JP2012043637A - Positive electrode active material for nonaqueous electrolyte secondary battery - Google Patents

Positive electrode active material for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2012043637A
JP2012043637A JP2010183687A JP2010183687A JP2012043637A JP 2012043637 A JP2012043637 A JP 2012043637A JP 2010183687 A JP2010183687 A JP 2010183687A JP 2010183687 A JP2010183687 A JP 2010183687A JP 2012043637 A JP2012043637 A JP 2012043637A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
discharge capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010183687A
Other languages
Japanese (ja)
Other versions
JP5703626B2 (en
Inventor
Katsuyuki Kitano
勝行 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2010183687A priority Critical patent/JP5703626B2/en
Publication of JP2012043637A publication Critical patent/JP2012043637A/en
Application granted granted Critical
Publication of JP5703626B2 publication Critical patent/JP5703626B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material which is inexpensive and is improved in charge discharge capacity and output characteristics.SOLUTION: A lithium transition metal composite oxide represented by general formula LiNiMnWO(wherein a, b, and c satisfy 1<a<1.2, 0.5≤b≤0.7, and 0<c≤0.02 respectively) is used as the positive electrode active material.

Description

本願発明は、リチウムイオン二次電池等の非水電解液二次電池用正極活物質に関するものである。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.

近年、ビデオカメラ、携帯電話、ノートパソコン等の携帯機器の普及及び小型化が進み、その電源用にリチウムイオン二次電池等の非水電解液二次電池が用いられるようになってきている。更に、最近の環境問題への対応から、電気自動車等の動力用電池としても注目されている。   In recent years, portable devices such as video cameras, mobile phones, and notebook personal computers have become widespread and downsized, and non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have been used for power supplies. Furthermore, it has been attracting attention as a power battery for electric vehicles and the like due to recent environmental problems.

リチウム二次電池用正極活物質としてはLiCoO(コバルト酸リチウム)が4V級の二次電池を構成できるものとして一般的に広く採用されている。LiCoOを正極活物質として用いた場合、放電容量が約160mA/gで実用化されている。 As a positive electrode active material for a lithium secondary battery, LiCoO 2 (lithium cobaltate) is generally widely adopted as being capable of constituting a 4V class secondary battery. When LiCoO 2 is used as the positive electrode active material, it has been put to practical use with a discharge capacity of about 160 mA / g.

LiCoOの原料であるコバルトは希少資源であり且つ偏在しているため、コストがかかり、また、原料供給について不安が生じる。 Cobalt, which is a raw material for LiCoO 2 , is a scarce resource and is unevenly distributed, and thus costs are high and anxiety arises regarding the supply of raw materials.

こうした事情に応じ、LiNiO(ニッケル酸リチウム)も検討されている。LiNiOは実用的には4V級で放電容量約200mA/gの二次電池を実現可能である。しかし、充放電時の正極活物質の結晶構造の安定性に難がある。 In response to such circumstances, LiNiO 2 (lithium nickelate) has also been studied. LiNiO 2 can practically realize a secondary battery with a discharge capacity of about 200 mA / g with a 4V class. However, the stability of the crystal structure of the positive electrode active material during charge / discharge is difficult.

そこでLiNiOのニッケル原子を他元素で置換し、結晶構造の安定性を向上させつつLiCoO並みの放電容量を低コストで実現する研究もなされている。例えばLiNi0.5Mn0.5などニッケルとマンガンを必須元素とした正極活物質では約160mA/gの放電容量が得られている。 Therefore, research has been conducted to replace the nickel atom of LiNiO 2 with another element to improve the stability of the crystal structure and realize a discharge capacity similar to LiCoO 2 at a low cost. For example, a positive electrode active material having nickel and manganese as essential elements, such as LiNi 0.5 Mn 0.5 O 2 , has a discharge capacity of about 160 mA / g.

その上で更に過酷な状況、例えば従来よりも高い4.3Vで充電しての使用、あるいはより高い放電電流での使用においても充放電容量が維持できるよう更に別の元素でニッケル原子を置換させる例も存在する(特許文献1及び2参照)。   In addition, the nickel atom is replaced with another element so that the charge / discharge capacity can be maintained even in a more severe situation, for example, when charging at 4.3 V higher than before, or using at a higher discharge current. Examples also exist (see Patent Documents 1 and 2).

特開2005−235628号公報JP 2005-235628 A 特開2007−073425号公報JP 2007-073425 A

一方、より大型の応用製品への搭載、より高機能な機器への搭載、あるいは搭載する二次電池のより一層の小型化には、正極活物質の充放電容量及び出力特性の更なる向上が必要である。しかし、上記技術等の従来技術では低コストと、充放電容量及び出力特性の向上とを両立させるまでには至っていないのが現状である。   On the other hand, further improvements in the charge / discharge capacity and output characteristics of the positive electrode active material are required for mounting on larger application products, mounting on more sophisticated devices, and further downsizing of the mounted secondary battery. is necessary. However, the conventional technology such as the above technology has not yet achieved both low cost and improvement in charge / discharge capacity and output characteristics.

本願発明はこのような事情に鑑みなされたものである。本願発明の目的は、従来よりも低コストで充放電容量及び出力特性が向上した正極活物質を提供することである。   The present invention has been made in view of such circumstances. An object of the present invention is to provide a positive electrode active material having improved charge / discharge capacity and output characteristics at a lower cost than conventional ones.

上記目的を達成するために本願発明者らは鋭意検討を重ね、本願発明を完成するに至った。本願発明者らは特定組成のリチウム遷移金属複合酸化物にタングステンを含有させることで、充放電容量及び出力特性を向上させられることを見出した。   In order to achieve the above object, the inventors of the present application have made extensive studies and have completed the present invention. The present inventors have found that the charge / discharge capacity and the output characteristics can be improved by adding tungsten to the lithium transition metal composite oxide having a specific composition.

本願発明の非水電解液二次電池用正極活物質は、一般式LiNiMn1−b(但し1<a<1.2、0.5≦b≦0.7、0<c≦0.02)で表されることを特徴とする。 The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention has a general formula Li a Ni b Mn 1-b W c O 2 (where 1 <a <1.2, 0.5 ≦ b ≦ 0.7, 0 <c ≦ 0.02).

前記リチウム遷移金属複合酸化物の結晶子径は、0.5≦b≦0.55の場合は340Å以上、0.55<b≦0.7の場合は400Å以上であることが好ましい。   The crystallite diameter of the lithium transition metal composite oxide is preferably 340 mm or more when 0.5 ≦ b ≦ 0.55, and 400 mm or more when 0.55 <b ≦ 0.7.

さらに、前記リチウム遷移金属複合酸化物は、一次粒子が凝集した二次粒子からなり、該二次粒子の中心粒径が20μm以下であることが好ましい。   Furthermore, the lithium transition metal composite oxide is preferably composed of secondary particles in which primary particles are aggregated, and the center particle size of the secondary particles is preferably 20 μm or less.

本願発明の正極活物質は上記の特徴を備えているため、コストのかかるコバルトを用いずに充放電容量と出力特性を向上させられる。そのため、本願発明の正極活物質を正極に用いることで充放電容量と出力特性の高い非水電解液二次電池を低コストで得ることができる。   Since the positive electrode active material of the present invention has the above characteristics, the charge / discharge capacity and the output characteristics can be improved without using costly cobalt. Therefore, a nonaqueous electrolyte secondary battery having high charge / discharge capacity and high output characteristics can be obtained at low cost by using the positive electrode active material of the present invention for the positive electrode.

以下、本願発明の正極活物質について、実施の形態及び実施例を用いて詳細に説明する。但し、本願発明はこれら実施の形態及び実施例に限定されるものではない。   Hereinafter, the positive electrode active material of the present invention will be described in detail using embodiments and examples. However, the present invention is not limited to these embodiments and examples.

リチウム遷移金属複合酸化物の組成は、LiNiMn1−bで表され、1<a<1.2、0.5≦b≦0.7、0<c≦0.02を満たす必要がある。aについて、1以下だと充放電容量と出力特性の低下を招き好ましくない。また、1.2以上だと焼結を起こしやすいので好ましくない。bについて、その下限を下回ると放電容量と出力特性の低下を招き好ましくない。また、上限を上回ると放電容量低下、製造コスト上昇、副相生成の点で好ましくない。cについて、c=0だと出力特性低下の点で好ましくない。さらに、c>0の場合に比べ、より低温で焼結する傾向にあり、結晶子径や中心粒径の制御が困難である。また、上限を上回ると充放電容量低下、出力特性低下の点で好ましくない。これらa、b及びcの好ましい範囲は、1.12≦a≦1.18、0.58≦b≦0.62、0.007≦c≦0.011であり、充放電容量と出力特性の点で有利である。 The composition of the lithium transition metal composite oxide is represented by Li a Ni b Mn 1-b W c O 2 , 1 <a <1.2, 0.5 ≦ b ≦ 0.7, 0 <c ≦ 0. 02 needs to be satisfied. When a is 1 or less, the charge / discharge capacity and output characteristics are lowered, which is not preferable. Moreover, since it is easy to raise | generate sintering when it is 1.2 or more, it is unpreferable. If b is less than the lower limit, the discharge capacity and output characteristics are lowered, which is not preferable. On the other hand, exceeding the upper limit is not preferable in terms of reduction in discharge capacity, increase in production costs, and generation of subphases. Regarding c, if c = 0, it is not preferable from the viewpoint of output characteristic deterioration. Furthermore, compared to the case of c> 0, there is a tendency to sinter at a lower temperature, and it is difficult to control the crystallite diameter and the center particle diameter. Moreover, when it exceeds the upper limit, it is not preferable in terms of reduction of charge / discharge capacity and output characteristics. Preferred ranges of these a, b and c are 1.12 ≦ a ≦ 1.18, 0.58 ≦ b ≦ 0.62 and 0.007 ≦ c ≦ 0.011, and the charge / discharge capacity and output characteristics are This is advantageous.

リチウム遷移金属複合酸化物の結晶子径はある程度以上の大きさがあることが好ましい。好ましい結晶子径の範囲は、リチウム遷移金属複合酸化物の組成にもよるが、0.5≦b≦0.55なら340Å以上、0.55<b≦0.7なら400Å以上あれば好ましい。結晶子径がこのように大きければ出力特性が特に良くなる。上限は特に存在しないが、600Å程度までその効果は顕著である。さらに好ましいのは550Å以下である。   The crystallite size of the lithium transition metal composite oxide is preferably larger than a certain level. The preferred range of the crystallite diameter depends on the composition of the lithium transition metal composite oxide, but is preferably 340 mm or more if 0.5 ≦ b ≦ 0.55, or 400 mm or more if 0.55 <b ≦ 0.7. If the crystallite diameter is so large, the output characteristics are particularly improved. Although there is no upper limit, the effect is remarkable up to about 600cm. More preferred is 550 mm or less.

本願の正極活物質の構造はヘルマン‐モーガンの記号を用いた空間群R‐3mで表される三方晶系であり、その結晶子径は、X線回折法で求められた(104)面に起因する回折ピークを基に、下記式(1)(シェラーの式)より算出される値を用いる。X線回折法は、例えば、管電流40mA、管電圧40kVの条件で行うことができる。
Dc=Kλ/(βcosθ)(1)
(Dc:結晶子径、K:シェラー定数(光学系調整用焼結Si(株式会社リガク製)を使用し、(220)面に起因する回折ピークに基づく結晶子径が1000Åとなる値を使用)、λ:X線源の波長(CuKα1の場合λ=1.540562Å)、β:試料に基づく回折線の半値幅(弧度法による、β=Byより算出(B:観測される半値幅(弧度法による)、y=0.9991−0.019505b−2.8205b+2.878b−1.0366b(b:装置系に基づく半値幅(弧度法による))))、θ:回折角)
The structure of the positive electrode active material of the present application is a trigonal system represented by the space group R-3m using the Herman-Morgan symbol, and the crystallite diameter is obtained on the (104) plane obtained by the X-ray diffraction method. A value calculated from the following formula (1) (Scherrer formula) is used based on the resulting diffraction peak. The X-ray diffraction method can be performed, for example, under conditions of a tube current of 40 mA and a tube voltage of 40 kV.
Dc = Kλ / (βcos θ) (1)
(Dc: crystallite diameter, K: Scherrer constant (sintered Si for optical system adjustment (manufactured by Rigaku Corporation) is used, and the value that the crystallite diameter based on the diffraction peak due to the (220) plane is 1000 mm is used) ), Λ: wavelength of the X-ray source (λ = 1.540562 in the case of CuKα1), β: half-width of the diffraction line based on the sample (calculated from β = By by the arc degree method (B: observed half-width (arc degree) Y = 0.9991-0.019505b-2.8205b 2 + 2.878b 3 -1.0366b 4 (b: half-value width based on device system (according to arc degree method)))), θ: diffraction angle)

リチウム遷移金属複合酸化物は、一次粒子が凝集した二次粒子からなり、該二次粒子の中心粒径が20μm以下であることが好ましい。この範囲であれば出力特性が特に向上する。より好ましい範囲は11μm以下、さらに好ましい範囲は3μm以上6μm以下である。   The lithium transition metal composite oxide is composed of secondary particles in which primary particles are aggregated, and the center particle size of the secondary particles is preferably 20 μm or less. Within this range, the output characteristics are particularly improved. A more preferable range is 11 μm or less, and a further preferable range is 3 μm or more and 6 μm or less.

中心粒径は、レーザー回折法により得られる値を採用する。   A value obtained by a laser diffraction method is adopted as the center particle size.

[正極活物質の製造]
次に正極活物質の製造例を説明する。
[Production of positive electrode active material]
Next, a production example of the positive electrode active material will be described.

まず、リチウム化合物、ニッケル化合物、マンガン化合物及びタングステン化合物を目的の組成に応じて秤量し混合する。混合方法は各原料粉末を混合機で混合するのでもよいし、溶液中でpH調整、錯化剤の使用等で共沈塩を形成し、濾過、乾燥するのでもよい。あるいはスラリーやエマルジョンを作製し、噴霧乾燥等で混合体を得るのでもよい。   First, a lithium compound, a nickel compound, a manganese compound, and a tungsten compound are weighed and mixed according to a target composition. As a mixing method, the raw material powders may be mixed with a mixer, or a coprecipitation salt may be formed in the solution by adjusting pH, using a complexing agent, and the like, followed by filtration and drying. Alternatively, a slurry or emulsion may be prepared and a mixture may be obtained by spray drying or the like.

リチウム化合物、ニッケル化合物、マンガン化合物及びタングステン化合物は、いずれも酸化物や、水酸化物、炭酸塩、硝酸塩等加熱分解して酸化物となる物質が使用できる。タングステンについては、金属タングステンを用いてもよい。   As the lithium compound, the nickel compound, the manganese compound, and the tungsten compound, any of oxides, hydroxides, carbonates, nitrates, and the like that can be thermally decomposed to become oxides can be used. For tungsten, metallic tungsten may be used.

ニッケル化合物、マンガン化合物、あるいはこれらを含む複合化合物の中心粒径は正極活物質の中心粒径に影響するので、目的とする正極活物質の中心粒径に合わせて適宜原料の中心粒径を選択あるいは調整する。   Since the central particle size of nickel compounds, manganese compounds, or composite compounds containing these influences the central particle size of the positive electrode active material, the central particle size of the raw material is appropriately selected according to the central particle size of the target positive electrode active material Or adjust.

次に、原料混合物を焼成する。焼成温度は、低すぎればリチウムとの反応が不十分になる、あるいは十分な結晶子径を得られない傾向に、また、高すぎればリチウムが揮発する、あるいは焼結が起こる傾向にあるので注意が必要である。目的組成のb値にもよるが、概ね800℃以上1100℃以下が好ましい。より好ましくは900℃以上1050℃以下である。焼成時間は最高温度を保持する時間として9時間以上あれば十分である。焼成時の雰囲気として、大気雰囲気あるいは酸素雰囲気が使用できる。コスト面より、大気焼成がより好ましい。結晶子径の調整は焼成温度を変更することで行う。前述のように800℃以上なら十分な大きさの結晶子径を得られ、一般に焼成温度が高ければ結晶子径は大きくなる。   Next, the raw material mixture is fired. If the firing temperature is too low, the reaction with lithium will be insufficient, or a sufficient crystallite size will not be obtained, and if it is too high, lithium will volatilize or sintering will occur. is required. Although it depends on the b value of the target composition, it is generally preferably 800 ° C. or higher and 1100 ° C. or lower. More preferably, it is 900 degreeC or more and 1050 degrees C or less. It is sufficient that the firing time is 9 hours or more as the time for maintaining the maximum temperature. An air atmosphere or an oxygen atmosphere can be used as the firing atmosphere. From the viewpoint of cost, atmospheric firing is more preferable. The crystallite diameter is adjusted by changing the firing temperature. As described above, if the temperature is 800 ° C. or higher, a sufficiently large crystallite diameter can be obtained. In general, the higher the firing temperature, the larger the crystallite diameter.

焼成後、必要に応じて粗砕、粉砕、乾式篩い等の処理を行い、本願発明の正極活物質を得る。   After firing, if necessary, treatments such as crushing, pulverization, and dry sieving are performed to obtain the positive electrode active material of the present invention.

以下、実施例にてより具体的な例を説明する。   Hereinafter, more specific examples will be described in Examples.

炭酸リチウム0.545mol、中心粒径5μmのニッケルマンガン複合酸化物(Ni(II)/Mn(II)=6/4)1.00mol、酸化タングステン(VI)0.01molを混合し、大気雰囲気中1020℃で9時間焼成する。焼成後処理を行い、組成Li1.09Ni0.60Mn0.400.01の正極活物質を得る。 A mixture of 0.545 mol of lithium carbonate, 1.00 mol of nickel manganese composite oxide (Ni (II) / Mn (II) = 6/4) with a central particle size of 5 μm, and 0.01 mol of tungsten (VI) oxide in the atmosphere. Bake at 1020 ° C. for 9 hours. Post-baking treatment is performed to obtain a positive electrode active material having the composition Li 1.09 Ni 0.60 Mn 0.40 W 0.01 O 2 .

混合する炭酸リチウムが0.59molであること以外実施例1と同様にして、組成Li1.18Ni0.60Mn0.400.01の正極活物質を得る。 A positive electrode active material having the composition Li 1.18 Ni 0.60 Mn 0.40 W 0.01 O 2 is obtained in the same manner as in Example 1 except that the lithium carbonate to be mixed is 0.59 mol.

水酸化リチウム1.18mol、中心粒径5μmのニッケルマンガン複合酸化物(Ni(II)/Mn(II)=7/3)1.00mol、酸化タングステン(VI)0.01molを混合し、酸素雰囲気中920℃で9時間焼成する。焼成後粉砕して組成Li1.18Ni0.70Mn0.300.01の正極活物質を得る。 1.18 mol of lithium hydroxide, 1.00 mol of nickel manganese composite oxide (Ni (II) / Mn (II) = 7/3) with a central particle size of 5 μm, 0.01 mol of tungsten oxide (VI) are mixed, and oxygen atmosphere Bake at 920 ° C for 9 hours. After firing, the mixture is pulverized to obtain a positive electrode active material having the composition Li 1.18 Ni 0.70 Mn 0.30 W 0.01 O 2 .

炭酸リチウム0.59mol、中心粒径5μmのニッケルマンガン複合酸化物(Ni(II)/Mn=5/5)1.00mol、酸化タングステン(VI)0.01molを混合し、大気雰囲気中1050℃で9時間焼成する。焼成後粉砕して組成Li1.18Ni0.50Mn0.500.01の正極活物質を得る。 A mixture of 0.59 mol of lithium carbonate, 1.00 mol of nickel manganese composite oxide (Ni (II) / Mn = 5/5) and 0.01 mol of tungsten oxide (VI) with a central particle size of 5 μm was mixed at 1050 ° C. in an air atmosphere. Bake for 9 hours. After firing, the mixture is pulverized to obtain a positive electrode active material having the composition Li 1.18 Ni 0.50 Mn 0.50 W 0.01 O 2 .

混合する酸化タングステン(VI)が0.02molである以外実施例2と同様にして、組成Li1.18Ni0.60Mn0.400.02の正極活物質を得る。 A positive electrode active material having the composition Li 1.18 Ni 0.60 Mn 0.40 W 0.02 O 2 is obtained in the same manner as in Example 2 except that the tungsten oxide (VI) to be mixed is 0.02 mol.

焼成温度が960℃である以外実施例2と同様にして、組成Li1.18Ni0.60Mn0.400.01の正極活物質を得る。 A positive electrode active material having the composition Li 1.18 Ni 0.60 Mn 0.40 W 0.01 O 2 is obtained in the same manner as in Example 2 except that the firing temperature is 960 ° C.

焼成温度が930℃である以外実施例2と同様にして、組成Li1.18Ni0.60Mn0.400.01の正極活物質を得る。 A positive electrode active material having the composition Li 1.18 Ni 0.60 Mn 0.40 W 0.01 O 2 is obtained in the same manner as in Example 2 except that the firing temperature is 930 ° C.

焼成温度が890℃である以外実施例2と同様にして、組成Li1.18Ni0.60Mn0.400.01の正極活物質を得る。 A positive electrode active material having the composition Li 1.18 Ni 0.60 Mn 0.40 W 0.01 O 2 is obtained in the same manner as in Example 2 except that the firing temperature is 890 ° C.

中心粒径10μmのニッケルマンガン複合酸化物(Ni(II)/Mn(II)=6/4)を用いること以外実施例2と同様にして組成Li1.18Ni0.60Mn0.400.01の正極活物質を得る。 Composition Li 1.18 Ni 0.60 Mn 0.40 W in the same manner as in Example 2 except that nickel manganese composite oxide (Ni (II) / Mn (II) = 6/4) having a center particle size of 10 μm was used. A positive electrode active material of 0.01 O 2 is obtained.

中心粒径8μmのニッケルマンガン複合酸化物(Ni(II)/Mn(II)=6/4)を用いること以外実施例2と同様にして組成Li1.18Ni0.60Mn0.400.01の正極活物質を得る。 Composition Li 1.18 Ni 0.60 Mn 0.40 W in the same manner as in Example 2 except that nickel manganese composite oxide (Ni (II) / Mn (II) = 6/4) having a center particle diameter of 8 μm was used. A positive electrode active material of 0.01 O 2 is obtained.

[比較例1]
混合する炭酸リチウムが0.48molである以外実施例1と同様にして、組成Li0.96Ni0.60Mn0.400.01の正極活物質を得る。
[Comparative Example 1]
A positive electrode active material having the composition Li 0.96 Ni 0.60 Mn 0.40 W 0.01 O 2 is obtained in the same manner as in Example 1 except that the lithium carbonate to be mixed is 0.48 mol.

[比較例2]
混合する炭酸リチウムが0.62molである以外実施例1と同様にして、組成Li1.24Ni0.60Mn0.400.01の正極活物質を得る。この正極活物質は粉砕しても篩を通らず、処理ができない。
[Comparative Example 2]
A positive electrode active material having the composition Li 1.24 Ni 0.60 Mn 0.40 W 0.01 O 2 is obtained in the same manner as in Example 1 except that the lithium carbonate to be mixed is 0.62 mol. Even if this positive electrode active material is pulverized, it does not pass through a sieve and cannot be treated.

[比較例3]
酸化タングステン(VI)を混合しないことと焼成温度を890℃とする以外実施例2と同様にして、組成Li1.18Ni0.60Mn0.40の正極活物質を得る。
[Comparative Example 3]
A positive electrode active material having the composition Li 1.18 Ni 0.60 Mn 0.40 O 2 is obtained in the same manner as in Example 2 except that tungsten oxide (VI) is not mixed and the firing temperature is 890 ° C.

[比較例4]
水酸化リチウム1.18mol、中心粒径10μmのニッケルマンガン複合酸化物(Ni(II)/Mn(II)=6/4)1.00molを混合し、大気雰囲気中890℃で9時間焼成する。焼成後処理を行い、組成Li1.18Ni0.60Mn0.40の正極活物質を得る。
[Comparative Example 4]
1.18 mol of lithium hydroxide and 1.00 mol of nickel manganese composite oxide (Ni (II) / Mn (II) = 6/4) having a central particle size of 10 μm are mixed and baked at 890 ° C. for 9 hours in an air atmosphere. Post-baking treatment is performed to obtain a positive electrode active material having the composition Li 1.18 Ni 0.60 Mn 0.40 O 2 .

[比較例5]
中心粒径8μmのニッケルマンガン複合酸化物(Ni(II)/Mn(II)=6/4)を用いること以外比較例5と同様にして、組成Li1.18Ni0.60Mn0.40の正極活物質を得る。
[Comparative Example 5]
The composition Li 1.18 Ni 0.60 Mn 0.40 was obtained in the same manner as in Comparative Example 5 except that nickel manganese composite oxide (Ni (II) / Mn (II) = 6/4) having a center particle diameter of 8 μm was used. A positive electrode active material of O 2 is obtained.

[比較例6]
中心粒径5μmのニッケルマンガン複合酸化物(Ni(II)/Mn(II)=6/4)を用いること以外比較例5と同様にして、組成Li1.18Ni0.60Mn0.40の正極活物質を得る。
[Comparative Example 6]
The composition Li 1.18 Ni 0.60 Mn 0.40 was obtained in the same manner as in Comparative Example 5 except that nickel manganese composite oxide (Ni (II) / Mn (II) = 6/4) having a center particle diameter of 5 μm was used. A positive electrode active material of O 2 is obtained.

実施例1〜10及び比較例1〜6は、一次粒子が凝集した二次粒子を形成していることが走査型電子顕微鏡によって確認できる。   In Examples 1 to 10 and Comparative Examples 1 to 6, it can be confirmed by a scanning electron microscope that secondary particles in which primary particles are aggregated are formed.

[正極活物質の評価]
[結晶子径]
得られる正極活物質についてX線回折法を行う。X線回折法は、X線回折装置(株式会社リガク製Ultima)を用い、X線源としてCuKα1を用い、管電流40mA、管電圧40kVの条件で行う。X線回折法により得られたX線回折パターンを基に、上記式(1)で表されるシェラーの式から、正極活物質の結晶子径Dcを求める。
[Evaluation of positive electrode active material]
[Crystallite diameter]
An X-ray diffraction method is performed on the obtained positive electrode active material. The X-ray diffraction method is performed using an X-ray diffractometer (Ultima, manufactured by Rigaku Corporation), using CuKα1 as an X-ray source, under conditions of a tube current of 40 mA and a tube voltage of 40 kV. Based on the X-ray diffraction pattern obtained by the X-ray diffraction method, the crystallite diameter Dc of the positive electrode active material is obtained from the Scherrer equation represented by the above equation (1).

[二次粒子の粒径]
得られる正極活物質について、レーザー回折法で二次粒子の中心粒径D50を測定する。
[Particle size of secondary particles]
About the obtained positive electrode active material, the center particle diameter D50 of a secondary particle is measured with a laser diffraction method.

[電池特性の評価]
[二次電池の作製]
以下の要領で二次電池を作製し、各種評価に用いる。
[Evaluation of battery characteristics]
[Production of secondary battery]
A secondary battery is prepared in the following manner and used for various evaluations.

[電池抵抗評価用]
正極活物質の粉末90重量%と、導電材となる炭素粉末5重量%と、ポリフッ化ビニリデン(PVDF)5重量%とをノルマルメチルピロリドン(NMP)に分散・溶解し、混練してペーストを調整する。これをアルミニウム箔からなる集電体に塗布して乾燥させ、圧延して正極板とする。
[For battery resistance evaluation]
A paste is prepared by dispersing and dissolving 90% by weight of a positive electrode active material powder, 5% by weight of carbon powder as a conductive material, and 5% by weight of polyvinylidene fluoride (PVDF) in normal methylpyrrolidone (NMP) and kneading. To do. This is applied to a current collector made of aluminum foil, dried, and rolled into a positive electrode plate.

負極活物質として、黒鉛材料を用いる。負極活物質の粉末97.5重量%と、カルボキシメチルセルロース(CMC)1.5重量%と、スチレンブタジエンゴム(SBR)1.0重量%とを水に分散し、混練してペーストを調整する。これを銅箔からなる集電体に塗布し乾燥させ、圧延して負極板とする。   A graphite material is used as the negative electrode active material. A paste is prepared by dispersing 97.5 wt% of the negative electrode active material powder, 1.5 wt% of carboxymethyl cellulose (CMC), and 1.0 wt% of styrene butadiene rubber (SBR) in water and kneading. This is applied to a current collector made of copper foil, dried, and rolled into a negative electrode plate.

エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)を体積比3:7で混合する。得られる混合溶媒に電解質として六フッ化リン酸リチウム(LiPF)を溶解し、濃度1mol/lの非水電解液を調整する。 Ethylene carbonate (EC) and methyl ethyl carbonate (MEC) are mixed at a volume ratio of 3: 7. Lithium hexafluorophosphate (LiPF 6 ) is dissolved as an electrolyte in the resulting mixed solvent to prepare a nonaqueous electrolytic solution having a concentration of 1 mol / l.

セパレータとして多孔性ポリエチレンフィルムを用いる。   A porous polyethylene film is used as the separator.

正極板及び負極板にリード電極を取り付け、正極、セパレータ、負極の順に重ねる。これらをラミネートパックに収納し、電解液を注入してラミネートパックを封止してラミネート型二次電池を得る。これを電池抵抗評価用に用いる。   A lead electrode is attached to the positive electrode plate and the negative electrode plate, and the positive electrode, the separator, and the negative electrode are stacked in this order. These are stored in a laminate pack, an electrolyte solution is injected, and the laminate pack is sealed to obtain a laminate type secondary battery. This is used for battery resistance evaluation.

[充放電容量評価用]
負極活物質として金属リチウムを用い、薄いシート状に成型して負極板とする。正極板、セパレータは電池抵抗評価用と同じものを用いる。
[For charge / discharge capacity evaluation]
Metal lithium is used as the negative electrode active material and is molded into a thin sheet to form a negative electrode plate. The positive electrode plate and separator are the same as those used for battery resistance evaluation.

正極板にリード電極を取り付け、負極、セパレータ、正極を順に容器に収納する。負極はステンレス製の容器底部に電気的に接続され、容器底部が負極端子となる。セパレータはテフロン(登録商標)製の容器側部によって固定される。正極のリード電極の先端は容器外部に導出され、正極端子となる。正負極の端子は、容器側部によって電気的に絶縁されている。収納後電解液を注入し、ステンレス製の容器蓋部によって封止し、密閉型の試験電池を得る。これを充放電容量の評価に用いる。   A lead electrode is attached to the positive electrode plate, and the negative electrode, the separator, and the positive electrode are sequentially stored in the container. The negative electrode is electrically connected to a stainless steel container bottom, and the container bottom serves as a negative electrode terminal. The separator is fixed by the side of the container made of Teflon (registered trademark). The tip of the positive lead electrode is led out of the container and becomes a positive terminal. The positive and negative terminals are electrically insulated by the container side. After storage, the electrolyte is injected and sealed with a stainless steel container lid to obtain a sealed test battery. This is used for evaluation of charge / discharge capacity.

[電池抵抗]
以下の要領で電流と電位を測定し、電池抵抗を求める。
[Battery resistance]
Measure current and potential as follows to determine battery resistance.

測定温度25℃において、満充電電圧を4.2Vとして充電深度50%まで定電流充電し、その後特定の電流値iでパルス放電・充電を行う。パルスは10秒印加後開放3分で放電と充電を順次繰り返す。パルス放電・充電の電流値iは0.04A、0.08A、0.12A、0.16A及び0.20Aとする。電流値iをグラフ横軸に、パルス放電10秒後の電圧値Vをグラフ縦軸にそれぞれプロットし、i−Vプロットにおいて直線線形が保たれる電流範囲で傾きの絶対値を求め、電池抵抗R(25)とする。   At a measurement temperature of 25 ° C., a full charge voltage is set to 4.2 V, and constant current charging is performed up to a charge depth of 50%. After applying the pulse for 10 seconds, the discharge and charging are repeated sequentially in 3 minutes. The pulse discharge / charge current value i is 0.04A, 0.08A, 0.12A, 0.16A and 0.20A. The current value i is plotted on the horizontal axis of the graph, the voltage value V after 10 seconds of pulse discharge is plotted on the vertical axis of the graph, and the absolute value of the slope is obtained in the current range in which linear linearity is maintained in the i-V plot. Let R (25).

測定温度−25℃において、満充電電圧を4.2Vとして充電深度50%まで定電流充電し、その後特定の電流値でパルス放電を行う。パルスは10秒印加後開放10分で放電のみ行う。パルス放電の電流値iは0.04A、0.06A、0.08A、0.10Aとする。以下R(25)同様にして電池抵抗を求め、R(−25)とする。これらRが低いことは、出力特性が高いことを意味する。   At a measurement temperature of −25 ° C., the full charge voltage is set to 4.2 V, and constant current charging is performed to a charge depth of 50%, and then pulse discharge is performed at a specific current value. The pulse is discharged only for 10 minutes after the application for 10 seconds. The pulse discharge current value i is 0.04A, 0.06A, 0.08A, and 0.10A. Hereinafter, the battery resistance is obtained in the same manner as R (25) and is set to R (−25). Low R means high output characteristics.

[初期充電容量]
満充電電圧4.3V、充電負荷0.2C(1C:満充電の状態から1時間で放電を終了させる電流値)で定電流定電圧充電し、満充電電圧までに蓄積した電荷を初期充電容量Qc0とする。
[Initial charge capacity]
Charge at constant current and constant voltage with a full charge voltage of 4.3V and a charge load of 0.2C (1C: current value that completes the discharge in 1 hour from the fully charged state), and the charge accumulated up to the full charge voltage is the initial charge capacity. Let Q c0 .

[初期放電容量]
満充電電圧4.3V、放電電圧2.75V、放電負荷0.2Cで定電流放電し、放電電圧までに放出した電荷を初期放電容量Qd0とする。
[Initial discharge capacity]
A constant current discharge is performed at a full charge voltage of 4.3 V, a discharge voltage of 2.75 V, and a discharge load of 0.2 C, and the charge released up to the discharge voltage is defined as an initial discharge capacity Qd0 .

[負荷放電容量]
充電電位4.3V、放電電位2.75V、放電負荷0.2C、1C、3Cの順で、それぞれ充電と放電を行う。3Cのときの放電容量を負荷放電容量Q’とする。
[Load discharge capacity]
Charging and discharging are performed in the order of a charging potential of 4.3 V, a discharging potential of 2.75 V, and discharging loads of 0.2 C, 1 C, and 3 C, respectively. The discharge capacity at 3C is defined as a load discharge capacity Q ′.

[初期効率]
初期放電容量の初期充電容量に対する比(≡Qd0/Qc0)を初期効率Eとする。
[Initial efficiency]
The ratio of the initial discharge capacity to the initial charge capacity (≡Q d0 / Q c0 ) is defined as the initial efficiency E 0 .

[負荷効率]
負荷放電容量の初期放電容量に対する比(≡Q’/Qd0)を負荷効率E’とする。Q’及びE’が高いことは、負荷特性が良いことを意味する。
[Load efficiency]
The ratio (≡Q ′ / Q d0 ) of the load discharge capacity to the initial discharge capacity is defined as load efficiency E ′. High Q ′ and E ′ mean that the load characteristics are good.

実施例1〜10及び比較例1〜6について、a値と各種特性の関係について表1に、b値と各種特性の関係について表2に、c値と各種特性との関係について表3に、焼成温度と結晶子径Dc及び各種特性の関係を表4に、二次粒子の中心粒径D50と各種特性の関係を表5にまとめた。   For Examples 1 to 10 and Comparative Examples 1 to 6, Table 1 shows the relationship between the a value and various properties, Table 2 shows the relationship between the b value and various properties, and Table 3 shows the relationship between the c value and various properties. Table 4 shows the relationship between the firing temperature, the crystallite diameter Dc, and various properties, and Table 5 shows the relationship between the central particle diameter D50 of the secondary particles and the various properties.

Figure 2012043637
Figure 2012043637

Figure 2012043637
Figure 2012043637

Figure 2012043637
Figure 2012043637

Figure 2012043637
Figure 2012043637

Figure 2012043637
Figure 2012043637

表1より、0<a<1.2で出力特性及び充放電容量が向上することが分かる。また、表2、3より0.5≦b≦0.7及び0<c≦0.2を満たすことで出力特性が向上することが分かる。また、表4より、結晶子径の増加と共に出力特性及び充放電容量が向上すること、負荷特性も考慮すると結晶子径は400Å以上が好ましいことが分かる。また、表5より、D50が小さいと出力特性が向上すること、同程度のD50だとタングステンが存在することで出力特性が向上することが分かる。   From Table 1, it can be seen that the output characteristics and the charge / discharge capacity are improved when 0 <a <1.2. Further, from Tables 2 and 3, it is understood that the output characteristics are improved by satisfying 0.5 ≦ b ≦ 0.7 and 0 <c ≦ 0.2. Table 4 also shows that the output characteristics and charge / discharge capacity are improved as the crystallite diameter increases, and that the crystallite diameter is preferably 400 mm or more in consideration of the load characteristics. Further, it can be seen from Table 5 that the output characteristics are improved when D50 is small, and the output characteristics are improved when tungsten is present at the same D50.

本願発明の正極活物質を用いることで、大電流で使用可能な出力特性の高い非水電解液二次電池を、従来よりも安価に実現できる。こうして実現される非水電解液二次電池は、電動工具、電動アシスト自転車などの中型機器、電気自動車、ハイブリッド電気自動車等の大型機器といった高出力の用途に特に好適に利用可能である。   By using the positive electrode active material of the present invention, a non-aqueous electrolyte secondary battery with high output characteristics that can be used with a large current can be realized at a lower cost than in the past. The non-aqueous electrolyte secondary battery realized in this way can be particularly suitably used for high output applications such as medium-sized devices such as electric tools and electric assist bicycles, large-sized devices such as electric vehicles and hybrid electric vehicles.

Claims (3)

一般式
LiNiMn1−b
(但し1<a<1.2、0.5≦b≦0.7、0<c≦0.02)
で表されるリチウム遷移金属複合酸化物からなる非水電解液二次電池用正極活物質。
Formula Li a Ni b Mn 1-b W c O 2
(However, 1 <a <1.2, 0.5 ≦ b ≦ 0.7, 0 <c ≦ 0.02)
A positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium transition metal composite oxide represented by:
前記リチウム遷移金属複合酸化物の結晶子径が、0.5≦b≦0.55の場合は340Å以上、0.55<b≦0.7の場合は400Å以上である非水電解液二次電池用正極活物質。   The non-aqueous electrolyte secondary electrode in which the crystallite diameter of the lithium transition metal composite oxide is 340 mm or more when 0.5 ≦ b ≦ 0.55, and 400 mm or more when 0.55 <b ≦ 0.7. Positive electrode active material for batteries. 前記リチウム遷移金属複合酸化物が、一次粒子が凝集した二次粒子からなり、該二次粒子の中心粒径が20μm以下である非水電解液二次電池用正極活物質。   A positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the lithium transition metal composite oxide is composed of secondary particles in which primary particles are aggregated, and the center particle size of the secondary particles is 20 μm or less.
JP2010183687A 2010-08-19 2010-08-19 Cathode active material for non-aqueous electrolyte secondary battery Active JP5703626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010183687A JP5703626B2 (en) 2010-08-19 2010-08-19 Cathode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010183687A JP5703626B2 (en) 2010-08-19 2010-08-19 Cathode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2012043637A true JP2012043637A (en) 2012-03-01
JP5703626B2 JP5703626B2 (en) 2015-04-22

Family

ID=45899716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010183687A Active JP5703626B2 (en) 2010-08-19 2010-08-19 Cathode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5703626B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010912A (en) * 2012-06-27 2014-01-20 Nichia Chem Ind Ltd Positive electrode composition for nonaqueous electrolyte secondary battery
WO2014024571A1 (en) * 2012-08-07 2014-02-13 日産自動車株式会社 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2014133063A1 (en) * 2013-02-28 2014-09-04 日産自動車株式会社 Positive electrode active material, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery
WO2015037111A1 (en) * 2013-09-13 2015-03-19 株式会社日立製作所 Positive-electrode active material for use in lithium-ion secondary batteries and lithium-ion secondary battery using said positive-electrode active material
WO2015115088A1 (en) * 2014-01-31 2015-08-06 三洋電機株式会社 Nonaqueous-electrolyte secondary-battery positive-electrode active material, nonaqueous-electrolyte secondary battery using same, and method for manufacturing nonaqueous-electrolyte secondary-battery positive-electrode active material
KR20160128238A (en) * 2015-04-28 2016-11-07 니치아 카가쿠 고교 가부시키가이샤 Nickel cobalt complex hydroxide particles and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
JP2016210674A (en) * 2015-04-28 2016-12-15 日亜化学工業株式会社 Nickel cobalt complex hydroxide particles and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
WO2018056139A1 (en) * 2016-09-21 2018-03-29 Basf戸田バッテリーマテリアルズ合同会社 Cathode active material and method of manufacturing same, and nonaqueous electrolyte secondary battery
JP2018056118A (en) * 2016-09-21 2018-04-05 Basf戸田バッテリーマテリアルズ合同会社 Positive electrode active material, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2018098174A (en) * 2016-12-15 2018-06-21 Basf戸田バッテリーマテリアルズ合同会社 Positive electrode active material and nonaqueous electrolyte secondary battery
CN112652745A (en) * 2019-10-10 2021-04-13 艾可普罗 Bm 有限公司 Lithium composite oxide and lithium secondary battery comprising same
US11121365B2 (en) 2016-09-21 2021-09-14 Basf Toda Battery Materials Llc Positive electrode active material and method for producing same, and non-aqueous electrolyte secondary battery using same
CN112652745B (en) * 2019-10-10 2024-06-11 艾可普罗Bm有限公司 Lithium composite oxide and lithium secondary battery including the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235628A (en) * 2004-02-20 2005-09-02 Nec Corp Positive electrode for lithium secondary batteries, and lithium secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235628A (en) * 2004-02-20 2005-09-02 Nec Corp Positive electrode for lithium secondary batteries, and lithium secondary battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010912A (en) * 2012-06-27 2014-01-20 Nichia Chem Ind Ltd Positive electrode composition for nonaqueous electrolyte secondary battery
WO2014024571A1 (en) * 2012-08-07 2014-02-13 日産自動車株式会社 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JPWO2014133063A1 (en) * 2013-02-28 2017-02-02 日産自動車株式会社 Positive electrode active material, positive electrode material, positive electrode and non-aqueous electrolyte secondary battery
WO2014133063A1 (en) * 2013-02-28 2014-09-04 日産自動車株式会社 Positive electrode active material, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery
US9843033B2 (en) 2013-02-28 2017-12-12 Nissan Motor Co., Ltd. Positive electrode active substance, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery
WO2015037111A1 (en) * 2013-09-13 2015-03-19 株式会社日立製作所 Positive-electrode active material for use in lithium-ion secondary batteries and lithium-ion secondary battery using said positive-electrode active material
JPWO2015115088A1 (en) * 2014-01-31 2017-03-23 三洋電機株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
WO2015115088A1 (en) * 2014-01-31 2015-08-06 三洋電機株式会社 Nonaqueous-electrolyte secondary-battery positive-electrode active material, nonaqueous-electrolyte secondary battery using same, and method for manufacturing nonaqueous-electrolyte secondary-battery positive-electrode active material
JP2016210674A (en) * 2015-04-28 2016-12-15 日亜化学工業株式会社 Nickel cobalt complex hydroxide particles and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
KR20160128238A (en) * 2015-04-28 2016-11-07 니치아 카가쿠 고교 가부시키가이샤 Nickel cobalt complex hydroxide particles and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
KR102447364B1 (en) 2015-04-28 2022-09-26 니치아 카가쿠 고교 가부시키가이샤 Nickel cobalt complex hydroxide particles and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
WO2018056139A1 (en) * 2016-09-21 2018-03-29 Basf戸田バッテリーマテリアルズ合同会社 Cathode active material and method of manufacturing same, and nonaqueous electrolyte secondary battery
JP2018056118A (en) * 2016-09-21 2018-04-05 Basf戸田バッテリーマテリアルズ合同会社 Positive electrode active material, method for manufacturing the same, and nonaqueous electrolyte secondary battery
US11121365B2 (en) 2016-09-21 2021-09-14 Basf Toda Battery Materials Llc Positive electrode active material and method for producing same, and non-aqueous electrolyte secondary battery using same
JP2018098174A (en) * 2016-12-15 2018-06-21 Basf戸田バッテリーマテリアルズ合同会社 Positive electrode active material and nonaqueous electrolyte secondary battery
CN112652745A (en) * 2019-10-10 2021-04-13 艾可普罗 Bm 有限公司 Lithium composite oxide and lithium secondary battery comprising same
CN112652745B (en) * 2019-10-10 2024-06-11 艾可普罗Bm有限公司 Lithium composite oxide and lithium secondary battery including the same

Also Published As

Publication number Publication date
JP5703626B2 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5703626B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
US10964944B2 (en) Lithium-containing composite oxide, cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6286855B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP5565465B2 (en) Nonaqueous electrolyte secondary battery
JP6575048B2 (en) The positive electrode composition for nonaqueous electrolyte secondary batteries, the nonaqueous electrolyte secondary battery, and the manufacturing method of the positive electrode composition for nonaqueous electrolyte secondary batteries.
JP2015133318A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same
WO2013014830A1 (en) Lithium-ion secondary cell
JP2015128023A (en) Cathode active material for lithium ion battery and method of manufacturing the same
JP5842596B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing positive electrode slurry for non-aqueous electrolyte secondary battery
KR20180059736A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2016006762A (en) Positive electrode active material for nonaqueous secondary battery
KR20080031470A (en) Positive electrode active material, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP5671969B2 (en) Lithium titanium compound particles and method for producing the same, electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6294219B2 (en) Method for producing lithium cobalt composite oxide
JP2015220220A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries and production method thereof, and nonaqueous electrolyte secondary battery
WO2015072093A1 (en) Positive electrode active material for lithium ion secondary batteries, method for producing same and lithium ion secondary battery
WO2020022305A1 (en) Positive electrode active material
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
WO2016035396A1 (en) Lithium ion secondary battery
JP6191351B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP5017010B2 (en) Lithium secondary battery
JP6400364B2 (en) Cathode active material for non-aqueous secondary battery and method for producing the same
JP6233101B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
KR100433592B1 (en) Positive plate active material for nonaqueous electrolytic secondary cell and nonaqueous electrolytic secondary cell containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150209

R150 Certificate of patent or registration of utility model

Ref document number: 5703626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250