt% based on Ag solid content) was added to 20 g of this Ag dispersion, mixed, and subjected to ultrasonic treatment for 30 minutes in an ice bath to obtain an Ag fine particle-containing liquid ( Second step). By adding 10 volumes of acetone to 1 volume of this Ag fine particle-containing liquid, repeating the above washing step a plurality of times, and removing the solvent by centrifugation, 2ethylhexanoic acid covering the surface of the Ag fine particles is converted to neopentanoic acid. Replaced. The Ag fine particles substituted with neopentanoic acid were mixed with 14 g of toluene and 1.2 g of dodecylamine and stirred at room temperature for 1 hour to obtain an Ag fine particle-containing liquid (third step). The above-mentioned washing step performed by adding 10 volumes of acetone to 1 volume of this Ag fine particle-containing liquid is repeated a plurality of times, and the surface is covered with neopentanoic acid and dodecylamine by removing the solvent by centrifugation. was gotten.

このように得られたAg微粒子をトルエンに分散させて、Ag濃度が30wt%のAg微粒子分散液(Ag微粒子インク)を調整した。調整した分散液をインクジェット法により、ガラス基板上に塗布し、150℃の温度で30分焼成することにより膜厚が0.3μmのAg薄膜を作製した。このAg薄膜の表面抵抗(比抵抗値)を測定した。測定結果を以下の表1に示す。表1には、焼成時間のみを5分、60分、120分、180分に変化させて作製したAg薄膜の比抵抗値を併せて示す。本実施例よれば、焼成時間を30分以上とすることで、比抵抗値が30μΩ・cm以下の低抵抗のAg薄膜が得られることが判った。   The Ag fine particles thus obtained were dispersed in toluene to prepare an Ag fine particle dispersion (Ag fine particle ink) having an Ag concentration of 30 wt%. The prepared dispersion was applied onto a glass substrate by an ink jet method, and baked at a temperature of 150 ° C. for 30 minutes to produce an Ag thin film having a thickness of 0.3 μm. The surface resistance (specific resistance value) of this Ag thin film was measured. The measurement results are shown in Table 1 below. Table 1 also shows the specific resistance values of Ag thin films prepared by changing only the firing time to 5 minutes, 60 minutes, 120 minutes, and 180 minutes. According to this example, it was found that a low-resistance Ag thin film having a specific resistance value of 30 μΩ · cm or less can be obtained by setting the firing time to 30 minutes or longer.

Figure 0005875437
Figure 0005875437

(実施例2)
本実施例2では、第2工程での超音波処理時間を1時間にすることを除き、実施例1と同様の方法で、表面がネオペンタン酸とドデシルアミンで覆われたAg微粒子を含むAg微粒子分散液を得て、インクジェット法を用いてAg薄膜を作製した。作製したAg薄膜の比抵抗値の測定結果を以下の表2に示す。本実施例2によれば、焼成時間が30分以上の場合に、上記実施例1と同等の比抵抗値を有する低抵抗のAg薄膜が得られることが判った。
(Example 2)
In this Example 2, Ag fine particles containing Ag fine particles whose surface is covered with neopentanoic acid and dodecylamine are the same as in Example 1 except that the sonication time in the second step is set to 1 hour. A dispersion was obtained, and an Ag thin film was prepared using an inkjet method. The measurement result of the specific resistance value of the produced Ag thin film is shown in Table 2 below. According to Example 2, it was found that when the firing time was 30 minutes or longer, a low-resistance Ag thin film having a specific resistance value equivalent to that of Example 1 was obtained.

Figure 0005875437
Figure 0005875437

(実施例3)
本実施例3では、第2工程での超音波処理時間を2時間にすることを除き、実施例1と同様の方法で、表面がネオペンタン酸とドデシルアミンで覆われたAg微粒子を含むAg微粒子分散液を得て、インクジェット法を用いてAg薄膜を作製した。作製したAg薄膜の比抵抗値の測定結果を以下の表3に示す。本実施例3によれば、焼成時間が30分以上の場合に、上記実施例1と同等の比抵抗値を有する低抵抗のAg薄膜が得られることが判った。
(Example 3)
In Example 3, Ag fine particles containing Ag fine particles whose surfaces are covered with neopentanoic acid and dodecylamine are the same as in Example 1 except that the sonication time in the second step is set to 2 hours. A dispersion was obtained, and an Ag thin film was prepared using an inkjet method. The measurement result of the specific resistance value of the produced Ag thin film is shown in Table 3 below. According to Example 3, it was found that a low-resistance Ag thin film having a specific resistance value equivalent to that of Example 1 was obtained when the firing time was 30 minutes or longer.

Figure 0005875437
Figure 0005875437

(実施例4)
本実施例4では、第2工程を2回繰り返して行う点以外は実施例1と同様の方法で、表面がネオペンタン酸とドデシルアミンで覆われたAg微粒子を含むAg微粒子分散液を得て、インクジェット法を用いてAg薄膜を作製した。作製したAg薄膜の比抵抗値の測定結果を以下の表4に示す。本実施例4によれば、焼成時間が10分でも、比抵抗値が30μΩ・cm以下の低抵抗のAg薄膜が得られることが判った。これは、ネオペンタン酸への置換率が上記実施例1〜3よりも高いためであると考えられる。
Example 4
In this Example 4, an Ag fine particle dispersion containing Ag fine particles having a surface covered with neopentanoic acid and dodecylamine was obtained in the same manner as in Example 1 except that the second step was repeated twice. An Ag thin film was prepared using an inkjet method. The measurement results of the specific resistance value of the prepared Ag thin film are shown in Table 4 below. According to Example 4, it was found that a low-resistance Ag thin film having a specific resistance value of 30 μΩ · cm or less can be obtained even when the firing time is 10 minutes. This is considered to be because the substitution rate to neopentanoic acid is higher than those of Examples 1 to 3.

(実施例5)
本実施例5では、第2工程を3回繰り返して行う点以外は上記実施例1と同様の方法で、表面がネオペンタン酸とドデシルアミンで覆われたAg微粒子を含むAg微粒子分散液を得て、インクジェット法を用いてAg薄膜を作製した。作製したAg薄膜の比抵抗値の測定結果を以下の表4に示す。本実施例5によれば、上記実施例4よりも一層低抵抗のAg薄膜が得られることが判った。
(Example 5)
In Example 5, an Ag fine particle dispersion containing Ag fine particles having a surface covered with neopentanoic acid and dodecylamine was obtained in the same manner as in Example 1 except that the second step was repeated three times. An Ag thin film was prepared using an ink jet method. The measurement results of the specific resistance value of the prepared Ag thin film are shown in Table 4 below. According to Example 5, it was found that an Ag thin film having a lower resistance than that of Example 4 was obtained.

Figure 0005875437
Figure 0005875437

(実施例6)
本実施例6では、Ag微粒子を分散させる低極性溶媒としてトルエンの代わりにシクロペンチルメチルエーテルを用いる点以外は上記実施例2と同様の方法で、表面がネオペンタン酸とドデシルアミンで覆われたAg微粒子を含むAg分散液(濃度30wt%のAg微粒子インク)を得て、インクジェット法を用いてAg薄膜を塗布し、120℃又は150℃の温度で、焼成温度を変化させて作製したAg薄膜の比抵抗値の測定結果を以下の表5に示す。本実施例6によれば、焼成温度が120℃の場合、焼成時間を60分以上とすることで比抵抗値が30μΩ・cm以下の低抵抗のAg薄膜が得られ、また、焼成時間が150℃の場合、焼成時間を30分以上とすることで比抵抗値が30μΩ・cm以下の低抵抗のAg薄膜が得られることが判った。
(Example 6)
In this Example 6, Ag fine particles whose surface was covered with neopentanoic acid and dodecylamine in the same manner as in Example 2 except that cyclopentyl methyl ether was used instead of toluene as a low polarity solvent for dispersing Ag fine particles. Of an Ag thin film prepared by applying an Ag thin film using an inkjet method and changing the firing temperature at a temperature of 120 ° C. or 150 ° C. The measurement results of the resistance value are shown in Table 5 below. According to Example 6, when the firing temperature is 120 ° C., a low resistance Ag thin film having a specific resistance of 30 μΩ · cm or less can be obtained by setting the firing time to 60 minutes or more, and the firing time is 150 In the case of ° C., it was found that a low resistance Ag thin film having a specific resistance value of 30 μΩ · cm or less can be obtained by setting the firing time to 30 minutes or longer.

Figure 0005875437
Figure 0005875437

(実施例7)
本実施例7では、第2工程にてネオペンタン酸1.2gと共にドデシルアミン2.4gを添加する点以外は実施例2と同様の方法で、表面がネオペンタン酸とドデシルアミンで覆われたAg微粒子を含むAg微粒子分散液を得て、インクジェット法を用いてAg薄膜を塗布し、焼成温度を100℃又は120℃とし、焼成時間を変化させて作製したAg薄膜の比抵抗値の測定結果を以下の表6に示す。本実施例7によれば、焼成温度が100℃の場合には焼成時間を180分以上とすることで、また、焼成時間が120℃又は150℃の場合には焼成時間を30分以上とすることで、比抵抗値が30μΩ・cm以下の低抵抗のAg薄膜が得られることが判った。
(Example 7)
In Example 7, Ag fine particles whose surface was covered with neopentanoic acid and dodecylamine in the same manner as in Example 2 except that 2.4 g of dodecylamine was added together with 1.2 g of neopentanoic acid in the second step. The following is a measurement result of the specific resistance value of an Ag thin film prepared by applying an Ag thin film using an inkjet method, setting the baking temperature to 100 ° C. or 120 ° C., and changing the baking time. Table 6 shows. According to Example 7, when the firing temperature is 100 ° C., the firing time is 180 minutes or more, and when the firing time is 120 ° C. or 150 ° C., the firing time is 30 minutes or more. Thus, it was found that a low-resistance Ag thin film having a specific resistance value of 30 μΩ · cm or less can be obtained.

Figure 0005875437
Figure 0005875437

(実施例8)
本実施例8では、第2工程にてネオペンタン酸1.2gの代わりにネオペンタン酸1.2gとドデシルアミン2.4gとを反応させて得た反応物を添加する点以外は実施例2と同様の方法で、表面がネオペンタン酸とドデシルアミンで覆われたAg微粒子を含むAg微粒子分散液を得て、インクジェット法を用いてAg薄膜を塗布し、焼成温度を100℃、120℃又は150℃とし、焼成時間を変化させて作製したAg薄膜の比抵抗値の測定結果を以下の表7に示す。本実施例8によれば、焼成温度が100℃の場合には焼成時間を180分以上とすることで、また、焼成時間が120℃又は150℃の場合には焼成時間を30分以上とすることで、比抵抗値が30μΩ・cm以下の低抵抗のAg薄膜が得られることが判った。

Figure 0005875437
(Example 8)
Example 8 is the same as Example 2 except that, in the second step, a reaction product obtained by reacting 1.2 g of neopentanoic acid and 2.4 g of dodecylamine is added instead of 1.2 g of neopentanoic acid. In this way, an Ag fine particle dispersion containing Ag fine particles whose surface is covered with neopentanoic acid and dodecylamine is obtained, an Ag thin film is applied using an ink jet method, and the firing temperature is set to 100 ° C, 120 ° C or 150 ° C Table 7 shows the measurement results of the specific resistance values of the Ag thin films prepared by changing the firing time. According to Example 8, when the firing temperature is 100 ° C., the firing time is 180 minutes or more, and when the firing time is 120 ° C. or 150 ° C., the firing time is 30 minutes or more. Thus, it was found that a low-resistance Ag thin film having a specific resistance value of 30 μΩ · cm or less can be obtained.
Figure 0005875437

以下、上記実施例に対する比較例を説明する。
(比較例1)
本比較例1では、ネオペンタン酸の代わりにオクタン酸を用いる点以外は実施例2と同様の方法で、表面がオクタン酸とドデシルアミンで覆われたAg微粒子を含むAg微粒子分散液を得て、インクジェット法を用いてAg微粒子分散液を塗布し、150℃の温度で焼成時間を変化させてAg薄膜を作製した。作製したAg薄膜の比抵抗値の測定結果を以下の表8に示す。本比較例1によれば、焼成時間が60分、120分の場合、導通せず(比抵抗値を測定出来ず)、容易に低温焼成化を実現できないことが判った。
Hereinafter, a comparative example with respect to the above embodiment will be described.
(Comparative Example 1)
In this comparative example 1, except for using octanoic acid instead of neopentanoic acid, an Ag fine particle dispersion containing Ag fine particles whose surface is covered with octanoic acid and dodecylamine was obtained in the same manner as in Example 2. An Ag fine particle dispersion was applied using an inkjet method, and an Ag thin film was produced by changing the firing time at a temperature of 150 ° C. The measurement results of the specific resistance value of the produced Ag thin film are shown in Table 8 below. According to Comparative Example 1, it was found that when the firing time was 60 minutes or 120 minutes, no conduction was made (specific resistance value could not be measured), and low-temperature firing could not be easily realized.

Figure 0005875437
Figure 0005875437

(比較例2)
本比較例2では、ネオペンタン酸の代わりにオレイン酸を用いる点以外は実施例2と同様の方法で、表面がオレイン酸とドデシルアミンで覆われたAg微粒子を含むAg微粒子分散液を得て、インクジェット法を用いてAg薄膜を塗布し、150℃の温度で焼成して作製した。焼成時間を3時間としても、得られたAg薄膜は導通せず、比抵抗値を測定できなかった。
(Comparative Example 2)
In this Comparative Example 2, an Ag fine particle dispersion containing Ag fine particles having a surface covered with oleic acid and dodecylamine was obtained in the same manner as in Example 2 except that oleic acid was used instead of neopentanoic acid, An Ag thin film was applied using an ink jet method, and baked at a temperature of 150 ° C. Even when the firing time was 3 hours, the obtained Ag thin film was not conductive, and the specific resistance value could not be measured.

なお、本発明は上記実施形態及び実施例に限定されない。例えば、上記実施形態及び実施例では、第1工程にてガス中蒸発法によりAg微粒子を生成しているが、Ag微粒子の生成方法はこれに限定されず、化学還元法によりAg微粒子を生成してもよい。   In addition, this invention is not limited to the said embodiment and Example. For example, in the above-described embodiment and examples, Ag fine particles are generated by the gas evaporation method in the first step. However, the method of generating Ag fine particles is not limited to this, and Ag fine particles are generated by the chemical reduction method. May be.

上記実施例では、Ag微粒子分散液をインクジェット法により塗布しているが、マイクロコンタクトプリント法やスクリーン印刷法等を用いることができる。また、上記実施例では、ガラス基板上にAg微粒子分散液を塗布しているが、基材としては、ガラス基板に限られず、樹脂や紙製等の耐熱性の低いものを用いることができる。   In the above embodiment, the Ag fine particle dispersion is applied by the ink jet method, but a micro contact printing method, a screen printing method, or the like can be used. Moreover, in the said Example, although Ag fine particle dispersion liquid is apply | coated on the glass substrate, as a base material, it is not restricted to a glass substrate, The thing with low heat resistance, such as resin and the product made from paper, can be used.

Claims (6)

直鎖又は分岐構造を有する炭素数6〜18の第1のカルボン酸と直鎖又は分岐構造を有する炭素数6〜18の第1のアミンで表面が覆われた金属微粒子を生成する第1工程と、
第1工程で生成された金属微粒子を、前記第1のカルボン酸とは異なる、ネオ分岐構造を有する炭素数5〜22の第2のカルボン酸と混合し、金属微粒子の表面を覆う第1のカルボン酸を第2のカルボン酸に置換する第2工程と、
表面が第2のカルボン酸と第1のアミンで覆われた金属微粒子を、前記第1のアミンとは異なる、直鎖又は分岐構造を有する炭素数4〜22の1級アミンである第2のアミンと混合し、表面が第2のカルボン酸及び第2のアミンで覆われた金属微粒子を得る第3工程と、を含むことを特徴とする金属微粒子の製造方法。
1st process of producing | generating the metal fine particle by which the surface was covered by the 1st carboxylic acid of C6-C18 which has a linear or branched structure, and the 1st amine of C6-C18 which has a linear or branched structure When,
The metal fine particles generated in the first step are mixed with a second carboxylic acid having 5 to 22 carbon atoms having a neo-branched structure , which is different from the first carboxylic acid, to cover the surface of the metal fine particles. A second step of replacing the carboxylic acid with a second carboxylic acid;
A metal fine particle whose surface is covered with a second carboxylic acid and a first amine is a second amine which is a primary amine having 4 to 22 carbon atoms and having a linear or branched structure different from the first amine. A third step of obtaining metal fine particles mixed with an amine to obtain metal fine particles whose surfaces are covered with the second carboxylic acid and the second amine.
前記第2のカルボン酸が、ネオペンタン酸、ネオヘキサン酸、ネオへプタン酸、ネオオクタン酸、ネオノナン酸、ネオデカン酸、ネオトリデカン酸、ネオドデカン酸から選択された少なくとも1つであることを特徴とする請求項1記載の金属微粒子の製造方法。   The second carboxylic acid is at least one selected from neopentanoic acid, neohexanoic acid, neoheptanoic acid, neooctanoic acid, neononanoic acid, neodecanoic acid, neotridecanoic acid, and neododecanoic acid. The method for producing metal fine particles according to 1. 前記第1のカルボン酸が、ヘキサン酸、2メチルヘプタン酸、オクタン酸、2エチルへキサン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、ミリスチン酸、パルミチン酸、2へキシルデカン酸、ステアリン酸、オレイン酸、イソステアリン酸から選択された少なくとも1つであることを特徴とする請求項1または2記載の金属微粒子の製造方法。   The first carboxylic acid is hexanoic acid, 2-methylheptanoic acid, octanoic acid, 2-ethylhexanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, myristic acid, palmitic acid, 2-hexyldecanoic acid, stearic acid The method for producing fine metal particles according to claim 1, wherein the metal fine particles are at least one selected from the group consisting of oleic acid and isostearic acid. 前記第1のアミンが、へキシルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、テトラデシルアミン及びオレイルアミンから選択された少なくとも1つであることを特徴とする請求項1〜3のいずれか1項記載の金属微粒子の製造方法。   4. The method according to claim 1, wherein the first amine is at least one selected from hexylamine, octylamine, nonylamine, decylamine, dodecylamine, tetradecylamine and oleylamine. A method for producing metal fine particles. 前記第2のアミンが、へキシルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、テトラデシルアミン及びオレイルアミンから選択された少なくとも1つであることを特徴とする請求項1〜4のいずれか1項記載の金属微粒子の製造方法。   The second amine is at least one selected from hexylamine, octylamine, nonylamine, decylamine, dodecylamine, tetradecylamine, and oleylamine, according to any one of claims 1 to 4. A method for producing metal fine particles. 前記金属が、Ag、Au、Ni、Pd、Rh、Ru、In、Sn、Cu及びPtから選択された少なくとも1種の金属又はこれらの金属の少なくとも2種からなる合金であることを特徴とする請求項1〜5のいずれか1項記載の金属微粒子の製造方法。   The metal is at least one metal selected from Ag, Au, Ni, Pd, Rh, Ru, In, Sn, Cu, and Pt, or an alloy composed of at least two of these metals. The manufacturing method of the metal microparticle of any one of Claims 1-5.
JP2012075680A 2012-03-29 2012-03-29 Method for producing metal fine particles Active JP5875437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012075680A JP5875437B2 (en) 2012-03-29 2012-03-29 Method for producing metal fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012075680A JP5875437B2 (en) 2012-03-29 2012-03-29 Method for producing metal fine particles

Publications (2)

Publication Number Publication Date
JP2013204106A JP2013204106A (en) 2013-10-07
JP5875437B2 true JP5875437B2 (en) 2016-03-02

Family

ID=49523531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012075680A Active JP5875437B2 (en) 2012-03-29 2012-03-29 Method for producing metal fine particles

Country Status (1)

Country Link
JP (1) JP5875437B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4196350B2 (en) * 2004-09-21 2008-12-17 昭栄化学工業株式会社 Method for producing flaky silver powder
JP4399799B2 (en) * 2004-10-13 2010-01-20 昭栄化学工業株式会社 Method for producing highly crystalline flaky silver powder
JP2007095526A (en) * 2005-09-29 2007-04-12 Tokai Rubber Ind Ltd Conductive paste
KR100818195B1 (en) * 2006-12-14 2008-03-31 삼성전기주식회사 Method for producing metal nanoparticles and metal nanoparticles produced thereby
JP2008198595A (en) * 2007-01-16 2008-08-28 Mitsubishi Chemicals Corp Metal particulate ink paste and organic acid treated metal particulate
JP5311147B2 (en) * 2010-08-25 2013-10-09 株式会社豊田中央研究所 Surface-coated metal nanoparticles, production method thereof, and metal nanoparticle paste including the same
JP5736244B2 (en) * 2011-06-16 2015-06-17 株式会社アルバック Method for producing metal fine particles

Also Published As

Publication number Publication date
JP2013204106A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP4805233B2 (en) Method for producing metal nanoparticles
JP5923608B2 (en) Method for producing ink containing silver nanoparticles and ink containing silver nanoparticles
JP5972479B2 (en) Method for producing silver nanoparticle-containing dispersion and silver nanoparticle-containing dispersion
JP6001861B2 (en) Silver nanoparticle production method, silver nanoparticle, and silver coating composition
JP6037494B2 (en) Silver nanoparticle production method, silver nanoparticle, and silver coating composition
JP6241908B2 (en) Coated fine metal particles and production method thereof
JP5986636B2 (en) Method for producing silver nanoparticles, method for producing silver coating composition, and method for producing silver conductive material
JP2005081501A (en) Metallic nano particle and its manufacturing method, metallic nano particle dispersion fluid and its manufacturing method, and metallic thin line, metallic membrane and their manufacturing method
JP6664373B2 (en) Silver particle paint composition
JP2006169613A (en) Method for depositing metallic thin film, and metallic thin film
JP2006104576A (en) Stabilized silver nanoparticles and their use
KR20120038878A (en) Metal nanoparticles dispersion
JP2015531022A (en) Method for producing silver nanoparticles and silver nanoparticles
Wu et al. Preparation of triethylamine stabilized silver nanoparticles for low-temperature sintering
JP2012144796A (en) Method of manufacturing silver nanoparticle, silver nanoparticle and silver ink
JP2013161593A (en) Method of making a film including metal fine particle into conductor
JP5736244B2 (en) Method for producing metal fine particles
JP5957187B2 (en) Method for producing metal fine particles
JP2016167471A (en) Semiconductor device using silver nanoparticles and method of manufacturing the same
JP5875437B2 (en) Method for producing metal fine particles
JP5778494B2 (en) Metal fine particle dispersion and method for producing the same
JP6378880B2 (en) Method for producing silver nanoparticles and silver nanoparticles
JP2012144795A (en) Silver nanoparticle, method of manufacturing the same and silver ink
JP5314451B2 (en) Metallic nickel particle powder and dispersion thereof, and method for producing metallic nickel particle powder
JP2016157708A (en) Light-emitting device arranged by use of silver nanoparticles, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160119

R150 Certificate of patent or registration of utility model

Ref document number: 5875437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250