JP2016189296A - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP2016189296A
JP2016189296A JP2015069578A JP2015069578A JP2016189296A JP 2016189296 A JP2016189296 A JP 2016189296A JP 2015069578 A JP2015069578 A JP 2015069578A JP 2015069578 A JP2015069578 A JP 2015069578A JP 2016189296 A JP2016189296 A JP 2016189296A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
antimony
negative electrode
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015069578A
Other languages
Japanese (ja)
Other versions
JP6519945B2 (en
Inventor
泰如 ▲浜▼野
泰如 ▲浜▼野
Yasuyuki Hamano
郁美 元井
Ikumi Motoi
郁美 元井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2015069578A priority Critical patent/JP6519945B2/en
Publication of JP2016189296A publication Critical patent/JP2016189296A/en
Application granted granted Critical
Publication of JP6519945B2 publication Critical patent/JP6519945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

CONSTITUTION: A lead acid battery includes: a positive electrode plate in which a positive electrode current collector body or positive electrode material contains antimony; a negative electrode plate in which a negative electrode material contains synthetic shrink-proofing agent having sulfonate groups; and an adsorption layer for adsorbing antimony ions. The adsorption layer is provided on the surface of the positive electrode plate or the surface of the negative electrode plate, or between the positive electrode plate and the negative electrode plate.EFFECT: An effect of antimony and an effect of synthetic shrink-proofing agent such as bisphenol or the like can be sufficiently drawn by limiting movement of antimony from a positive electrode plate to a negative electrode plate, thereby preventing reduction of a hydrogen overvoltage.SELECTED DRAWING: Figure 1

Description

この発明は鉛蓄電池に関する。   The present invention relates to a lead storage battery.

特許文献1(JP2012-79431A)は、鉛蓄電池の正極電極材料にアンチモンを含有させると、所定の要件を満たせば正極電極材料の軟化・脱落を抑制できることもある、ことを開示している。このことは、アイドリングストップ車用のように、頻繁に充放電される鉛蓄電池の寿命を向上させる。また特許文献2(JP2014-123525A)は、鉛蓄電池の負極電極材料に、リグニンではなくビスフェノール類のスルホン酸誘導体縮合物を含有させると、負極電極材料の細孔径を小さくできることを開示している。このことは、鉛蓄電池の高率放電性能を向上できることを意味する。   Patent Document 1 (JP2012-79431A) discloses that when antimony is contained in a positive electrode material of a lead storage battery, softening / dropping of the positive electrode material may be suppressed if predetermined requirements are satisfied. This improves the life of lead-acid batteries that are frequently charged and discharged, such as for idling stop vehicles. Patent Document 2 (JP2014-123525A) discloses that the pore diameter of the negative electrode material can be reduced when the negative electrode material of the lead storage battery contains a sulfonic acid derivative condensate of bisphenols instead of lignin. This means that the high rate discharge performance of the lead storage battery can be improved.

ところで、アンチモンには負極板へ移動し、水素過電圧を低下させる問題がある。このことは、減液により結果的にサイクル寿命性能を低下させ、また充電末期に大電流が流れるため、脱落した正極電極材料粒子を介しての短絡の原因となる。   By the way, there is a problem that antimony moves to the negative electrode plate and reduces hydrogen overvoltage. This results in a decrease in cycle life performance due to liquid reduction, and a large current flows at the end of charging, which causes a short circuit through the dropped positive electrode material particles.

JP2012-79431AJP2012-79431A JP2014-123525AJP2014-123525A

発明者はさらに、負極板へ移動したアンチモンが、ビスフェノール類のスルホン酸誘導体縮合物(以下ビスフェノールという)の効果を阻害することを見出した。そこで正極板から負極板へのアンチモンの移動を制限できれば、アンチモンの効果を引き出し、同時に水素過電圧の低下を防止し、さらにビスフェノールの効果も十分に引き出し、鉛蓄電池の寿命性能を向上させることができるはずである。   The inventor further found that antimony moved to the negative electrode plate inhibits the effect of a sulfonic acid derivative condensate of bisphenols (hereinafter referred to as bisphenol). Therefore, if the movement of antimony from the positive electrode plate to the negative electrode plate can be restricted, the effect of antimony can be brought out, and at the same time, the decrease in hydrogen overvoltage can be prevented, and the effect of bisphenol can be taken out sufficiently to improve the life performance of the lead storage battery. It should be.

この発明の課題は、
・ アンチモンにより正極電極材料の軟化・脱落を抑制すること、
・ 正極板から負極板へのアンチモンの移動を制限することにより、合成防縮剤とアンチモンイオンが相互作用することを防止すると共に、水素過電圧の低下を防止することにある。
The subject of this invention is
・ Suppressing softening and dropping of the positive electrode material with antimony,
-By restricting the movement of antimony from the positive electrode plate to the negative electrode plate, the synthetic anti-shrink agent and antimony ions are prevented from interacting with each other and the decrease in hydrogen overvoltage is prevented.

この発明の鉛蓄電池は、正極集電体または正極電極材料がアンチモンを含有する正極板と、負極電極材料が合成防縮剤を含有する負極板と、アンチモンイオンを吸着する吸着層とを備え、吸着層は負極板もしくは正極板の表面あるいは正極板と負極板との間に設けられている。   The lead storage battery according to the present invention includes a positive electrode plate in which the positive electrode current collector or the positive electrode material contains antimony, a negative electrode plate in which the negative electrode material contains a synthetic shrinkage-preventing agent, and an adsorption layer that adsorbs antimony ions. The layer is provided on the surface of the negative electrode plate or the positive electrode plate or between the positive electrode plate and the negative electrode plate.

合成防縮剤は、フェノールあるいはナフタレン等の芳香族環がメチレン基等を介して互いに結合し、かつスルホン酸基、あるいはスルホニル基を多量に含むものが好ましい。なおスルホニル基(-SO2-基)はスルホン酸基と同様に作用する。リグニンスルホン酸等の天然物にスルホン酸基等を導入した化合物では、スルホニル基とスルホン酸基の合計を4000μmol/g以上にすることが難しい。これに対して、モノマーが芳香族環を含む合成高分子にスルホン酸基やスルホニル基を4000μmol/g以上導入することは容易である。合成防縮剤の作用はスルホン酸基やスルホニル基による親水性と帯電とにより定まり、芳香族環はフェノールでもナフタレン等でも良い。なおスルホン酸が塩型か酸型かは重要ではなく、例えば電解液のpH変化により酸型と塩型との間で変化すると考えられる。 The synthetic shrinking agent is preferably one in which aromatic rings such as phenol or naphthalene are bonded to each other via a methylene group or the like and contain a large amount of a sulfonic acid group or a sulfonyl group. The sulfonyl group (—SO 2 — group) acts in the same manner as the sulfonic acid group. In a compound in which a sulfonic acid group or the like is introduced into a natural product such as lignin sulfonic acid, it is difficult to make the total of the sulfonyl group and the sulfonic acid group 4000 μmol / g or more. On the other hand, it is easy to introduce 4000 μmol / g or more of a sulfonic acid group or a sulfonyl group into a synthetic polymer in which the monomer contains an aromatic ring. The action of the synthetic anti-shrinking agent is determined by the hydrophilicity and charging due to the sulfonic acid group or sulfonyl group, and the aromatic ring may be phenol or naphthalene. It is not important whether the sulfonic acid is a salt type or an acid type. For example, it is considered that the sulfonic acid changes between an acid type and a salt type due to a change in pH of the electrolytic solution.

合成防縮剤は、例えばビスフェノール類のホルムアルデヒド等による縮合物で、スルホン酸基やスルホニル基を有し、これら官能基は芳香族環に直接結合していても、メチレン基等を介して結合していても良い。本明細書では、これらの化合物がスルホン酸基を含む場合、ビスフェノール類のスルホン酸誘導体縮合物と呼び、ビスフェノール類のスルホン酸誘導体を縮合したのか、ビスフェノール類の縮合物をスルホン化したのか、等の製法とは関係がない。ビスフェノール類のスルホン酸誘導体を、以下単に「ビスフェノール」という。またβ−ナフタレンスルホン酸のホルムアルデヒド縮合物(例えば花王株式会社の商品名「デモール」)等も用いることができる。   Synthetic shrunk agents are, for example, condensates of bisphenols with formaldehyde, etc., which have a sulfonic acid group or sulfonyl group, and these functional groups are bonded directly to the aromatic ring, but are bonded via a methylene group or the like. May be. In this specification, when these compounds contain a sulfonic acid group, it is called a sulfonic acid derivative condensate of bisphenols, whether a sulfonic acid derivative of bisphenols is condensed, or a bisphenol condensate is sulfonated, etc. It has nothing to do with the manufacturing method. The sulfonic acid derivative of bisphenols is hereinafter simply referred to as “bisphenol”. Also, a formaldehyde condensate of β-naphthalenesulfonic acid (for example, trade name “Demol” from Kao Corporation) can be used.

発明者の知見によれば、防縮剤のコロイド粒子径が負極電極材料の細孔径に反映され、小さなコロイド粒子径は細孔径を小さくすることにより、高率放電性能等を向上させる。そしてコロイド粒子径を小さくするには、防縮剤表面に多数のイオンあるいは極性の強い基が存在することにより、静電反発によりコロイド粒子の会合を防ぐと共に、親水性を高めることが有効である。このためには、防縮剤中のスルホン酸基とスルホニル基の合計量を高め、例えば4000μmol/g以上8000μmol/g以下が好ましく、より好ましくは4300μmol/g以上6000μmol/g以下とし、最も好ましくは4500μmol/g以上6000μmol/g以下とする。なお在来のリグニンでは、スルホン酸基の濃度は600μmol/g程度である。   According to the inventor's knowledge, the colloidal particle diameter of the anti-shrinking agent is reflected in the pore diameter of the negative electrode material, and the small colloidal particle diameter reduces the pore diameter, thereby improving the high rate discharge performance and the like. In order to reduce the diameter of the colloidal particles, it is effective to prevent the colloidal particles from being associated by electrostatic repulsion and to increase the hydrophilicity by the presence of a large number of ions or strongly polar groups on the surface of the anti-shrinking agent. For this purpose, the total amount of sulfonic acid groups and sulfonyl groups in the anti-shrink agent is increased, for example, preferably 4000 μmol / g to 8000 μmol / g, more preferably 4300 μmol / g to 6000 μmol / g, most preferably 4500 μmol. / g to 6000 μmol / g. In conventional lignin, the concentration of sulfonic acid groups is about 600 μmol / g.

合成防縮剤の効果は、正極板から移動したアンチモンにより低下する。これは、合成防縮剤が多量のスルホン酸基等を有するため、3価あるいは5価のアンチモンイオンと結合して会合しやすいためと考えることができる。そして会合によりコロイド粒子径が増し、負極電極材料の平均細孔径が増すため、高率放電性能が低下すると考えられる。これに対して、アンチモンイオンの吸着層を設けると、負極電極材料中の合成防縮剤をアンチモンイオンから保護し、高率放電性能の低下を防止でき、かつ負極板での水素過電圧の低下を制限できる。   The effect of the synthetic anti-shrink agent is reduced by antimony moved from the positive electrode plate. This may be because the synthetic anti-shrinkage agent has a large amount of sulfonic acid groups and the like, so that it easily binds and associates with trivalent or pentavalent antimony ions. Then, the colloidal particle diameter increases due to the association, and the average pore diameter of the negative electrode material increases, so it is considered that the high rate discharge performance is lowered. On the other hand, if an adsorption layer of antimony ions is provided, the synthetic anti-shrink agent in the negative electrode material can be protected from antimony ions, and the high-rate discharge performance can be prevented from being lowered, and the reduction of hydrogen overvoltage at the negative electrode plate is limited. it can.

好ましくは、吸着層は活性炭等の炭素質吸着剤を有効成分とする。活性炭は電解液中の重金属イオンを吸着できるので、アンチモンイオンの捕捉に適し、粒状でも繊維状でも良く、特にシート状の活性炭はそのまま吸着層になる。また粒状の活性炭は、例えば合成高分子等の結着剤により不織布等の基材に担持させシート状の吸着層とするか、負極板の表面、あるいは正極板の表面等に成膜し吸着層とする。活性炭の他に、カーボンブラック等も炭素質から成る吸着剤として使用できる。   Preferably, the adsorption layer contains a carbonaceous adsorbent such as activated carbon as an active ingredient. Since activated carbon can adsorb heavy metal ions in the electrolytic solution, it is suitable for capturing antimony ions, and may be granular or fibrous. In particular, the activated carbon in sheet form becomes an adsorption layer as it is. The granular activated carbon is supported on a base material such as a nonwoven fabric with a binder such as a synthetic polymer to form a sheet-like adsorption layer, or is deposited on the surface of the negative electrode plate or the positive electrode plate. And In addition to activated carbon, carbon black or the like can also be used as an adsorbent made of carbonaceous material.

酸化チタン、酸化スズ、希土類酸化物等の金属酸化物は、表面の水酸基等を介して重金属イオンを吸着する性質があり、アンチモンイオンの吸着剤として使用できる。硫酸酸性の電解液に溶解せず、かつ表面積が大きな金属酸化物が、アンチモンイオンの吸着層に適し、不織布等の基材に支持させてシート状にするか、結着剤等により負極板、正極板等の表面に支持させる。   Metal oxides such as titanium oxide, tin oxide, and rare earth oxides have a property of adsorbing heavy metal ions through hydroxyl groups on the surface and can be used as an adsorbent for antimony ions. A metal oxide that does not dissolve in sulfuric acid electrolyte and has a large surface area is suitable for an adsorption layer of antimony ions, and is supported on a substrate such as a nonwoven fabric to form a sheet, or a negative electrode plate with a binder, It is supported on the surface of a positive electrode plate or the like.

また好ましくは、吸着層は負極板と正極板とを分離するセパレータで構成され、かつセパレータはイオン交換樹脂をアンチモンイオンの吸着剤として含有する。イオン交換樹脂は重金属イオンを吸着でき、陽イオン交換型の樹脂が好ましく、ガラスマット等の繊維セパレータ、あるいはポリエチレン等の合成樹脂セパレータに担持させると、正極板から負極板へ移動するアンチモンイオンを捕捉でき、セパレータをアンチモンイオンの捕捉に利用できる。特に好ましくは、イオン交換樹脂は、合成防縮剤及びリグニンの少なくともいずれかから成る。これらの材料はスルホン酸基等を有してアンチモンイオンを捕捉でき、鉛蓄電池への悪影響が少ない材料である。   Preferably, the adsorption layer is composed of a separator that separates the negative electrode plate and the positive electrode plate, and the separator contains an ion exchange resin as an adsorbent for antimony ions. The ion exchange resin can adsorb heavy metal ions and is preferably a cation exchange type resin. When it is supported on a fiber separator such as glass mat or a synthetic resin separator such as polyethylene, it captures antimony ions moving from the positive electrode to the negative electrode. The separator can be used to capture antimony ions. Particularly preferably, the ion exchange resin comprises at least one of a synthetic anti-shrink agent and lignin. These materials have a sulfonic acid group and the like, can capture antimony ions, and have little adverse effect on lead-acid batteries.

この発明には以下の特徴がある。
1) 正極板のアンチモンにより、正極活物質の軟化・脱落を抑制することにより、高温での軽負荷寿命性能とアイドリングストップ寿命性能とを向上させる。
2) 合成防縮剤中のスルホニル基とスルホン酸基の合計含有量を4000μmol/g以上とすると、負極電極材料の平均細孔径を小さくし、低温高率放電性能を向上させることができる。
3) 正極板から負極板へのアンチモンの移動を、アンチモンイオンの吸着層で制限する。これによって、アンチモンが負極の合成防縮剤と相互作用することを防ぎ、合成防縮剤の効果が失われ、低温高率放電性能が低下することを防止できる。
4) 負極板へのアンチモンの移動を制限することにより、水素過電圧の低下による減液を防止でき、また充電末期の大電流により脱落した正極活物質が浮遊して短絡することも防止できる。
5) これらにより、軽負荷寿命とアイドリングストップ寿命とに優れ、低温ハイレート放電性能を長期間維持できる鉛蓄電池が得られる。
6) カーボンブラック、黒鉛等の炭素質の吸着剤、及び金属酸化物の吸着剤はアンチモンイオンを吸着して捕捉し、効率的にアンチモンイオンの移動を制限できる。
7) 上記の吸着剤は、例えば負極板の表面に膜状に形成すると、製造が簡単で、構造も簡単である。
8) セパレータにイオン交換樹脂を含有させると、イオン交換樹脂によりアンチモンイオンを捕捉でき、また追加の部材が不要なので、鉛蓄電池の構造が簡単である。
9) リグニンあるいは合成防縮剤をイオン交換樹脂とすると、これらは鉛蓄電池で実績のある材料で、予想外の副作用が少ない。
This invention has the following features.
1) Antimony on the positive electrode plate improves the light load life performance and idling stop life performance at high temperature by suppressing the softening and falling off of the positive electrode active material.
2) When the total content of the sulfonyl group and the sulfonic acid group in the synthetic anti-shrinkage agent is 4000 μmol / g or more, the average pore diameter of the negative electrode material can be reduced and the low-temperature high-rate discharge performance can be improved.
3) Restrict the movement of antimony from the positive electrode plate to the negative electrode plate with the adsorption layer of antimony ions. Accordingly, it is possible to prevent the antimony from interacting with the synthetic anti-shrink agent of the negative electrode, to lose the effect of the synthetic anti-shrink agent, and to prevent the low-temperature high-rate discharge performance from being lowered.
4) By restricting the movement of antimony to the negative electrode plate, it is possible to prevent liquid reduction due to a decrease in hydrogen overvoltage, and it is possible to prevent the positive electrode active material that has fallen off due to a large current at the end of charging from floating and short-circuiting.
5) As a result, a lead-acid battery that is excellent in light load life and idling stop life and that can maintain low-temperature high-rate discharge performance for a long time can be obtained.
6) Carbon black, graphite and other carbonaceous adsorbents and metal oxide adsorbents adsorb and capture antimony ions, and can effectively limit the movement of antimony ions.
7) For example, when the adsorbent is formed in the form of a film on the surface of the negative electrode plate, the production is simple and the structure is simple.
8) When an ion exchange resin is included in the separator, antimony ions can be captured by the ion exchange resin, and no additional member is required, so the structure of the lead storage battery is simple.
9) When lignin or synthetic anti-shrink agent is used as an ion exchange resin, these are materials that have been proven in lead-acid batteries and have few unexpected side effects.

実施例の鉛蓄電池の要部平面図Main part top view of the lead acid battery of an Example 75℃でのJIS軽負荷寿命と、SBA-IS寿命とを示す特性図Characteristic diagram showing JIS light load life at 75 ℃ and SBA-IS life JIS軽負荷寿命試験(75℃)における、充電末電流の推移を示す特性図Characteristic chart showing the transition of end-of-charge current in JIS light load life test (75 ℃) 75℃でのJIS軽負荷寿命試験1440サイクルの前後での、低温高率放電性能の変化を示す特性図Characteristic diagram showing changes in low-temperature, high-rate discharge performance before and after 1440 cycles of JIS light load life test at 75 ° C

以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。なお実施例では、負極電極材料を負極活物質と呼び、正極電極材料を正極活物質と呼ぶことがある。また負極板は、負極集電体(負極格子)と負極電極材料(負極活物質)とから成り、正極板は、正極集電体(正極格子)と正極電極材料(正極活物質)とから成り、集電体以外の固形成分は電極材料に属するものとする。   Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art. In Examples, the negative electrode material may be referred to as a negative electrode active material, and the positive electrode material may be referred to as a positive electrode active material. The negative electrode plate comprises a negative electrode current collector (negative electrode lattice) and a negative electrode material (negative electrode active material), and the positive electrode plate comprises a positive electrode current collector (positive electrode lattice) and a positive electrode material (positive electrode active material). The solid components other than the current collector belong to the electrode material.

鉛蓄電池の構造
図1に実施例の鉛蓄電池2を示し、液式でも制御弁式でも良い。4は負極板で、負極格子と負極活物質(負極電極材料)とから成り、その表裏に吸着シート12が結着されている。6は正極板で、正極格子あるいは芯金等の正極集電体と正極活物質(正極電極材料)とから成り、10は微多孔質のポリエチレン等のセパレータで、11はそのリブである。また8は負極板4の耳、9は正極板6の耳で、負極板4〜セパレータ10は電解液中に浸されている。なおセパレータ10は正極板6を包んでも良く、またリブ11は正極板6を向いても、負極板4を向いても良い。
Lead-acid battery structure FIG. 1 shows a lead-acid battery 2 of the embodiment, which may be liquid or control valve type. Reference numeral 4 denotes a negative electrode plate, which is composed of a negative electrode lattice and a negative electrode active material (negative electrode material), and adsorbing sheets 12 are bound to the front and back thereof. Reference numeral 6 denotes a positive electrode plate, which is composed of a positive electrode current collector such as a positive electrode lattice or a cored bar and a positive electrode active material (positive electrode material), 10 is a separator such as microporous polyethylene, and 11 is a rib thereof. Further, 8 is an ear of the negative electrode plate 4, 9 is an ear of the positive electrode plate 6, and the negative electrode plate 4 to the separator 10 are immersed in the electrolytic solution. The separator 10 may wrap the positive electrode plate 6, and the rib 11 may face the positive electrode plate 6 or the negative electrode plate 4.

吸着シート12は、例えば合成繊維の不織布に、活性炭とカーボンブラックとを、スチレンブタジエン共重合体、クロロプレン、テトラフルオロエチレン等の合成高分子結着剤で支持させたもので、カーボンブラックを含まず活性炭のみでも良い。また繊維状の活性炭をシート状にすると、不織布も結着剤も不要である。活性炭は、ミネラル分及び焼成の過程で生じる表面水酸基等のために親水性で、その細孔はアンチモンイオンを吸着する。またポリスチレンあるいはフッ素樹脂にスルホン酸基やリン酸基等の多価の陽イオン交換基を導入したイオン交換樹脂は、ポリスチレン骨格あるいはフッ素樹脂骨格が不織布等に固定される。そして多価の陽イオン交換基がアンチモンイオンを吸着する。   The adsorbing sheet 12 is, for example, a synthetic fiber nonwoven fabric in which activated carbon and carbon black are supported by a synthetic polymer binder such as styrene butadiene copolymer, chloroprene, and tetrafluoroethylene, and does not contain carbon black. Only activated carbon may be used. Further, when fibrous activated carbon is formed into a sheet, neither a nonwoven fabric nor a binder is required. Activated carbon is hydrophilic due to the mineral content and surface hydroxyl groups produced during the firing process, and its pores adsorb antimony ions. In addition, in an ion exchange resin in which polyvalent cation exchange groups such as sulfonic acid groups and phosphoric acid groups are introduced into polystyrene or fluororesin, the polystyrene skeleton or fluororesin skeleton is fixed to a nonwoven fabric or the like. Multivalent cation exchange groups adsorb antimony ions.

活性炭等の炭素質吸着剤に代え、酸化チタン、酸化スズ、希土類酸化物、ゼオライト等の金属酸化物を、アンチモンイオンの吸着剤としても良い。これ以外にポリリン酸化合物、ポリタングステン酸化合物のように、硫酸中で安定で重金属イオンを吸着する化合物も使用できる。吸着シート12は、負極板4と正極板6の間にあれば良く、正極板6の表面に結合しても、例えばセパレータ10と共に電解液中に配置しても良い。吸着シート12は、正極板6から負極板4へのアンチモンイオンの移動を制限できれば良く、位置は任意である。さらに、活性炭吸着剤、金属酸化物吸着剤等を、結着剤により極板4,6の表面に成層し、極板4,6により吸着剤を支持しても良い。   Instead of a carbonaceous adsorbent such as activated carbon, metal oxides such as titanium oxide, tin oxide, rare earth oxide, and zeolite may be used as the adsorbent for antimony ions. In addition, compounds that adsorb heavy metal ions stably in sulfuric acid, such as polyphosphoric acid compounds and polytungstic acid compounds, can also be used. The adsorbing sheet 12 may be provided between the negative electrode plate 4 and the positive electrode plate 6, and may be bonded to the surface of the positive electrode plate 6 or may be disposed in the electrolyte together with the separator 10, for example. The adsorption sheet 12 may be any position as long as it can limit the movement of antimony ions from the positive electrode plate 6 to the negative electrode plate 4. Further, an activated carbon adsorbent, a metal oxide adsorbent or the like may be layered on the surface of the electrode plates 4 and 6 with a binder, and the adsorbent may be supported by the electrode plates 4 and 6.

吸着シート12を設ける代わりに、セパレータ10にイオン交換樹脂を含有させ、アンチモンイオンを吸着させても良い。例えば合成防縮剤、リグニン等をセパレータ10に含浸、乾燥させても、あるいはセパレータ10をポリエチレン等の合成樹脂とイオン交換樹脂との共重合物もしくは混合物としても良い。セパレータ10中のイオン交換樹脂の含有量は、例えば0.05mass%以上5mass%以下が好ましい。なお鉛蓄電池を制御弁式とし、ガラスマットセパレータに合成防縮剤、リグニン等を固定し、アンチモンイオンを吸着させても良い。   Instead of providing the adsorption sheet 12, the separator 10 may contain an ion exchange resin to adsorb antimony ions. For example, the separator 10 may be impregnated with a synthetic anti-shrink agent, lignin or the like and dried, or the separator 10 may be a copolymer or mixture of a synthetic resin such as polyethylene and an ion exchange resin. The content of the ion exchange resin in the separator 10 is preferably, for example, 0.05 mass% or more and 5 mass% or less. In addition, you may make a lead storage battery into a control valve type, fix a synthetic anti-shrink agent, a lignin, etc. to a glass mat separator, and may adsorb | suck an antimony ion.

正極板6中の正極活物質は酸化アンチモン等の形態でアンチモンを含有し、正極活物質中の濃度は、アンチモン金属換算で、例えば0.01mass%以上1mass%以下、好ましくは0.02mass%以上0.5mass%以下、特に好ましくは0.05mass%以上0.5mass%以下である。正極活物質にアンチモンを含有させる代わりに、正極格子にPb-Sb合金の箔を積層する等により、正極板6にアンチモンを導入しても良い。   The positive electrode active material in the positive electrode plate 6 contains antimony in the form of antimony oxide or the like, and the concentration in the positive electrode active material is, for example, 0.01 mass% to 1 mass%, preferably 0.02 mass% to 0.5 mass in terms of antimony metal. % Or less, particularly preferably 0.05 mass% or more and 0.5 mass% or less. Instead of containing antimony in the positive electrode active material, antimony may be introduced into the positive electrode plate 6 by laminating a foil of a Pb—Sb alloy on the positive electrode lattice.

負極板4中の負極活物質は、ビスフェノール類のスルホン酸誘導体縮合物(以下単に「ビスフェノール」という)等の合成防縮剤を含有する。ビスフェノールに代え、ナフタレンスルホン酸の縮合物を用いても良く、スルホン酸基の代わりにスルホニル基を含有しても良い。合成防縮剤は、スルホン酸基とスルホニル基の合計濃度が4000μmol/g以上で6000μmol/g以下のものが好ましい。スルホン酸基とスルホニル基の合計濃度が高い防縮剤を用いることにより、負極活物質の細孔径が小さくなり、高率放電性能等が向上する。そして在来のリグニン防縮剤では、スルホン酸基とスルホニル基の合計濃度を高くすることは難しい。負極活物質での合成防縮剤の濃度は0.01mass%以上1mass%以下が好ましく、0.02mass%以上0.8mass%以下、特に0.02mass%以上0.5mass%以下が好ましい。   The negative electrode active material in the negative electrode plate 4 contains a synthetic shrinking agent such as a sulfonic acid derivative condensate of bisphenols (hereinafter simply referred to as “bisphenol”). Instead of bisphenol, a condensate of naphthalene sulfonic acid may be used, and a sulfonyl group may be contained instead of the sulfonic acid group. The synthetic anti-shrinkage agent preferably has a total concentration of sulfonic acid groups and sulfonyl groups of 4000 μmol / g or more and 6000 μmol / g or less. By using a reducing agent having a high total concentration of sulfonic acid groups and sulfonyl groups, the pore diameter of the negative electrode active material is reduced, and high-rate discharge performance and the like are improved. And with the conventional lignin anti-shrink agent, it is difficult to increase the total concentration of sulfonic acid groups and sulfonyl groups. The concentration of the synthetic shrinking agent in the negative electrode active material is preferably 0.01 mass% to 1 mass%, preferably 0.02 mass% to 0.8 mass%, particularly preferably 0.02 mass% to 0.5 mass%.

鉛蓄電池の製造
ボールミル法による鉛粉と、合成繊維補強材、有機防縮剤、硫酸バリウム、カーボンブラックとを含み、水と硫酸を加えたペーストを、アンチモンフリーの負極格子に充填し、乾燥と熟成とを施した。負極活物質中の濃度は合成繊維補強材が0.1mass%、硫酸バリウムが0.3mass%、カーボンブラックが0.15mass%で、有機防縮剤の濃度と種類は各表に示す。鉛粉の製法は任意で、グラファイト等の公知の添加物をさらに含んでいても良い。
Production of lead-acid batteries Ball-milled lead powder, synthetic fiber reinforcing material, organic anti-shrink agent, barium sulfate, carbon black, paste with water and sulfuric acid added to antimony-free negative electrode grid, dried and aged And gave. Concentrations in the negative electrode active material are 0.1 mass% for the synthetic fiber reinforcing material, 0.3 mass% for barium sulfate, and 0.15 mass% for carbon black. The method for producing the lead powder is arbitrary, and may further include a known additive such as graphite.

ボールミル法による鉛粉と合成繊維補強剤と酸化アンチモン等のアンチモン源を含み、水と硫酸を加えたペーストを、アンチモンフリーの正極格子に充填し、乾燥と熟成とを施した。正極活物質中の濃度は合成繊維補強材が0.1mass%で、アンチモンの濃度を金属換算で各表に示す。鉛粉の製法は任意で、重金属イオンを吸着シート12により捕捉できるので、負極板4に有害な金属も正極板6に含有させることができる。鉛−アンチモンの合金箔(アンチモン濃度5mass%で、好ましい濃度は1mass%以上20mass%以下)を正極格子に積層し、アンチモンを正極格子に含有させたものも製造した。この場合、正極板6中の全アンチモン含有量と正極活物質との質量比を、0.01mass%以上1mass%以下、より狭くは0.02mass%以上0.5mass%以下、特に0.05mass%以上0.5mass%以下とすることが好ましい。   An antimony-free positive electrode grid was filled with paste containing water and sulfuric acid containing lead powder by a ball mill method, synthetic fiber reinforcing agent and antimony source such as antimony oxide, and dried and aged. The concentration in the positive electrode active material is 0.1 mass% for the synthetic fiber reinforcing material, and the concentration of antimony is shown in each table in terms of metal. The method for producing the lead powder is arbitrary, and heavy metal ions can be captured by the adsorption sheet 12, so that a metal harmful to the negative electrode plate 4 can also be contained in the positive electrode plate 6. A lead-antimony alloy foil (antimony concentration 5 mass%, preferable concentration 1 mass% or more and 20 mass% or less) was laminated on the positive electrode lattice, and an antimony contained in the positive electrode lattice was also produced. In this case, the mass ratio between the total antimony content in the positive electrode plate 6 and the positive electrode active material is 0.01 mass% to 1 mass%, more narrowly 0.02 mass% to 0.5 mass%, particularly 0.05 mass% to 0.5 mass%. The following is preferable.

負極板群と正極板群とで極板群を作製し、比重1.280の硫酸を電解液として、電槽化成を施し、44B20型の鉛蓄電池とした。電解液はアルミニウムイオン、リチウムイオン等を含んでいても良い。   A negative electrode plate group and a positive electrode plate group were prepared, and a battery case was formed using sulfuric acid having a specific gravity of 1.280 as an electrolytic solution to obtain a 44B20 type lead acid battery. The electrolytic solution may contain aluminum ions, lithium ions, and the like.

測定法
負極活物質中の有機防縮剤の含有量は以下のようにして測定する。満充電された鉛蓄電池を分解し、負極板を取り出し水洗により硫酸分を除去し、乾燥重量を測定する。負極板から活物質を分離し、例えば、1mol/lのNaOH水溶液に浸漬して有機防縮剤を抽出し、紫外可視吸光度計で得られた吸光度で、予め作成した検量線を用い有機防縮剤の含有量を測定する。
Measurement Method The content of the organic shrinkage agent in the negative electrode active material is measured as follows. The fully charged lead acid battery is disassembled, the negative electrode plate is taken out, the sulfuric acid content is removed by washing with water, and the dry weight is measured. Separate the active material from the negative electrode plate, for example, extract the organic shrunk agent by immersing it in a 1 mol / l NaOH aqueous solution, and use the calibration curve prepared in advance with the absorbance obtained with the UV-visible absorptiometer. Measure the content.

また例えば、有機防縮剤のS元素含有量(以下単に「S元素含有量」)は以下のようにして測定する。活物質から抽出して得られた有機防縮剤のNaOH水溶液を脱塩し、濃縮・乾燥する。酸素燃焼フラスコ法により0.1gの有機防縮剤中のS元素を硫酸に変換し、トリンを指示薬として溶出液を過塩素酸バリウムで滴定することにより、有機防縮剤中のS元素含有量を求める。測定したS元素含有量をスルホニル基及びスルホン酸基の合計含有量とする。   Further, for example, the S element content (hereinafter simply referred to as “S element content”) of the organic anti-shrinking agent is measured as follows. The organic shrinkage agent NaOH aqueous solution obtained by extraction from the active material is desalted, concentrated and dried. The S element content in the organic shrinkage agent is obtained by converting S element in 0.1 g of the organic shrinkage agent into sulfuric acid by the oxygen combustion flask method, and titrating the eluate with barium perchlorate using Trin as an indicator. Let the measured S element content be total content of a sulfonyl group and a sulfonic acid group.

セパレータ中の有機防縮剤等のイオン交換樹脂は、赤外全反射測定法により検出できる。電池を解体して取り出したセパレータを水洗及び乾燥し、プリズムにセパレータの正極側表面を接触させて赤外光を反射させ、赤外光の吸収スペクトルを測定する。この方法では、負極板に由来する有機防縮剤の影響を受けず、イオン交換樹脂の存在が確認できる。   An ion exchange resin such as an organic anti-shrink agent in the separator can be detected by an infrared total reflection measurement method. The separator taken out by disassembling the battery is washed with water and dried, the positive electrode side surface of the separator is brought into contact with the prism to reflect infrared light, and the absorption spectrum of infrared light is measured. In this method, the presence of the ion exchange resin can be confirmed without being affected by the organic shrinkage agent derived from the negative electrode plate.

活性炭、カーボンブラック等の含有量は、遠心分離等により測定できる。正極活物質中のアンチモン濃度を測定する場合、満充電した鉛蓄電池から正極板を取り出し、水洗と乾燥を施し、正極活物質を採取し、鉛とアンチモンを硝酸中に溶解させ、ICP-AESによりアンチモン含有量を定量する。正極格子中のアンチモン濃度も同様にして測定できる。   The content of activated carbon, carbon black, etc. can be measured by centrifugation or the like. When measuring the antimony concentration in the positive electrode active material, take out the positive electrode plate from the fully charged lead acid battery, wash with water and dry, collect the positive electrode active material, dissolve lead and antimony in nitric acid, ICP-AES Quantify antimony content. The antimony concentration in the positive electrode lattice can be measured in the same manner.

解体時にアンチモンを吸収していなかった部材が、アンチモンを吸収できるかどうかについては、以下のようにして確認できる。吸着層をアンチモンイオンが飽和している溶液に浸し、一晩静置させることで、アンチモン溶液の濃度減少からアンチモンの吸着が確認できる。なお、本明細書で呼ぶアンチモンとは、アンチモン元素のことであり、金属アンチモンやイオン化したアンチモン、アンチモン化合物のことを指す。   Whether or not a member that did not absorb antimony at the time of disassembly can absorb antimony can be confirmed as follows. By immersing the adsorption layer in a solution saturated with antimony ions and allowing to stand overnight, the adsorption of antimony can be confirmed from the decrease in the concentration of the antimony solution. Note that antimony referred to in this specification refers to an antimony element, and refers to metal antimony, ionized antimony, and an antimony compound.

性能試験
各電池に対し、以下の試験を行った。
75℃軽負荷寿命試験: JIS D 5301:2006を変更し、75℃の水槽内で試験した。25Aの定電流で240秒間放電し、次いで2.47V/セル、最大25Aで600秒間充電し充電末電流を測定するサイクルを行い、480サイクル毎に300Aで30秒間放電し、30秒目の端子電圧が1.2V/セル以下となると寿命とする。なお寿命に達した後に、蓄電池を解体し、負極活物質中のアンチモン濃度を測定した。
SBA-IS寿命試験: SBA S 0101:2014に従い、25℃の気槽内で、31A×59秒間の放電と、300A×1秒間のパルス放電の後に、2.33V/セル、最大100Aの充電を60秒間行うサイクルを繰り返し、3600サイクル毎に40〜48時間放置する。そして300A×1秒間のパルス放電時の端子電圧が1.2V/セル未満で寿命とする。なお試験中30000サイクルまでは補水しない。
低温ハイレート放電試験: -15℃で150Aの定電流放電で端子電圧が1V/セルへ低下するまでの時間を測定した。さらに75℃で、25A×240秒間の放電と、2.47V/セルで最大25Aの600秒間の充電のサイクルを1440サイクル行い、1440サイクル後に、低温ハイレート放電試験を再度行い、初期値との比を求めた。
Performance test The following tests were performed on each battery.
75 ° C light load life test : JIS D 5301: 2006 was changed and the test was conducted in a 75 ° C water bath. Discharge at a constant current of 25A for 240 seconds, then charge 2.47V / cell for a maximum of 25A for 600 seconds and measure the end-of-charge current, discharge every 480 cycles at 300A for 30 seconds, and the terminal voltage at the 30th second Is considered to be the life when 1.2V / cell or less. After reaching the life, the storage battery was disassembled and the antimony concentration in the negative electrode active material was measured.
SBA-IS life test : In accordance with SBA S 0101: 2014, in a 25 ° C air tank, after 31A x 59 seconds of discharge and 300A x 1 second of pulse discharge, 2.33V / cell, charging up to 100A at 60 Repeat for 2 seconds and leave for 40-48 hours every 3600 cycles. And the terminal voltage at the time of pulse discharge of 300A x 1 second is less than 1.2V / cell, and the service life is reached. During the test, water is not replenished until 30,000 cycles.
Low-temperature high-rate discharge test : The time until the terminal voltage decreased to 1 V / cell was measured at a constant current of 150 A at -15 ° C. Furthermore, 1440 cycles of discharging at 25 ° C for 25 seconds at 75 ° C and charging for 600 seconds at a maximum of 25A at 2.47V / cell were performed 1440 cycles.After 1440 cycles, the low-temperature high-rate discharge test was performed again, and the ratio to the initial value was determined. Asked.

なお試験に用いた蓄電池では、吸着シート12は厚さ0.2mm、密度1.5g/cm3としたが、これらの値は任意である。またリグニン防縮剤はスルホン酸基の含有量が600μmol/g、ビスフェノールスルホン酸類の縮合物では5000μmol/gとした。なお補水は、いずれの試験においても液面がLower Levelを下回った際に行うものとした。 In the storage battery used in the test, the adsorption sheet 12 has a thickness of 0.2 mm and a density of 1.5 g / cm 3 , but these values are arbitrary. The lignin anti-shrinkage agent had a sulfonic acid group content of 600 μmol / g, and a bisphenol sulfonic acid condensate had a concentration of 5000 μmol / g. In all tests, water replenishment was performed when the liquid level was below the lower level.

結果を、リグニンを防縮剤とし、正極活物質がアンチモンを含有せず、吸着シート(カーボンシート)を備えない比較例(試料No.1)との相対値で、表1〜表4と図2〜図4とに示す。試料の組成は各表に示し、濃度の単位はmass%とmassppmである。   Tables 1 to 4 and FIG. 2 show the results relative to a comparative example (sample No. 1) in which lignin is used as a shrink reducing agent, the positive electrode active material does not contain antimony, and does not have an adsorption sheet (carbon sheet). To FIG. The composition of the sample is shown in each table, and the unit of concentration is mass% and massppm.

表1と図2は、75℃でのJIS軽負荷寿命と、SBA-IS寿命とを示し、正極板がアンチモンを含有しない場合、リグニンに対してビスフェノールが優位であるとは言えない(試料No.1〜No.4)。正極板がアンチモンを含有すると、寿命性能が向上した。しかし、吸着シート(カーボンシート)が無い場合、ビスフェノールは軽負荷寿命で、リグニンに劣っていた(試料No.5,6,9,10)。これに対して、正極板がアンチモンを含有し、吸着シートがある場合、ビスフェノールを含有する電池で寿命性能が向上し、軽負荷寿命でもリグニンを含有する電池を上回った(試料No.8,12)。   Table 1 and FIG. 2 show the JIS light load life at 75 ° C. and the SBA-IS life. When the positive electrode plate does not contain antimony, it cannot be said that bisphenol is superior to lignin (sample no. .1 ~ No.4). When the positive electrode plate contained antimony, the life performance was improved. However, in the absence of an adsorbent sheet (carbon sheet), bisphenol had a light load life and was inferior to lignin (Sample Nos. 5, 6, 9, 10). On the other hand, when the positive electrode plate contains antimony and there is an adsorbent sheet, the life performance is improved with a battery containing bisphenol, which exceeds the battery containing lignin even in a light load life (Sample Nos. 8 and 12). ).

Figure 2016189296
Figure 2016189296

表2は、軽負荷寿命試験後の、負極活物質中のアンチモン濃度を示し、カーボンシートを設けることにより、負極活物質へのアンチモンの蓄積を制限できたことが分かる。図3は、試料No.1〜No.8に対する、軽負荷寿命試験での充電末電流の推移を示し、正極活物質がアンチモンを含有してカーボンシートがないNo.5,6では、充電末電流が徐々に増加した。これは、カーボンシートが無いと、アンチモンが負極活物質に蓄積すること(表2)と符合し、水素過電圧の低下を表している。正極活物質がアンチモンを含有しても、カーボンシートを設けると、充電末電流は経時的に安定で、これはアンチモンの負極活物質への蓄積を抑制できたこと(表2)と対応する。   Table 2 shows the antimony concentration in the negative electrode active material after the light load life test, and it can be seen that the accumulation of antimony in the negative electrode active material could be limited by providing the carbon sheet. FIG. 3 shows the transition of the end-of-charge current in the light load life test for samples No. 1 to No. 8, and in the case of No. 5 and 6 where the positive electrode active material contains antimony and no carbon sheet, The current increased gradually. This corresponds to the accumulation of antimony in the negative electrode active material in the absence of the carbon sheet (Table 2), and represents a decrease in hydrogen overvoltage. Even if the positive electrode active material contains antimony, when a carbon sheet is provided, the charging end current is stable over time, which corresponds to the fact that the accumulation of antimony in the negative electrode active material can be suppressed (Table 2).

Figure 2016189296
Figure 2016189296

表1及び表2の試料No.9〜12では、正極活物質ではなく、正極格子の表面にアンチモンを含有させた。75℃の軽負荷寿命、SBA-IS寿命、及び負極活物質へのアンチモンの蓄積の各点で、正極活物質にアンチモンを含有させた場合と類似の結果が得られた。   In Samples Nos. 9 to 12 in Tables 1 and 2, antimony was included in the surface of the positive electrode lattice, not the positive electrode active material. The results were similar to those obtained when antimony was added to the positive electrode active material in terms of light load life at 75 ° C., SBA-IS life, and antimony accumulation in the negative electrode active material.

表3と図4は、1440サイクル後の低温ハイレート放電性能の維持率を示し、ビスフェノールを用いるとリグニンよりも維持率が高まった(試料No.2,4)。しかし正極板がアンチモンを含有し、しかもカーボンシートが無い場合、ビスフェノールの効果が確認できなかった(試料No.6)。このことは、アンチモンイオンとビスフェノールとの相互作用により、ビスフェノールの効果が失われることを示し、おそらくはアンチモンイオンがビスフェノール粒子の表面に吸着して、表面電荷を打ち消すものと思われる。   Table 3 and FIG. 4 show the maintenance rate of the low-temperature high-rate discharge performance after 1440 cycles. When bisphenol was used, the maintenance rate was higher than that of lignin (Sample No. 2, 4). However, when the positive electrode plate contained antimony and there was no carbon sheet, the effect of bisphenol could not be confirmed (Sample No. 6). This indicates that the effect of bisphenol is lost due to the interaction between antimony ions and bisphenol, and it is likely that the antimony ions are adsorbed on the surface of the bisphenol particles and cancel the surface charge.

Figure 2016189296
Figure 2016189296

表4は、防縮剤のビスフェノール濃度を0.01mass%から1.0mass%の範囲で変化させた際の結果(試料No.17〜21)と、正極活物質中のアンチモン濃度を0.01mass%から1.0mass%の範囲で変化させた際の結果(試料No.26〜29)を示す。さらにカーボンシートに代え、ポリエチレンセパレータに、ビスフェノール類のスルホン酸誘導体縮合物(スルホン酸基の含有量は5000μmol/g)を、セパレータに対し0.5mass%の濃度で含有させた際の結果(試料No.30,31)も示す。またビスフェノールの代わりにナフタレンスルホン酸縮合物(スルホン酸基としてS元素を含有し、含有量は5000μmol/g)でも、ビスフェノールと同等の効果が得られた(試料No.32)。   Table 4 shows the results (sample Nos. 17 to 21) when the bisphenol concentration of the anti-shrinkage agent is changed in the range of 0.01 mass% to 1.0 mass%, and the antimony concentration in the positive electrode active material from 0.01 mass% to 1.0 mass. The result (sample No. 26-29) at the time of changing in the range of% is shown. Furthermore, in place of the carbon sheet, the result when a sulfonic acid derivative condensate of bisphenols (the content of sulfonic acid group is 5000 μmol / g) is contained in a polyethylene separator at a concentration of 0.5 mass% with respect to the separator (sample No. .30,31) are also shown. In addition, a naphthalenesulfonic acid condensate (containing S element as a sulfonic acid group and a content of 5000 μmol / g) instead of bisphenol was able to obtain the same effect as bisphenol (Sample No. 32).

Figure 2016189296
Figure 2016189296

負極活物質中のビスフェノール防縮剤は0.01mass%から1mass%の全範囲で効果があるが、0.02mass%以上0.8mass%以下、特に0.02mass%以上0.5mass%以下が好ましいことが分かる。正極活物質中のアンチモンも、0.01mass%から1mass%の全範囲で効果があるが、0.05mass%以上0.5mass%以下で特に効果が高いことが分かる。このことから、アンチモン濃度は0.01mass%と0.05mass%の中間の0.02mass%以上が好ましいものとした。   The bisphenol anti-shrinking agent in the negative electrode active material is effective in the entire range from 0.01 mass% to 1 mass%, but it is understood that 0.02 mass% to 0.8 mass%, particularly 0.02 mass% to 0.5 mass% is preferable. It can be seen that antimony in the positive electrode active material is also effective in the entire range from 0.01 mass% to 1 mass%, but is particularly effective at 0.05 mass% to 0.5 mass%. Therefore, the antimony concentration is preferably 0.02 mass% or more between 0.01 mass% and 0.05 mass%.

セパレータにビスフェノールを含有させても、カーボンシートを設けた場合と同等の結果が得られた。このことは、セパレータ中のビスフェノールがアンチモンイオンと相互作用して捕捉していることを示している。そして、ビスフェノールに代えてリグニンをセパレータに含有させても、同様にアンチモンイオンを捕捉できる。   Even when bisphenol was contained in the separator, the same result as that obtained when the carbon sheet was provided was obtained. This indicates that bisphenol in the separator is captured by interacting with antimony ions. And even if it makes a separator contain lignin instead of bisphenol, an antimony ion can be captured similarly.

軽負荷寿命試験後に、正極板から脱落した正極活物質の量を測定すると、アンチモンを含有させたものでは少なかった。また減液量は、正極板がアンチモンを含有し、かつアンチモンイオンの吸着層を設けないと増加した。   After the light load life test, when the amount of the positive electrode active material dropped from the positive electrode plate was measured, the amount of antimony contained was small. The amount of liquid reduction increased when the positive electrode plate contained antimony and no antimony ion adsorption layer was provided.

実施例には以下の特徴がある。
1) 正極板のアンチモンにより、正極活物質の軟化・脱落を抑制できた。
2) 正極板から負極板へのアンチモンの移動を、アンチモンイオンの吸着層(カーボンシートとビスフェノール含有のセパレータ)で制限した。これによって、ビスフェノールとアンチモンイオンの相互作用により、効果が失われることを防止した。
3) 正極板から負極板へのアンチモンの移動を、アンチモンイオンの吸着層で制限することにより、負極での水素過電圧の低下を防止できた。また充電末期の大電流により脱落した正極活物質が浮遊して短絡することも防止できた。
4) これらにより、軽負荷寿命とアイドリングストップ寿命とに優れ、低温ハイレート放電性能を長期間維持できる鉛蓄電池が得られた。
The embodiment has the following characteristics.
1) The antimony on the positive electrode plate could suppress the softening and falling off of the positive electrode active material.
2) The movement of antimony from the positive electrode plate to the negative electrode plate was restricted by an antimony ion adsorption layer (carbon sheet and bisphenol-containing separator). This prevented the loss of effect due to the interaction between bisphenol and antimony ions.
3) By restricting the movement of antimony from the positive electrode plate to the negative electrode plate with the adsorption layer of antimony ions, it was possible to prevent a decrease in hydrogen overvoltage at the negative electrode. It was also possible to prevent the positive electrode active material that had fallen off due to a large current at the end of charging from floating and short circuiting.
4) As a result, a lead-acid battery that is excellent in light load life and idling stop life and that can maintain low-temperature high-rate discharge performance for a long period of time was obtained.

2 鉛蓄電池
4 負極板
6 正極板
8,9 耳
10 セパレータ
11 リブ
12 吸着シート
2 Lead storage battery 4 Negative electrode plate 6 Positive electrode plate 8, 9 Ear 10 Separator 11 Rib 12 Adsorption sheet

Claims (5)

正極集電体または正極電極材料がアンチモンを含有する正極板と、負極電極材料が合成防縮剤を含有する負極板と、アンチモンイオンを吸着する吸着層とを備え、前記吸着層が負極板もしくは正極板の表面あるいは正極板と負極板との間に設けられている鉛蓄電池。   The positive electrode current collector or the positive electrode material comprises a positive electrode plate containing antimony, the negative electrode material comprises a negative electrode plate containing a synthetic anti-shrink agent, and an adsorption layer that adsorbs antimony ions, and the adsorption layer is a negative electrode plate or a positive electrode A lead-acid battery provided on the surface of the plate or between the positive electrode plate and the negative electrode plate. 前記合成防縮剤は、スルホン酸基及び/又はスルホニル基を有することを特徴とする、請求項1の鉛蓄電池。 The lead acid battery according to claim 1, wherein the synthetic anti-shrink agent has a sulfonic acid group and / or a sulfonyl group. 前記吸着層が炭素質吸着剤もしくは金属酸化物吸着剤を有効成分とすることを特徴とする、請求項1又は請求項2の鉛蓄電池。   The lead acid battery according to claim 1 or 2, wherein the adsorption layer contains a carbonaceous adsorbent or a metal oxide adsorbent as an active ingredient. 前記吸着層は負極板と正極板とを分離するセパレータで構成され、かつ前記セパレータはイオン交換樹脂をアンチモンイオンの吸着剤として含有していることを特徴とする、請求項1又は請求項2の鉛蓄電池。   The said adsorption layer is comprised with the separator which isolate | separates a negative electrode plate and a positive electrode plate, and the said separator contains ion-exchange resin as an adsorbent of antimony ion, The Claim 1 or Claim 2 characterized by the above-mentioned. Lead acid battery. 前記イオン交換樹脂は、合成防縮剤及びリグニンの少なくともいずれかから成ることを特徴とする、請求項4の鉛蓄電池。   The lead storage battery according to claim 4, wherein the ion exchange resin is made of at least one of a synthetic anti-shrink agent and lignin.
JP2015069578A 2015-03-30 2015-03-30 Lead storage battery Active JP6519945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015069578A JP6519945B2 (en) 2015-03-30 2015-03-30 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015069578A JP6519945B2 (en) 2015-03-30 2015-03-30 Lead storage battery

Publications (2)

Publication Number Publication Date
JP2016189296A true JP2016189296A (en) 2016-11-04
JP6519945B2 JP6519945B2 (en) 2019-05-29

Family

ID=57240436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015069578A Active JP6519945B2 (en) 2015-03-30 2015-03-30 Lead storage battery

Country Status (1)

Country Link
JP (1) JP6519945B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021690A1 (en) * 2017-07-24 2019-01-31 株式会社Gsユアサ Lead acid storage battery
WO2019087678A1 (en) * 2017-10-31 2019-05-09 株式会社Gsユアサ Lead storage battery
CN110998924A (en) * 2017-07-24 2020-04-10 株式会社杰士汤浅国际 Lead-acid battery
WO2020232288A1 (en) * 2019-05-14 2020-11-19 Microporous, Llc Application of lignosulfonates and high surface area carbon on battery separator component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184462A (en) * 1983-04-01 1984-10-19 Matsushita Electric Ind Co Ltd Plate for lead-acid battery
JPH0193068A (en) * 1987-10-02 1989-04-12 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH06283191A (en) * 1993-03-25 1994-10-07 Japan Storage Battery Co Ltd Sealed lead-acid battery
JPH11121028A (en) * 1997-10-17 1999-04-30 Japan Storage Battery Co Ltd Sealed lead-acid battery
JP2007311333A (en) * 2006-04-19 2007-11-29 Nippon Sheet Glass Co Ltd Separator for lead storage battery, paste paper for lead storage battery, electrode plate for lead storage battery and lead storage battery
WO2013150754A1 (en) * 2012-04-06 2013-10-10 株式会社Gsユアサ Flooded lead-acid battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184462A (en) * 1983-04-01 1984-10-19 Matsushita Electric Ind Co Ltd Plate for lead-acid battery
JPH0193068A (en) * 1987-10-02 1989-04-12 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH06283191A (en) * 1993-03-25 1994-10-07 Japan Storage Battery Co Ltd Sealed lead-acid battery
JPH11121028A (en) * 1997-10-17 1999-04-30 Japan Storage Battery Co Ltd Sealed lead-acid battery
JP2007311333A (en) * 2006-04-19 2007-11-29 Nippon Sheet Glass Co Ltd Separator for lead storage battery, paste paper for lead storage battery, electrode plate for lead storage battery and lead storage battery
WO2013150754A1 (en) * 2012-04-06 2013-10-10 株式会社Gsユアサ Flooded lead-acid battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021690A1 (en) * 2017-07-24 2019-01-31 株式会社Gsユアサ Lead acid storage battery
CN110998925A (en) * 2017-07-24 2020-04-10 株式会社杰士汤浅国际 Lead-acid battery
CN110998924A (en) * 2017-07-24 2020-04-10 株式会社杰士汤浅国际 Lead-acid battery
JPWO2019021690A1 (en) * 2017-07-24 2020-05-28 株式会社Gsユアサ Lead acid battery
CN110998925B (en) * 2017-07-24 2023-10-20 株式会社杰士汤浅国际 Lead storage battery
CN110998924B (en) * 2017-07-24 2023-10-31 株式会社杰士汤浅国际 Lead storage battery
WO2019087678A1 (en) * 2017-10-31 2019-05-09 株式会社Gsユアサ Lead storage battery
WO2020232288A1 (en) * 2019-05-14 2020-11-19 Microporous, Llc Application of lignosulfonates and high surface area carbon on battery separator component
CN113711417A (en) * 2019-05-14 2021-11-26 微孔有限公司 Use of lignosulfonates and high surface area carbon in enhanced flooded and VRLA AGM batteries for battery separator members with high charge acceptance

Also Published As

Publication number Publication date
JP6519945B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP6015427B2 (en) Negative electrode plate for lead acid battery and method for producing the same
JP6413703B2 (en) Lead acid battery and negative electrode plate thereof
JP5884528B2 (en) Liquid lead-acid battery
JP6331161B2 (en) Control valve type lead acid battery
JP6519945B2 (en) Lead storage battery
CN108493400B (en) High-voltage positive plate and preparation method thereof
JP2013084362A (en) Lead battery
JP6233635B2 (en) Lead acid battery
WO2019188056A1 (en) Lead acid storage battery
JP2008243493A (en) Lead acid storage battery
CN104218242B (en) Lead-acid storage battery cathode lead plaster
WO2018021420A1 (en) Lead storage cell
JP2018506826A (en) Improved moisture loss separator for use with lead acid batteries, systems for improved moisture loss performance, and methods for making and using the same
JP4492024B2 (en) Lead acid battery
JP6766504B2 (en) Lead-acid battery
CN112582611B (en) Application of polyacid oxide NVO in positive electrode of lithium-sulfur battery
JP6756182B2 (en) Lead-acid battery
JP7010556B2 (en) Positive electrode plate and lead acid battery
JP6153071B2 (en) Control valve type lead acid battery
JP2020080285A (en) Active material
WO2019021690A1 (en) Lead acid storage battery
JP2018018800A (en) Lead-acid battery
JP6056454B2 (en) Lead acid battery
JP5598368B2 (en) Lead acid battery and negative electrode active material thereof
JP6436092B2 (en) Lead-acid battery separator and lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180803

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190414

R150 Certificate of patent or registration of utility model

Ref document number: 6519945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150