JP2016190201A - 分離膜構造体とその製造方法 - Google Patents

分離膜構造体とその製造方法 Download PDF

Info

Publication number
JP2016190201A
JP2016190201A JP2015071570A JP2015071570A JP2016190201A JP 2016190201 A JP2016190201 A JP 2016190201A JP 2015071570 A JP2015071570 A JP 2015071570A JP 2015071570 A JP2015071570 A JP 2015071570A JP 2016190201 A JP2016190201 A JP 2016190201A
Authority
JP
Japan
Prior art keywords
separation membrane
hole
holes
central axis
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015071570A
Other languages
English (en)
Other versions
JP6479534B2 (ja
Inventor
啓 田中
Hiroshi Tanaka
啓 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2015071570A priority Critical patent/JP6479534B2/ja
Publication of JP2016190201A publication Critical patent/JP2016190201A/ja
Application granted granted Critical
Publication of JP6479534B2 publication Critical patent/JP6479534B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

【課題】分離膜のクラックを抑制可能な分離膜構造体及びその製造方法を提供する。【解決手段】分離膜構造体100は、複数の貫通孔11を有する多孔質支持体10と、複数の貫通孔11の内表面に形成される複数の分離膜20とを備える。複数の貫通孔11は、多孔質支持体10の中心軸AX1から所定距離L内に位置する第1貫通孔11Aと所定距離L外に位置する第2貫通孔11Bとを含む。複数の分離膜20は、第1貫通孔11Aの内表面に形成される第1分離膜20Aと、第2貫通孔11Aの内表面に形成される第2分離膜20Aとを含む。第1分離膜20Aの平均厚みT1に対する第2分離膜20Bの平均厚みT2の厚み比(T2/T1)は37.5以下である。【選択図】図2

Description

本発明は、分離膜構造体とその製造方法に関する。
従来、複数の貫通孔を有する多孔質支持体と、各貫通孔の内表面に形成された炭素膜とを備える分離膜構造体が知られている(例えば、特許文献1参照)。炭素膜の形成工程は、ポリアミド酸溶液を各貫通孔の内表面に付着させる工程と、各貫通孔に通風して乾燥させることによってポリアミド酸をポリイミド膜にイミド化させる工程と、不活性雰囲気での熱分解によってポリイミド膜を炭化させる工程とを含む。
特開2010−110704号公報
しかしながら、各貫通孔に通風する工程では、中心軸から離れた貫通孔における風速は、多孔質支持体の中心軸に近い貫通孔に比べて遅いため、中心軸から離れた貫通孔ではポリアミド酸の付着厚みが厚くなりやすい。その結果、中心軸から離れた貫通孔に形成される炭素膜が厚くなってクラックや剥離が生じてしまうという問題がある。このような問題は、ポリアミド酸溶液の粘度が高い場合に顕著となる。
上述の問題は、炭素膜を形成するためのポリアミド酸溶液を用いる場合に限らず、MF膜やUF膜を形成するためのセラミックゾル液、ゼオライト膜を形成するための種付け用スラリー、或いはシリカ膜を形成するためのシリカゾル液などの分離膜形成用溶液を用いる場合にも同様に生じる。
本発明は、上述の状況に鑑みてなされたものであり、分離膜のクラックを抑制可能な分離膜構造体及びその製造方法を提供することを目的とする。
本発明に係る分離膜構造体は、多孔質支持体と複数の分離膜とを備える。多孔質支持体は、第1端面と第2端面にそれぞれ連なる複数の貫通孔を有する。複数の分離膜は、複数の貫通孔の内表面に形成される。複数の貫通孔は、多孔質支持体の中心軸から所定距離内に位置する第1貫通孔と、中心軸から所定距離外に位置する第2貫通孔とを含む。複数の分離膜は、第1貫通孔の内表面に形成される第1分離膜と、第2貫通孔の内表面に形成される第2分離膜とを含む。第1分離膜の平均厚みに対する第2分離膜の平均厚みの厚み比は37.5以下である。
本発明によれば、分離膜のクラックを抑制可能な分離膜構造体及びその製造方法を提供することができる。
分離膜構造体の斜視図 図1のA−A断面図 図1のB−B断面図 分離膜形成用溶液の乾燥工程を説明するための図
次に、図面を参照しながら、本発明の実施形態について説明する。以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率等は現実のものとは異なっている場合がある。従って、具体的な寸法等は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
(分離膜構造体100の構成)
図1は、分離膜構造体100の斜視図である。図2は、図1のA−A断面図である。
分離膜構造体100は、多孔質支持体10と複数の分離膜20と第1シール30と第2シール40とを備える。分離膜構造体100は、いわゆるモノリス型の構造体である。モノリスとは、長手方向に形成された複数の孔を有する形状を意味し、ハニカム形状を含む概念である。
多孔質支持体10は、中心軸AX1を中心として長手方向に延びる棒状部材である。本実施形態において多孔質支持体10は円柱状であるが、多角柱状や楕円柱状などであってもよい。長手方向における多孔質支持体10の長さは150〜2000mmとすることができ、短手方向における多孔質支持体10の直径は30〜220mmとすることができる。
多孔質支持体10は、多孔質材料によって構成される。多孔質材料としては、セラミックス材料、金属材料及び樹脂材料などを用いることができる。セラミックス材料としては、アルミナ(Al)、チタニア(TiO)、ムライト(Al・SiO)、セルベン及びコージェライト(MgAlSi18)などを用いることができる。
多孔質支持体10は、無機結合材を含んでいてもよい。無機結合材としては、チタニア、ムライト、易焼結性アルミナ、シリカ、ガラスフリット、粘土鉱物、易焼結性コージェライトのうち少なくとも一つを用いることができる。
多孔質支持体10の気孔率は、例えば25%〜50%とすることができる。多孔質支持体10の平均細孔径は、例えば5μm〜25μmとすることができる。多孔質支持体10の気孔率及び平均細孔径は、水銀ポロシメータによって測定することができる。多孔質支持体10の平均粒径は、10μm〜100μmとすることができる。多孔質支持体10の平均粒径は、SEM(Scanning Electron Microscope)を用いた断面微構造観察によって測定される30個の測定対象粒子の最大直径の算術平均値である。
多孔質支持体10は、第1端面S1と第2端面S2と側面S3と複数の貫通孔11とを有する。第1端面S1は、第2端面S2の反対に設けられる。側面S3は、第1端面S1の外縁と第2端面S2の外縁に連なる。本実施形態において第1端面S1と第2端面S2は円形であるが、多角形や楕円形などであってもよい。
複数の貫通孔11は、第1端面S1から第2端面S2まで連なる。複数の貫通孔11は、多孔質支持体10を貫通する。本実施形態において各貫通孔11の断面形状は円形であるが、多角形や楕円形などであってもよい。各貫通孔11の内径は1〜5mmとすることができる。貫通孔11の本数は適宜設定可能である。
ここで、複数の貫通孔11は、図2に示すように、多孔質支持体10の中心軸AX1を中心とする径方向において中心軸AX1から所定距離Lの範囲内にその中心が位置する複数の第1貫通孔11Aと、中心軸AX1から所定距離Lの範囲外にその中心が位置する複数の第2貫通孔11Bとを含む。第1貫通孔11Aの一部は中心軸AX1から所定距離Lの範囲外に位置していてもよいが、第1貫通孔11Aの全体が中心軸AX1から所定距離Lの範囲内に位置していることが好ましい。第2貫通孔11Bの一部は中心軸AX1から所定距離Lの範囲内に位置していてもよいが、第2貫通孔11Bの全体が中心軸AX1から所定距離Lの範囲外に位置していることが好ましい。
所定距離Lは、後述するように、分離膜形成用溶液の乾燥工程で用いるマスクのサイズに応じて設定することができる。本実施形態において、第1貫通孔11Aと第2貫通孔11Bは同じ構成である。
複数の分離膜20は、複数の貫通孔11の内表面上に形成される。各分離膜20は、筒状に形成されている。分離膜20の内側の空間は、混合流体を流通させるためのセルCである。セルCの内径は、例えば0.5mm〜5mmとすることができる。
分離膜20としては、公知のMF膜、UF膜、ガス分離膜、浸透気化膜、或いは蒸気透過膜などを用いることができる。分離膜20は、分離膜形成用溶液を用いて形成される膜であればよい。具体的に、分離膜20としては、セラミック膜(例えば、特開平3−267129号公報、特開2008−246304号公報参照)、一酸化炭素分離膜(例えば、特許第4006107号公報参照)、ヘリウム分離膜(例えば、特許第3953833号公報参照)、水素分離膜(例えば、特許第3933907号公報参照)、炭素膜(例えば、特開2003−286018号公報参照)、ゼオライト膜(例えば、特開2004−66188号公報参照)、シリカ膜(例えば、国際公開第2008/050812号パンフレット参照)、有機無機ハイブリッドシリカ膜(特開2013−203618号公報)、p−トリル基含有シリカ膜(特開2013−226541号公報)などが挙げられる。
ここで、複数の分離膜20は、径方向において中心軸AX1から所定距離Lの範囲内に位置する複数の第1分離膜20Aと、中心軸AX1から所定距離Lの範囲外に位置する複数の第2分離膜20Bとを含む。第1分離膜20Aは、第1貫通孔11A内に配置される。第2分離膜20Bは、第2貫通孔11B内に配置される。
第1分離膜20Aの平均膜厚T1は、0.5μm以上50μmとすることができる。第2分離膜20Bの平均膜厚T2は、1μm以上10μmとすることができる。第1分離膜20Aの平均厚みT1に対する第2分離膜20Bの平均厚みT2の厚み比(T2/T1)は、37.5以下である。厚み比(T2/T1)は、0.30以上3.31以下であることがより好ましい。このように、厚み比(T2/T1)を小さくすることによって、第2分離膜20Bに剥離やクラックが生じることを抑制できる。
本実施形態において「分離膜20の平均厚み」とは、貫通孔11の中心軸に垂直な断面において、中心軸周りに90度ずつ離れた4箇所における測定値を算術平均した値である。「分離膜20の厚み」を測定する長手方向の位置は特に制限されないが、第1シール30に近接する位置であることが好ましい。
第1シール30は、多孔質支持体10の第1端面S1を覆う。ただし、第1シール30は、後述するセルCの開口を塞がないように形成されている。第1シール30は、セルCに流入する混合流体が第1端面S1に浸潤することを抑制する。本実施形態において第1シール30は側面S3の一端部を覆っているが、側面S3を覆っていなくてもよい。第1シール30は、ガラス材料や樹脂材料などによって構成される。
第2シール40は、多孔質支持体10の第2端面S2を覆う。ただし、第2シール40は、セルCの開口を塞がないように形成されている。第2シール40は、混合流体が第2端面S2に浸潤することを抑制する。本実施形態において第2シール40は側面S3の一端部を覆っているが、側面S3を覆っていなくてもよい。第2シール40は、ガラス材料や樹脂材料などによって構成される。
(第1及び第2シール30,40の構成)
第1及び第2シール30,40の構成について説明する。第1シール30と第2シール40は同じ構成であるため、以下においては第1シール30の構成について説明する。また、第1貫通孔11A周辺と第2貫通孔11B周辺における第1シール30の構成は同じであるため、以下においては第2貫通孔11B周辺における第1シール30の構成について説明する。
図3は、図1のB−B断面図である。第1シール30は、本体部31と延在部32とを有する。
本体部31は、多孔質支持体10の第1端面S1上に配置されており、第1端面S1を覆っている。本体部31は、第1端面S1の平面視において第2貫通孔11Bの外側に位置する。
延在部32は、本体部31と一体形成される。延在部32は、円環状に形成される。延在部32は、第1端面S1の平面視において第2貫通孔11Bの内側に位置する。延在部32は、第1端面S1上に配置されておらず、第1端面S1を覆っていない。
第2貫通孔11Bの中心軸AX2を中心とする径方向における延在部32の厚みW1は30μmより小さいことが好ましく、20μmより小さいことがより好ましい。このように、延在部32の厚みW1を小さくすることによって通風乾燥がより効率的に行なわれ厚膜化が抑制されるため、第2分離膜20Bに剥離やクラックが生じにくくなる。
第2貫通孔11Bの中心軸AX2に平行な長手方向における延在部32の深さW2は1000μmより大きいことが好ましく、1500μmより大きいことがより好ましい。このように、延在部32の厚みW2を大きくすることによって通風乾燥がより効率的に行なわれ特に第1シール30と膜界面の厚膜化が抑制されるため、第2分離膜20Bに剥離やクラックが生じにくくなる。
(分離膜構造体100の製造方法)
次に、分離膜構造体100の製造方法について説明する。図4は、分離膜構造体100の製造方法を説明するための模式図である。
まず、多孔質材料を含む坏土を用いて、複数の貫通孔11を有する多孔質支持体10の成形体を形成する。多孔質支持体10の成形体を作製する方法としては、真空押出成形機を用いた押出成形法のほかプレス成型法や鋳込み成型法を用いることができる。
次に、多孔質支持体10の成形体を焼成(例えば、900℃〜1450℃、1時間〜100時間)して多孔質支持体10を形成する。
次に、ガラスフリットに水と有機バインダを混合してシール用スラリーを調製する。
次に、多孔質支持体10の第1端面S1と第2端面S2にシール用スラリーを塗布して第1シール30と第2シール40の成形体を形成する。この際、シール用スラリーの粘性を下げることによって延在部32の厚みW1を小さくすることができ、スプレー用スラリーへの支持体のディップ深さを大きくすることによって延在部32の深さW2を大きくすることができる。
次に、第1シール30と第2シール40の成形体を焼成(800〜1000℃、1時間〜100時間)して第1シール30と第2シール40を形成する。
次に、多孔質支持体10の各貫通孔11の内表面に分離膜20を形成する。以下、分離膜20としてチタニア膜(UF膜の一例)を形成する場合について説明する。
まず、UF膜を形成するためのコーティング液(セラミックゾル液)20aを用意する。コーティング液20aは、ゾル原液をイソプロピルアルコールまたはその水溶液で希釈して得ることができる。ゾル原液は金属アルコキシド(例えばチタンテトライソプロポキシド)と硝酸、または塩酸の混合液を2℃〜10℃に保持しながら水と混合し、さらに保持温度を10℃〜40℃にし、予め硝酸と混合しておいたイソプロピルアルコールと混合して得られる。コーティング液20aの粘度は4.0×10−4Pa・s以上とすることができる。
次に、コーティング液20aを各貫通孔11に流し入れる。コーティング液20aは自重で流下しながら各貫通孔11の内表面に付着する。余分なコーティング液20aは各貫通孔11から流れ出る。
次に、各貫通孔11に通風してコーティング液20aを乾燥させる。この乾燥工程は、第1貫通孔11Aよりも第2貫通孔11Bにおける風速を速くする第1乾燥工程と、第1貫通孔11Aにおける風速を第1乾燥工程より速くする第2乾燥工程とを含む。
第1乾燥工程では、図4に示すように、複数の第1貫通孔11Aの開口(入り口)をマスク50で覆って通風する。これによって、第2貫通孔11Bにおける風速が第1貫通孔11Aにおける風速より速くなり、第2貫通孔11Bの内表面に付着した余分なコーティング液20aが効率的に排出される。
第1乾燥工程における供給風速は、2m/秒より速く30m/秒より遅いことが好ましい。風速を2m/秒より速くすることによって、膜が緻密化されるため細孔径が大きくなりすぎることを抑制できる。風速を30m/秒より遅くすることによって、膜表面にクラックが発生することを抑制できる。風の温度は、10℃〜60℃程度であることが好ましい。風の温度を10℃以上とすることによって、膜が緻密化されるため細孔径が大きくなるすぎることを抑制できる。風の温度を60℃以下とすることによって、膜表面にクラックが発生することを抑制できる。通風時間は、0.5時間〜15時間程度とすることができる。通風向きは、コーティング液20aを流した向きと同じであってもよいし、コーティング液20aを流した向きと逆であってもよい
マスク50は第1シール30に密着していてもよいし、第1シール30から微小に離れていてもよい。マスク50による被覆率は、複数の貫通孔11の全開口面積の50%以上が好ましく、70%以上がさらに好ましい。また、マスク50による被覆率は、全開口面積の90%以下が好ましい。マスク50による被覆率は、多孔質支持体10の第1端面S1又は第2端面S2を平面視した場合に、全開口のうちマスク50と重なっている開口の面積を全開口面積で割った値である。本実施形態では、37本の貫通孔11のうち19本の第1貫通孔11Aが塞がれているため、マスク50による被覆率は51%である。
マスク50の材質は、風の抵抗となり、風温で変形及び変質しないものであれば制限されないが、耐酸性や耐アルカリ性を有することが好ましい。マスク50としては、例えば、テフロン(登録商標)シート、ステンレス板、ステンレス板にシリコンやバイトンゴムを貼り付けた複合体などが好適である。
マスク50の形態は、風を完全にブロックできる緻密質状に限られず、多孔質状やメッシュ状などのように風の一部を遮るものであってもよい。多孔質状やメッシュ状のマスク50を用いる場合には、第1及び第2貫通孔11A,11Bそれぞれにおける風速を独立して調整することができる。
第2乾燥工程では、マスク50を取り外して通風する。これによって、第1乾燥工程に比べて第1貫通孔11Aにおける風速は速くなり、第1貫通孔11Aの内表面に付着したコーティング液20aは効率的に乾燥する。この際、第1乾燥工程に比べて第2貫通孔11Bにおける風速は遅くなるがゾル20aを乾燥させるには十分な風速が維持される。
次に、100℃/hrで350℃〜950℃まで昇温して1時間保持した後、100℃/hrで降温する。多孔質支持体10のサイズが大きい場合には、昇温速度及び降温速度は小さくしてもよい。
以上のコーティング液20aの流し込み、乾燥、昇温及び降温の操作を1回〜5回繰り返すことによってチタニア膜が形成される。
(その他の実施形態)
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
上記実施形態では、マスク50は、多孔質支持体10の中心軸AX1から所定距離Lの範囲内にある全ての貫通孔を塞ぎ、かつ、所定距離Lの範囲外にある全ての貫通孔を塞がないこととしたが、これに限られるものではない。
マスク50は、複数の貫通孔11のうち少なくとも1つの貫通孔11を塞ぎ、かつ、塞がれた貫通孔11よりも中心軸AX1から離れた位置に位置する貫通孔11を塞いでいなければよい。この場合、マスク50によって塞がれた貫通孔11は、中心軸AX1から所定距離内の第1貫通孔11Aに該当し、マスク50によって塞がれていない貫通孔11は、中心軸AX1から所定距離外の第2貫通孔11Bに該当する。この場合であっても、第1乾燥工程において第1貫通孔11Aよりも第2貫通孔11Bの風速を速くすることができる。
従って、マスク50には切り欠きや穴が形成されていてもよいし、マスク50は真円状以外の形状であってもよい。例えば、第1及び第2端面S1,S2が非真円形である場合には、マスク50を第1及び第2端面S1,S2の相似形にしてもよい。
上記実施形態では、第1乾燥工程において、第2貫通孔11Bの入り口の開口をマスク50で塞ぐこととしたが、出口の開口をマスク50で塞いでもよい。この場合であっても第2貫通孔11Bにおける風速を遅くすることができる。
上記実施形態では、分離膜形成用溶液として、チタニア膜を形成するためのコーティング液を例に挙げて説明したが、これに限られるものではない。分離膜形成用溶液としては、ゼオライト膜の形成に用いられる種付け用スラリー(種結晶を含有する懸濁液)、シリカ膜の形成に用いられるシリカゾル液(コーティング液)、炭素膜の形成に用いられるポリアミド酸溶液、有機無機ハイブリッドシリカを形成するためのゾル液、p−トリル基含有シリカ膜の形成に用いられるゾル液などが挙げられる。
上記実施形態では、チタニア膜を形成するためのコーティング液を流下法で付着させることとしたがディップ法などを用いてもよい。
上記実施形態では特に触れていないが、分離膜構造体100は、多孔質支持体10と分離膜20の間に中間層を有していてもよい。中間層については、国際公開第2013/059146号に詳細が記載されている。なお、分離膜構造体100が中間層を有する場合には中間層の内側が貫通孔11となる。
以下において本発明の実施例について説明する。ただし、本発明は以下に説明する実施例に限定されるものではない。
(サンプルNo.1,2の作製)
以下のようにして、サンプルNo.1,2に係る分離膜構造体を作製した。
まず、55本の貫通孔が形成された多孔質の支持体(直径30mm×長さ160mm、平均細孔径0.10μm)を準備した。
次に、ガラスフリットに水と有機バインダを混合してシール用スラリーを調製した。
次に、支持体の両端面にシール用スラリーを付着させた後に乾燥(30℃、12時間)して一対のシールの成形体を形成した。
次に、一対のシールの成形体を950℃で焼成して一対のシールを形成した。
次に、チタンテトライソプロポキシドと硝酸を5℃に保持しながら水と混合し、さらに保持温度を20℃にした状態で、予め硝酸と混合しておいたイソプロピルアルコール(IPA)と混合することによって、チタニアを含むゾル原液を調製した。
次に、ゾル原液をIPAで希釈することによって、IPA濃度が99wt%のコーティング液を得た。コーティング液の粘度は1.5×10−4Pa・sであった。
次に、縦置きした支持体の上方に配置した広口ロートにコーティング液を注いで、各貫通孔にコーティング液を流し込んだ。
次に、25℃の空気を風速10m/秒で30分間通風した(第1乾燥工程)。サンプルNo.1では全ての貫通孔の開口を開放させた状態で通風し、サンプルNo.2では被覆面積率が50%となるように中央付近をマスクで塞いで通風した。
次に、25℃の空気を風速10m/秒で30分間通風した(第2乾燥工程)。サンプルNo.1では被覆面積率が50%となるように中央付近をマスクで塞いで通風し、サンプルNo.2では全ての貫通孔の開口を開放させた状態で通風した。
次に、80℃で静置乾燥した後に500℃で焼成することによって、分離膜としてのチタニア膜を形成した。
(サンプルNo.3〜21の作製)
まず、サンプルNo.1,2と同じ支持体を準備した。
次に、ガラスフリットに水と有機バインダを混合してシール用スラリーを調製した。
次に、支持体の両端面にシール用スラリーを付着させた後に乾燥(30℃、12時間)して一対のシールの成形体を形成した。この際、サンプルNo.15,16では、シール用スラリーの粘性を大きくすることによって延在部32の厚みW1を他のサンプルより大きくした。サンプルNo.17,18では、シール用スラリーへの支持体のディップ深さを小さくすることによって延在部32の深さW2を他のサンプルより小さくした。
次に、一対のシールの成形体を950℃で焼成することによって、一対のシールを形成した。
次に、チタニウムイソプロポキシドをイオン交換水に添加して約85℃の温度で0.5時間加水分解した。
次に、加水分解した溶液に硝酸を添加してチタニアをコロイド粒子とするゾル液とした。
次に、ゾル液を加熱してイソプロピルアルコールを飛散させるとともに、これを希釈してゾル液に調整した。
次に、ゾル液を原液として、水分、原料粒子、有機バインダであるポリビニルアルコール、消泡剤であるn−オクチルアルコールのコーティング液を調整した。コーティング液の粘度は4.0×10−4Pa・sであった。
次に、縦置きした支持体の上方に配置した広口ロートにコーティング液を注いで、各貫通孔にコーティング液を流し込んだ。
次に、25℃の空気を表1に示す風速で30分間通風した(第1乾燥工程)。サンプルNo.4,21では全ての貫通孔の開口を開放させた状態で通風し、サンプルNo.3,5〜20では表1に示す被覆面積率となるように中央付近をマスクで塞いで通風した。
次に、25℃の空気を風速10m/秒で30分間通風した(第2乾燥工程)。サンプルNo.4では被覆面積率が70%となるように中央付近をマスクで塞いで通風し、サンプルNo.3,5〜21では全ての貫通孔の開口を開放させた状態で通風した。
次に、100℃/hrで500℃まで昇温して1時間保持した後、100℃/hrで降温した。
そして、以上のコーティング液の流し込み、乾燥、昇降温の操作を2回繰り返すことによって、分離膜としてのチタニア膜を形成した。
(分離膜の厚み測定)
以下のようにして、サンプルNo.3,4,9〜16,21の分離膜の厚みを測定した。ここでは、厚み差が最も大きくなりやすい最外周に位置する分離膜(以下、「最外周分離膜」という。)と中央に位置する分離膜(以下、「中央分離膜」という。)の厚みを測定して比較した。
まず、分離膜のうちシールの延在部に近接する位置で支持体ごと切断した。
次に、切断面を走査型電子顕微鏡で観察して、最外周に位置する1つの分離膜(以下、「最外周分離膜」という。)において、貫通孔の中心軸周りに90度ずつ離れた4箇所における測定値の算術平均値を平均厚みとして算出した。
次に、切断面を走査型電子顕微鏡で観察して、中央に位置する1つの分離膜(以下、「中央分離膜」という。)において、貫通孔の中心軸周りに90度ずつ離れた4箇所における測定値の算術平均値を平均厚みとして算出した。
(シールの延在部のサイズ測定)
サンプルNo.1〜21それぞれについて、最外周に位置する1つの貫通孔の中心軸に沿って支持体を切断し、シールの延在部の厚み及び深さ(図3参照)を測定した。
シールの延在部とは、支持体端面の平面視において貫通孔の内側に位置する部分である。
(真空度の測定)
分離膜の欠陥量を調べるために、セルの真空度を測定した。
まず、セルの一端から真空ポンプ(アルバック機工(株)製:直結型油回転真空ポンプ、型番:G−20DA、排気速度24L/min、到達圧力1.3×10-1Pa、2段式)で吸引し、セルの他端に接続した真空計(GE Sensing社製:キャリブレーター、型番:DPI800)でセル内の到達真空度を測定した。
真空度が−25kPaより大きいものを×(不可)と評価し、−25kPa以下−40kPaより大きいものを△(可)と評価し、−40kPa以下−70kPaより大きいものを○(良)と評価し、−70kPa以下のものを◎(優)と評価した。
Figure 2016190201
表1に示すように、サンプルNo.1,2では、コーティング液の粘度が1.5×10−4Pa・sと低かったため、マスクの有無に関わらず良好な結果が得られた。
最外周分離膜の平均厚みに対する中央分離膜の平均厚みの厚み比が40以上であるサンプルNo.4,21では、最外周分離膜に欠陥があったため真空度が低かった。これは、膜形成用溶液の粘度が4.0×10−4Pa・sと高いにも関わらず第1乾燥工程においてマスクをせずに通風したため、最外周の貫通孔に付着した余分なコーティング液を吹き飛ばすことができなかったからである。
一方、厚み比が37.5以下のサンプルNo.3,9〜16では、最外周分離膜の欠陥が抑えられたため真空度を向上させることができた。これは、第1乾燥工程においてマスクをして通風したため、最外周の貫通孔に付着した余分なコーティング液を吹き飛ばすことができたからである。特に、厚み比を0.30以上3.31以下としたサンプルNo.3,10,15,16では更に真空度を向上させることができた。
また、サンプルNo.3,9〜16の比較から、最外周分離膜の平均厚みは1μm以上10μm以下が好ましいことが分かった。
また、サンプルNo.3,5,6の比較から、第1乾燥工程では全開口面積の50%以上をマスクで塞ぐことが好ましく、70%以上をマスクで塞ぐことがさらに好ましいことが分かった。
また、サンプルNo.3,7,8の比較から、第1乾燥工程において供給される空気の風速は2m/秒より速く30m/秒より遅いことが好ましいことが分かった。
また、サンプルNo.3,17,18の比較から、シールの延在部の厚みは30μmより小さいことが好ましく、20μmより小さいことがさらに好ましいことが分かった。
また、サンプルNo.3,19,20の比較から、シールの延在部の深さは1000μmより大きいことが好ましく、1500μmより大きいことがさらに好ましいことが分かった。
100 分離膜構造体
10 多孔質支持体
11 貫通孔
11A 第1貫通孔
11B 第2貫通孔
20 分離膜
20A 第1分離膜
20B 第2分離膜
30 第1シール
31 本体部
32 延在部
40 第2シール

Claims (11)

  1. 第1端面と第2端面にそれぞれ連なる複数の貫通孔を有する多孔質支持体と、
    前記複数の貫通孔の内表面に形成される複数の分離膜と、
    を備え、
    前記複数の貫通孔は、前記多孔質支持体の中心軸から所定距離内に位置する第1貫通孔と、前記中心軸から前記所定距離外に位置する第2貫通孔とを含み、
    前記複数の分離膜は、前記第1貫通孔の内表面に形成される第1分離膜と、前記第2貫通孔の内表面に形成される第2分離膜とを含み、
    前記第1分離膜の平均厚みに対する前記第2分離膜の平均厚みの厚み比は37.5以下である、
    分離膜構造体。
  2. 前記厚み比は、0.30以上3.31以下である、
    請求項1に記載の分離膜構造体。
  3. 前記第2分離膜の平均厚みは、1μm以上10μm以下である、
    請求項1又は2に記載の分離膜構造体。
  4. 前記第1端面を覆う本体部と、前記第1端面の平面視において前記第2貫通孔の内側に位置する延在部とを有するシールを備え、
    前記第2貫通孔の中心軸を中心とする径方向における前記延在部の平均厚みは、30μmより小さい、
    請求項1乃至3のいずれかに記載の分離膜構造体。
  5. 前記第1端面を覆う本体部と、前記第1端面の平面視において前記第2貫通孔の内側に位置する延在部とを有するシールを備え、
    前記第2貫通孔の中心軸に平行な軸方向における前記延在部の平均深さは、1000μmより大きい、
    請求項1乃至3のいずれかに記載の分離膜構造体。
  6. 第1端面と第2端面にそれぞれ連なる複数の貫通孔を有する多孔質支持体を形成する支持体形成工程と、
    前記複数の貫通孔それぞれの内表面に粘度4.0×10-4Pa・s以上の分離膜形成用溶液を付着させる付着工程と、
    前記複数の貫通孔に通風して前記分離膜形成用溶液を乾燥させる乾燥工程と、
    を備え、
    前記乾燥工程は、
    前記複数の貫通孔のうち前記多孔質支持体の中心軸から所定距離内に位置する第1貫通孔に比べて、前記中心軸から前記所定距離外に位置する第2貫通孔における風速を速くする第1乾燥工程と、
    前記第1乾燥工程に比べて前記第1貫通孔における風速を速くする第2乾燥工程と、
    を含む、
    分離膜構造体の製造方法。
  7. 前記第1乾燥工程において、供給する風速を2m/秒より速く30m/秒より遅くする、
    請求項6に記載の分離膜構造体の製造方法。
  8. 前記第1乾燥工程において、前記複数の貫通孔のうち前記中心軸から前記所定距離内の貫通孔の開口をマスクで覆うことによって、前記複数の貫通孔の全開口面積の50%以上を塞ぐ、
    請求項6又は7に記載の分離膜構造体の製造方法。
  9. 前記第1乾燥工程において、前記複数の貫通孔のうち前記中心軸から前記所定距離内の貫通孔の開口をマスクで覆うことによって、前記複数の貫通孔の全開口面積の70%以上を塞ぐ、
    請求項6又は7に記載の分離膜構造体の製造方法。
  10. 前記支持体形成工程と前記付着工程の間において、前記第1端面を覆う本体部と、前記第1端面の平面視において前記第2貫通孔の内側に位置する延在部とを有するシールを形成するシール形成工程を備え、
    前記シール形成工程において、前記第2貫通孔の中心軸を中心とする径方向における前記延在部の平均厚みを30μmより小さくする、
    請求項6乃至9のいずれかに記載の分離膜構造体の製造方法。
  11. 前記支持体形成工程と前記付着工程の間において、前記第1端面を覆う本体部と、前記第1端面の平面視において前記第2貫通孔の内側に位置する延在部とを有するシールを形成するシール形成工程を備え、
    前記シール形成工程において、前記第2貫通孔の中心軸に平行な軸方向における前記延在部の平均深さを1000μmより大きくする、
    請求項6乃至10のいずれかに記載の分離膜構造体の製造方法。
JP2015071570A 2015-03-31 2015-03-31 分離膜構造体とその製造方法 Active JP6479534B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015071570A JP6479534B2 (ja) 2015-03-31 2015-03-31 分離膜構造体とその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015071570A JP6479534B2 (ja) 2015-03-31 2015-03-31 分離膜構造体とその製造方法

Publications (2)

Publication Number Publication Date
JP2016190201A true JP2016190201A (ja) 2016-11-10
JP6479534B2 JP6479534B2 (ja) 2019-03-06

Family

ID=57246171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015071570A Active JP6479534B2 (ja) 2015-03-31 2015-03-31 分離膜構造体とその製造方法

Country Status (1)

Country Link
JP (1) JP6479534B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110704A (ja) * 2008-11-07 2010-05-20 Ngk Insulators Ltd 分離膜の製造方法
WO2012128217A1 (ja) * 2011-03-22 2012-09-27 日本碍子株式会社 ハニカム形状セラミック製分離膜構造体
WO2014156294A1 (ja) * 2013-03-29 2014-10-02 日本碍子株式会社 構造体
JP2014208334A (ja) * 2013-03-29 2014-11-06 日本碍子株式会社 分離膜の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110704A (ja) * 2008-11-07 2010-05-20 Ngk Insulators Ltd 分離膜の製造方法
WO2012128217A1 (ja) * 2011-03-22 2012-09-27 日本碍子株式会社 ハニカム形状セラミック製分離膜構造体
WO2014156294A1 (ja) * 2013-03-29 2014-10-02 日本碍子株式会社 構造体
JP2014208334A (ja) * 2013-03-29 2014-11-06 日本碍子株式会社 分離膜の製造方法

Also Published As

Publication number Publication date
JP6479534B2 (ja) 2019-03-06

Similar Documents

Publication Publication Date Title
EP2832429B1 (en) Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
JP2010528835A (ja) 特定の気孔形成剤を用いて多孔質支持体に無機多孔質被膜を形成する方法
US10391454B2 (en) Monolithic separation membrane structure and method for producing monolithic separation membrane structure
US11135553B2 (en) Porous support, method for manufacturing porous support, separation membrane structure, and method for manufacturing separation membrane structure
US10183242B2 (en) Porous inorganic membranes and method of manufacture
US8784541B2 (en) Cordierite-based composite membrane coated on cordierite monolith
JP6685998B2 (ja) ゼオライト膜構造体
US10987637B2 (en) DDR-type zeolite seed crystal and method for manufacturing DDR-type zeolite membrane
JP7169401B2 (ja) セラミック膜フィルタの製造方法
JP6767876B2 (ja) 分離膜構造体及びその製造方法
JP6189775B2 (ja) 分離膜の製造方法
JP2016190201A (ja) 分離膜構造体とその製造方法
JP2009241054A (ja) セラミックフィルタの製造方法
WO2017169304A1 (ja) モノリス型分離膜構造体
US10449484B2 (en) Monolithic substrate, monolithic separation membrane structure, and method for producing monolithic substrate
JP5033670B2 (ja) セラミックフィルタの製造方法
JP6421139B2 (ja) モノリス型分離膜構造体
WO2016051910A1 (ja) 分離膜構造体の製造方法
JP6636932B2 (ja) 膜構造体及びその製造方法
JP6577866B2 (ja) モノリス型分離膜構造体及びその製造方法
JP2016055272A (ja) 片端封止型筒状セラミックス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190206

R150 Certificate of patent or registration of utility model

Ref document number: 6479534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150