JP2016181500A - Positive electrode active material for nonaqueous electrolyte secondary battery - Google Patents

Positive electrode active material for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2016181500A
JP2016181500A JP2015246565A JP2015246565A JP2016181500A JP 2016181500 A JP2016181500 A JP 2016181500A JP 2015246565 A JP2015246565 A JP 2015246565A JP 2015246565 A JP2015246565 A JP 2015246565A JP 2016181500 A JP2016181500 A JP 2016181500A
Authority
JP
Japan
Prior art keywords
secondary battery
positive electrode
electrode active
active material
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015246565A
Other languages
Japanese (ja)
Other versions
JP6128196B2 (en
Inventor
友興 川▲崎▼
Tomooki Kawasaki
友興 川▲崎▼
小林 謙一
Kenichi Kobayashi
謙一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to US15/075,937 priority Critical patent/US9966601B2/en
Publication of JP2016181500A publication Critical patent/JP2016181500A/en
Application granted granted Critical
Publication of JP6128196B2 publication Critical patent/JP6128196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for a nonaqueous electrolyte secondary battery, which enables the materialization of a nonaqueous electrolyte secondary battery having a high energy density and a high output characteristic.SOLUTION: A positive electrode active material for a nonaqueous electrolyte secondary battery comprises a lithium transition metal composite oxide expressed by the following general formula: Li(NiCr)(MnTi)MgAlMO(where 1.00≤a≤1.30, 0.020≤x≤0.200, 0.006≤y≤0.070, 0.450≤α≤0.550, 0≤β≤0.015, 0≤γ≤0.035, 0≤δ≤0.010, and M represents at least one element selected from a group consisting of Na, K, Ca, Sr, Ba, Ga, Co, Zn, Si, Ge, Zr, Hf, Sn, Ta, Nb, P, Bi, Mo and W).SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池等の非水電解液二次電池用正極活物質に関する。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.

近年、携帯電話、ノートパソコン等の携帯機器の小型化、高機能化が進み、これらの駆動電源としてリチウムイオン二次電池等の非水電解液二次電池が採用されている。非水電解液二次電池はその動作電圧が高いため、他の二次電池よりエネルギー密度が高いという利点を有する。この利点を踏まえ、電気自動車等のより大型の機器に非水電解液二次電池を適用する動きもある。   In recent years, portable devices such as mobile phones and notebook computers have been reduced in size and functionality, and non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have been adopted as drive power sources for these devices. Since the non-aqueous electrolyte secondary battery has a high operating voltage, it has the advantage of higher energy density than other secondary batteries. Based on this advantage, there is a movement to apply non-aqueous electrolyte secondary batteries to larger equipment such as electric vehicles.

非水電解液二次電池用の正極活物質としては、コバルト酸リチウム(LiCoO)が代表的に実用化されている。コバルト酸リチウム等の層状構造のリチウム遷移金属複合酸化物を正極活物質として用いた非水電解液二次電池の平均動作電圧は3.5V程度である。一方、マンガン酸リチウム(LiMn)等のスピネル構造のリチウム遷移金属複合酸化物を正極活物質として用いると、平均動作電圧が4V以上の非水電解液二次電池を得ることができる。特に、LiNi0.5Mn1.5を用いると平均動作電圧は約4.5Vになる。 As a positive electrode active material for a non-aqueous electrolyte secondary battery, lithium cobaltate (LiCoO 2 ) is typically put into practical use. The average operating voltage of a non-aqueous electrolyte secondary battery using a lithium transition metal composite oxide having a layered structure such as lithium cobaltate as a positive electrode active material is about 3.5V. On the other hand, when a lithium transition metal composite oxide having a spinel structure such as lithium manganate (LiMn 2 O 4 ) is used as the positive electrode active material, a non-aqueous electrolyte secondary battery having an average operating voltage of 4 V or more can be obtained. In particular, when LiNi 0.5 Mn 1.5 O 4 is used, the average operating voltage is about 4.5V.

これらスピネル構造のリチウム遷移金属複合酸化物において、目的に応じてマンガンの一部をニッケルと、さらに別の元素とで置換する技術が存在する。   In these lithium transition metal composite oxides having a spinel structure, there is a technique in which a part of manganese is replaced with nickel and another element depending on the purpose.

特許文献1には、二次電池のエネルギー密度を高める目的で、スピネル構造のリチウムマンガン複合酸化物におけるマンガンの一部をニッケル等と、チタン等とで置換する技術が開示されている。   Patent Document 1 discloses a technique in which a part of manganese in a spinel structure lithium manganese composite oxide is replaced with nickel or the like and titanium or the like for the purpose of increasing the energy density of the secondary battery.

特許文献2には、二次電池のサイクル特性を改善する目的で、スピネル構造のリチウムマンガン複合酸化物におけるマンガンの一部をニッケル及びクロムと、マグネシウム等とで置換する技術が開示されている。   Patent Document 2 discloses a technique in which a part of manganese in a spinel structure lithium manganese composite oxide is replaced with nickel, chromium, magnesium, or the like for the purpose of improving the cycle characteristics of a secondary battery.

特許文献3には、リチウムチタン酸化物を負極に用いた二次電池における急速充電時の容量低下を防ぐ目的で、特定範囲の比表面積を有するリチウムニッケルマンガン酸化物を正極に用いる技術が開示されている。該リチウムニッケルマンガン酸化物の一例として、LiNi0.4Cr0.05Al0.05Mn1.4Ti0.1が記載されている。 Patent Document 3 discloses a technique in which lithium nickel manganese oxide having a specific surface area in a specific range is used for a positive electrode for the purpose of preventing a capacity decrease during rapid charging in a secondary battery using lithium titanium oxide as a negative electrode. ing. As an example of the lithium-nickel-manganese oxide, LiNi 0.4 Cr 0.05 Al 0.05 Mn 1.4 Ti 0.1 O 4 is described.

特開2003−197194号公報JP 2003-197194 A 国際公開第2012/077472号International Publication No. 2012/077472 特開2012−033279号公報JP 2012-033279 A

電気自動車等の大型機器の動力源には、高いエネルギー密度と高い出力特性とが同時に求められる。スピネル構造のリチウム遷移金属複合酸化物は平均動作電圧が高いためエネルギー密度の高い二次電池を実現可能である。一方スピネル構造のリチウム遷移金属複合酸化物は、リチウムイオン伝導性及び電子伝導性が比較的低いため、出力特性が不十分な傾向にある。この傾向はスピネル構造のリチウムニッケルマンガン複合酸化物においてより顕著である。   High energy density and high output characteristics are required at the same time for the power source of large equipment such as electric vehicles. Since the lithium transition metal composite oxide having a spinel structure has a high average operating voltage, a secondary battery having a high energy density can be realized. On the other hand, a lithium transition metal composite oxide having a spinel structure tends to have insufficient output characteristics because of relatively low lithium ion conductivity and electronic conductivity. This tendency is more remarkable in the lithium nickel manganese composite oxide having a spinel structure.

本発明に係る実施形態は上述の事情に鑑みてなされたものである。本発明に係る実施形態の目的は、リチウムイオン伝導性及び電子伝導性が高く、出力特性を向上させることが可能な、スピネル構造のリチウムニッケルマンガン複合酸化物を用いた非水電解液二次電池用正極活物質を提供することである。   The embodiment according to the present invention has been made in view of the above circumstances. An object of an embodiment according to the present invention is a non-aqueous electrolyte secondary battery using a lithium nickel manganese composite oxide having a spinel structure, which has high lithium ion conductivity and high electron conductivity and can improve output characteristics. It is to provide a positive electrode active material for use.

上記目的を達成するために本発明者らは鋭意検討を重ね、本発明に係る実施形態を完成するに至った。本発明者らは、スピネル構造のリチウムニッケルマンガン複合酸化物にクロム及びチタンを含有させ、さらにマグネシウム及びアルミニウムの含有量を一定量以下に制限することで、スピネル構造リチウムニッケルマンガン複合酸化物のリチウムイオン伝導性及び電子伝導性を向上できることを見出した。   In order to achieve the above object, the present inventors have conducted intensive studies and have completed an embodiment according to the present invention. The present inventors include chromium and titanium in a lithium nickel manganese composite oxide having a spinel structure, and further limiting the contents of magnesium and aluminum to a certain amount or less, thereby reducing the lithium of the spinel structure lithium nickel manganese composite oxide. It has been found that ion conductivity and electron conductivity can be improved.

本発明の実施形態の非水電解液二次電池用正極活物質は、一般式Li(Ni1−xCrα(Mn1−yTi2−α−β−γ−δMgβAlγδ(但し、1.00≦a≦1.30、0.020≦x≦0.200、0.006≦y≦0.070、0.450≦α≦0.550、0≦β≦0.015、0≦γ≦0.035、0≦δ≦0.010、MはNa、K、Ca、Sr、Ba、Ga、Co、Zn、Si、Ge、Zr、Hf、Sn、Ta、Nb、P、Bi、Mo及びWからなる群より選択される少なくとも一種の元素)で表されるリチウム遷移金属複合酸化物を含む。 The positive electrode active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention has a general formula Li a (Ni 1-x Cr x ) α (Mn 1-y Ti y ) 2-α-β-γ-δ Mg β Al γ M δ O 4 (where 1.00 ≦ a ≦ 1.30, 0.020 ≦ x ≦ 0.200, 0.006 ≦ y ≦ 0.070, 0.450 ≦ α ≦ 0.550, 0 ≦ β ≦ 0.015, 0 ≦ γ ≦ 0.035, 0 ≦ δ ≦ 0.010, M is Na, K, Ca, Sr, Ba, Ga, Co, Zn, Si, Ge, Zr, Hf, A lithium transition metal composite oxide represented by at least one element selected from the group consisting of Sn, Ta, Nb, P, Bi, Mo, and W.

本実施形態により、高いリチウムイオン伝導性と高い電子伝導性を有し、出力特性を向上させることが可能なスピネル構造のリチウムニッケルマンガン複合酸化物を用いた正極活物質が提供される。また、本実施形態の非水電解液二次電池用正極活物質を用いた非水電解液二次電池は、高い平均動作電圧と高い出力特性を有する。そのため、本実施形態の非水電解液二次電池用正極活物質を用いた非水電解液二次電池は高いエネルギー密度と高い出力特性を両立することができる。   According to the present embodiment, a positive electrode active material using a lithium nickel manganese composite oxide having a spinel structure that has high lithium ion conductivity and high electronic conductivity and can improve output characteristics is provided. Moreover, the non-aqueous electrolyte secondary battery using the positive electrode active material for non-aqueous electrolyte secondary batteries of this embodiment has a high average operating voltage and high output characteristics. Therefore, the nonaqueous electrolyte secondary battery using the positive electrode active material for a nonaqueous electrolyte secondary battery of the present embodiment can achieve both high energy density and high output characteristics.

図1はスピネル構造のリチウムニッケルマンガン複合酸化物に含有されるマグネシウムの量と、前記スピネル構造のリチウムニッケルマンガン複合酸化物を正極活物質として用いた非水電解液二次電池の特性との関係を表すグラフである。FIG. 1 shows the relationship between the amount of magnesium contained in a lithium nickel manganese composite oxide having a spinel structure and the characteristics of a non-aqueous electrolyte secondary battery using the lithium nickel manganese composite oxide having the spinel structure as a positive electrode active material. It is a graph showing. 図1はスピネル構造のリチウムニッケルマンガン複合酸化物に含有されるアルミニウムの量と、前記スピネル構造のリチウムニッケルマンガン複合酸化物を正極活物質として用いた非水電解液二次電池の特性との関係を表すグラフである。FIG. 1 shows the relationship between the amount of aluminum contained in a spinel-structure lithium nickel manganese composite oxide and the characteristics of a non-aqueous electrolyte secondary battery using the spinel-structure lithium nickel manganese composite oxide as a positive electrode active material. It is a graph showing.

本実施形態の非水電解液二次電池用正極活物質について、実施の形態及び実施例を用いた説明をする。但し、本実施形態はこれら実施の形態及び実施例によって制限されるものではない。   The positive electrode active material for a non-aqueous electrolyte secondary battery of the present embodiment will be described using the embodiments and examples. However, this embodiment is not limited by these embodiments and examples.

[非水電解液二次電池用正極活物質]
本実施形態の非水電解液二次電池用正極活物質は、クロム及びチタンを含有し、さらにマグネシウム及びアルミニウムの含有量を一定量以下に制限したスピネル構造のリチウムニッケルマンガン複合酸化物を主成分とする。以下、前記非水電解液二次電池用正極活物質を単に正極活物質とも呼ぶ。また、前記スピネル構造のリチウムニッケルマンガン複合酸化物を単にリチウム遷移金属複合酸化物とも呼ぶ。前記正極活物質中において、前記リチウム遷移金属複合酸化物の含有率は50質量%より大きい。前記リチウム遷移金属複合酸化物の含有率は60質量%以上であることが好ましく、80質量%以上であることがより好ましい。以下リチウム遷移金属複合酸化物について説明する。
[Positive electrode active material for non-aqueous electrolyte secondary battery]
The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present embodiment is mainly composed of a lithium nickel manganese composite oxide having a spinel structure containing chromium and titanium and further containing magnesium and aluminum limited to a certain amount or less. And Hereinafter, the positive electrode active material for a non-aqueous electrolyte secondary battery is also simply referred to as a positive electrode active material. The lithium nickel manganese composite oxide having the spinel structure is also simply referred to as a lithium transition metal composite oxide. In the positive electrode active material, the content of the lithium transition metal composite oxide is greater than 50% by mass. The content of the lithium transition metal composite oxide is preferably 60% by mass or more, and more preferably 80% by mass or more. Hereinafter, the lithium transition metal composite oxide will be described.

(リチウム遷移金属複合酸化物)
前記リチウム遷移金属複合酸化物の組成は、一般式Li(Ni1−xCrα(Mn1−yTi2−α−β−γ−δMgβAlγδ(但し、1.00≦a≦1.30、0.020≦x≦0.200、0.006≦y≦0.070、0.450≦α≦0.550、0≦β≦0.015、0≦γ≦0.035、0≦δ≦0.010、MはNa、K、Ca、Sr、Ba、Ga、Co、Zn、Si、Ge、Zr、Hf、Sn、Ta、Nb、P、Bi、Mo及びWからなる群より選択される少なくとも一種の元素)で表される。
(Lithium transition metal composite oxide)
The composition of the lithium transition metal composite oxide is represented by the general formula Li a (Ni 1-x Cr x) α (Mn 1-y Ti y) 2-α-β-γ-δ Mg β Al γ M δ O 4 ( However, 1.00 ≦ a ≦ 1.30, 0.020 ≦ x ≦ 0.200, 0.006 ≦ y ≦ 0.070, 0.450 ≦ α ≦ 0.550, 0 ≦ β ≦ 0.015, 0 ≦ γ ≦ 0.035, 0 ≦ δ ≦ 0.010, M is Na, K, Ca, Sr, Ba, Ga, Co, Zn, Si, Ge, Zr, Hf, Sn, Ta, Nb, P, At least one element selected from the group consisting of Bi, Mo and W).

前記一般式における変数aは、1.00≦a≦1.30を満足する。変数aが1.00未満であると、非水電解液二次電池の出力特性が向上しない。変数aが1.30を超えると、前記リチウム遷移金属複合酸化物の合成が困難になる傾向にある。変数aは、1.10≦a≦1.20を満足するのが好ましい。   The variable a in the general formula satisfies 1.00 ≦ a ≦ 1.30. If the variable a is less than 1.00, the output characteristics of the nonaqueous electrolyte secondary battery are not improved. When the variable a exceeds 1.30, the synthesis of the lithium transition metal composite oxide tends to be difficult. The variable a preferably satisfies 1.10 ≦ a ≦ 1.20.

前記一般式における変数αは、ニッケル原子及びクロム原子が占有する位置であるニッケルサイトの物質量とマンガン原子及びチタン原子が占有する位置であるマンガンサイトの物質量との比が1:3に近くなるよう調節する。すなわち、変数αは0.450≦α≦0.550を満足する。変数αが前記範囲を満足すると、非水電解液二次電池の平均動作電圧を約4.6Vにすることができる。変数αは0.480≦α≦0.520を満足するのが好ましい。   The variable α in the above general formula is such that the ratio between the amount of nickel site material occupied by nickel atoms and chromium atoms and the amount of manganese site material occupied by manganese atoms and titanium atoms is close to 1: 3. Adjust so that That is, the variable α satisfies 0.450 ≦ α ≦ 0.550. When the variable α satisfies the above range, the average operating voltage of the non-aqueous electrolyte secondary battery can be about 4.6V. The variable α preferably satisfies 0.480 ≦ α ≦ 0.520.

変数βは0≦β≦0.015を満足する。図1は一般式Li1.11(Ni0.817Cr0.183α(Mn0.965Ti0.0352−α−βMgβ(一般式において、a=1.11、x=0.183、y=0.035、γ=0、δ=0であり、α/(2−α−β−γ−δ)=0.37である)で表されるリチウム遷移金属複合酸化物を用いた非水電解液二次電池における、変数βと、エネルギー密度ρ及び25℃における直流内部抵抗R(25)との関係を示したものである。変数a、x、y、α、γ及びδが異なるリチウム遷移金属複合酸化物でも同様の傾向を示す。図1から分かるように、変数βが0.015を過ぎた辺りからρが激しく低下していること、また、変数βが0.030を過ぎた辺りからR(25)が1.20Ωを超え、出力特性が非常に悪化していることが分かる。変数βは小さければ小さいほど好ましく、β=0であることがより好ましい。 The variable β satisfies 0 ≦ β ≦ 0.015. FIG. 1 shows a general formula Li 1.11 (Ni 0.817 Cr 0.183 ) α (Mn 0.965 Ti 0.035 ) 2-α-β Mg β O 4 (in the general formula, a = 1.11, x = 0.183, y = 0.035, γ = 0, δ = 0, and α / (2-α-β-γ-δ) = 0.37). The relationship of variable (beta), energy density (rho) E, and direct current | flow internal resistance R (25) in 25 degreeC in the nonaqueous electrolyte secondary battery using an oxide is shown. The same tendency is exhibited by lithium transition metal composite oxides having different variables a, x, y, α, γ, and δ. As can be seen from FIG. 1, ρ E has been drastically reduced from around the variable β exceeding 0.015, and R (25) is 1.20Ω from around the variable β exceeding 0.030. It can be seen that the output characteristics are very deteriorated. The variable β is preferably as small as possible, and more preferably β = 0.

変数γは0≦γ≦0.035を満足する。図2は一般式Li1.10(Ni0.817Cr0.183α(Mn0.965Ti0.0352−α−γAlγ(一般式において、a=1.10、x=0.183、y=0.035、β=0、δ=0であり、α/(2−α−β−γ−δ)=0.37である)で表されるリチウム遷移金属複合酸化物を用いた非水電解液二次電池における、変数γと、エネルギー密度ρ及び−25℃における直流内部抵抗R(−25)との関係を示したものである。変数a、x、y、α、β及びδが異なるリチウム遷移金属複合酸化物でも同様の傾向を示す。図2から分かるように、変数γが0.040を過ぎた辺りからρが激しく低下していること、また、変数γが0.035を過ぎた辺りからR(−25)が8.5Ωを超え、出力特性が非常に悪化していることが分かる。変数γは小さければ小さいほど好ましく、0≦γ≦0.010を満足するのがより好ましく、γ=0であることが特に好ましい。また、γ及びδが、0≦γ+δ≦0.010を満足するのが好ましい。 The variable γ satisfies 0 ≦ γ ≦ 0.035. FIG. 2 shows a general formula Li 1.10 (Ni 0.817 Cr 0.183 ) α (Mn 0.965 Ti 0.035 ) 2-α-γ Al γ O 4 (in the general formula, a = 1.10, x = 0.183, y = 0.035, β = 0, δ = 0, and α / (2-α-β-γ-δ) = 0.37). This shows the relationship between the variable γ, the energy density ρ E and the DC internal resistance R (−25) at −25 ° C. in a non-aqueous electrolyte secondary battery using an oxide. The same tendency is exhibited by lithium transition metal composite oxides having different variables a, x, y, α, β and δ. As can be seen from FIG. 2, ρ E has fallen drastically from around the variable γ exceeding 0.040, and R (−25) is 8.5Ω from around the variable γ exceeding 0.035. It can be seen that the output characteristics are extremely deteriorated. The smaller the variable γ is, the more preferable it is, it is more preferable to satisfy 0 ≦ γ ≦ 0.010, and it is particularly preferable that γ = 0. Moreover, it is preferable that γ and δ satisfy 0 ≦ γ + δ ≦ 0.010.

変数xは0.020≦x≦0.200を満足する。また、変数yは0.006≦y≦0.070を満足する。変数x及び変数yがそれぞれ前記範囲を満足すると、ニッケルサイトにおける酸化還元反応が容易に行われやすくなり、結果として非水電解液二次電池の出力特性が向上する。xが0.200を超える、あるいはyが0.070を超えると、非水電解液二次電池の充放電容量が低下する。また、非水電解液二次電池の平均動作電圧が低下し得る。変数xは0.050≦x≦0.150を満足するのが好ましい。また、変数yは0.015≦y≦0.045を満足するのが好ましい。   The variable x satisfies 0.020 ≦ x ≦ 0.200. The variable y satisfies 0.006 ≦ y ≦ 0.070. When the variable x and the variable y satisfy the above ranges, the oxidation-reduction reaction at the nickel site is easily performed, and as a result, the output characteristics of the nonaqueous electrolyte secondary battery are improved. When x exceeds 0.200 or y exceeds 0.070, the charge / discharge capacity of the nonaqueous electrolyte secondary battery decreases. In addition, the average operating voltage of the nonaqueous electrolyte secondary battery can be reduced. The variable x preferably satisfies 0.050 ≦ x ≦ 0.150. The variable y preferably satisfies 0.015 ≦ y ≦ 0.045.

また、ニッケルサイトにおけるクロム原子の物質量とマンガンサイトにおけるチタン原子の物質量との比が1:1に近くなるよう調節すると、非水電解液二次電池の質量エネルギー密度が向上するので好ましい。すなわち、変数α、β、γ、δ、x及びyは0.85≦(x・α)/{y・(2−α−β−γ−δ)}≦1.15を満足するのが好ましい。   Further, it is preferable to adjust the ratio of the amount of chromium atoms at the nickel site to the amount of titanium atoms at the manganese site to be close to 1: 1 because the mass energy density of the nonaqueous electrolyte secondary battery is improved. That is, it is preferable that the variables α, β, γ, δ, x, and y satisfy 0.85 ≦ (x · α) / {y · (2-α-β-γ-δ)} ≦ 1.15. .

(元素M)
リチウム遷移金属複合酸化物は、目的に応じて他の元素Mを含んでもよい。元素MとしてはNa、K、Ca、Sr、Ba、Ga、Co、Zn、Si、Ge、Zr、Hf、Sn、Ta、Nb、P、Bi、Mo及びWが挙げられる。元素Mは一種類の元素でもよいし、二種類以上の元素でもよい。変数δは0≦δ≦0.010を満足する。δが0.010を超えると出力特性又は平均動作電圧が低下し得る。
(Element M)
The lithium transition metal composite oxide may contain another element M depending on the purpose. Examples of the element M include Na, K, Ca, Sr, Ba, Ga, Co, Zn, Si, Ge, Zr, Hf, Sn, Ta, Nb, P, Bi, Mo, and W. The element M may be one kind of element or two or more kinds of elements. The variable δ satisfies 0 ≦ δ ≦ 0.010. If δ exceeds 0.010, the output characteristics or the average operating voltage may be reduced.

(任意成分)
正極活物質は、リチウム遷移金属複合酸化物以外に、その製造工程において混入する不可避な不純物や、目的に応じた微量の添加物等が存在していてもよい。
(Optional component)
In addition to the lithium transition metal composite oxide, the positive electrode active material may contain inevitable impurities mixed in the manufacturing process, a trace amount of additives depending on the purpose, and the like.

[正極活物質の製造方法]
正極活物質の製造方法は、公知の正極活物質の製造方法を適宜用いることができる。例えば、高温で酸化物に分解する原料化合物を目的の組成に合わせて混合する、溶媒に可溶な原料化合物を溶媒に溶解し、温度調整、pH調整、錯化剤投入等で前駆体の沈殿を生じさせる、等適宜原料混合物を調整する工程、及び得られる原料混合物を適当な温度で焼成する工程を含む方法によって得ることができる。以下、前記原料混合物を調整する工程を「混合工程」、前記焼成する工程を「焼成工程」とも呼ぶ。
[Method for producing positive electrode active material]
As a method for producing the positive electrode active material, a known method for producing a positive electrode active material can be appropriately used. For example, a raw material compound that decomposes into an oxide at high temperature is mixed in accordance with the target composition, a raw material compound that is soluble in a solvent is dissolved in the solvent, and the precursor is precipitated by adjusting the temperature, adjusting the pH, adding a complexing agent, etc. Can be obtained by a method including a step of appropriately adjusting a raw material mixture, and a step of firing the obtained raw material mixture at an appropriate temperature. Hereinafter, the step of adjusting the raw material mixture is also referred to as “mixing step”, and the step of baking is also referred to as “baking step”.

<混合工程>
混合工程は、高温で酸化物に分解する原料化合物を目的の組成に合わせて混合して、原料混合物を得る工程、又は、溶媒に可溶な原料化合物を溶媒に溶解し、温度調整、pH調整、錯化剤投入等で前駆体の沈殿を生じさせて、原料混合物を得る工程である。混合工程により、本実施態様の正極活物質の原料成分が得られる。
<Mixing process>
In the mixing step, a raw material compound that decomposes into an oxide at a high temperature is mixed in accordance with the target composition to obtain a raw material mixture, or a raw material compound that is soluble in a solvent is dissolved in a solvent to adjust temperature and pH. In this step, the precursor is precipitated by adding a complexing agent to obtain a raw material mixture. The raw material component of the positive electrode active material of this embodiment is obtained by the mixing step.

原料化合物は、高温で酸化物に分解する化合物であれば特に限定されない。原料化合物として、リチウム化合物、ニッケル化合物、マンガン化合物、クロム化合物、チタン化合物が挙げられ、これらは、酸化物、炭酸塩、水酸化物、硝酸塩、硫酸塩等であることができる。   A raw material compound will not be specifically limited if it is a compound decomposed | disassembled into an oxide at high temperature. Examples of the raw material compound include a lithium compound, a nickel compound, a manganese compound, a chromium compound, and a titanium compound, and these can be oxides, carbonates, hydroxides, nitrates, sulfates, and the like.

原料化合物の混合割合は、特に限定されないが、前記一般式における各元素の含有量を満足するような、混合割合であるのが好ましい。   The mixing ratio of the raw material compounds is not particularly limited, but is preferably a mixing ratio that satisfies the content of each element in the general formula.

<焼成工程>
焼成工程は、前記原料混合物を焼成して、焼成物を得る工程である。また、焼成工程により、本実施態様の正極活物質である焼成物が得られる。
<Baking process>
The firing step is a step of firing the raw material mixture to obtain a fired product. Moreover, the baked product which is a positive electrode active material of this embodiment is obtained by a baking process.

焼成時間は、焼成温度により異なるが、通常5時間以上あれば問題ない。焼成時間が長い分には特に問題ないが、通常48時間もあれば十分である。   Although the firing time varies depending on the firing temperature, there is usually no problem if it is 5 hours or longer. Although there is no particular problem if the firing time is long, usually 48 hours is sufficient.

焼成の雰囲気は、特に限定されないが、酸化性の雰囲気が好ましい。酸化性の雰囲気としては、大気雰囲気、含酸素雰囲気等が挙げられる。   The firing atmosphere is not particularly limited, but an oxidizing atmosphere is preferable. Examples of the oxidizing atmosphere include an air atmosphere and an oxygen-containing atmosphere.

以下、本実施形態について、実施例を用いてより具体的に説明する。しかし、本実施形態はこれらの実施例に限定されない。なお、元素の比を表す場合は物質量比で表している。   Hereinafter, the present embodiment will be described more specifically using examples. However, the present embodiment is not limited to these examples. In addition, when expressing the ratio of an element, it represents with a substance amount ratio.

(実施例1)
共沈法によってNi:Mn=23.7:76.3の複合酸化物を得た。この複合酸化物と、炭酸リチウム、酸化クロム(III)及び酸化チタン(IV)を、Li:(Ni+Mn):Cr:Ti=1.10:1.900:0.050:0.050となるように混合し、混合原料を得た。得られた混合原料を、大気中900℃で11時間焼成し、焼結体を得た。得られた焼結体を粉砕し、乾式篩にかけ、一般式Li1.10Ni0.450Cr0.050Mn1.450Ti0.050で表されるリチウム遷移金属複合酸化物を得た。
Example 1
A composite oxide of Ni: Mn = 23.7: 76.3 was obtained by the coprecipitation method. This composite oxide is mixed with lithium carbonate, chromium oxide (III) and titanium oxide (IV) so that Li: (Ni + Mn): Cr: Ti = 1.10: 1.900: 0.050: 0.050. To obtain a mixed raw material. The obtained mixed raw material was fired at 900 ° C. for 11 hours in the atmosphere to obtain a sintered body. The obtained sintered body was pulverized and passed through a dry sieve to obtain a lithium transition metal composite oxide represented by the general formula Li 1.10 Ni 0.450 Cr 0.050 Mn 1.450 Ti 0.050 O 4. It was.

(比較例1)
Ni:Mn=25.0:75.0の複合酸化物を用い、混合原料に酸化クロム(III)、酸化チタン(IV)を混合しない以外実施例1と同様に行い、一般式Li1.10Ni0.500Mn1.500で表されるリチウム遷移金属複合酸化物を得た。
(Comparative Example 1)
Ni: Mn = 25.0: using a composite oxide of 75.0, a mixed raw material chromium oxide (III), in the same manner as in Example 1 except for not mixing titanium oxide (IV) is performed, the general formula Li 1.10 A lithium transition metal composite oxide represented by Ni 0.500 Mn 1.500 O 4 was obtained.

(比較例2)
Ni:Mn=23.1:76.9の複合酸化物を用い、混合原料に酸化チタン(IV)を混合しない以外実施例1と同様に行い、一般式Li1.10Ni0.450Cr0.050Mn1.500で表されるリチウム遷移金属複合酸化物を得た。
(Comparative Example 2)
This was performed in the same manner as in Example 1 except that a composite oxide of Ni: Mn = 23.1: 76.9 was used, and titanium oxide (IV) was not mixed into the mixed raw material, and the general formula Li 1.10 Ni 0.450 Cr 0 A lithium transition metal composite oxide represented by 0.050 Mn 1.500 O 4 was obtained.

(比較例3)
Ni:Mn=25.6:74.4の複合酸化物を用い、混合原料に酸化クロム(III)を混合しない以外実施例1と同様に行い、一般式Li1.10Ni0.500Mn1.450Ti0.050で表されるリチウム遷移金属複合酸化物を得た。
(Comparative Example 3)
Using a composite oxide of Ni: Mn = 25.6: 74.4 and performing the same procedure as in Example 1 except that chromium (III) oxide is not mixed into the mixed raw material, the general formula Li 1.10 Ni 0.500 Mn 1 A lithium transition metal composite oxide represented by .450 Ti 0.050 O 4 was obtained.

(実施例2)
共沈法によってNi:Mn=23.7:76.3の複合酸化物を得た。この複合酸化物と、炭酸リチウム、酸化クロム(III)及び酸化チタン(IV)を、Li:(Ni+Mn):Cr:Ti=1.09:1.850:0.099:0.050となるように混合し、混合原料を得た。得られた混合原料を、大気中900℃で11時間焼成し、焼結体を得た。得られた焼結体を粉砕し、乾式篩にかけ、一般式Li1.09Ni0.439Cr0.099Mn1.411Ti0.050で表されるリチウム遷移金属複合酸化物を得た。
(Example 2)
A composite oxide of Ni: Mn = 23.7: 76.3 was obtained by the coprecipitation method. This composite oxide is mixed with lithium carbonate, chromium oxide (III) and titanium oxide (IV) so that Li: (Ni + Mn): Cr: Ti = 1.09: 1.850: 0.099: 0.050 To obtain a mixed raw material. The obtained mixed raw material was fired at 900 ° C. for 11 hours in the atmosphere to obtain a sintered body. The obtained sintered body is pulverized and subjected to dry sieving to obtain a lithium transition metal composite oxide represented by the general formula Li 1.09 Ni 0.439 Cr 0.099 Mn 1.411 Ti 0.050 O 4. It was.

(実施例3)
共沈法によってNi:Mn=23.8:76.2の複合酸化物を得た。この複合酸化物と、炭酸リチウム、酸化クロム(III)、酸化チタン(IV)及び炭酸マグネシウムを、Li:(Ni+Mn):Cr:Ti:Mg=1.12:1.838:0.097:0.050:0.015となるように混合し、混合原料を得た。得られた混合原料を、大気中900℃で11時間焼成し、焼結体を得た。得られた焼結体を粉砕し、乾式篩にかけ、一般式Li1.12Ni0.438Cr0.097Mn1.400Ti0.050Mg0.015で表されるリチウム遷移金属複合酸化物を得た。
Example 3
A composite oxide of Ni: Mn = 23.8: 76.2 was obtained by the coprecipitation method. Lithium carbonate, chromium oxide (III), titanium oxide (IV) and magnesium carbonate were mixed with this composite oxide, Li: (Ni + Mn): Cr: Ti: Mg = 1.12: 1.838: 0.097: 0. .050: 0.015 to obtain a mixed raw material. The obtained mixed raw material was fired at 900 ° C. for 11 hours in the atmosphere to obtain a sintered body. The obtained sintered body was pulverized, passed through a dry sieve, and a lithium transition metal composite represented by the general formula Li 1.12 Ni 0.438 Cr 0.097 Mn 1.400 Ti 0.050 Mg 0.015 O 4 An oxide was obtained.

(比較例4)
共沈法によってNi:Mn=23.7:76.3の複合酸化物を得た。この複合酸化物と、炭酸リチウム、酸化クロム(III)、酸化チタン(IV)及び炭酸マグネシウムを、Li:(Ni+Mn):Cr:Ti:Mg=1.10:1.832:0.098:0.050:0.020となるように混合し、混合原料を得た。得られた混合原料を、大気中900℃で11時間焼成し、焼結体を得た。得られた焼結体を粉砕し、乾式篩にかけ、一般式Li1.10Ni0.435Cr0.098Mn1.397Ti0.050Mg0.020で表されるリチウム遷移金属複合酸化物を得た。
(Comparative Example 4)
A composite oxide of Ni: Mn = 23.7: 76.3 was obtained by the coprecipitation method. Lithium carbonate, chromium oxide (III), titanium oxide (IV), and magnesium carbonate were mixed with this composite oxide, and Li: (Ni + Mn): Cr: Ti: Mg = 1.10: 1.832: 0.098: 0. .050: 0.020 to obtain a mixed raw material. The obtained mixed raw material was fired at 900 ° C. for 11 hours in the atmosphere to obtain a sintered body. The obtained sintered body was pulverized, passed through a dry sieve, and a lithium transition metal composite represented by the general formula Li 1.10 Ni 0.435 Cr 0.098 Mn 1.397 Ti 0.050 Mg 0.020 O 4 An oxide was obtained.

(比較例5)
共沈法によってNi:Mn=23.7:76.3の複合酸化物を得た。この複合酸化物と、炭酸リチウム、酸化クロム(III)、酸化チタン(IV)及び炭酸マグネシウムを、Li:(Ni+Mn):Cr:Ti:Mg=1.10:1.828:0.098:0.050:0.024となるように混合し、混合原料を得た。得られた混合原料を、大気中900℃で11時間焼成し、焼結体を得た。得られた焼結体を粉砕し、乾式篩にかけ、一般式Li1.10Ni0.434Cr0.098Mn1.394Ti0.050Mg0.024で表されるリチウム遷移金属複合酸化物を得た。
(Comparative Example 5)
A composite oxide of Ni: Mn = 23.7: 76.3 was obtained by the coprecipitation method. Lithium carbonate, chromium oxide (III), titanium oxide (IV) and magnesium carbonate were mixed with this composite oxide, Li: (Ni + Mn): Cr: Ti: Mg = 1.10: 1.828: 0.098: 0. .050: 0.024 to obtain a mixed raw material. The obtained mixed raw material was fired at 900 ° C. for 11 hours in the atmosphere to obtain a sintered body. The obtained sintered body was pulverized, passed through a dry sieve, and a lithium transition metal composite represented by the general formula Li 1.10 Ni 0.434 Cr 0.098 Mn 1.394 Ti 0.050 Mg 0.024 O 4 An oxide was obtained.

(比較例6)
共沈法によってNi:Mn=23.9:76.1の複合酸化物を得た。この複合酸化物と、炭酸リチウム、酸化クロム(III)、酸化チタン(IV)及び炭酸マグネシウムを、Li:(Ni+Mn):Cr:Ti:Mg=1.11:1.815:0.098:0.051:0.036となるように混合し、混合原料を得た。得られた混合原料を、大気中900℃で11時間焼成し、焼結体を得た。得られた焼結体を粉砕し、乾式篩にかけ、一般式Li1.11Ni0.434Cr0.098Mn1.381Ti0.051Mg0.036で表されるリチウム遷移金属複合酸化物を得た。
(Comparative Example 6)
A composite oxide of Ni: Mn = 23.9: 76.1 was obtained by the coprecipitation method. Lithium carbonate, chromium oxide (III), titanium oxide (IV) and magnesium carbonate were mixed with this composite oxide, Li: (Ni + Mn): Cr: Ti: Mg = 1.11: 1.815: 0.098: 0. .051: 0.036 to obtain a mixed raw material. The obtained mixed raw material was fired at 900 ° C. for 11 hours in the atmosphere to obtain a sintered body. The obtained sintered body was pulverized, passed through a dry sieve, and a lithium transition metal composite represented by the general formula Li 1.11 Ni 0.434 Cr 0.098 Mn 1.381 Ti 0.051 Mg 0.036 O 4 An oxide was obtained.

(実施例4)
共沈法によってNi:Mn=23.6:76.4の複合酸化物を得た。この複合酸化物と、炭酸リチウム、酸化クロム(III)、酸化チタン(IV)及び酸化アルミニウムを、Li:(Ni+Mn):Cr:Ti:Al=1.10:1.833:0.097:0.050:0.020となるように混合し、混合原料を得た。得られた混合原料を、大気中900℃で11時間焼成し、焼結体を得た。得られた焼結体を粉砕し、乾式篩にかけ、一般式Li1.10Ni0.433Cr0.097Mn1.400Ti0.050Al0.020で表されるリチウム遷移金属複合酸化物を得た。
Example 4
A composite oxide of Ni: Mn = 23.6: 76.4 was obtained by the coprecipitation method. Lithium carbonate, chromium oxide (III), titanium oxide (IV) and aluminum oxide were mixed with this composite oxide, Li: (Ni + Mn): Cr: Ti: Al = 1.10: 1.833: 0.097: 0. .050: 0.020 to obtain a mixed raw material. The obtained mixed raw material was fired at 900 ° C. for 11 hours in the atmosphere to obtain a sintered body. The obtained sintered body was pulverized, passed through a dry sieve, and a lithium transition metal composite represented by the general formula Li 1.10 Ni 0.433 Cr 0.097 Mn 1.400 Ti 0.050 Al 0.020 O 4 An oxide was obtained.

(実施例5)
共沈法によってNi:Mn=23.7:76.3の複合酸化物を得た。この複合酸化物と、炭酸リチウム、酸化クロム(III)、酸化チタン(IV)及び酸化アルミニウムを、Li:(Ni+Mn):Cr:Ti:Al=1.10:1.825:0.097:0.050:0.028となるように混合し、混合原料を得た。得られた混合原料を、大気中900℃で11時間焼成し、焼結体を得た。得られた焼結体を粉砕し、乾式篩にかけ、一般式Li1.10Ni0.433Cr0.097Mn1.392Ti0.050Al0.028で表されるリチウム遷移金属複合酸化物を得た。
(Example 5)
A composite oxide of Ni: Mn = 23.7: 76.3 was obtained by the coprecipitation method. Lithium carbonate, chromium oxide (III), titanium oxide (IV) and aluminum oxide were mixed with this composite oxide, Li: (Ni + Mn): Cr: Ti: Al = 1.10: 1.825: 0.097: 0. .050: 0.028 to obtain a mixed raw material. The obtained mixed raw material was fired at 900 ° C. for 11 hours in the atmosphere to obtain a sintered body. The obtained sintered body was pulverized, passed through a dry sieve, and a lithium transition metal composite represented by the general formula Li 1.10 Ni 0.433 Cr 0.097 Mn 1.392 Ti 0.050 Al 0.028 O 4 An oxide was obtained.

(実施例6)
共沈法によってNi:Mn=23.7:76.3の複合酸化物を得た。この複合酸化物と、炭酸リチウム、酸化クロム(III)、酸化チタン(IV)及び酸化アルミニウムを、Li:(Ni+Mn):Cr:Ti:Al=1.10:1.821:0.097:0.050:0.032となるように混合し、混合原料を得た。得られた混合原料を、大気中900℃で11時間焼成し、焼結体を得た。得られた焼結体を粉砕し、乾式篩にかけ、一般式Li1.10Ni0.432Cr0.097Mn1.389Ti0.050Al0.032で表されるリチウム遷移金属複合酸化物を得た。
(Example 6)
A composite oxide of Ni: Mn = 23.7: 76.3 was obtained by the coprecipitation method. Lithium carbonate, chromium oxide (III), titanium oxide (IV), and aluminum oxide were mixed with this composite oxide, Li: (Ni + Mn): Cr: Ti: Al = 1.10: 1.721: 0.097: 0. .050: 0.032 to obtain a mixed raw material. The obtained mixed raw material was fired at 900 ° C. for 11 hours in the atmosphere to obtain a sintered body. The obtained sintered body was pulverized, passed through a dry sieve, and a lithium transition metal composite represented by the general formula Li 1.10 Ni 0.432 Cr 0.097 Mn 1.389 Ti 0.050 Al 0.032 O 4 An oxide was obtained.

(比較例7)
共沈法によってNi:Mn=23.7:76.3の複合酸化物を得た。この複合酸化物と、炭酸リチウム、酸化クロム(III)、酸化チタン(IV)及び酸化アルミニウムを、Li:(Ni+Mn):Cr:Ti:Al=1.10:1.817:0.097:0.049:0.037となるように混合し、混合原料を得た。得られた混合原料を、大気中900℃で11時間焼成し、焼結体を得た。得られた焼結体を粉砕し、乾式篩にかけ、一般式Li1.10Ni0.431Cr0.097Mn1.386Ti0.049Al0.037で表されるリチウム遷移金属複合酸化物を得た。
(Comparative Example 7)
A composite oxide of Ni: Mn = 23.7: 76.3 was obtained by the coprecipitation method. Lithium carbonate, chromium oxide (III), titanium oxide (IV) and aluminum oxide were mixed with this composite oxide, Li: (Ni + Mn): Cr: Ti: Al = 1.10: 1.817: 0.097: 0. 049: 0.037 to obtain a mixed raw material. The obtained mixed raw material was fired at 900 ° C. for 11 hours in the atmosphere to obtain a sintered body. The resulting pulverized sintered body, subjected to dry sieving, the lithium transition metal composite represented by the general formula Li 1.10 Ni 0.431 Cr 0.097 Mn 1.386 Ti 0.049 Al 0.037 O 4 An oxide was obtained.

(比較例8)
共沈法によってNi:Mn=23.7:76.3の複合酸化物を得た。この複合酸化物と、炭酸リチウム、酸化クロム(III)、酸化チタン(IV)及び酸化アルミニウムを、Li:(Ni+Mn):Cr:Ti:Al=1.10:1.810:0.097:0.049:0.044となるように混合し、混合原料を得た。得られた混合原料を、大気中900℃で11時間焼成し、焼結体を得た。得られた焼結体を粉砕し、乾式篩にかけ、一般式Li1.10Ni0.429Cr0.097Mn1.381Ti0.049Al0.044で表されるリチウム遷移金属複合酸化物を得た。
(Comparative Example 8)
A composite oxide of Ni: Mn = 23.7: 76.3 was obtained by the coprecipitation method. Lithium carbonate, chromium oxide (III), titanium oxide (IV), and aluminum oxide were mixed with this composite oxide. Li: (Ni + Mn): Cr: Ti: Al = 1.10: 1.810: 0.097: 0 049: 0.044 to obtain a mixed raw material. The obtained mixed raw material was fired at 900 ° C. for 11 hours in the atmosphere to obtain a sintered body. The obtained sintered body was pulverized, passed through a dry sieve, and a lithium transition metal composite represented by the general formula Li 1.10 Ni 0.429 Cr 0.097 Mn 1.381 Ti 0.049 Al 0.044 O 4 An oxide was obtained.

(比較例9)
共沈法によってNi:Mn=23.7:76.3の複合酸化物を得た。この複合酸化物と、炭酸リチウム、酸化クロム(III)、酸化チタン(IV)及び酸化アルミニウムを、Li:(Ni+Mn):Cr:Ti:Al=1.10:1.789:0.096:0.049:0.066となるように混合し、混合原料を得た。得られた混合原料を、大気中900℃で11時間焼成し、焼結体を得た。得られた焼結体を粉砕し、乾式篩にかけ、一般式Li1.10Ni0.424Cr0.096Mn1.365Ti0.049Al0.066で表されるリチウム遷移金属複合酸化物を得た。
(Comparative Example 9)
A composite oxide of Ni: Mn = 23.7: 76.3 was obtained by the coprecipitation method. Lithium carbonate, chromium oxide (III), titanium oxide (IV) and aluminum oxide were mixed with this composite oxide, Li: (Ni + Mn): Cr: Ti: Al = 1.10: 1.789: 0.096: 0. 049: 0.066 to obtain a mixed raw material. The obtained mixed raw material was fired at 900 ° C. for 11 hours in the atmosphere to obtain a sintered body. The obtained sintered body was pulverized, passed through a dry sieve, and a lithium transition metal composite represented by the general formula Li 1.10 Ni 0.424 Cr 0.096 Mn 1.365 Ti 0.049 Al 0.066 O 4 An oxide was obtained.

(実施例7)
共沈法によってNi:Mn=23.7:76.3の複合酸化物を得た。この複合酸化物と、炭酸リチウム、酸化クロム(III)、酸化チタン(IV)及び酸化ジルコニウムを、Li:(Ni+Mn):Cr:Ti:Zr=1.10:1.894:0.050:0.050:0.006となるように混合し、混合原料を得た。得られた混合原料を、大気中900℃で11時間焼成し、焼結体を得た。得られた焼結体を粉砕し、乾式篩にかけ、一般式Li1.10Ni0.449Cr0.050Mn1.445Ti0.050Zr0.006で表されるリチウム遷移金属複合酸化物を得た。
(Example 7)
A composite oxide of Ni: Mn = 23.7: 76.3 was obtained by the coprecipitation method. Lithium carbonate, chromium oxide (III), titanium oxide (IV) and zirconium oxide were mixed with this composite oxide, Li: (Ni + Mn): Cr: Ti: Zr = 1.10: 1.894: 0.050: 0 .050: 0.006 to obtain a mixed raw material. The obtained mixed raw material was fired at 900 ° C. for 11 hours in the atmosphere to obtain a sintered body. The obtained sintered body was pulverized, passed through a dry sieve, and a lithium transition metal composite represented by the general formula Li 1.10 Ni 0.449 Cr 0.050 Mn 1.445 Ti 0.050 Zr 0.006 O 4 An oxide was obtained.

[出力特性評価]
実施例1〜7及び比較例1〜9で得られるリチウム遷移金属複合酸化物をそれぞれ正極活物質として用いた非水電解液二次電池の内部抵抗を求めた。内部抵抗が低いことは出力特性が良いことを意味する。
[Output characteristics evaluation]
The internal resistances of the nonaqueous electrolyte secondary batteries using the lithium transition metal composite oxides obtained in Examples 1 to 7 and Comparative Examples 1 to 9 as the positive electrode active materials were determined. Low internal resistance means good output characteristics.

(1.正極の作製)
正極活物質90質量%、炭素粉末5質量%、及びポリフッ化ビニリデン(PVDF)のN−メチルピロリドン(NMP)溶液(PVDFとして5質量%)5質量%を混練して正極ペーストを得た。得られた正極ペーストをアルミニウム箔からなる集電体に塗布、乾燥及び圧延し、正極を得た。
(1. Production of positive electrode)
A positive electrode paste was obtained by kneading 90% by mass of a positive electrode active material, 5% by mass of carbon powder, and 5% by mass of an N-methylpyrrolidone (NMP) solution of polyvinylidene fluoride (PVDF) (5% by mass as PVDF). The obtained positive electrode paste was applied to a current collector made of an aluminum foil, dried and rolled to obtain a positive electrode.

(2.負極の作製)
負極活物質としてチタン酸リチウムを用いた。負極活物質97.5質量%、カルボキシメチルセルロース(CMC)1.5質量%、及びスチレンブタジエンゴム(SBR)1.0質量%を純水に分散し、混練して負極ペーストを得た。得られた負極ペーストを銅箔からなる集電体に塗布、乾燥及び圧延し、負極を得た。
(2. Production of negative electrode)
Lithium titanate was used as the negative electrode active material. A negative electrode active material 97.5% by mass, carboxymethylcellulose (CMC) 1.5% by mass, and styrene butadiene rubber (SBR) 1.0% by mass were dispersed in pure water and kneaded to obtain a negative electrode paste. The obtained negative electrode paste was applied to a current collector made of copper foil, dried and rolled to obtain a negative electrode.

(3.非水電解液の作製)
エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)を体積比3:7で混合し、混合溶媒を得た。得られた混合溶媒に六フッ化リン酸リチウム(LiPF)をその濃度が1mol/Lとなるように溶解し、非水電解液を得た。
(3. Preparation of non-aqueous electrolyte)
Ethylene carbonate (EC) and methyl ethyl carbonate (MEC) were mixed at a volume ratio of 3: 7 to obtain a mixed solvent. Lithium hexafluorophosphate (LiPF 6 ) was dissolved in the obtained mixed solvent so as to have a concentration of 1 mol / L to obtain a nonaqueous electrolytic solution.

(4.セパレータ)
多孔性ポリエチレンフィルムをセパレータとして用いた。
(4. Separator)
A porous polyethylene film was used as a separator.

(5.二次電池の作製)
正極及び負極の集電体にそれぞれリード電極を取り付け、120℃で真空乾燥を行った。乾燥後正極と負極の間にセパレータを配置し、これらを袋状のラミネートパックに収納した。収納後60℃で真空乾燥を行い、各部材に吸着した水分を除去した。乾燥後ラミネートパック内に非水電解液を注入、封止し、評価用の非水電解液二次電池を得た。得られた二次電池に微弱電流でエージングを行い、正極及び負極に電解質を十分なじませた。エージング後二次電池を25℃及び−25℃の環境下に置き、直流内部抵抗の測定を行った。
(5. Production of secondary battery)
Lead electrodes were attached to the positive and negative electrode current collectors, respectively, and vacuum-dried at 120 ° C. After drying, a separator was placed between the positive electrode and the negative electrode, and these were stored in a bag-like laminate pack. After storing, vacuum drying was performed at 60 ° C. to remove moisture adsorbed on each member. After drying, a non-aqueous electrolyte was poured into the laminate pack and sealed to obtain a non-aqueous electrolyte secondary battery for evaluation. The obtained secondary battery was aged with a weak current, and the electrolyte was sufficiently applied to the positive electrode and the negative electrode. After aging, the secondary battery was placed in an environment at 25 ° C. and −25 ° C., and the DC internal resistance was measured.

(6.直流内部抵抗測定)
満充電電圧3.5Vにおける充電深度50%まで定電流充電を行った。充電後特定の電流iによるパルス放電を行い、その時の電圧Vを測定した。パルスは10秒間、パルスとパルスの間は3分間とした。Vは各パルスの最終値を用いた。i=0.04A、0.08A、0.12A、0.16A、0.20Aにおける各電圧Vを、電流iを横軸に、電圧Vを縦軸にそれぞれプロットし、各プロットを結ぶ近似直線の傾きの絶対値を、T℃における内部抵抗R(T)とした。
(6. DC internal resistance measurement)
Constant current charging was performed up to a charge depth of 50% at a full charge voltage of 3.5V. After charging, pulse discharge with a specific current i was performed, and the voltage V at that time was measured. The pulse was 10 seconds and the interval between pulses was 3 minutes. V used the final value of each pulse. Each voltage V at i = 0.04A, 0.08A, 0.12A, 0.16A, 0.20A is plotted with current i on the horizontal axis and voltage V on the vertical axis, and approximate lines connecting the plots. Was the internal resistance R (T) at T ° C.

[エネルギー密度評価]
実施例1〜7及び比較例1〜9で得られるリチウム遷移金属複合酸化物をそれぞれ正極活物質とし、以下の要領で二次電池のエネルギー密度を評価した。
[Energy density evaluation]
The lithium transition metal composite oxides obtained in Examples 1 to 7 and Comparative Examples 1 to 9 were each used as the positive electrode active material, and the energy density of the secondary battery was evaluated in the following manner.

(1.正極の作製)
出力特性評価用二次電池同様の手順で正極を得た。
(1. Production of positive electrode)
A positive electrode was obtained in the same procedure as the secondary battery for output characteristic evaluation.

(2.負極の作製)
金属リチウムを薄いシート状に成形し、負極を得た。
(2. Production of negative electrode)
Metallic lithium was molded into a thin sheet to obtain a negative electrode.

(3.非水電解液の作製)
MECをジエチルカーボネートとする以外出力特性評価用二次電池と同様の手順で電解液を得た。
(3. Preparation of non-aqueous electrolyte)
An electrolytic solution was obtained in the same procedure as the secondary battery for output characteristic evaluation except that MEC was diethyl carbonate.

(4.セパレータ)
出力特性評価用二次電池と同様のセパレータを用いた。
(4. Separator)
The same separator as the secondary battery for output characteristic evaluation was used.

(5.二次電池の作製)
正極にリード電極を取り付け、正極、セパレータ、負極を順に容器に収納した。負極はステンレス製の容器底部に電気的に接続され、容器底部が負極端子となる。セパレータはテフロン(登録商標)製の容器側部によって固定された。正極のリード電極の先端は容器外部に導出し、正極端子とした。正負極の端子は、容器側部によって電気的に絶縁させた。収納後電解液を注入し、ステンレス製の容器蓋部によって封止し、密閉型の試験電池を得た。これをエネルギー密度の評価に用いた。
(5. Production of secondary battery)
A lead electrode was attached to the positive electrode, and the positive electrode, the separator, and the negative electrode were sequentially accommodated in a container. The negative electrode is electrically connected to a stainless steel container bottom, and the container bottom serves as a negative electrode terminal. The separator was fixed by a container side made of Teflon (registered trademark). The tip of the positive lead electrode was led out of the container and used as a positive terminal. The positive and negative terminals were electrically insulated by the container side. After storage, the electrolyte was poured and sealed with a stainless steel container lid to obtain a sealed test battery. This was used for energy density evaluation.

(6.放電容量測定)
満充電電圧5.0V、充電レート0.1Cで定電流定電圧充電を行った後、放電電圧3.0V、放電レート0.1Cで定電流放電し、放電開始から終了までに放出された単位質量当たりの電荷を放電容量Qとした。ここで1Cは満充電の状態から1時間で放電を終了させる電流密度を意味する。
(6. Discharge capacity measurement)
A unit that is discharged from the start to the end of discharge after a constant current and constant voltage charge at a full charge voltage of 5.0 V and a charge rate of 0.1 C, followed by a constant current discharge at a discharge voltage of 3.0 V and a discharge rate of 0.1 C. the charge per mass discharge capacity Q d. Here, 1C means a current density at which discharge is completed in 1 hour from a fully charged state.

(7.平均動作電圧の算出)
放電時における二次電池の動作電圧の時間平均を求め、これを平均動作電圧<E>とした。
(7. Calculation of average operating voltage)
The time average of the operating voltage of the secondary battery at the time of discharge was calculated | required, and this was made into average operating voltage <E>.

(8.エネルギー密度の算出)
と<E>の積から、二次電池から取り出された単位質量当たりのエネルギーρを算出し、これを二次電池のエネルギー密度とした。
(8. Calculation of energy density)
From Q d and the product of <E>, calculates the energy [rho E per unit mass taken out of the secondary battery, which was used as the energy density of the secondary battery.

実施例1〜8及び比較例1〜10について、正極活物質の主成分の組成と各種電池特性を表1に示す。   Table 1 shows the composition of the main component of the positive electrode active material and various battery characteristics for Examples 1 to 8 and Comparative Examples 1 to 10.

Figure 2016181500
Figure 2016181500

表1より、以下のことが分かる。   Table 1 shows the following.

主成分組成にクロムのみを含有する比較例2の正極活物質を用いた二次電池は、主成分組成にクロムを含有しない比較例1の正極活物質を用いた二次電池に比べ出力特性が改善しているが、R(25)が1.20Ωを超えているため、比較例2の正極活物質を用いた二次電池の出力特性は依然十分良いとは言えない。   The secondary battery using the positive electrode active material of Comparative Example 2 containing only chromium in the main component composition has output characteristics compared to the secondary battery using the positive electrode active material of Comparative Example 1 not containing chromium in the main component composition. Although improved, since R (25) exceeds 1.20Ω, it cannot be said that the output characteristics of the secondary battery using the positive electrode active material of Comparative Example 2 are still sufficiently good.

主成分組成にチタンのみを含有する比較例3の正極活物質を用いた二次電池は、比較例1の正極活物質を用いた二次電池に比べ出力特性が悪化している。   The secondary battery using the positive electrode active material of Comparative Example 3 containing only titanium in the main component composition has deteriorated output characteristics as compared with the secondary battery using the positive electrode active material of Comparative Example 1.

主成分組成にクロムとチタンの両方を含有する実施例1の正極活物質を用いた二次電池は、出力特性が十分良くなっている。   The secondary battery using the positive electrode active material of Example 1 containing both chromium and titanium in the main component composition has sufficiently improved output characteristics.

主成分組成にマグネシウムを過剰に含有する比較例4〜6の正極活物質を用いた二次電池は、エネルギー密度ρが620mWh/gを下回っており、エネルギー密度が十分良いとは言えない。比較例6の正極活物質を用いた二次電池は、R(25)が1.20Ωを超えているため、出力特性も十分良いとは言えない。二次電池の出力特性及びエネルギー密度が十分良い変数βの範囲は、β=0.015程度かそれ以下である。また、変数βは小さければ小さいほど良く、β=0が最も良い。 Cathode active material secondary battery using the comparative examples 4-6 to excessive containing magnesium as a main component composition, the energy density [rho E is below the 620mWh / g, it can not be said that the energy density is good enough. Since the secondary battery using the positive electrode active material of Comparative Example 6 has R (25) exceeding 1.20Ω, it cannot be said that the output characteristics are sufficiently good. The range of the variable β with sufficiently good output characteristics and energy density of the secondary battery is about β = 0.015 or less. Further, the smaller the variable β, the better, and β = 0 is the best.

主成分組成にアルミニウムを過剰に含有する比較例7〜9の正極活物質を用いた二次電池は、R(−25)が8.5Ωを超えているため、出力特性が十分良いとは言えない。比較例8、9の正極活物質を用いた二次電池は、ρが620mWh/gを下回っており、エネルギー密度も十分良いとは言えない。二次電池の出力特性及びエネルギー密度が十分良い変数γの範囲は、γ=0.035程度かそれ以下である。また、変数γは小さければ小さいほど良く、γ=0が最も良い。 The secondary batteries using the positive electrode active materials of Comparative Examples 7 to 9 containing excess aluminum in the main component composition have sufficiently high output characteristics because R (−25) exceeds 8.5Ω. Absent. Cathode active material secondary battery using the comparative examples 8 and 9, [rho E is below the 620mWh / g, an energy density not be also sufficiently good. The range of the variable γ with sufficiently good output characteristics and energy density of the secondary battery is about γ = 0.035 or less. Further, the smaller the variable γ is, the better, and γ = 0 is the best.

本実施形態の非水電解液二次電池用正極活物質を用いると、エネルギー密度及び出力特
性が共に高い非水電解液二次電池を得ることができる。得られる非水電解液二次電池は、
電気自動車等の大型機器の動力源として好適に利用できる。
When the positive electrode active material for a non-aqueous electrolyte secondary battery of this embodiment is used, a non-aqueous electrolyte secondary battery having both high energy density and output characteristics can be obtained. The resulting nonaqueous electrolyte secondary battery is
It can be suitably used as a power source for large equipment such as electric vehicles.

Claims (4)

一般式Li(Ni1−xCrα(Mn1−yTi2−α−β−γ−δMgβAlγδ(但し、1.00≦a≦1.30、0.020≦x≦0.200、0.006≦y≦0.070、0.450≦α≦0.550、0≦β≦0.015、0≦γ≦0.035、0≦δ≦0.010、MはNa、K、Ca、Sr、Ba、Ga、Co、Zn、Si、Ge、Zr、Hf、Sn、Ta、Nb、P、Bi、Mo及びWからなる群より選択される少なくとも一種の元素)で表されるリチウム遷移金属複合酸化物を含む非水電解液二次電池用正極活物質。 Formula Li a (Ni 1-x Cr x) α (Mn 1-y Ti y) 2-α-β-γ-δ Mg β Al γ M δ O 4 ( where, 1.00 ≦ a ≦ 1.30 0.020 ≦ x ≦ 0.200, 0.006 ≦ y ≦ 0.070, 0.450 ≦ α ≦ 0.550, 0 ≦ β ≦ 0.015, 0 ≦ γ ≦ 0.035, 0 ≦ δ ≦ 0.010, M is selected from the group consisting of Na, K, Ca, Sr, Ba, Ga, Co, Zn, Si, Ge, Zr, Hf, Sn, Ta, Nb, P, Bi, Mo and W A positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium transition metal composite oxide represented by: 前記一般式において、0.85≦(x・α)/{y・(2−α−β−γ−δ)}≦1.15である、請求項1に記載の正極活物質。   2. The positive electrode active material according to claim 1, wherein 0.85 ≦ (x · α) / {y · (2-α-β-γ-δ)} ≦ 1.15 in the general formula. 前記一般式において、β=0である請求項1又は2に記載の正極活物質。   The positive electrode active material according to claim 1, wherein β = 0 in the general formula. 前記一般式において、γ=0である請求項1乃至3のいずれか一項に記載の正極活物質。   The positive electrode active material according to claim 1, wherein γ = 0 in the general formula.
JP2015246565A 2015-03-24 2015-12-17 Cathode active material for non-aqueous electrolyte secondary battery Active JP6128196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/075,937 US9966601B2 (en) 2015-03-24 2016-03-21 Positive electrode active material for nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015061712 2015-03-24
JP2015061712 2015-03-24

Publications (2)

Publication Number Publication Date
JP2016181500A true JP2016181500A (en) 2016-10-13
JP6128196B2 JP6128196B2 (en) 2017-05-17

Family

ID=57132687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015246565A Active JP6128196B2 (en) 2015-03-24 2015-12-17 Cathode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6128196B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168470A1 (en) * 2017-03-14 2018-09-20 三井金属鉱業株式会社 Spinel type lithium nickel manganese-containing composite oxide
CN114975985A (en) * 2022-06-29 2022-08-30 三明市新能源产业技术研究院有限公司 Ti-Cr co-doped high-voltage spinel cathode material, preparation method thereof, lithium ion battery cathode and lithium ion battery
WO2023217139A1 (en) * 2022-05-10 2023-11-16 珠海冠宇电池股份有限公司 Battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158008A (en) * 2000-11-17 2002-05-31 Hitachi Maxell Ltd Nonaqueous secondary cell positive electrode activator, and nonaqueous secondary cell using the same
JP2003197194A (en) * 2001-10-18 2003-07-11 Nec Corp Electrode material for nonaqueous electrolyte secondary battery
JP2003317718A (en) * 2002-04-22 2003-11-07 Sony Corp Positive electrode material, electrode and battery
JP2012033279A (en) * 2010-07-28 2012-02-16 Nec Energy Devices Ltd Lithium ion secondary battery
WO2012077472A1 (en) * 2010-12-09 2012-06-14 日本電気株式会社 Positive electrode active material for secondary battery and secondary battery using same
WO2012165020A1 (en) * 2011-05-30 2012-12-06 日本電気株式会社 Active material for secondary batteries, and secondary battery using same
JP2013137950A (en) * 2011-12-28 2013-07-11 Toyota Motor Corp Lithium-ion secondary battery
WO2014030764A1 (en) * 2012-08-24 2014-02-27 三井金属鉱業株式会社 Spinel lithium-manganese-nickel-containing composite oxide
JP2014130773A (en) * 2012-12-28 2014-07-10 Toyota Motor Corp Positive electrode active material particle and utilization thereof
JP2014238976A (en) * 2013-06-07 2014-12-18 住友金属鉱山株式会社 Lithium secondary battery positive electrode active material, and lithium secondary battery arranged by use thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158008A (en) * 2000-11-17 2002-05-31 Hitachi Maxell Ltd Nonaqueous secondary cell positive electrode activator, and nonaqueous secondary cell using the same
JP2003197194A (en) * 2001-10-18 2003-07-11 Nec Corp Electrode material for nonaqueous electrolyte secondary battery
JP2003317718A (en) * 2002-04-22 2003-11-07 Sony Corp Positive electrode material, electrode and battery
JP2012033279A (en) * 2010-07-28 2012-02-16 Nec Energy Devices Ltd Lithium ion secondary battery
WO2012077472A1 (en) * 2010-12-09 2012-06-14 日本電気株式会社 Positive electrode active material for secondary battery and secondary battery using same
WO2012165020A1 (en) * 2011-05-30 2012-12-06 日本電気株式会社 Active material for secondary batteries, and secondary battery using same
JP2013137950A (en) * 2011-12-28 2013-07-11 Toyota Motor Corp Lithium-ion secondary battery
WO2014030764A1 (en) * 2012-08-24 2014-02-27 三井金属鉱業株式会社 Spinel lithium-manganese-nickel-containing composite oxide
JP2014130851A (en) * 2012-08-24 2014-07-10 Mitsui Mining & Smelting Co Ltd Spinel lithium-manganese-nickel-containing composite oxide
JP2014130773A (en) * 2012-12-28 2014-07-10 Toyota Motor Corp Positive electrode active material particle and utilization thereof
JP2014238976A (en) * 2013-06-07 2014-12-18 住友金属鉱山株式会社 Lithium secondary battery positive electrode active material, and lithium secondary battery arranged by use thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168470A1 (en) * 2017-03-14 2018-09-20 三井金属鉱業株式会社 Spinel type lithium nickel manganese-containing composite oxide
KR20190112030A (en) * 2017-03-14 2019-10-02 미쓰이금속광업주식회사 Spinel-type lithium nickel manganese-containing oxide
CN110402239A (en) * 2017-03-14 2019-11-01 三井金属矿业株式会社 The spinel-type manganese composite oxide of nickel containing lithium
JPWO2018168470A1 (en) * 2017-03-14 2019-11-07 三井金属鉱業株式会社 Spinel-type lithium nickel manganese-containing composite oxide
KR102230484B1 (en) * 2017-03-14 2021-03-22 미쓰이금속광업주식회사 Spinel type lithium nickel manganese-containing complex oxide
EP3597603A4 (en) * 2017-03-14 2021-07-07 Mitsui Mining & Smelting Co., Ltd. Spinel type lithium nickel manganese-containing composite oxide
US11799079B2 (en) 2017-03-14 2023-10-24 Mitsui Mining & Smelting Co., Ltd. Spinel type lithium nickel manganese-containing composite oxide
WO2023217139A1 (en) * 2022-05-10 2023-11-16 珠海冠宇电池股份有限公司 Battery
CN114975985A (en) * 2022-06-29 2022-08-30 三明市新能源产业技术研究院有限公司 Ti-Cr co-doped high-voltage spinel cathode material, preparation method thereof, lithium ion battery cathode and lithium ion battery

Also Published As

Publication number Publication date
JP6128196B2 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
JP4742866B2 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery, and method for producing positive electrode active material for secondary battery
JP5325888B2 (en) Electrode active material, electrode for non-aqueous secondary battery and non-aqueous secondary battery
WO2010147179A1 (en) Electrode for electrochemical elements and electrochemical element using same
JPWO2004105162A6 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery, and method for producing positive electrode active material for secondary battery
JPWO2015033665A1 (en) Secondary battery control device and control method
JP2012043637A (en) Positive electrode active material for nonaqueous electrolyte secondary battery
WO2015033666A1 (en) Secondary battery charging method and charging device
KR100922685B1 (en) Cathode active material for lithium secondary battery
JP7121219B1 (en) Method for producing lithium metal composite oxide
JP6128196B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2011086464A (en) Negative electrode active material for lithium secondary battery, lithium secondary battery using the same, and method of manufacturing the negative electrode active material for lithium secondary battery
JP6191351B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2005332629A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method
JP6233101B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP6400364B2 (en) Cathode active material for non-aqueous secondary battery and method for producing the same
JP2009043546A (en) Lithium secondary battery
JP2002170566A (en) Lithium secondary cell
US9966601B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery
JP6958629B2 (en) Manufacturing method of nickel composite oxide and lithium nickel composite oxide
JP6350321B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2015060691A (en) Positive electrode for lithium ion secondary battery, lithium ion secondary battery and lithium ion secondary battery system
JP2015022950A (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof
JP5958119B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery
JP6167775B2 (en) Secondary battery control device and control method
JP2008108650A (en) Manufacturing method of cathode for lithium secondary battery

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161019

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170327

R150 Certificate of patent or registration of utility model

Ref document number: 6128196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250