JP6191351B2 - Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same - Google Patents

Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP6191351B2
JP6191351B2 JP2013192481A JP2013192481A JP6191351B2 JP 6191351 B2 JP6191351 B2 JP 6191351B2 JP 2013192481 A JP2013192481 A JP 2013192481A JP 2013192481 A JP2013192481 A JP 2013192481A JP 6191351 B2 JP6191351 B2 JP 6191351B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
tungsten
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013192481A
Other languages
Japanese (ja)
Other versions
JP2014078500A (en
Inventor
裕樹 岩田
裕樹 岩田
小林 謙一
謙一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2013192481A priority Critical patent/JP6191351B2/en
Publication of JP2014078500A publication Critical patent/JP2014078500A/en
Application granted granted Critical
Publication of JP6191351B2 publication Critical patent/JP6191351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は非水電解液二次電池用正極活物質に関する。特に充放電容量が格段に向上し、且つサイクル特性が改善された正極活物質に関する。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery. In particular, the present invention relates to a positive electrode active material having a significantly improved charge / discharge capacity and improved cycle characteristics.

近年、携帯電話やノート型パソコン等の携帯電子機器の普及に伴い、高いエネルギー密度を有する小型で軽量な二次電池の開発が強く望まれている。また、ハイブリット自動車を始めとする電気自動車用の電池として高出力の二次電池の開発が強く望まれている。   In recent years, with the widespread use of portable electronic devices such as mobile phones and notebook computers, development of small and lightweight secondary batteries having high energy density is strongly desired. In addition, development of a high output secondary battery is strongly desired as a battery for electric vehicles including hybrid vehicles.

このような要求を満たす二次電池として、リチウムイオン二次電池に代表される非水電解液二次電池がある。リチウムイオン二次電池は、負極および正極と電解液等で構成され、負極および正極の活物質として、リチウムを脱離および挿入することが可能な物質が用いられている。   As a secondary battery satisfying such a requirement, there is a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery. A lithium ion secondary battery is composed of a negative electrode, a positive electrode, an electrolyte, and the like, and a material capable of desorbing and inserting lithium is used as an active material of the negative electrode and the positive electrode.

リチウムイオン二次電池の正極活物質として、合成が比較的容易な層状構造のリチウムコバルト複合酸化物(LiCoO)が主に実用化されている。他に、コバルトよりも安価なニッケルを用いた層状構造のリチウムニッケル複合酸化物(LiNiO)、マンガンを用いたスピネル構造のリチウムマンガン複合酸化物(LiMn)等が実用化されている。層状構造のリチウム遷移金属複合酸化物においては、複数の遷移金属を用いたリチウムニッケルコバルトマンガン複合酸化物(例えばLiNi0.333Co0.333Mn0.333)等も実用化されている。これらリチウム遷移金属複合酸化物を正極活物質に用いると4V級の非水電解液二次電池が実現できる。 As a positive electrode active material of a lithium ion secondary battery, a lithium cobalt composite oxide (LiCoO 2 ) having a layered structure that is relatively easy to synthesize is mainly put into practical use. In addition, a layered lithium nickel composite oxide (LiNiO 2 ) using nickel, which is cheaper than cobalt, and a spinel lithium manganese composite oxide (LiMn 2 O 4 ) using manganese have been put into practical use. . In the lithium transition metal composite oxide having a layered structure, a lithium nickel cobalt manganese composite oxide (for example, LiNi 0.333 Co 0.333 Mn 0.333 O 2 ) using a plurality of transition metals has been put into practical use. . When these lithium transition metal composite oxides are used as the positive electrode active material, a 4V class non-aqueous electrolyte secondary battery can be realized.

リチウム遷移金属複合酸化物に関して、目的に応じてリチウムの遷移金属元素に対する比率を高める技術が提案されている。   With respect to lithium transition metal composite oxides, techniques for increasing the ratio of lithium to transition metal elements according to the purpose have been proposed.

特許文献1の段落0030において、リチウム比率が化学量論比よりも若干高いことで結晶構造のディスオーダーが抑えられ、リチウムイオンの拡散もスムーズになり、レート特性や出力特性が改善されると考察されている。一方、リチウム比率が高すぎると、異相の生成や電池性能の低下を招く虞があるとしている。   In paragraph 0030 of Patent Document 1, it is considered that the lithium ratio is slightly higher than the stoichiometric ratio, thereby suppressing the disorder of the crystal structure, smoothing the diffusion of lithium ions, and improving the rate characteristics and output characteristics. Has been. On the other hand, if the lithium ratio is too high, there is a possibility that a heterogeneous phase may be generated or battery performance may be lowered.

特許文献2には、Li[Li(Ni1/2Mn1/21−x]Oにおいて、リチウムが過剰になる(xが0より大きい)と過充電状態での活物質の熱的安定性が改善されること、その一方、xが大きすぎる(x>0.3)と活物質の電気容量が低下することが記載されている。 Patent Document 2 discloses that in Li [Li x (Ni 1/2 Mn 1/2 ) 1-x ] O 2 , when lithium becomes excessive (x is larger than 0), the heat of the active material in an overcharged state is disclosed. On the other hand, it is described that the electrical stability of the active material is lowered when x is too large (x> 0.3).

さらに、リチウムの比率を高めたリチウム遷移金属複合酸化物の内、所謂固溶体系と呼ばれるものが注目されている。   Further, among so-called lithium transition metal composite oxides having an increased lithium ratio, what is called a so-called solid solution system has attracted attention.

特許文献3の段落0005では、LiMO(Mは金属元素)とLiMnOの固溶体が200mAh/gの放電容量を示し得ることが開示されている。 In paragraph 0005 of Patent Document 3, it is disclosed that a solid solution of LiMO 2 (M is a metal element) and Li 2 MnO 3 can exhibit a discharge capacity of 200 mAh / g.

特許文献4ではLi[Li1/3Mn2/3]O、LiCoO及びLiNi1/2Mn1/2の三成分を特定範囲の比で固溶させ4.3V以下の電位領域における放電容量を高める技術が提案されている。 In Patent Document 4, a potential region of 4.3 V or less is obtained by dissolving three components of Li [Li 1/3 Mn 2/3 ] O 2 , LiCoO 2 and LiNi 1/2 Mn 1/2 O 2 in a specific range ratio. Techniques for increasing the discharge capacity in the field have been proposed.

一方リチウム遷移金属複合酸化物に関して、目的に応じて更にタングステン等を含有させる技術が提案されている。   On the other hand, with respect to the lithium transition metal composite oxide, a technique for further containing tungsten or the like according to the purpose has been proposed.

特許文献5では、ニッケル酸リチウムのニッケルの一部をタングステン等で置換し、容量、サイクル特性を改善し、合成における再現性を高める技術が提案されている。但し、コバルトやマンガンでの置換に関しては何ら記載がない。   Patent Document 5 proposes a technique in which a part of nickel in lithium nickelate is replaced with tungsten or the like to improve capacity and cycle characteristics and to improve reproducibility in synthesis. However, there is no description about substitution with cobalt or manganese.

特許文献6では、リチウム過剰なニッケルマンガン酸リチウムのマンガンの一部をタングステン等で置換し、エネルギー密度を高める技術が提案されている。段落0017によれば、マンガンを4価以上の元素で置換することでリチウム過剰状態におけるマンガンの価数変化を容易にし、導電性の低下を防止し、結果エネルギー密度を増加させるとされている。   Patent Document 6 proposes a technique in which a part of manganese of lithium-excess lithium nickel manganate is replaced with tungsten or the like to increase the energy density. According to paragraph 0017, substitution of manganese with a tetravalent or higher element facilitates a change in the valence of manganese in an excess lithium state, prevents a decrease in conductivity, and results in an increase in energy density.

特許文献7では、電池抵抗を低くして出力特性を高めるための手段の一つとして、正極活物質にタングステンを含有したニッケルコバルトマンガン酸リチウムを用いることが提案されている。請求項1におけるリチウム量は、リチウム過剰な状態も含む広い範囲であるが、具体的に開示されているのはリチウムが全遷移金属に対してモル比で1.05倍までの範囲である。また、リチウムを過剰にすることに関しては何ら記載がない。   Patent Document 7 proposes to use nickel cobalt lithium manganate containing tungsten as a positive electrode active material as one of means for reducing battery resistance and improving output characteristics. The amount of lithium in claim 1 is in a wide range including a state in which lithium is excessive, but what is specifically disclosed is a range in which lithium is up to 1.05 times the molar ratio of all transition metals. Moreover, there is no description about making lithium excessive.

特開2007−214138号公報JP 2007-214138 A 国際公開第02/078105号パンフレットInternational Publication No. 02/0708105 Pamphlet 特開2011−204563号公報JP 2011-204563 A 特開2008−146392号公報JP 2008-146392 A 特開平06−283174号公報Japanese Patent Laid-Open No. 06-283174 特開2005−235628号公報JP 2005-235628 A 特開2008−243448号公報JP 2008-243448 A

リチウム過剰の層状構造のリチウム遷移金属複合酸化物は、充放電容量は高いがサイクル特性がやや劣る傾向にある。また、リチウムが遷移金属層に存在しているので、遷移金属の比率の影響が通常のリチウム遷移金属複合酸化物のそれと異なることも多い。そのため、従来技術ではハイブリッド自動車等の電気自動車に使用可能な程度に高い充放電容量とサイクル特性とを両立することが出来ずにいた。また、体積エネルギー密度も、電気自動車に使用可能な程度ではなかった。   The lithium transition metal composite oxide having a layer structure with an excess of lithium has a high charge / discharge capacity, but tends to have slightly poor cycle characteristics. In addition, since lithium is present in the transition metal layer, the influence of the ratio of the transition metal is often different from that of a normal lithium transition metal composite oxide. For this reason, in the prior art, it has been impossible to achieve both charge / discharge capacity and cycle characteristics that are high enough to be used for an electric vehicle such as a hybrid vehicle. Also, the volume energy density is not of a level that can be used for electric vehicles.

本発明は上記の事情に鑑みてなされたものである。本発明の目的は、高い充放電容量、サイクル特性及びエネルギー密度を満たす正極活物質を提供することにある。また、電気自動車等に適用し得る高い体積エネルギー密度でサイクル特性の良い非水電解液二次電池を提供することにある。   The present invention has been made in view of the above circumstances. An object of the present invention is to provide a positive electrode active material satisfying a high charge / discharge capacity, cycle characteristics, and energy density. Another object of the present invention is to provide a non-aqueous electrolyte secondary battery having a high volumetric energy density and good cycle characteristics that can be applied to electric vehicles and the like.

上記目的を達成するために本発明者らは鋭意検討を重ね、本発明を完成するに至った。本発明者らは、特定範囲の固溶体系のリチウム遷移金属複合酸化物にタングステンを含有させたリチウム遷移金属複合酸化物を正極活物質に用いることで、リチウム過剰の層状のリチウム遷移金属複合酸化物による高い充放電容量を損なうことなくサイクル特性を改善できることを見出した。また、この時、体積エネルギー密度も改善されることを見出した。本発明の正極活物質は、一般式xLiMnO・(1−x)LiNiCo1−a−bMn(但し0.3≦x≦0.7、0<a≦0.60、0<b≦0.50)で表されるリチウム遷移金属複合酸化物中にタングステンが0.1mol%以上5.0mol%以下含有されていることを特徴とする。 In order to achieve the above object, the present inventors have conducted intensive studies and have completed the present invention. The present inventors have used a lithium transition metal composite oxide in which tungsten is contained in a lithium transition metal composite oxide of a specific range of solid solution system as a positive electrode active material, so that a lithium-excess layered lithium transition metal composite oxide It was found that the cycle characteristics can be improved without impairing the high charge / discharge capacity. Moreover, it discovered that the volume energy density was also improved at this time. The positive electrode active material of the present invention has a general formula xLi 2 MnO 3. (1-x) LiNi a Co 1-ab Mn b O 2 (where 0.3 ≦ x ≦ 0.7, 0 <a ≦ 0. 60, 0 <b ≦ 0.50), wherein tungsten is contained in an amount of 0.1 mol% to 5.0 mol% in the lithium transition metal composite oxide.

前記タングステンは、前記リチウム遷移金属複合酸化物の副相として存在していることが好ましい。特に前記副相にリチウムとタングステンの複合酸化物が含まれていることが好ましい。   The tungsten is preferably present as a subphase of the lithium transition metal composite oxide. In particular, the subphase preferably contains a composite oxide of lithium and tungsten.

前記正極活物質のタップ密度は1.7g/cm以上であることが好ましい。 The positive electrode active material preferably has a tap density of 1.7 g / cm 3 or more.

本発明の非水電解液二次電池は、本発明の正極活物質を用いていることを特徴とする。   The non-aqueous electrolyte secondary battery of the present invention is characterized by using the positive electrode active material of the present invention.

本発明の正極活物質は上記の特徴を備えているため、高い充放電容量、サイクル特性及び体積エネルギー密度を全て満たすことができる。そのため、本発明の正極活物質を正極に用いることで、体積エネルギー密度が高く、サイクル特性が向上した非水電解液二次電池を得ることができる。   Since the positive electrode active material of the present invention has the above characteristics, it can satisfy all of high charge / discharge capacity, cycle characteristics, and volume energy density. Therefore, by using the positive electrode active material of the present invention for the positive electrode, a non-aqueous electrolyte secondary battery having a high volumetric energy density and improved cycle characteristics can be obtained.

図1は本発明の正極活物質の形態の一例の模式図である。FIG. 1 is a schematic view of an example of the form of the positive electrode active material of the present invention.

以下、本発明の正極活物質について詳細に説明する。   Hereinafter, the positive electrode active material of the present invention will be described in detail.

本発明の正極活物質は、組成が一般式中xLiMnO・(1−x)LiNiCo1−a−bMn(但し0.3≦x≦0.7、0<a≦0.60、0<b≦0.50)で表されるリチウム遷移金属複合酸化物中にタングステンが0.1mol%以上5.0mol%以下含有されている。 The positive electrode active material of the present invention has a composition represented by the general formula: xLi 2 MnO 3. (1-x) LiNi a Co 1-ab Mn b O 2 (provided that 0.3 ≦ x ≦ 0.7, 0 <a In the lithium transition metal composite oxide represented by ≦ 0.60, 0 <b ≦ 0.50), tungsten is contained in an amount of 0.1 mol% to 5.0 mol%.

xは0.3≦x≦0.7とする。xが0.3より小さい、或いは0.7より大きいと放電容量の大幅な低下を招き好ましくない。好ましい範囲は0.3≦x≦0.6、より好ましい範囲は0.4≦x≦0.6である。   x is 0.3 ≦ x ≦ 0.7. When x is smaller than 0.3 or larger than 0.7, the discharge capacity is significantly decreased, which is not preferable. A preferred range is 0.3 ≦ x ≦ 0.6, and a more preferred range is 0.4 ≦ x ≦ 0.6.

LiNiCo1−a−bMnにおけるコバルト、ニッケル及びマンガンについて、ニッケルとマンガンは必須であり、三者の内どれか一つの元素の比率が突出して多くならないようにし、充放電容量、サイクル特性、製造のし易さについてバランスをとる必要がある。このことを踏まえ、0<a≦0.60、0<b≦0.50とする。好ましくは、0.20≦a≦0.50、0.20≦b≦0.50である。特にa=bであると、組成分布が均一で未反応原料の少ないリチウム遷移金属複合酸化物が得やすいのでより好ましい。 Regarding cobalt, nickel, and manganese in LiNi a Co 1-a-b Mn b O 2 , nickel and manganese are essential, so that the ratio of any one of the three elements does not protrude and the charge / discharge capacity is increased. It is necessary to balance the cycle characteristics and ease of manufacture. Based on this, 0 <a ≦ 0.60 and 0 <b ≦ 0.50. Preferably, 0.20 ≦ a ≦ 0.50 and 0.20 ≦ b ≦ 0.50. In particular, a = b is more preferable because a lithium transition metal composite oxide having a uniform composition distribution and a small amount of unreacted raw materials can be easily obtained.

タングステンの含有量は、少なすぎればサイクル特性改善効果が見いだせず、多すぎれば体積エネルギー密度の低下を招く。主成分に対して0.1mol%以上5.0mol%以下であれば、高い体積エネルギー密度とサイクル特性を両立することが出来る。より好ましくは0.5mol%以上2.0mol%以下である。この範囲であると、負荷特性も向上する。   If the content of tungsten is too small, the effect of improving the cycle characteristics cannot be found, and if it is too large, the volume energy density is lowered. If it is 0.1 mol% or more and 5.0 mol% or less with respect to a main component, high volume energy density and cycling characteristics can be made compatible. More preferably, it is 0.5 mol% or more and 2.0 mol% or less. Within this range, load characteristics are also improved.

正極活物質中のタングステンはその少なくとも一部が前記リチウム遷移金属複合酸化物の副相として存在していることが好ましい。他の一部はニッケル等の遷移金属層に固溶していてもよい。図1は、タングステンの一部がリチウム遷移金属複合酸化物の副相としている形態の一例である。図1において、正極活物質1は、リチウム遷移金属複合酸化物の一次粒子111が凝集した二次粒子11と、副相12とからなる。なお、本発明の正極活物質におけるリチウム遷移金属複合酸化物は一次粒子のみの形態、あるいは一次粒子と二次粒子が混在した形態であっても良い。副相12は、一次粒子111の表面を含む領域に存在し、リチウム遷移金属複合酸化物が二次粒子11を形成している場合は、結果として一次粒子111の界面を含む領域に存在していることになる。   It is preferable that at least a part of tungsten in the positive electrode active material exists as a subphase of the lithium transition metal composite oxide. The other part may be dissolved in a transition metal layer such as nickel. FIG. 1 is an example of a form in which a part of tungsten is a subphase of a lithium transition metal composite oxide. In FIG. 1, the positive electrode active material 1 includes a secondary particle 11 in which primary particles 111 of a lithium transition metal composite oxide are aggregated and a subphase 12. Note that the lithium transition metal composite oxide in the positive electrode active material of the present invention may be in the form of only primary particles or a form in which primary particles and secondary particles are mixed. The subphase 12 exists in a region including the surface of the primary particle 111, and when the lithium transition metal composite oxide forms the secondary particle 11, as a result, the subphase 12 exists in a region including the interface of the primary particle 111. Will be.

固溶したタングステンは正極活物質のリチウムイオン伝導性を向上させ、高い電流密度を流しても容量低下が起こりにくいようにする。すなわち負荷特性が向上する。一方、副相に存在するタングステンは、充放電時に遷移金属が正極活物質から溶出するのを防止し、サイクル特性の向上に寄与する。副相に存在するタングステンは様々な形態をとり得るが、少なくともその一部はリチウムとタングステンの複合酸化物の形態であることが好ましい。このような副相もまたリチウムイオン伝導性向上に寄与し、負荷特性が向上するためである。リチウムとタングステンの複合酸化物としては、LiWO、LiWO等があるが、特に限定されない。リチウムとタングステンの複合酸化物として存在している場合、この副相は水溶性であり、後述の方法でその存在を確認することができる。 The solid solution tungsten improves the lithium ion conductivity of the positive electrode active material and makes it difficult for the capacity to decrease even when a high current density is applied. That is, load characteristics are improved. On the other hand, tungsten present in the subphase prevents the transition metal from eluting from the positive electrode active material during charge and discharge, and contributes to improvement of cycle characteristics. Tungsten present in the subphase can take various forms, but at least a part thereof is preferably in the form of a composite oxide of lithium and tungsten. This is because such a subphase also contributes to the improvement of lithium ion conductivity and the load characteristics are improved. Examples of the composite oxide of lithium and tungsten include Li 2 WO 4 and Li 4 WO 5, but are not particularly limited. When present as a composite oxide of lithium and tungsten, this subphase is water-soluble, and its presence can be confirmed by the method described later.

正極活物質の比表面積は、小さいほど遷移金属の溶出が防止されるので好ましい。好ましくは3.0m/g以下、より好ましいのは2.0m/g以下、さらに好まくのは1.7m/g以下である。遷移金属の溶出が防止されると、負極等への悪影響が改善され、結果として電池全体のサイクル特性が良好になる。 The smaller the specific surface area of the positive electrode active material, the more preferable the transition metal is prevented from being eluted. Preferably it is 3.0 m < 2 > / g or less, More preferably, it is 2.0 m < 2 > / g or less, More preferably, it is 1.7 m < 2 > / g or less. When the elution of the transition metal is prevented, the adverse effect on the negative electrode and the like is improved, and as a result, the cycle characteristics of the entire battery are improved.

正極活物質のタップ密度は、1.7g/cm以上であると体積エネルギー密度が十分高くなるので好ましい。より好ましいのは1.8g/cm以上である。上限は正極活物質が粉体として取り得る値であれば特に存在しない。現実的には2.5g/cm程度が上限と言える。 The tap density of the positive electrode active material is preferably 1.7 g / cm 3 or more because the volume energy density is sufficiently high. More preferably, it is 1.8 g / cm 3 or more. There is no particular upper limit as long as the positive electrode active material can be taken as powder. Actually, the upper limit is about 2.5 g / cm 3 .

[正極活物質の製造]
以下、本発明の正極活物質の製造方法について説明する。本発明の正極活物質は、公知の手法を適宜用いて合成可能であるが各工程について以下詳細に説明する。
[Production of positive electrode active material]
Hereinafter, the manufacturing method of the positive electrode active material of this invention is demonstrated. The positive electrode active material of the present invention can be synthesized by appropriately using known methods, but each step will be described in detail below.

[混合工程]
高温で酸化物に分解する原料化合物を目的組成に合わせて混合する(所謂乾式法)、あるいは溶媒に可溶な原料化合物を溶媒に溶解し、温度調整、pH調整、錯化剤投入等で前駆体の沈殿を生じさせる(所謂共沈法)、あるいはこれらの手法を組み合わせる等して適宜混合原料を調整する。高温で酸化物に分解する原料として、各元素の酸化物、水酸化物、硝酸塩、硫酸塩、炭酸塩等を用いることができる。例えば、リチウム源としては、炭酸リチウム、硝酸リチウム、水酸化リチウム等を用いることが可能である。水酸化リチウムを用いると、得られる正極活物質中のタングステンについて、リチウム遷移金属複合酸化物の副相として存在するタングステンの割合が増加するので好ましい。ニッケル源としては、炭酸ニッケル、硫酸ニッケル、水酸化ニッケル、酸化ニッケル、過酸化ニッケル等を、コバルト源としては、酸化コバルト、三酸化ニコバルト、四酸化三コバルト、水酸化コバルト、硝酸コバルト、硫酸コバルト等を、マンガン源としては、二酸化マンガン、三酸化ニマンガン、四酸化三マンガン、炭酸マンガン、硝酸マンガン、硫酸マンガン等を挙げることができる。タングステン源としては、二酸化タングステン、三酸化タングステン、タングステン酸リチウム、タングステン酸アンモニウム、タングステン酸の有機化合物等が挙げられる。なお、タングステンを含む全元素の原料化合物をこの混合工程で混合する。
[Mixing process]
A raw material compound that decomposes into an oxide at a high temperature is mixed in accordance with the target composition (so-called dry method), or a raw material compound that is soluble in a solvent is dissolved in a solvent, and the precursor is prepared by adjusting the temperature, adjusting the pH, or adding a complexing agent The mixed raw material is appropriately adjusted by causing body precipitation (so-called coprecipitation method) or combining these methods. As raw materials that decompose into oxides at high temperatures, oxides, hydroxides, nitrates, sulfates, carbonates, and the like of each element can be used. For example, lithium carbonate, lithium nitrate, lithium hydroxide, or the like can be used as the lithium source. When lithium hydroxide is used, it is preferable because the proportion of tungsten existing as a subphase of the lithium transition metal composite oxide is increased with respect to tungsten in the obtained positive electrode active material. Nickel sources include nickel carbonate, nickel sulfate, nickel hydroxide, nickel oxide, nickel peroxide, etc., and cobalt sources include cobalt oxide, niobium trioxide, tricobalt tetroxide, cobalt hydroxide, cobalt nitrate, cobalt sulfate. As the manganese source, manganese dioxide, nimanganese trioxide, trimanganese tetroxide, manganese carbonate, manganese nitrate, manganese sulfate and the like can be mentioned. Examples of the tungsten source include tungsten dioxide, tungsten trioxide, lithium tungstate, ammonium tungstate, and an organic compound of tungstic acid. Note that raw material compounds of all elements including tungsten are mixed in this mixing step.

各原料の混合比は、リチウム遷移金属複合酸化物の目的組成及びタングステン含有量に応じて決定すればよいが、タングステン含有量が多くなればリチウムがやや過剰になるようにする。このように混合することで、得られる正極活物質中のタングステンにおいて、リチウム遷移金属複合酸化物の副相として存在するタングステンの割合を増加させることができる。   The mixing ratio of the respective raw materials may be determined according to the target composition of the lithium transition metal composite oxide and the tungsten content. However, if the tungsten content is increased, lithium is slightly excessive. By mixing in this way, in the tungsten in the positive electrode active material obtained, the proportion of tungsten existing as a subphase of the lithium transition metal composite oxide can be increased.

共沈法によって複合酸化物を得る場合、得られる複合酸化物が密な二次粒子となるよう反応条件を適宜調整する。密であれば得られる正極活物質のタップ密度を高く、且つ比表面積を小さくできる。複合酸化物の疎密は走査型電子顕微鏡(SEM)等目視で判断する程度で十分である。複合酸化物のタップ密度を測定して判断してもよい。   When obtaining a composite oxide by the coprecipitation method, the reaction conditions are appropriately adjusted so that the obtained composite oxide becomes dense secondary particles. If it is dense, the tap density of the obtained positive electrode active material can be increased and the specific surface area can be decreased. The density of the complex oxide is sufficient to be determined visually by a scanning electron microscope (SEM). You may judge by measuring the tap density of complex oxide.

[焼成工程]
前記混合工程で得られる混合原料を焼成する。焼成温度は、高ければ得られる正極活物質の比表面積が低くなるので目的に応じて適宜調整する。焼成温度は、低すぎればリチウムと他の元素との反応が不十分に、あるいは十分な結晶子径を得られない傾向にあり、高すぎればリチウムが揮発する、あるいは焼結が起こる傾向にあるので注意が必要である。これらを踏まえると、目的組成にもよるが概ね700℃以上1100℃以下が好ましい。より好ましくは800℃以上1000℃以下である。さらに好ましくは850℃以上950℃以下である。焼成時間は最高温度を保持する時間として10時間以上あれば十分である。
[Baking process]
The mixed raw material obtained in the mixing step is fired. The firing temperature is appropriately adjusted according to the purpose because the specific surface area of the positive electrode active material to be obtained is low if it is high. If the firing temperature is too low, the reaction between lithium and other elements will be insufficient, or a sufficient crystallite size will not be obtained. If it is too high, lithium will volatilize or sintering will tend to occur. So be careful. In consideration of these, although it depends on the target composition, generally 700 ° C. or more and 1100 ° C. or less are preferable. More preferably, it is 800 degreeC or more and 1000 degrees C or less. More preferably, it is 850 degreeC or more and 950 degrees C or less. A firing time of 10 hours or more is sufficient as a time for maintaining the maximum temperature.

[後処理]
焼成後、必要に応じて粗砕、粉砕、乾式篩い等の処理を行い、本願発明の正極活物質を得る。
[Post-processing]
After firing, if necessary, treatments such as crushing, pulverization, and dry sieving are performed to obtain the positive electrode active material of the present invention.

以下、実施例にてより具体的な例を説明する。   Hereinafter, more specific examples will be described in Examples.

共沈法によって、タップ密度1.3g/cmのニッケルコバルトマンガン複合酸化物(Ni/Co/Mn=0.167/0.167/0.667)を得る。前記複合酸化物、水酸化リチウム、酸化タングステン(VI)を、その混合比がLi:(Ni+Co+Mn):W=1.50:1.00:0.005となるように混合し、大気雰囲気中900℃で10時間焼成する。焼成後分散処理して組成が0.5LiMnO・0.5LiNi0.33Co0.33Mn0.33で表されるリチウム遷移金属複合酸化物中にタングステンが0.5mol%含有されている正極活物質を得る。 A nickel cobalt manganese composite oxide (Ni / Co / Mn = 0.167 / 0.167 / 0.667) having a tap density of 1.3 g / cm 3 is obtained by a coprecipitation method. The composite oxide, lithium hydroxide, and tungsten oxide (VI) are mixed so that the mixing ratio thereof is Li: (Ni + Co + Mn): W = 1.50: 1.00: 0.005. Bake at 10 ° C. for 10 hours. 0.5 mol% of tungsten is contained in the lithium transition metal composite oxide expressed by 0.5Li 2 MnO 3 .0.5LiNi 0.33 Co 0.33 Mn 0.33 O 2 after dispersion treatment after firing A positive electrode active material is obtained.

混合比がLi:(Ni+Co+Mn):W=1.51:1.00:0.010であること以外実施例1と同様にし、組成が0.5LiMnO・0.5LiNi0.33Co0.33Mn0.33で表されるリチウム遷移金属複合酸化物中にタングステンが1.0mol%含有されている正極活物質を得る。 The composition is 0.5Li 2 MnO 3 .0.5LiNi 0.33 Co 0 except that the mixing ratio is Li: (Ni + Co + Mn): W = 1.51: 1.00: 0.010 and the composition is 0.5Li 2 MnO 3 .0.5LiNi 0.33 Co 0 A positive electrode active material in which 1.0 mol% of tungsten is contained in the lithium transition metal composite oxide represented by .33 Mn 0.33 O 2 is obtained.

混合比がLi:(Ni+Co+Mn):W=1.53:1.00:0.020であること以外実施例1と同様にし、組成が0.5LiMnO・0.5LiNi0.33Co0.33Mn0.33で表されるリチウム遷移金属複合酸化物にタングステンが2.0mol%含有されている正極活物質を得る。 The composition was 0.5Li 2 MnO 3 .0.5LiNi 0.33 Co 0 except that the mixing ratio was Li: (Ni + Co + Mn): W = 1.53: 1.00: 0.020, and the composition was 0.5Li 2 MnO 3 .0.5LiNi 0.33 Co 0 A positive electrode active material in which 2.0 mol% of tungsten is contained in the lithium transition metal composite oxide represented by .33 Mn 0.33 O 2 is obtained.

[比較例1]
酸化タングステン(VI)を混合しないこと以外実施例1と同様にし、組成が0.5LiMnO・0.5LiNi0.33Co0.33Mn0.33で表されるリチウム遷移金属複合酸化物を得る。
[Comparative Example 1]
Lithium transition metal composite having the same composition as in Example 1 except that tungsten oxide (VI) is not mixed and the composition represented by 0.5Li 2 MnO 3 .0.5LiNi 0.33 Co 0.33 Mn 0.33 O 2 An oxide is obtained.

焼成温度が800℃であること以外実施例2と同様にし、組成が0.5LiMnO・0.5LiNi0.33Co0.33Mn0.33で表されるリチウム遷移金属複合酸化物にタングステンが1.0mol%含有されている正極活物質を得る。 Lithium transition metal composite oxidation in the same manner as in Example 2 except that the firing temperature is 800 ° C. and the composition is represented by 0.5Li 2 MnO 3 .0.5LiNi 0.33 Co 0.33 Mn 0.33 O 2 A positive electrode active material containing 1.0 mol% tungsten is obtained.

[比較例2]
焼成温度が800℃であること以外比較例1と同様にし、組成0.5LiMnO・0.5LiNi0.33Co0.33Mn0.33で表されるリチウム遷移金属複合酸化物を得る。
[Comparative Example 2]
Lithium transition metal composite oxide represented by the composition 0.5Li 2 MnO 3 .0.5LiNi 0.33 Co 0.33 Mn 0.33 O 2 in the same manner as in Comparative Example 1 except that the firing temperature is 800 ° C. Get.

共沈法によって、タップ密度1.3g/cmのニッケルコバルトマンガン複合酸化物(Ni/Co/Mn=0.200/0.200/0.600)を得る。前記複合酸化物、水酸化リチウム、及び酸化タングステン(VI)を、その混合比がLi:(Ni+Co+Mn):W=1.40:1.00:0.005となるように混合し、大気雰囲気中900℃で10時間焼成する。焼成後分散処理して組成が0.4LiMnO・0.6LiNi0.33Co0.33Mn0.33で表されるリチウム遷移金属複合酸化物にタングステンが0.5mol%含有されている正極活物質を得る。 A nickel cobalt manganese composite oxide (Ni / Co / Mn = 0.200 / 0.200 / 0.600) having a tap density of 1.3 g / cm 3 is obtained by a coprecipitation method. The composite oxide, lithium hydroxide, and tungsten oxide (VI) were mixed so that the mixing ratio was Li: (Ni + Co + Mn): W = 1.40: 1.00: 0.005, and the atmosphere was Bake at 900 ° C. for 10 hours. 0.5 mol% of tungsten is contained in the lithium transition metal composite oxide having a composition of 0.4Li 2 MnO 3 .0.6LiNi 0.33 Co 0.33 Mn 0.33 O 2 after dispersion treatment after firing. The positive electrode active material is obtained.

混合比がLi:(Ni+Co+Mn):W=1.41:1.00:0.010であること以外実施例5と同様にし、組成が0.4LiMnO・0.6LiNi0.33Co0.33Mn0.33で表されるリチウム遷移金属複合酸化物にタングステンが1.0mol%含有されている正極活物質正極活物質を得る。 The composition was 0.4 Li 2 MnO 3 .0.6LiNi 0.33 Co 0 in the same manner as in Example 5 except that the mixing ratio was Li: (Ni + Co + Mn): W = 1.41: 1.00: 0.010. A positive electrode active material in which 1.0 mol% of tungsten is contained in a lithium transition metal composite oxide represented by .33 Mn 0.33 O 2 is obtained.

混合比がLi:(Ni+Co+Mn):W=1.43:1.00:0.020であること以外実施例5と同様にし、組成が0.4LiMnO・0.6LiNi0.33Co0.33Mn0.33で表されるリチウム遷移金属複合酸化物にタングステンが2.0mol%含有されている正極活物質を得る。 The composition was 0.4 Li 2 MnO 3 .0.6LiNi 0.33 Co 0 except that the mixing ratio was Li: (Ni + Co + Mn): W = 1.43: 1.00: 0.020 and the same as in Example 5. A positive electrode active material in which 2.0 mol% of tungsten is contained in the lithium transition metal composite oxide represented by .33 Mn 0.33 O 2 is obtained.

混合比がLi:(Ni+Co+Mn):W=1.46:1.00:0.040であること以外実施例5と同様にし、組成が0.4LiMnO・0.6LiNi0.33Co0.33Mn0.33で表されるリチウム遷移金属複合酸化物にタングステンが4.0mol%含有されている正極活物質を得る。 The composition ratio was 0.4Li 2 MnO 3 .0.6LiNi 0.33 Co 0 except that the mixing ratio was Li: (Ni + Co + Mn): W = 1.46: 1.00: 0.040. obtaining a positive electrode active material of tungsten is contained 4.0 mol% in the lithium transition metal composite oxide represented by .33 Mn 0.33 O 2.

[比較例3]
酸化タングステン(VI)を混合しないこと以外実施例5と同様にし、組成0.4LiMnO・0.6LiNi0.33Co0.33Mn0.33で表されるリチウム遷移金属複合酸化物を得る。
[Comparative Example 3]
Lithium transition metal composite oxidation represented by the composition 0.4Li 2 MnO 3 .0.6LiNi 0.33 Co 0.33 Mn 0.33 O 2 in the same manner as in Example 5 except that tungsten oxide (VI) was not mixed. Get things.

[比較例4]
焼成温度が800℃であること以外比較例3と同様にし、組成が0.4LiMnO・0.6LiNi0.33Co0.33Mn0.33で表されるリチウム遷移金属複合酸化物を得る。
[Comparative Example 4]
Lithium transition metal composite oxidation in the same manner as in Comparative Example 3 except that the firing temperature is 800 ° C. and the composition is represented by 0.4Li 2 MnO 3 .0.6LiNi 0.33 Co 0.33 Mn 0.33 O 2 Get things.

混合するリチウム化合物が炭酸リチウムであること以外実施例7と同様にし、組成が0.4LiMnO・0.6LiNi0.33Co0.33Mn0.33で表されるリチウム遷移金属複合酸化物にタングステンが2.0mol%含有されている正極活物質正極活物質を得る。 Lithium transition metal having the same composition as in Example 7 except that the lithium compound to be mixed is lithium carbonate, and the composition is represented by 0.4Li 2 MnO 3 .0.6LiNi 0.33 Co 0.33 Mn 0.33 O 2 A positive electrode active material containing 2.0 mol% of tungsten in the composite oxide is obtained.

[比較例5]
混合するリチウム化合物が炭酸リチウムであること以外比較例3と同様にし、組成が0.4LiMnO・0.6LiNi0.33Co0.33Mn0.33で表されるリチウム遷移金属複合酸化物を得る。
[Comparative Example 5]
Lithium transition metal having the same composition as Comparative Example 3 except that the lithium compound to be mixed is lithium carbonate, and the composition is represented by 0.4Li 2 MnO 3 .0.6LiNi 0.33 Co 0.33 Mn 0.33 O 2 A composite oxide is obtained.

共沈法によって、タップ密度1.0g/cmのニッケルコバルトマンガン複合酸化物(Ni/Co/Mn=0.167/0.167/0.667)を得る。前記複合酸化物、水酸化リチウム、及び酸化タングステン(VI)を、その混合比がLi:(Ni+Co+Mn):W=1.51:1.00:0.010となるように混合し、大気雰囲気中900℃で10時間焼成する。焼成後分散処理して組成が0.5LiMnO・0.5LiNi0.33Co0.33Mn0.33で表されるリチウム複合酸化物中にタングステンが1.0mol%含有されている正極活物質を得る。 By the coprecipitation method, a nickel cobalt manganese composite oxide (Ni / Co / Mn = 0.167 / 0.167 / 0.667) having a tap density of 1.0 g / cm 3 is obtained. The composite oxide, lithium hydroxide, and tungsten oxide (VI) were mixed so that the mixing ratio was Li: (Ni + Co + Mn): W = 1.51: 1.00: 0.010, and the atmosphere was Bake at 900 ° C. for 10 hours. 1.0 mol% of tungsten is contained in the lithium composite oxide expressed by 0.5Li 2 MnO 3 .0.5LiNi 0.33 Co 0.33 Mn 0.33 O 2 after dispersion treatment after firing. A positive electrode active material is obtained.

混合比がLi:(Ni+Co+Mn):W=1.53:1.00:0.020であること以外実施例10と同様にし、組成が0.5LiMnO・0.5LiNi0.33Co0.33Mn0.33で表されるリチウム複合酸化物中にタングステンが2.0mol%含有されている正極活物質を得る。 The composition was 0.5 Li 2 MnO 3 .0.5LiNi 0.33 Co 0 except that the mixing ratio was Li: (Ni + Co + Mn): W = 1.53: 1.00: 0.020, and the composition was 0.5Li 2 MnO 3 .0.5LiNi 0.33 Co 0 A positive electrode active material in which 2.0 mol% of tungsten is contained in the lithium composite oxide represented by .33 Mn 0.33 O 2 is obtained.

[比較例6]
酸化タングステン(VI)を混合しないこと以外実施例10と同様にし、組成が0.5LiMnO・0.5LiNi0.33Co0.33Mn0.33で表されるリチウム遷移金属複合酸化物を得る。
[Comparative Example 6]
A lithium transition metal composite having the same composition as in Example 10 except that tungsten oxide (VI) is not mixed, and the composition represented by 0.5Li 2 MnO 3 .0.5LiNi 0.33 Co 0.33 Mn 0.33 O 2 An oxide is obtained.

共沈法によって、タップ密度1.3g/cmのニッケルコバルトマンガン複合酸化物(Ni/Co/Mn=0.230/0.230/0.540)を得る。前記複合酸化物、水酸化リチウム、及び酸化タングステン(VI)を、その混合比がLi:(Ni+Co+Mn):W=1.30:1.00:0.020となるように混合し、大気雰囲気中900℃で10時間焼成する。焼成後分散処理して組成が0.3LiMnO・0.7LiNi0.33Co0.33Mn0.33で表されるリチウム遷移金属複合酸化物にタングステンが2.0mol%含有されている正極活物質を得る。 A nickel cobalt manganese composite oxide (Ni / Co / Mn = 0.230 / 0.230 / 0.540) having a tap density of 1.3 g / cm 3 is obtained by a coprecipitation method. The composite oxide, lithium hydroxide, and tungsten oxide (VI) were mixed so that the mixing ratio was Li: (Ni + Co + Mn): W = 1.30: 1.00: 0.020, and the atmosphere was Bake at 900 ° C. for 10 hours. After the firing, the lithium transition metal composite oxide represented by 0.3Li 2 MnO 3 .0.7LiNi 0.33 Co 0.33 Mn 0.33 O 2 is dispersed and treated with 2.0 mol% of tungsten. The positive electrode active material is obtained.

共沈法によって、タップ密度1.3g/cmのニッケルコバルトマンガン複合酸化物(Ni/Co/Mn=0.130/0.130/0.740)を得る。前記複合酸化物、水酸化リチウム、及び酸化タングステン(VI)を、その混合比がLi:(Ni+Co+Mn):W=1.60:1.00:0.020となるように混合し、大気雰囲気中900℃で10時間焼成する。焼成後分散処理して組成が0.6LiMnO・0.4LiNi0.33Co0.33Mn0.33で表されるリチウム遷移金属複合酸化物にタングステンが2.0mol%含有されている正極活物質を得る。 A nickel cobalt manganese composite oxide (Ni / Co / Mn = 0.130 / 0.130 / 0.740) having a tap density of 1.3 g / cm 3 is obtained by a coprecipitation method. The composite oxide, lithium hydroxide, and tungsten oxide (VI) were mixed so that the mixing ratio was Li: (Ni + Co + Mn): W = 1.60: 1.00: 0.020, and the atmosphere was Bake at 900 ° C. for 10 hours. The lithium transition metal composite oxide having a composition of 0.6Li 2 MnO 3 .0.4LiNi 0.33 Co 0.33 Mn 0.33 O 2 after dispersion treatment after firing contains 2.0 mol% of tungsten. The positive electrode active material is obtained.

共沈法によって、タップ密度1.3g/cmのニッケルコバルトマンガン複合酸化物(Ni/Co/Mn=0.090/0.090/0.820)を得る。前記複合酸化物、水酸化リチウム、及び酸化タングステン(VI)を、その混合比がLi:(Ni+Co+Mn):W=1.70:1.00:0.020となるように混合し、大気雰囲気中900℃で10時間焼成する。焼成後分散処理して組成が0.7LiMnO・0.3LiNi0.33Co0.33Mn0.33で表されるリチウム遷移金属複合酸化物にタングステンが2.0mol%含有されている正極活物質を得る。 A nickel cobalt manganese composite oxide (Ni / Co / Mn = 0.090 / 0.090 / 0.820) having a tap density of 1.3 g / cm 3 is obtained by the coprecipitation method. The composite oxide, lithium hydroxide, and tungsten oxide (VI) were mixed so that the mixing ratio was Li: (Ni + Co + Mn): W = 1.70: 1.00: 0.020, and the atmosphere was Bake at 900 ° C. for 10 hours. After the firing, the lithium transition metal composite oxide represented by 0.7Li 2 MnO 3 .0.3LiNi 0.33 Co 0.33 Mn 0.33 O 2 is dispersed and treated with 2.0 mol% of tungsten. The positive electrode active material is obtained.

共沈法によって、タップ密度1.3g/cmのニッケルコバルトマンガン複合酸化物(Ni/Co/Mn=0.150/0.300/0.550)を得る。前記複合酸化物、水酸化リチウム、及び酸化タングステン(VI)を、その混合比がLi:(Ni+Co+Mn):W=1.40:1.00:0.020となるように混合し、大気雰囲気中900℃で10時間焼成する。焼成後分散処理して組成が0.4LiMnO・0.6LiNi0.25Co0.50Mn0.25で表されるリチウム遷移金属複合酸化物にタングステンが2.0mol%含有されている正極活物質を得る。 A nickel cobalt manganese composite oxide (Ni / Co / Mn = 0.150 / 0.300 / 0.550) having a tap density of 1.3 g / cm 3 is obtained by a coprecipitation method. The composite oxide, lithium hydroxide, and tungsten oxide (VI) were mixed so that the mixing ratio was Li: (Ni + Co + Mn): W = 1.40: 1.00: 0.020, and the atmosphere was Bake at 900 ° C. for 10 hours. The lithium transition metal composite oxide having a composition of 0.4Li 2 MnO 3 .0.6LiNi 0.25 Co 0.50 Mn 0.25 O 2 after dispersion treatment after firing contains 2.0 mol% of tungsten. The positive electrode active material is obtained.

共沈法によって、タップ密度1.3g/cmのニッケルコバルトマンガン複合酸化物(Ni/Co/Mn=0.090/0.420/0.490)を得る。前記複合酸化物、水酸化リチウム、及び酸化タングステン(VI)を、その混合比がLi:(Ni+Co+Mn):W=1.40:1.00:0.020となるように混合し、大気雰囲気中900℃で10時間焼成する。焼成後分散処理して組成が0.4LiMnO・0.6LiNi0.15Co0.70Mn0.15で表されるリチウム遷移金属複合酸化物にタングステンが2.0mol%含有されている正極活物質を得る。 A nickel cobalt manganese composite oxide (Ni / Co / Mn = 0.090 / 0.420 / 0.490) having a tap density of 1.3 g / cm 3 is obtained by the coprecipitation method. The composite oxide, lithium hydroxide, and tungsten oxide (VI) were mixed so that the mixing ratio was Li: (Ni + Co + Mn): W = 1.40: 1.00: 0.020, and the atmosphere was Bake at 900 ° C. for 10 hours. The lithium transition metal composite oxide having a composition of 0.4 Li 2 MnO 3 .0.6LiNi 0.15 Co 0.70 Mn 0.15 O 2 after dispersion treatment after firing contains 2.0 mol% of tungsten. The positive electrode active material is obtained.

共沈法によって、タップ密度1.3g/cmのニッケルコバルトマンガン複合酸化物(Ni/Co/Mn=0.300/0.120/0.580)を得る。前記複合酸化物、水酸化リチウム、及び酸化タングステン(VI)を、その混合比がLi:(Ni+Co+Mn):W=1.40:1.00:0.020となるように混合し、大気雰囲気中900℃で10時間焼成する。焼成後分散処理して組成が0.4LiMnO・0.6LiNi0.50Co0.20Mn0.30で表されるリチウム遷移金属複合酸化物にタングステンが2.0mol%含有されている正極活物質を得る。 A nickel cobalt manganese composite oxide (Ni / Co / Mn = 0.300 / 0.120 / 0.580) having a tap density of 1.3 g / cm 3 is obtained by a coprecipitation method. The composite oxide, lithium hydroxide, and tungsten oxide (VI) were mixed so that the mixing ratio was Li: (Ni + Co + Mn): W = 1.40: 1.00: 0.020, and the atmosphere was Bake at 900 ° C. for 10 hours. The lithium transition metal composite oxide having a composition of 0.4Li 2 MnO 3 .0.6LiNi 0.50 Co 0.20 Mn 0.30 O 2 after dispersion treatment after firing contains 2.0 mol% of tungsten. The positive electrode active material is obtained.

共沈法によって、タップ密度1.3g/cmのニッケルコバルトマンガン複合酸化物(Ni/Co/Mn=0.360/0.120/0.520)を得る。前記複合酸化物、水酸化リチウム、及び酸化タングステン(VI)を、その混合比がLi:(Ni+Co+Mn):W=1.40:1.00:0.020となるように混合し、大気雰囲気中900℃で10時間焼成する。焼成後分散処理して組成が0.4LiMnO・0.6LiNi0.60Co0.20Mn0.20で表されるリチウム遷移金属複合酸化物にタングステンが2.0mol%含有されている正極活物質を得る。 A nickel cobalt manganese composite oxide (Ni / Co / Mn = 0.360 / 0.120 / 0.520) having a tap density of 1.3 g / cm 3 is obtained by a coprecipitation method. The composite oxide, lithium hydroxide, and tungsten oxide (VI) were mixed so that the mixing ratio was Li: (Ni + Co + Mn): W = 1.40: 1.00: 0.020, and the atmosphere was Bake at 900 ° C. for 10 hours. The lithium transition metal composite oxide represented by the composition 0.4Li 2 MnO 3 .0.6LiNi 0.60 Co 0.20 Mn 0.20 O 2 after dispersion treatment after firing contains 2.0 mol% of tungsten. The positive electrode active material is obtained.

[比較例7]
共沈法によって、タップ密度1.3g/cmのコバルトマンガン複合酸化物(Co/Mn=0.600/0.400)を得る。前記酸化コバルト、水酸化リチウム、及び酸化タングステン(VI)を、その混合比がLi:(Ni+Co+Mn):W=1.40:1.00:0.020となるように混合し、大気雰囲気中900℃で10時間焼成する。焼成後分散処理して組成が0.4LiMnO・0.6LiCoOで表されるリチウム遷移金属複合酸化物にタングステンが2.0mol%含有されている正極活物質を得る。
[Comparative Example 7]
By the coprecipitation method, a cobalt manganese complex oxide (Co / Mn = 0.600 / 0.400) having a tap density of 1.3 g / cm 3 is obtained. The cobalt oxide, lithium hydroxide, and tungsten oxide (VI) are mixed so that the mixing ratio thereof is Li: (Ni + Co + Mn): W = 1.40: 1.00: 0.020. Bake at 10 ° C. for 10 hours. Composition fired dispersion treatment to obtain a positive electrode active material of tungsten is contained 2.0 mol% in the lithium transition metal composite oxide represented by 0.4Li 2 MnO 3 · 0.6LiCoO 2.

[正極活物質の目視評価]
実施例1〜18及び比較例1〜7は、一次粒子が凝集した二次粒子を形成していることがSEMによって確認できる。
[Visual evaluation of positive electrode active material]
In Examples 1 to 18 and Comparative Examples 1 to 7, it can be confirmed by SEM that secondary particles in which primary particles are aggregated are formed.

[正極活物質の評価]
実施例1〜18及び比較例1〜7について、以下の要領で正極活物質の評価を行う。
[Evaluation of positive electrode active material]
About Examples 1-18 and Comparative Examples 1-7, a positive electrode active material is evaluated in the following ways.

[二次粒子の中心粒径]
レーザー回折法で、体積頻度分布における50%積算値(D50)を二次粒子の中心粒径とする。
[Center particle size of secondary particles]
In the laser diffraction method, the 50% integrated value (D50) in the volume frequency distribution is set as the center particle size of the secondary particles.

[タップ密度]
試料20gを受器に投入し受器を150回タッピングした後に、体積を測定し、求まる密度をタップ密度とする。
[Tap density]
After 20 g of the sample is put into the receiver and the receiver is tapped 150 times, the volume is measured, and the obtained density is defined as the tap density.

[比表面積]
BET法によって測定される値を比表面積とする。
[Specific surface area]
The value measured by the BET method is taken as the specific surface area.

[元素分析]
ICP−AESによって正極活物質等の元素分析を行い、正極活物質中におけるリチウム遷移金属複合酸化物の組成及びタングステン含有量を求める。
[Elemental analysis]
Elemental analysis of the positive electrode active material or the like is performed by ICP-AES, and the composition and tungsten content of the lithium transition metal composite oxide in the positive electrode active material are obtained.

[水溶性の副相に存在するタングステン]
正極活物質を純水に分散し、常温にて一定時間撹拌する。撹拌終了後、固液分離して濾液の元素分析を行う。濾液の元素分析の結果から、リチウムとタングステンの複合酸化物として副相に存在するタングステンの量を知ることができる。正極活物質において、リチウムとタングステンの複合酸化物として副相に存在するタングステンの、正極活物質中の全タングステンに対する比をWwsとする。
[Tungsten present in water-soluble subphase]
The positive electrode active material is dispersed in pure water and stirred at room temperature for a predetermined time. After completion of the stirring, the liquid is separated and elemental analysis of the filtrate is performed. From the result of elemental analysis of the filtrate, the amount of tungsten present in the subphase as a composite oxide of lithium and tungsten can be known. In the positive electrode active material, the ratio of tungsten present in the subphase as a composite oxide of lithium and tungsten to the total tungsten in the positive electrode active material is W ws .

[二次電池の作製]
以下の要領で評価用二次電池を作製する。
[Production of secondary battery]
A secondary battery for evaluation is produced in the following manner.

[サイクル特性評価用]
正極活物質の粉末90重量%と、導電剤となる炭素粉末5重量%と、ポリフッ化ビニリデン(PVDF)のノルマルメチルピロリドン(NMP)溶液(PVDF量として5重量%)とを混練してペーストを調整し、これをアルミニウム箔からなる集電体に塗布し乾燥させて板状に成型して正極板とする。
[For cycle characteristics evaluation]
A paste is prepared by kneading 90% by weight of a positive electrode active material powder, 5% by weight of carbon powder as a conductive agent, and a normal methylpyrrolidone (NMP) solution of polyvinylidene fluoride (PVDF) (5% by weight as PVDF). It adjusts, this is apply | coated to the electrical power collector which consists of aluminum foil, it is made to dry and shape | molds in plate shape, and it is set as a positive electrode plate.

負極活物質として、炭素材料を用いる。負極活物質の粉末97.5重量%と、2.5重量%のカルボキシメチルセルロース(CMC)水溶液とを混練してペーストを調整し、これを銅箔からなる集電体に塗布し乾燥させ、板状に成型して負極板とする。   A carbon material is used as the negative electrode active material. A paste was prepared by kneading 97.5% by weight of the negative electrode active material powder and 2.5% by weight of carboxymethylcellulose (CMC) aqueous solution, and applying this to a current collector made of copper foil, followed by drying, To form a negative electrode plate.

エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)を体積比3:7で混合する。得られる混合溶媒に電解質としてヘキサフルオロリン酸リチウム(LiPF)を溶解し、濃度1mol/Lの非水電解液を調整する。 Ethylene carbonate (EC) and methyl ethyl carbonate (MEC) are mixed at a volume ratio of 3: 7. Lithium hexafluorophosphate (LiPF 6 ) is dissolved as an electrolyte in the obtained mixed solvent to prepare a nonaqueous electrolytic solution having a concentration of 1 mol / L.

セパレータとして多孔性ポリプロピレンフィルムを用いる。   A porous polypropylene film is used as the separator.

正極板及び負極板にリード電極を取り付け、正極、セパレータ、負極の順に重ねる。これらをラミネートパックに収納し、電解液を注入してラミネートパックを封止してラミネート型二次電池を得る。これを電池サイクル評価用に用いる。   A lead electrode is attached to the positive electrode plate and the negative electrode plate, and the positive electrode, the separator, and the negative electrode are stacked in this order. These are stored in a laminate pack, an electrolyte solution is injected, and the laminate pack is sealed to obtain a laminate type secondary battery. This is used for battery cycle evaluation.

[充放電容量評価用]
サイクル特性評価用電池と同様にして正極板を作製する。
[For charge / discharge capacity evaluation]
A positive electrode plate is produced in the same manner as the battery for evaluating cycle characteristics.

負極活物質として金属リチウムを用い、薄いシート状に成型して負極板とする。   Metal lithium is used as the negative electrode active material and is molded into a thin sheet to form a negative electrode plate.

MECをジエチルカーボネートとする以外サイクル特性評価用電池と同様にして電解液を調整する。   The electrolyte solution is adjusted in the same manner as the cycle characteristic evaluation battery except that MEC is diethyl carbonate.

サイクル特性評価用電池と同様のセパレータを用いる。   The same separator as the battery for evaluating cycle characteristics is used.

正極板にリード電極を取り付け、正極、セパレータ、負極を順に容器に収納する。負極はステンレス製の容器底部に電気的に接続され、容器底部が負極端子となる。セパレータはテフロン(登録商標)製の容器側部によって固定される。正極のリード電極の先端は容器外部に導出され、正極端子となる。正負極の端子は、容器側部によって電気的に絶縁されている。収納後電解液を注入し、ステンレス製の容器蓋部によって封止し、密閉型の試験電池を得る。これを充放電容量の評価に用いる。   A lead electrode is attached to the positive electrode plate, and the positive electrode, the separator, and the negative electrode are sequentially accommodated in the container. The negative electrode is electrically connected to a stainless steel container bottom, and the container bottom serves as a negative electrode terminal. The separator is fixed by the side of the container made of Teflon (registered trademark). The tip of the positive lead electrode is led out of the container and becomes a positive terminal. The positive and negative terminals are electrically insulated by the container side. After storage, the electrolyte is injected and sealed with a stainless steel container lid to obtain a sealed test battery. This is used for evaluation of charge / discharge capacity.

[電池特性の評価]
上記の評価用二次電池を用い、実施例1〜18及び比較例1〜7について以下の要領で電池特性の評価を行う。
[Evaluation of battery characteristics]
Using the secondary battery for evaluation described above, battery characteristics are evaluated in the following manner for Examples 1 to 18 and Comparative Examples 1 to 7.

[サイクル特性評価]
微弱電流でエージングを行い、正極及び負極に電解質を十分なじませる。25℃の環境下、満充電電圧4.5V、放電電圧2.0V、正極に対する電流密度1.26mA/cmで定電流定電圧充電及び定電流放電を100回繰り返す。100回目の放電容量の、1回目の放電容量に対する比を計算して容量維持率Sとする。また、ラミネートパックから負極およびセパレータを取り出し、表面析出物を酸に溶解する。得られた溶液をICPで元素分析し、正極活物質から溶出した遷移金属の量Meを求める。容量維持率Sの高さ及び遷移金属の溶出量Meの少なさがサイクル特性の良さを表す指標となる。
[Cycle characteristic evaluation]
Aging is performed with a weak current so that the electrolyte is sufficiently absorbed into the positive electrode and the negative electrode. In an environment of 25 ° C., constant current and constant voltage charging and constant current discharging are repeated 100 times at a full charge voltage of 4.5 V, a discharge voltage of 2.0 V, and a current density of 1.26 mA / cm 2 with respect to the positive electrode. The ratio of the discharge capacity at the 100th time to the discharge capacity at the 1st time is calculated and set as the capacity maintenance rate S. Further, the negative electrode and the separator are taken out from the laminate pack, and the surface precipitate is dissolved in the acid. The obtained solution is subjected to elemental analysis by ICP, and the amount of transition metal eluted from the positive electrode active material is determined. The high capacity retention ratio S and the small amount of transition metal elution Me are indicators for good cycle characteristics.

[初期充電容量]
満充電電圧4.6V、充電レート0.2C(1C:満充電の状態から1時間で放電を終了させる電流密度;本明細書における評価用電池では1C=約260mAh/g)で定電流定電圧充電(充電終了条件はレート0.008C)した容量を初期充電容量Qc0とする。
[Initial charge capacity]
Constant current and constant voltage at a full charge voltage of 4.6 V and a charge rate of 0.2 C (1 C: current density at which discharge is completed in 1 hour from a fully charged state; 1 C = about 260 mAh / g in the evaluation battery in this specification) The charged capacity (charge termination condition is rate 0.008C) is defined as an initial charge capacity Q c0 .

[初期放電容量]
満充電電圧4.6Vまで充電した後、放電電圧2.0V、放電レート0.05Cで定電流放電した容量を初期放電容量Qd0とする。
[Initial discharge capacity]
After charging to full-charge voltage 4.6 V, discharge voltage 2.0 V, the constant current discharged capacity at a discharge rate 0.05C and initial discharge capacity Q d0.

[初期充放電効率]
初期放電容量Qd0の初期充電容量Qc0に対する比(=Qd0/Qc0)を初期充放電効率Ecoとする。
[Initial charge / discharge efficiency]
A ratio (= Q d0 / Q c0 ) of the initial discharge capacity Q d0 to the initial charge capacity Q c0 is defined as an initial charge / discharge efficiency E co .

[負荷放電容量]
満充電電圧4.6V、充電レート0.2Cで定電流定電圧充電した後、放電電圧2.0V、放電レート0.2C、0.5C、1C、2Cの順に、それぞれ定電流放電を行う。放電レートが2Cのときの放電容量を負荷放電容量Qとする。負荷放電容量Qが高いことは、負荷特性が良いことを意味する。また、放電レートが2Cのときの電池電圧について、その時間平均を平均電圧Eとする。
[Load discharge capacity]
After constant current and constant voltage charging at a full charge voltage of 4.6 V and a charge rate of 0.2 C, constant current discharge is performed in the order of a discharge voltage of 2.0 V, discharge rates of 0.2 C, 0.5 C, 1 C, and 2 C, respectively. Discharge rate of the discharge capacity when the 2C and load discharge capacity Q L. That the load discharge capacity Q L is high, it means that the load characteristic is good. Further, regarding the battery voltage when the discharge rate is 2C, the time average is defined as an average voltage E.

[体積エネルギー密度]
負荷放電容量Q、平均電圧E及びタップ密度の積を体積エネルギー密度Tとする。
[Volume energy density]
The product of the load discharge capacity Q L , the average voltage E and the tap density is defined as a volume energy density T.

実施例1〜11及び比較例1〜6について、製造条件を表1に、正極活物質の特性を表2に、充放電容量を表4に、サイクル特性を表6に、負荷特性及び体積エネルギー密度を表8にそれぞれ示す。また、実施例3、7、12〜18及び比較例7について、同様に表1、3、5、7、9にそれぞれ示す。   Regarding Examples 1 to 11 and Comparative Examples 1 to 6, the production conditions are shown in Table 1, the characteristics of the positive electrode active material are shown in Table 2, the charge / discharge capacities are shown in Table 4, the cycle characteristics are shown in Table 6, the load characteristics and the volume energy. The densities are shown in Table 8, respectively. Moreover, about Example 3, 7, 12-18 and the comparative example 7, it shows in Table 1, 3, 5, 7, 9 similarly, respectively.

Figure 0006191351
Figure 0006191351

Figure 0006191351
Figure 0006191351

Figure 0006191351
Figure 0006191351

Figure 0006191351
Figure 0006191351

Figure 0006191351
Figure 0006191351

Figure 0006191351
Figure 0006191351

Figure 0006191351
Figure 0006191351

Figure 0006191351
Figure 0006191351

Figure 0006191351
Figure 0006191351

表6より、タングステンの含有量が多いとサイクル特性が良くなる傾向にあることが分かる。その上で、表4の結果と合わせると、タングステン含有量が4.0mol%程度までなら容量維持率も高くより好ましいことが分かる。また、実施例2、3及び比較例1並びに実施例10、11及び比較例6について表2の結果と合わせると、比表面積が低い方がサイクル特性が良くなる傾向にあることが、特に1.7m/g以下でその効果が顕著であることが分かる。 From Table 6, it can be seen that the cycle characteristics tend to be improved when the content of tungsten is large. In addition, when combined with the results in Table 4, it can be seen that if the tungsten content is up to about 4.0 mol%, the capacity retention rate is high and more preferable. Further, when Examples 2, 3 and Comparative Example 1, and Examples 10, 11 and Comparative Example 6 are combined with the results shown in Table 2, the cycle characteristics tend to be better when the specific surface area is lower. It turns out that the effect is remarkable at 7 m < 2 > / g or less.

表1及び表2の実施例3及び9より、正極活物質のリチウム原料が水酸化リチウムであると、リチウムとタングステンの複合酸化物として副相に存在しているタングステンの割合が高いことが分かる。また、表8の結果と合わせると、副相の存在しているタングステンの割合が高いと負荷特性が向上していることが分かる。また、タップ密度が高いと負荷特性、体積エネルギー密度共に良好であることが分かる。特に、タップ密度が1.7g/cm以上ならば体積エネルギー密度を1200Wh/L程度にすることが可能になり、電気自動車用として好ましくなる。 From Examples 3 and 9 in Tables 1 and 2, it can be seen that when the lithium raw material of the positive electrode active material is lithium hydroxide, the proportion of tungsten present in the subphase as a composite oxide of lithium and tungsten is high. . Further, when combined with the results in Table 8, it can be seen that the load characteristics are improved when the proportion of tungsten in which the subphase is present is high. It can also be seen that when the tap density is high, both load characteristics and volume energy density are good. In particular, if the tap density is 1.7 g / cm 3 or more, the volume energy density can be set to about 1200 Wh / L, which is preferable for an electric vehicle.

表5より、xが大きくなれば初期充電容量が高くなるが、初期放電容量は0.5近辺で極大となることが分かる。初期充放電効率も考慮すると、xの好ましい範囲は0.3≦x≦0.6、より好ましい範囲は0.4≦x≦0.6と言える。一方、表7及び表9より、a=bであるとサイクル特性及び体積エネルギー密度が高くなる傾向にあり、LiNiCo1−a−bMnにおけるコバルト、ニッケル及びマンガンの比率が同一であると特に高いことが分かる。 From Table 5, it can be seen that the initial charge capacity increases as x increases, but the initial discharge capacity reaches a maximum around 0.5. Considering the initial charge / discharge efficiency, it can be said that the preferable range of x is 0.3 ≦ x ≦ 0.6, and the more preferable range is 0.4 ≦ x ≦ 0.6. On the other hand, from Table 7 and Table 9, when a = b, the cycle characteristics and the volume energy density tend to be high, and the ratios of cobalt, nickel, and manganese in LiNi a Co 1-ab Mn b O 2 are the same. It can be seen that it is particularly high.

本発明の非水電解液二次電池用正極活物質は、非水電解液二次電池に利用することができる。本発明の非水電解液電池は、携帯電話、ノート型パソコン、デジタルカメラ等のモバイル機器、電気自動車用バッテリー等の電源に利用することができる。   The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention can be used for a non-aqueous electrolyte secondary battery. The nonaqueous electrolyte battery of the present invention can be used as a power source for mobile devices such as mobile phones, notebook computers, digital cameras, and batteries for electric vehicles.

1 正極活物質
11 リチウム遷移金属複合酸化物の二次粒子
111 リチウム遷移金属複合酸化物の一次粒子
12 副相
DESCRIPTION OF SYMBOLS 1 Positive electrode active material 11 Secondary particle of lithium transition metal complex oxide 111 Primary particle of lithium transition metal complex oxide 12 Subphase

Claims (14)

一般式xLiMnO・(1−x)LiNiCo1−a−bMn(但し0.
3≦x≦0.7、0<a≦0.60、0<b≦0.50)で表されるリチウム遷移金属複合酸化物中にタングステンが0.1mol%以上5.0mol%以下含有されている非水電解液二次電池用正極活物質であって
前記タングステンの少なくとも一部が、前記リチウム遷移金属複合酸化物の副相として存在し、
前記正極活物質のタップ密度が1.7g/cm 以上ある非水電解液二次電池用正極活物質。
Formula xLi 2 MnO 3 · (1- x) LiNi a Co 1-a-b Mn b O 2 ( where 0.
3 ≦ x ≦ 0.7, 0 <a ≦ 0.60, 0 <b ≦ 0.50), tungsten is contained in an amount of 0.1 mol% to 5.0 mol% in the lithium transition metal composite oxide. a positive active material for nonaqueous electrolyte secondary batteries are
At least a portion of the tungsten is present as a subphase of the lithium transition metal composite oxide;
A positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the positive electrode active material has a tap density of 1.7 g / cm 3 or more.
前記副相がリチウムとタングステンの複合酸化物を含む、請求項1に記載の正極活物質。   The positive electrode active material according to claim 1, wherein the subphase includes a composite oxide of lithium and tungsten. 0.20≦1−a−b≦0.50である請求項1又は2に記載の正極活物質。  The positive electrode active material according to claim 1, wherein 0.20 ≦ 1-ab ≦ 0.50. 前記正極活物質の比表面積が1.7mThe specific surface area of the positive electrode active material is 1.7 m. 2 /g以下である請求項1乃至3のいずれか一項に記載の正極活物質。The positive electrode active material according to any one of claims 1 to 3, which is / g or less.

a=bである請求項1乃至4のいずれか一項に記載の正極活物質。The positive electrode active material according to claim 1, wherein a = b. 0.4≦x≦0.6である請求項1乃至5のいずれか一項に記載の正極活物質。The positive electrode active material according to claim 1, wherein 0.4 ≦ x ≦ 0.6. 請求項1乃至のいずれか一項に記載の正極活物質を用いた非水電解液二次電池。 The nonaqueous electrolyte secondary battery using the positive electrode active material as described in any one of Claims 1 thru | or 6 . タップ密度が1.3g/cm3以上のニッケルコバルトマンガン複合酸化物を準備することと、  Preparing a nickel cobalt manganese composite oxide having a tap density of 1.3 g / cm 3 or more;
前記複合酸化物及びリチウム化合物及びタングステン化合物を混合して混合物を得ることと、  Mixing the composite oxide and lithium compound and tungsten compound to obtain a mixture;
前記混合物を焼成することと、を含む非水系電解質二次電池用正極活物質の製造方法であり、  Firing the mixture, and a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery,
前記正極活物質が、一般式xLi  The positive electrode active material has the general formula xLi 2 MnOMnO 3 ・(1−x)LiNi(1-x) LiNi a CoCo 1−a−b1-ab MnMn b O 2 (但し0.3≦x≦0.7、0<a≦0.60、0<b≦0.50))で表されるリチウム遷移金属複合酸化物中にタングステンが0.1mol%以上5.0mol%以下含有しており(Provided that 0.3 ≦ x ≦ 0.7, 0 <a ≦ 0.60, 0 <b ≦ 0.50), tungsten is 0.1 mol% or more in the lithium transition metal composite oxide. Contains 0 mol% or less
前記タングステンの少なくとも一部が、前記リチウム遷移金属複合酸化物の副相として存在し、  At least a portion of the tungsten is present as a subphase of the lithium transition metal composite oxide;
前記正極活物質のタップ密度が1.7g/cm  The positive electrode active material has a tap density of 1.7 g / cm. 3 以上である製造方法。The manufacturing method which is the above.
前記副相がリチウムとタングステンの複合酸化物を含む、請求項8に記載の製造方法。  The manufacturing method according to claim 8, wherein the subphase includes a composite oxide of lithium and tungsten. 0.20≦1−a−b≦0.50である請求項8又は9に記載の正極活物質。  The positive electrode active material according to claim 8, wherein 0.20 ≦ 1-ab ≦ 0.50. 前記正極活物質の比表面積が1.7m  The specific surface area of the positive electrode active material is 1.7 m. 2 /g以下ある請求項8乃至10のいずれか一項に記載の製造方法。The production method according to any one of claims 8 to 10, which is not more than / g. a=bである請求項8乃至11のいずれか一項に記載の製造方法。The manufacturing method according to claim 8, wherein a = b. 0.4≦x≦0.6である請求項8乃至12のいずれか一項に記載の製造方法。It is 0.4 <= x <= 0.6, The manufacturing method as described in any one of Claims 8 thru | or 12. 請求項8乃至13のいずれか一項に記載の製造方法により得られる正極活物質を用いた非水電解液二次電池の製造方法。A method for producing a non-aqueous electrolyte secondary battery using a positive electrode active material obtained by the production method according to claim 8.
JP2013192481A 2012-09-21 2013-09-18 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same Active JP6191351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013192481A JP6191351B2 (en) 2012-09-21 2013-09-18 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012208400 2012-09-21
JP2012208400 2012-09-21
JP2013192481A JP6191351B2 (en) 2012-09-21 2013-09-18 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2014078500A JP2014078500A (en) 2014-05-01
JP6191351B2 true JP6191351B2 (en) 2017-09-06

Family

ID=50783620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013192481A Active JP6191351B2 (en) 2012-09-21 2013-09-18 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP6191351B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6730777B2 (en) * 2014-08-29 2020-07-29 住友金属鉱山株式会社 Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode material
US20170256801A1 (en) * 2014-09-26 2017-09-07 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP6412094B2 (en) * 2016-12-26 2018-10-24 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
KR102176633B1 (en) * 2017-02-28 2020-11-09 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5135912B2 (en) * 2007-06-25 2013-02-06 三菱化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2009032647A (en) * 2007-06-25 2009-02-12 Mitsubishi Chemicals Corp Material for positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery using it, and lithium secondary battery
JP5407117B2 (en) * 2007-06-26 2014-02-05 日産自動車株式会社 Lithium ion battery
JP2011108554A (en) * 2009-11-19 2011-06-02 Mitsubishi Chemicals Corp Lithium transition metal based compound powder, its manufacturing method, and positive electrode material for lithium secondary battery and lithium secondary battery using it
WO2011161754A1 (en) * 2010-06-21 2011-12-29 トヨタ自動車株式会社 Lithium ion secondary battery
JP5662132B2 (en) * 2010-12-17 2015-01-28 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Lithium ion secondary battery
WO2012164752A1 (en) * 2011-05-30 2012-12-06 住友金属鉱山株式会社 Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material

Also Published As

Publication number Publication date
JP2014078500A (en) 2014-05-01

Similar Documents

Publication Publication Date Title
JP5325888B2 (en) Electrode active material, electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP5480820B2 (en) Electrode for electrochemical element and electrochemical element using the same
JP5695373B2 (en) Electrode for electrochemical element and electrochemical element using the same
JP5601337B2 (en) Active material and lithium ion secondary battery
JP5405941B2 (en) Electrode for electrochemical element and non-aqueous secondary battery
JPWO2016017783A1 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
CN103155240A (en) Positive electrode active material for use in nonaqueous electrolyte secondary cells, manufacturing method thereof, and nonaqueous electrolyte secondary cell using said positive electrode active material
JP2012014851A (en) Electrode for electrochemical element, and nonaqueous secondary battery
WO2018012466A1 (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
JP2011023335A (en) Electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2016225275A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same, and nonaqueous electrolyte secondary battery using the positive electrode active material
US11677065B2 (en) Cathode active material of lithium secondary battery
CN111052465A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using same
JP2020035693A (en) Transition metal composite hydroxide, manufacturing method thereof, lithium transition metal composite oxide active material, and lithium ion secondary battery
JP6191351B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP4524821B2 (en) Lithium manganese composite oxide particulate composition, method for producing the same, and secondary battery
WO2016103571A1 (en) Lithium-cobalt composite oxide, production method therefor, electrochemical device, and lithium ion secondary battery
JPWO2020027158A1 (en) Positive electrode active material for lithium ion secondary batteries, manufacturing method of positive electrode active material for lithium ion secondary batteries, lithium ion secondary batteries
JP2014067508A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
WO2013125798A1 (en) Method for manufacturing cathode active material for lithium secondary battery
JP2017010842A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method for the same, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP5076258B2 (en) Element-substituted lithium manganese composite oxide particulate composition, its production method and its use in secondary batteries
JP6400364B2 (en) Cathode active material for non-aqueous secondary battery and method for producing the same
JP6233101B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP7235130B2 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170724

R150 Certificate of patent or registration of utility model

Ref document number: 6191351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250