JP2003197194A - Electrode material for nonaqueous electrolyte secondary battery - Google Patents

Electrode material for nonaqueous electrolyte secondary battery

Info

Publication number
JP2003197194A
JP2003197194A JP2002293082A JP2002293082A JP2003197194A JP 2003197194 A JP2003197194 A JP 2003197194A JP 2002293082 A JP2002293082 A JP 2002293082A JP 2002293082 A JP2002293082 A JP 2002293082A JP 2003197194 A JP2003197194 A JP 2003197194A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
active material
electrode active
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002293082A
Other languages
Japanese (ja)
Other versions
JP4325167B2 (en
Inventor
Takehiro Noguchi
健宏 野口
Tatsuji Numata
達治 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2002293082A priority Critical patent/JP4325167B2/en
Publication of JP2003197194A publication Critical patent/JP2003197194A/en
Application granted granted Critical
Publication of JP4325167B2 publication Critical patent/JP4325167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode material for a lithium ion secondary battery with high capacity and high energy density having high voltage of 4.5 V or more vs. Li. <P>SOLUTION: This positive active material contains a spinel lithium manganese composite oxide represented by general formula (1), Li<SB>a</SB>(M<SB>x</SB>Mn<SB>2-x-y</SB>A<SB>y</SB>)O<SB>4</SB>(1) (In the formula, 0.4<x; 0<y; x+y<2; 0<a<1.2. M is selected from a group comprising Ni, Co, Fe, Cr, and Cu and contains at least one metal element containing at least Ni. A contains at least one metal element selected from Si and Ti. If A contains only Ti, a value of ratio y of A is 0.1<y.). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、リチウムイオン二
次電池用正極材料およびそれを用いた二次電池に関し、
特に、放電容量の大きいスピネル型リチウムマンガン複
合酸化物からなる二次電池正極材料およびそれを用いた
二次電池に関する。
TECHNICAL FIELD The present invention relates to a positive electrode material for a lithium ion secondary battery and a secondary battery using the same,
In particular, the present invention relates to a secondary battery positive electrode material composed of a spinel-type lithium manganese composite oxide having a large discharge capacity and a secondary battery using the same.

【0002】[0002]

【従来の技術】リチウム二次電池およびリチウムイオン
二次電池(以下、リチウムイオン系二次電池という)
は、小型で大容量であるという特長を有しており、携帯
電話、ノート型パソコン等の電源として広く用いられて
いる。リチウムイオン系二次電池の正極活物質として
は、現在、LiCoOが主に利用されているが、充電
状態の安全性が必ずしも充分ではない上、Co原料の値
段が高く、現在、これに代わる新たな正極活物質の探索
が精力的に進められている。
2. Description of the Related Art Lithium secondary batteries and lithium ion secondary batteries (hereinafter referred to as lithium ion secondary batteries)
Has a feature that it is small and has a large capacity, and is widely used as a power source for mobile phones, notebook computers, and the like. Currently, LiCoO 2 is mainly used as a positive electrode active material for a lithium ion secondary battery, but the safety of the charged state is not always sufficient, and the cost of the Co raw material is high. The search for new positive electrode active materials is being actively pursued.

【0003】LiCoOと同じ層状の結晶構造を有す
る材料として、LiNiOの使用が検討されている
が、LiNiOは高容量であるものの、LiCoO
と比較して電位が低い上、安全性の点でも課題を有して
いる。
The use of LiNiO 2 as a material having the same layered crystal structure as LiCoO 2 has been studied, but LiNiO 2 has a high capacity, but LiCoO 2
It has a lower potential than that of, and has a problem in safety.

【0004】また、他の正極活物質として、スピネル構
造のLiMnの使用も盛んに検討されている。と
ころが、LiMnは、サイクルに伴う劣化や高温
時の容量低下が発生する。これは3価Mnの不安定性に
起因するものであり、Mnイオンの平均価数が3価と4
価の間で変化する際に、Jahn−Teller(ヤー
ン・テラー)歪みが結晶中に生じ、結晶構造の安定性が
低下することによってサイクルに伴う性能劣化等が発生
すると考えられている。
The use of LiMn 2 O 4 having a spinel structure as another positive electrode active material has also been actively studied. However, LiMn 2 O 4 undergoes cycle-related deterioration and capacity decrease at high temperatures. This is due to the instability of trivalent Mn, and the average valence of Mn ions is trivalent and tetravalent.
It is considered that when the value varies between valences, a Jahn-Teller (yarn-Teller) strain is generated in the crystal, and the stability of the crystal structure is lowered, so that performance deterioration accompanying the cycle occurs.

【0005】こうしたことから、これまで、電池の信頼
性を高めることを目的として、3価のMnを他元素で置
換し構造安定性を向上させる検討が行われてきた。たと
えば特許文献1には、こうした正極活物質を備えた二次
電池が開示されており、LiMnに含まれる3価
Mnを他の金属で置換した活物質が開示されている。す
なわち、特許文献1の特許請求の範囲には、スピネル構
造を有し組成式LiM Mn2−x(MはAl、
B、Cr、Co、Ni、Ti、Fe、Mg、Ba、Z
n、Ge、Nbから選ばれる1種以上、0.01≦x≦
1)で表されるリチウムマンガン複合酸化物を備える二
次電池が記載されており、特許文献1の発明の詳細な説
明の欄には、LiMn1.75Al0.25を正極
活物質として用いる例が具体的に開示されている。
From the above, the reliability of batteries has been improved so far.
In order to improve the property, trivalent Mn is placed with another element.
In other words, studies have been conducted to improve the structural stability. Tato
For example, Patent Document 1 discloses a secondary device including such a positive electrode active material.
Batteries are disclosed, and LiMnTwoOFourTrivalent included in
An active material in which Mn is replaced with another metal is disclosed. You
That is, the scope of the claims of Patent Document 1 includes the spinel structure.
Having a composition formula LiM xMn2-xOFour(M is Al,
B, Cr, Co, Ni, Ti, Fe, Mg, Ba, Z
One or more selected from n, Ge and Nb, 0.01 ≦ x ≦
Two including a lithium manganese composite oxide represented by 1)
A secondary battery is described, and a detailed explanation of the invention of Patent Document 1 is given.
In the light column, LiMn1.75Al0.25OFourThe positive electrode
An example of using it as an active material is specifically disclosed.

【0006】ところが、上記のように3価Mnを他元素
で置換して減らした場合、放電容量の低下が問題とな
る。LiMnは充放電に伴い次のようなMnの価
数変化を起こす。
However, when the trivalent Mn is replaced by another element to reduce it as described above, the decrease in discharge capacity becomes a problem. LiMn 2 O 4 causes the following change in valence of Mn as it is charged and discharged.

【0007】Li+Mn3+Mn4+O2- 4 →Li+ + Mn4+ 2O2- 4+ e- この式からわかるように、LiMnは3価のMn
と4価のMnが含まれており、このうちの3価のMnが
4価に変化することで放電が起こる。したがって、3価
のMnを他元素に置換すれば、必然的に放電容量の低下
をもたらすことになる。すなわち、正極活物質の構造安
定性を高めて電池の信頼性を向上させようとしても、放
電容量の低下が顕著となり、両者を両立させることは困
難である。特に、放電容量値130mAh/g以上で信
頼性の高い正極活物質を得ることは非常に困難である。
Li + Mn 3+ Mn 4+ O 2− 4 → Li + + Mn 4+ 2 O 2− 4 + e - As can be seen from this formula, LiMn 2 O 4 is trivalent Mn.
And tetravalent Mn are contained therein, and trivalent Mn among them changes to tetravalent to cause discharge. Therefore, if the trivalent Mn is replaced with another element, the discharge capacity is inevitably reduced. That is, even if an attempt is made to improve the structural stability of the positive electrode active material to improve the reliability of the battery, the discharge capacity is significantly reduced, and it is difficult to achieve both. In particular, it is very difficult to obtain a highly reliable positive electrode active material having a discharge capacity value of 130 mAh / g or more.

【0008】上記のようにLiMnに含まれる3
価Mnを他の金属で置換した活物質は、いわゆる4V級
の起電力を有するリチウム二次電池を構成するが、これ
とは別の方向の技術として、例えば、特許文献2などに
は、LiMnのMnの一部をNi、Co、Fe、
Cu、Crなどで置換し、充放電電位を高くして、エネ
ルギー密度を増加させるといった検討がなされている。
これらはいわゆる5V級の起電力を有するリチウム二次
電池を構成する。以下、LiNi0.5Mn .5
を例に挙げて説明する。
As described above, 3 contained in LiMn 2 O 4
An active material in which the valence Mn is replaced with another metal constitutes a lithium secondary battery having a so-called 4V-class electromotive force. As a technique in a direction different from this, for example, in Patent Document 2, LiMn is disclosed. Ni, Co, Fe, a part of Mn of 2 O 4
Studies have been made to substitute Cu, Cr or the like to increase the charge / discharge potential and increase the energy density.
These form a lithium secondary battery having a so-called 5V class electromotive force. Hereinafter, LiNi 0.5 Mn 1 . 5 O 4
Will be described as an example.

【0009】LiNi0.5Mn1.5は充放電に
伴い次のようなNiの価数変化を起こす。 Li+Ni2+ 0.5Mn4+ 1.5O2- 4 → Li+ +Ni4+ 0.5Mn4+ 1.5O2- 4+
e- この式からわかるように、LiNi0.5Mn1.5
は2価のNiが4価に変化することで放電が起こる。
Mnについては価数変化はない。このように、充放電に
関与する金属をMnからNi、Co等に代えることで、
4.5V以上の高い起電力を得ることができる。
LiNi 0.5 Mn 1.5 O 4 causes the following valence change of Ni with charge and discharge. Li + Ni 2+ 0.5 Mn 4+ 1.5 O 2- 4 → Li + + Ni 4+ 0.5 Mn 4+ 1.5 O 2- 4 +
e - As can be seen from this equation, LiNi 0.5 Mn 1.5 O
In No. 4, electric discharge occurs when divalent Ni changes to tetravalent.
There is no change in the valence of Mn. Thus, by changing the metal involved in charge / discharge from Mn to Ni, Co, etc.,
It is possible to obtain a high electromotive force of 4.5 V or higher.

【0010】また、特許文献3には、Li金属に対して
4.5V以上の電位で充放電を行うスピネル構造の結晶
LiMn2−y−zNi(但し、M:Fe,
Co,Ti,V,Mg,Zn,Ga,Nb,Mo,Cu
よりなる群から選ばれた少なくとも一種、0.25≦y
≦0.6、0≦z≦0.1)が開示されている。特許文
献4には、LiMnのMnを他遷移金属で置換
し、さらに、他元素で置換した一般式LiMn
2−y−i−j−kM1M2M3(但
し、M1:2価カチオン、M2:3価カチオン、M3:
4価カチオン、M:Mnを除く少なくとも1種の遷移金
属元素、i≧0、j≧0、k≧0、i+j>0)で表さ
れる5V級正極活物質が開示されている。
Further, Patent Document 3, crystalline LiMn 2-y-z of the spinel structure charging and discharging at 4.5V or higher potential relative to Li metal Ni y M z O 4 (where, M: Fe,
Co, Ti, V, Mg, Zn, Ga, Nb, Mo, Cu
At least one selected from the group consisting of 0.25 ≦ y
≦ 0.6, 0 ≦ z ≦ 0.1) are disclosed. In Patent Document 4, Mn of LiMn 2 O 4 is substituted with another transition metal, and further substituted with another element, a general formula Li a Mn.
2-y-i-j- k M y M1 i M2 j M3 k O 4 ( where, M1: 2-valent cation, M2: 3-valent cations, M3:
A 5V class positive electrode active material represented by a tetravalent cation, M: at least one transition metal element other than Mn, i ≧ 0, j ≧ 0, k ≧ 0, i + j> 0) is disclosed.

【0011】しかしながら、このような活物質を用いて
も、現在利用されているLiCoO をエネルギー密度
で大幅に超えることは現状では困難である。また、上記
5V級活物質は、たしかに4.5V以上もの起電力を発
生させるものの、放電容量が減少する課題があった。
However, using such an active material
Is currently used LiCoO TwoThe energy density
It is difficult under the present circumstances to significantly exceed. Also, above
The 5V class active material certainly produces an electromotive force of 4.5V or more.
However, there is a problem that the discharge capacity is reduced.

【0012】[0012]

【特許文献1】特開2001−176557号公報[Patent Document 1] Japanese Patent Laid-Open No. 2001-176557

【特許文献2】特開平9−147867号公報[Patent Document 2] Japanese Patent Laid-Open No. 9-147867

【特許文献3】特開2000−235857号公報[Patent Document 3] Japanese Patent Laid-Open No. 2000-235857

【特許文献4】特開2002−063900号公報[Patent Document 4] Japanese Patent Laid-Open No. 2002-063900

【0013】[0013]

【発明が解決しようとする課題】本発明はこうした状況
に鑑みなされたものであって、従来にない高容量、高エ
ネルギー密度を有する正極材料を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of these circumstances, and an object thereof is to provide a positive electrode material having a high capacity and a high energy density which has never been obtained.

【0014】[0014]

【課題を解決するための手段】上記課題を解決する本発
明によれば、下記一般式(I) Li(MMn2−x−y)O (I) (式中、0<x、0.4<y、x+y<2、0<a<
1.2である。Mは、Ni、Co、Fe、CrおよびC
uよりなる群から選ばれ、少なくともNiを含む一種以
上の金属元素を含む。Aは、Si、Tiから選ばれる少
なくとも一種の金属元素を含む。但し、AがTiだけを
含む場合には、Aの比率yの値は、0.1<yであ
る。)で表されるスピネル型リチウムマンガン複合酸化
物を含むことを特徴とする二次電池用正極活物質が提供
される。
According to the present invention for solving the above-mentioned problems, the following general formula (I) Li a (M x Mn 2-x-y A y ) O 4 (I) (wherein 0 <X, 0.4 <y, x + y <2, 0 <a <
1.2. M is Ni, Co, Fe, Cr and C
It contains one or more metal elements selected from the group consisting of u and containing at least Ni. A contains at least one metal element selected from Si and Ti. However, when A contains only Ti, the value of the ratio y of A is 0.1 <y. The present invention provides a positive electrode active material for a secondary battery, which comprises a spinel type lithium manganese composite oxide represented by the formula (1).

【0015】また本発明によれば、上記二次電池用正極
活物質が結着剤により結着されてなることを特徴とする
二次電池用正極が提供される。
Further, according to the present invention, there is provided a positive electrode for a secondary battery, characterized in that the positive electrode active material for a secondary battery is bound by a binder.

【0016】また本発明によれば、上記二次電池用正極
と、セパレータを介して該二次電池用正極と対向配置さ
れた負極とを備えたことを特徴とする二次電池が提供さ
れる。
Further, according to the present invention, there is provided a secondary battery comprising the above-mentioned positive electrode for secondary battery and a negative electrode arranged to face the positive electrode for secondary battery via a separator. .

【0017】本発明は、式(I)に示されるように、3
価以下の価数と、その価数よりも大きい価数の両方の状
態をとり得る遷移金属Mを含む点、および、Mnよりも
重量の軽いSiまたはTiを含む点(元素A)が特徴の
一つとなっている。
The present invention, as shown in formula (I), provides 3
Characterized by the point that it contains a transition metal M that can have both a valence number equal to or lower than the valence number and the valence number that is higher than that valence number, and that it contains Si or Ti that is lighter than Mn (element A). It is one.

【0018】本発明においては、スピネル正極材料の元
素置換によって、電池の高容量化、高エネルギー密度化
を図っている。LiMnに対して、Mnの一部を
Ni、Co、Fe、CrおよびCuのうちの少なくとも
一種で置換することで、置換元素の価数変化に起因する
高電圧の充放電領域が、置換量に応じて現れることとな
る。高電圧の充放電領域を十分大きく得るためには、L
iMMn2−xとした場合、x>0.4であるこ
とが必要である。5V級スピネルの一つであるLiNi
0.5Mn1.5の場合、Mnは4価の状態であ
り、充放電に伴うLiの放出吸収の過程における遷移金
属の価数変化はMnではなく、Niの価数変化(2価か
ら4価へ変化)によっていて、Mnの価数は4価に保た
れる。5V級スピネルでは理想的にはMn3+は存在せ
ず、Mnを他元素に置換したとしても、サイクルに伴う
容量低下や、高温での結晶構造の劣化といった信頼性の
低下は起こりにくい。こうした点を踏まえ、本発明は、
充放電に直接寄与しないMnをより軽量な金属に置換す
ることで重量当たりの放電量を増大させ、高容量化を図
ったものである。
In the present invention, the capacity of the battery is increased and the energy density is increased by substituting the spinel positive electrode material for elements. By substituting a part of Mn with at least one of Ni, Co, Fe, Cr, and Cu with respect to LiMn 2 O 4 , the high-voltage charge / discharge region resulting from the change in the valence of the substituting element, It will appear according to the substitution amount. To obtain a sufficiently high voltage charging / discharging region, L
In the case of iM x Mn 2-x O 4 , x> 0.4 is required. LiNi, one of the 5V class spinel
In the case of 0.5 Mn 1.5 O 4 , Mn is in a tetravalent state, and the valence change of the transition metal in the process of release and absorption of Li accompanying charge and discharge is not Mn but the valence change of Ni (2 The valence of Mn is kept at 4 depending on the change from valence to tetravalence. In the 5V-class spinel, Mn 3+ is ideally absent, and even if Mn is replaced with another element, the decrease in capacity due to cycling and the deterioration in reliability such as the deterioration of the crystal structure at high temperatures are unlikely to occur. Based on these points, the present invention
By replacing Mn, which does not directly contribute to charge and discharge, with a lighter weight metal, the discharge amount per weight is increased and the capacity is increased.

【0019】LiNi0.5Mn1.5のMn元素サイト
を2価や3価の価数の小さい元素で置換した場合、2価
のNiが3価となることや、残存した3価のMnが4価
となることなどによって、価数バランスが保たれる。こ
の結果、充放電に寄与する2価のNi量や3価のMn量
が減少してしまい、容量が低下するという問題が生じ
る。このような点からも置換元素は4価であることが望
ましい。
When the Mn element site of LiNi 0.5 Mn 1.5 O 4 is replaced with an element having a small divalent or trivalent valence, the divalent Ni becomes trivalent and the remaining trivalent Mn is 4 The valence balance is maintained by becoming the valence. As a result, the amount of divalent Ni and the amount of trivalent Mn that contribute to charge and discharge are reduced, which causes a problem that the capacity is reduced. From this point of view, it is desirable that the substitution element is tetravalent.

【0020】LiMnのMnを他元素に置換する
技術は前述の4V級活物質においても採用されている
が、これらは正極活物質の構造の安定性を高めることを
目的とするのに対し、本発明は容量の増大を目的とする
点で相違する。具体的構成についてみると、4V級では
充放電に関与する3価のMnが置換されるのに対して、
本発明においては、正極活物質中に、3価以下の価数
と、その価数よりも大きい価数の両方の状態をとり得る
遷移金属Mが含まれ、充放電に関与する主たる金属がM
n以外の金属となっており、この点で両者は相違してい
る。本発明においては、元素Mの存在によりMnの大部
分は4価となっており、充放電に関与する3価のMnは
ほとんど含まれていない。
The technique of substituting Mn of LiMn 2 O 4 with another element is also adopted in the above-mentioned 4V class active material, but these are intended to enhance the stability of the structure of the positive electrode active material. On the other hand, the present invention is different in that the purpose is to increase the capacity. As for the specific structure, in the 4V class, trivalent Mn involved in charge and discharge is replaced, whereas
In the present invention, the positive electrode active material contains a transition metal M capable of having both a valence of 3 or less and a valence higher than the valence, and the main metal involved in charging and discharging is M.
They are metals other than n, and are different in this respect. In the present invention, most of Mn is tetravalent due to the presence of the element M, and trivalent Mn involved in charge and discharge is scarcely contained.

【0021】以上のように本発明においては、元素Mを
導入することによりMnが基本的に充放電には関与しな
い構成とした上で、Mnをより軽量な金属に置換して重
量当たりの放電量を増大させ、高容量化を図っている。
4価で安定な元素で、Mnよりも軽いものとしては、S
iまたはTiがある。すなわち、MnをSi、Tiで置
換することにより、高い信頼性を維持しつつ高容量化が
実現される。
As described above, in the present invention, the element M is introduced so that Mn basically does not participate in charge and discharge, and then Mn is replaced with a lighter weight metal to discharge per weight. We are aiming to increase the capacity and capacity.
A tetravalent and stable element that is lighter than Mn is S
There is i or Ti. That is, by replacing Mn with Si and Ti, high capacity can be realized while maintaining high reliability.

【0022】Si、Ti置換による高容量化の効果は、
これらの元素置換量が大きいほど大きい。Li(M
Mn2−x−y)Oでは、y>0.1とした場合
に特に顕著な効果があり、130mAh/g以上の容量
が得られ、信頼性も高い。5V級スピネルでは、Si、
Ti置換により高容量化可能であり、かつLi金属に対
して4.5V以上の高電圧での充放電が可能であるた
め、エネルギー密度の点で非常に優れた特性が得られ
る。また、Ti置換の場合には、放電電位を高電圧化で
きることが新たに分かり、これらの2つの効果によっ
て、高エネルギー密度化が可能である。
The effect of increasing the capacity by replacing Si and Ti is as follows.
The larger the amount of element substitution, the larger. Li a (M x
Mn 2−x−y A y ) O 4 has a particularly remarkable effect when y> 0.1, a capacity of 130 mAh / g or more is obtained, and reliability is high. In 5V class spinel, Si,
Since the capacity can be increased by substituting Ti and charging / discharging can be performed at a high voltage of 4.5 V or more with respect to Li metal, very excellent characteristics can be obtained in terms of energy density. Further, in the case of Ti substitution, it is newly found that the discharge potential can be increased, and these two effects can increase the energy density.

【0023】[0023]

【発明の実施の形態】本発明において、一般式(I)
中、元素MはNiを必須成分として含むが、Co、F
e、CrおよびCuよりなる群から選ばれる少なくとも
一種をさらに含んでいてもよい。これらは、いずれも3
価以下の価数と、その価数よりも大きい価数の両方の状
態をとり得る遷移金属である。LiMnのMnの
一部を、Ni、Co、Fe、CrあるいはCuで置換し
たLiMMn2−x(MはNi、Co、Fe、C
rあるいはCuの少なくとも一つ)は5V級マンガンス
ピネル型正極活物質として知られている。本発明のよう
にNiを必須成分として選択する理由は、Niの材料価
格が安いこと、電池の活物質として放電容量が大きいこ
となどである。従来、Co,Fe,CrあるいはCuを
含有する5V級マンガンスピネルは、Ni含有5V級マ
ンガンスピネルと比較して、電池の充放電電圧が高いと
いう利点はあるが、放電容量値が小さいという問題点が
あった。本発明に記載のようにNiを必須元素として含
有させることにより、Co,Fe,CrあるいはCuを
含有した5V級マンガンスピネルを使用した電池の従来
の低い容量特性を改善させることができる。さらに、N
iを単独で含有した5V級マンガンスピネルよりも高い
起電力が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a compound represented by the general formula (I)
Among them, the element M contains Ni as an essential component, but Co, F
It may further include at least one selected from the group consisting of e, Cr and Cu. These are all 3
It is a transition metal that can have both a valence number equal to or lower than the valence number and a valence number higher than the valence number. A part of Mn of LiMn 2 O 4, Ni, Co , Fe, Cr or LiM was replaced by Cu x Mn 2-x O 4 (M is Ni, Co, Fe, C
At least one of r and Cu) is known as a 5V class manganese spinel type positive electrode active material. The reason why Ni is selected as an essential component as in the present invention is that the material price of Ni is low and the discharge capacity is large as an active material of the battery. Conventionally, 5V class manganese spinel containing Co, Fe, Cr or Cu has an advantage that the charging / discharging voltage of the battery is higher than the Ni containing 5V class manganese spinel, but has a problem that the discharge capacity value is small. was there. By including Ni as an essential element as described in the present invention, it is possible to improve the conventional low capacity characteristic of the battery using the 5V class manganese spinel containing Co, Fe, Cr or Cu. Furthermore, N
An electromotive force higher than that of the 5V class manganese spinel containing i alone can be obtained.

【0024】元素Mは、微量成分として他の元素を含ん
でいても良い。また、元素MをNi単独とすることもで
きる。
The element M may contain other elements as a trace component. Alternatively, the element M may be Ni alone.

【0025】元素Mの組成比xは、0.4<x<0.6
とすることができる。特にMをNi単独とした場合、上
記範囲とすることが好ましい。このような範囲とするこ
とで高起電力および高容量を実現することができる。
The composition ratio x of the element M is 0.4 <x <0.6.
Can be Particularly, when M is Ni alone, it is preferably within the above range. With such a range, high electromotive force and high capacity can be realized.

【0026】本発明に係る正極活物質は、リチウム基準
電位に対する平均放電電圧が4.5V以上である構成と
することができる。こうすることで、高い動作電圧の電
池を実現することができる。リチウム基準電位に対し、
たとえばNiの電位は4.7V、Coは5.1V、Cr
は5.0Vであり、これらの金属を充放電に寄与する成
分として用いることにより、上記のような平均放電電圧
が4.5V以上の正極活物質を得ることができる。
The positive electrode active material according to the present invention can be configured so that the average discharge voltage with respect to the lithium reference potential is 4.5 V or more. By doing so, a battery with a high operating voltage can be realized. With respect to the lithium reference potential,
For example, the potential of Ni is 4.7 V, Co is 5.1 V, and Cr is
Is 5.0 V, and by using these metals as components that contribute to charge and discharge, a positive electrode active material having an average discharge voltage of 4.5 V or more can be obtained.

【0027】本発明における一般式(I)中、Aは、S
iを含む構成とすることができる。また、AがTiを含
む構成とすることができる。
In the general formula (I) of the present invention, A is S
The configuration may include i. In addition, A may include Ti.

【0028】本発明におけるスピネル型リチウムマンガ
ン複合酸化物は、具体的には以下の(Ia)〜(Ic)
に示される態様とすることができる。
The spinel type lithium manganese composite oxide in the present invention is specifically as follows (Ia) to (Ic).
The embodiment shown in FIG.

【0029】 Li(NiMn2−x−ySi)O (Ia) (式中、0.4<x<0.6、0<y、x+y<2、0
<a<1.2)
[0029] Li a (Ni x Mn 2- x-y Si y) O 4 (Ia) ( wherein, 0.4 <x <0.6,0 <y , x + y <2,0
<A <1.2)

【0030】 Li(NiMn2−x−yTi)O (Ib) (式中、0.4<x<0.6、0.1<y、x+y<
2、0<a<1.2)
[0030] During Li a (Ni x Mn 2- x-y Ti y) O 4 (Ib) ( wherein, 0.4 <x <0.6,0.1 <y , x + y <
2, 0 <a <1.2)

【0031】 Li(NiMn2−x−y−zSiTi)O (Ic) (式中、0.4<x<0.6、0<y、0<z、x+y
+z<2、0<a<1.2)
[0031] Li a (Ni x Mn 2- x-y-z Si y Ti z) O 4 (Ic) ( wherein, 0.4 <x <0.6,0 <y , 0 <z, x + y
+ Z <2, 0 <a <1.2)

【0032】なお、本発明において、式(I)または式
(Ia)〜(Ic)中、酸素の一部がF、Clなどのハ
ロゲンで置換した構成を採用することもできる。
In the present invention, in the formula (I) or the formulas (Ia) to (Ic), a part of oxygen may be replaced with halogen such as F or Cl.

【0033】次に、本発明に係る正極活物質の作製方法
について説明する。正極活物質の作製原料として、Li
原料には、LiCO、LiOH、LiO、Li
SO などを用いることができるが、このうち、特にL
CO、LiOHなどが適している。Mn原料とし
ては、電解二酸化マンガン(EMD)・Mn・M
・CMD等の種々のMn酸化物、MnCO
MnSOなどを用いることができる。Ni原料として
は、NiO、Ni(OH)、NiSO、Ni(NO
などが使用可能である。Ti原料としてはTiO
などが用いられ、Si原料としてはSiO、SiO
などが代表的には用いられる。Mn,Ni,Ti,Si
原料としては、これらの金属元素を含む複合酸化物を用
いることもできる。
Next, a method for producing a positive electrode active material according to the present invention
Will be described. As a raw material for producing the positive electrode active material, Li
The raw material is LiTwoCOThree, LiOH, LiTwoO, LiTwo
SO FourCan be used, among which L
iTwoCOThree, LiOH, etc. are suitable. As Mn raw material
For electrolytic manganese dioxide (EMD) / MnTwoOThree・ M
nThreeOFour・ Various Mn oxides such as CMD, MnCOThree,
MnSOFourEtc. can be used. As a Ni raw material
Is NiO, Ni (OH)Two, NiSOFour, Ni (NO
Three)TwoEtc. can be used. TiO as a Ti raw material
TwoEtc. are used, and SiO is used as the Si raw material.Two, SiO
Are typically used. Mn, Ni, Ti, Si
As a raw material, use a composite oxide containing these metal elements
You can also

【0034】これらの原料を目的の金属組成比となるよ
うに秤量して混合する。混合は、ボールミル、ジェット
ミルなどにより粉砕混合する。混合粉を600℃から9
50℃の温度で、空気中または酸素中で焼成することに
よって正極活物質を得る。焼成温度は、それぞれの元素
の拡散させるためには高温である方が望ましいが、焼成
温度が高すぎると酸素欠損を生じ、電池特性に悪影響を
及ぼす場合がある。このことから、焼成温度は600℃
から850℃程度であることが望ましい。
These raw materials are weighed and mixed so that a desired metal composition ratio is obtained. The mixing is performed by crushing and mixing with a ball mill, a jet mill or the like. Mix powder from 600 ℃ to 9
The positive electrode active material is obtained by firing in air or oxygen at a temperature of 50 ° C. The firing temperature is preferably high in order to diffuse the respective elements, but if the firing temperature is too high, oxygen deficiency may occur, which may adversely affect the battery characteristics. From this, the firing temperature is 600 ° C
It is desirable that the temperature is from about 850 ° C.

【0035】得られたリチウム金属複合酸化物の比表面
積は、たとえば3m/g以下とし、好ましくは1m
/g以下とする。比表面積が大きいほど結着剤が多く必
要であり、正極の容量密度の点で不利になるからであ
る。
The specific surface area of the obtained lithium metal composite oxide is, for example, 3 m 2 / g or less, preferably 1 m 2
/ G or less. This is because the larger the specific surface area, the more binder is required, which is disadvantageous in terms of the capacity density of the positive electrode.

【0036】二次電池用正極の作製にあたっては、得ら
れた正極活物質を導電性付与剤と混合し、結着剤によっ
て集電体上に形成する。導電付与剤の例としては、炭素
材料の他、Alなどの金属物質、導電性酸化物の粉末な
どを使用することができる。結着剤としてはポリフッカ
ビニリデンなどが用いられる。集電体としてはAlなど
を主体とする金属薄膜を用いる。
In producing the positive electrode for a secondary battery, the obtained positive electrode active material is mixed with a conductivity-imparting agent and formed on a current collector with a binder. As an example of the conductivity-imparting agent, a carbon material, a metal substance such as Al, a powder of a conductive oxide, or the like can be used. Polybucca vinylidene or the like is used as the binder. A metal thin film mainly composed of Al or the like is used as the current collector.

【0037】導電付与剤の添加量は、たとえば1〜10
重量%程度とすることができ、結着剤の添加量は1〜1
0重量%程度とすることができる。活物質重量の割合が
大きい方が重量辺りの容量が大きくなる。導電付与剤と
結着剤の割合が小さすぎると、導電性が保てなくなった
り、電極剥離の問題が生じる。
The amount of the conductivity imparting agent added is, for example, 1 to 10.
The amount of the binder to be added can be 1 to 1
It can be about 0% by weight. The larger the weight ratio of the active material, the larger the capacity around the weight. If the ratio of the conductivity-imparting agent to the binder is too small, the conductivity cannot be maintained and the problem of electrode peeling occurs.

【0038】本発明に係る二次電池は、たとえば図1の
ような構造を有する。正極集電体3上に正極活物質層1
が形成され、正極を構成している。また、負極集電体4
上に負極活物質層2が形成され、負極を構成している。
これらの正極と負極は、電解液に浸漬した状態の多孔質
のセパレータ5を介して対向配置されている。正極を収
容する正極外装缶6と、負極を収容する負極外装缶7と
が、絶縁パッキング部8を介して接合した構成となって
いる。
The secondary battery according to the present invention has a structure as shown in FIG. 1, for example. Positive electrode active material layer 1 on positive electrode current collector 3
Are formed to form the positive electrode. In addition, the negative electrode current collector 4
The negative electrode active material layer 2 is formed on the upper surface to form a negative electrode.
The positive electrode and the negative electrode are arranged to face each other with the porous separator 5 immersed in the electrolytic solution in between. The positive electrode outer can 6 that houses the positive electrode and the negative electrode outer can 7 that houses the negative electrode are joined together via an insulating packing portion 8.

【0039】正極と負極に電圧を印加することにより正
極活物質からリチウムイオンが脱離し、負極活物質にリ
チウムイオンが吸蔵され、充電状態となる。また、正極
と負極の電気的接触を電池外部で起こすことにより、充
電時と逆に、負極活物質からリチウムイオンが放出さ
れ、正極活物質にリチウムイオンが吸蔵されることによ
り、放電が起こる。
By applying a voltage to the positive electrode and the negative electrode, lithium ions are desorbed from the positive electrode active material, and the lithium ions are occluded in the negative electrode active material, and a charged state is established. Further, by causing electrical contact between the positive electrode and the negative electrode outside the battery, lithium ions are released from the negative electrode active material and lithium ions are occluded in the positive electrode active material, resulting in discharge, contrary to charging.

【0040】本発明に係る二次電池に用いられる電解液
としては、プロピレンカーボネート(PC)、エチレン
カーボネート(EC)、ブチレンカーボネート(B
C)、ビニレンカーボネート(VC)等の環状カーボネ
ート類、ジメチルカーボネート(DMC)、ジエチルカ
ーボネート(DEC)、エチルメチルカーボネート(E
MC)、ジプロピルカーボネート(DPC)等の鎖状カ
ーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸
エチル等の脂肪族カルボン酸エステル類、γ−ブチロラ
クトン等のγ−ラクトン類、1,2−エトキシエタン
(DEE)、エトキシメトキシエタン(EME)等の鎖
状エーテル類、テトラヒドロフラン、2−メチルテトラ
ヒドロフラン等の環状エーテル類、ジメチルスルホキシ
ド、1,3−ジオキソラン、ホルムアミド、アセトアミ
ド、ジメチルホルムアミド、ジオキソラン、アセトニト
リル、プロピルニトリル、ニトロメタン、エチルモノグ
ライム、リン酸トリエステル、トリメトキシメタン、ジ
オキソラン誘導体、スルホラン、メチルスルホラン、
1,3−ジメチル−2−イミダゾリジノン、3−メチル
−2−オキサゾリジノン、プロピレンカーボネート誘導
体、テトラヒドロフラン誘導体、エチルエーテル、1,
3−プロパンスルトン、アニソール、N−メチルピロリ
ドン、フッ素化カルボン酸エステルなどの非プロトン性
有機溶媒を一種又は二種以上を混合して使用し、これら
の有機溶媒に溶解するリチウム塩を溶解させる。リチウ
ム塩としては、例えばLiPF、LiAsF、Li
AlCl、LiClO、LiBF、LiSb
、LiCFSO、LiCCO 、LiC
(CFSO、LiN(CFSO、Li
N(CSO、LiB10Cl10、低級脂
肪族カルボン酸カルボン酸リチウム、クロロボランリチ
ウム、四フェニルホウ酸リチウム、LiBr、LiI、
LiSCN、LiCl、イミド類などがあげられる。ま
た、電解液に代えてポリマー電解質を用いてもよい。
Electrolyte solution used in the secondary battery according to the present invention
As, propylene carbonate (PC), ethylene
Carbonate (EC), butylene carbonate (B
C), vinyl carbonate (VC), etc.
Salts, dimethyl carbonate (DMC), diethyl carbonate
Carbonate (DEC), ethyl methyl carbonate (E
MC), dipropyl carbonate (DPC), etc.
Carbonates, methyl formate, methyl acetate, propionic acid
Aliphatic carboxylic acid esters such as ethyl, γ-butyryl
Γ-Lactones such as kutone, 1,2-ethoxyethane
(DEE), ethoxymethoxyethane (EME) chains
Ethers, tetrahydrofuran, 2-methyltetra
Cyclic ethers such as hydrofuran, dimethyl sulfoxy
De, 1,3-dioxolane, formamide, acetami
De, dimethylformamide, dioxolane, acetonite
Ryl, propyl nitrile, nitromethane, ethyl monog
Lime, phosphate triester, trimethoxymethane, di
Oxolane derivative, sulfolane, methylsulfolane,
1,3-dimethyl-2-imidazolidinone, 3-methyl
-2-Oxazolidinone, propylene carbonate derivative
Body, tetrahydrofuran derivative, ethyl ether, 1,
3-propane sultone, anisole, N-methylpyrroli
Aprotic such as don and fluorinated carboxylic acid ester
Use one or a mixture of two or more organic solvents.
Dissolve the lithium salt that is soluble in the organic solvent. Richiu
Examples of the murine salt include LiPF6, LiAsF6, Li
AlClFour, LiClOFour, LiBFFour, LiSb
F6, LiCFThreeSOThree, LiCFourF9CO Three, LiC
(CFThreeSOTwo)Two, LiN (CFThreeSOTwo)Two, Li
N (CTwoF5SOTwo)Two, LiB10Cl10, Lower fat
Aliphatic carboxylic acid lithium carboxylate, chloroborane lithiate
Um, lithium tetraphenylborate, LiBr, LiI,
Examples include LiSCN, LiCl, and imides. Well
A polymer electrolyte may be used instead of the electrolytic solution.

【0041】電解質としては、LiBF、LiP
、LiClO、LiAsF、LiSbF、L
iCFSO、Li(CFSO)N、LiC
SO、Li(CFSOC、Li(C
SONなどを単独もしくは混合して用いることが
できる。電解質濃度はたとえば0.5mol/l〜1.
5mol/lとすることができる。濃度が高すぎると密
度と粘度が増加することがあり、濃度が低すぎると電気
電導率が低下することがある。
As the electrolyte, LiBF 4 , LiP
F 6, LiClO 4, LiAsF 6 , LiSbF 6, L
iCF 3 SO 3 , Li (CF 3 SO 2 ) N, LiC 4 F
9 SO 3 , Li (CF 3 SO 2 ) 3 C, Li (C 2 F 5
SO 2) 2 N and the like can be used alone or in combination. The electrolyte concentration is, for example, 0.5 mol / l to 1.
It can be 5 mol / l. If the concentration is too high, the density and viscosity may increase, and if the concentration is too low, the electric conductivity may decrease.

【0042】負極活物質としてはリチウムを吸蔵放出可
能な材料が用いられ、グラファイトまたは非晶質炭素等
の炭素材料、Li金属、Si、Sn、Al、SiO、S
nOなどを単独または混合して用いることができる。
As the negative electrode active material, a material capable of inserting and extracting lithium is used, and a carbon material such as graphite or amorphous carbon, Li metal, Si, Sn, Al, SiO, S.
nO and the like can be used alone or in combination.

【0043】負極活物質は導電性付与剤と結着剤によっ
て集電体上に形成させる。導電付与剤の例としては、炭
素材料の他、導電性酸化物の粉末などを使用することが
できる。結着剤としてはポリフッカビニリデンなどが用
いられる。集電体としてはAl、Cuなどを主体とする
金属薄膜を用いる。
The negative electrode active material is formed on the current collector by the conductivity-imparting agent and the binder. As an example of the conductivity imparting agent, a powder of a conductive oxide can be used in addition to the carbon material. Polybucca vinylidene or the like is used as the binder. A metal thin film mainly composed of Al, Cu or the like is used as the current collector.

【0044】作製された正極と負極はセパレータによっ
て電気的接触がない状態で対向させる。セパレータとし
てはポリエチレン、ポリプロピレンなどからなる微多孔
質膜を用いることができる。
The prepared positive electrode and negative electrode are opposed to each other by a separator without electrical contact. As the separator, a microporous film made of polyethylene, polypropylene or the like can be used.

【0045】この正極と負極がセパレータを挟んで対向
したものを、円筒状、または積層上に形成する。これら
を電池ケースに収納し、正極活物質、負極活物質の両方
が電解液に接するような状態となるように電解液に浸
す。正極、負極それぞれと電気的接触を保った電極端子
を接続しておき、その電極端子を電極ケース外部に通ず
るように接続しておき、電池ケースを密閉して二次電池
が完成する。
The positive electrode and the negative electrode opposed to each other with the separator interposed therebetween are formed in a cylindrical shape or a laminated structure. These are housed in a battery case and immersed in an electrolytic solution so that both the positive electrode active material and the negative electrode active material come into contact with the electrolytic solution. Electrode terminals that maintain electrical contact with the positive electrode and the negative electrode are connected to each other, the electrode terminals are connected to the outside of the electrode case, and the battery case is sealed to complete the secondary battery.

【0046】本発明は電池形状には制限がなく、セパレ
ータを挟んで対向した正極、負極を巻回型、積層型など
の形態を取ることが可能であり、セルにも、コイン型、
ラミネートパック、角型セル、円筒型セルを用いること
ができる。
The present invention has no limitation on the shape of the battery, and the positive electrode and the negative electrode facing each other with the separator interposed therebetween can be formed into a wound type, a laminated type, or the like.
Laminate packs, square cells, and cylindrical cells can be used.

【0047】[0047]

【実施例】実施例1 正極活物質として、以下の試料を作製し、評価を行っ
た。 LiNi0.5Mn1.5(試料1) LiNi0.5Mn1.45Ti0.05(試料
2) LiNi0.5Mn1.4Ti0.1(試料3) LiNi0.5Mn1.35Ti0.15(試料
4) LiNi0.5Mn1.3Ti0.2(試料5) LiNi0.5Mn1.2Ti0.3(試料6) LiNi0.5Mn1.3Si0.2(試料7) LiNi0.5Mn1.1Si0.4(試料8) LiNi0.5Mn1.1Ti0.3Si0.1
(試料9) LiNi0.5Mn1.35Ti0.05Si0.1
(試料10) LiNi0.5Mn1.5(試料11) LiNi0.4Co0.2Mn1.4(試料12) LiNi0.4Co0.2Ti0.15Mn1.25
(試料13) LiNi0.3Co0.4Mn1.3(試料14) LiNi0.3Co0.4Ti0.15Mn1.15
(試料15) LiNi0.4Fe0.2Mn1.4(試料16) LiNi0.4Fe0.2Ti0.15Mn1.25
(試料17) LiNi0.4Cr0.2Mn1.4(試料18) LiNi0.4Cr0.2Si0.05Mn1.35
(試料19) LiNi0.45Cu0.05Mn1.5(試料2
0) LiNi0.45Cr0.05Si0.05Mn
1.45(試料21)
[Example] Example 1 The following samples were prepared as positive electrode active materials and evaluated.
It was LiNi0.5Mn1.5OFour(Sample 1) LiNi0.5Mn1.45Ti0.05OFour(sample
2) LiNi0.5Mn1.4Ti0.1OFour(Sample 3) LiNi0.5Mn1.35Ti0.15OFour(sample
4) LiNi0.5Mn1.3Ti0.2OFour(Sample 5) LiNi0.5Mn1.2Ti0.3OFour(Sample 6) LiNi0.5Mn1.3Si0.2OFour(Sample 7) LiNi0.5Mn1.1Si0.4OFour(Sample 8) LiNi0.5Mn1.1Ti0.3Si0.1O
Four(Sample 9) LiNi0.5Mn1.35Ti0.05Si0.1O
Four(Sample 10) LiNi0.5Mn1.5OFour(Sample 11) LiNi0.4Co0.2Mn1.4OFour(Sample 12) LiNi0.4Co0.2Ti0.15Mn1.25O
Four(Sample 13) LiNi0.3Co0.4Mn1.3OFour(Sample 14) LiNi0.3Co0.4Ti0.15Mn1.15O
Four(Sample 15) LiNi0.4Fe0.2Mn1.4OFour(Sample 16) LiNi0.4Fe0.2Ti0.15Mn1.25O
Four(Sample 17) LiNi0.4Cr0.2Mn1.4OFour(Sample 18) LiNi0.4Cr0.2Si0.05Mn1.35O
Four(Sample 19) LiNi0.45Cu0.05Mn1.5OFour(Sample 2
0) LiNi0.45Cr0.05Si0.05Mn
1.45OFour(Sample 21)

【0048】 (正極活物質の作製)試料1〜試料10、
試料12〜試料21のLi以外の金属原料には、複合酸
化物を用いた。試料11のみはMnO、NiOを目的
の金属組成比になるように秤量し、さらに、LiCO
をLi原料として、粉砕混合した。原料混合後の粉末
を750℃で8時間焼成した。試料1〜試料10、試料
12〜試料21の結晶構造が、ほぼ単相のスピネル構造
であることを確認した。試料11においては、NiOか
らなる異相がわずかに検出された。
[0048] (Production of Positive Electrode Active Material) Sample 1 to Sample 10,
For the metal raw materials other than Li of Samples 12 to 21, a complex acid was used.
Compound was used. Only sample 11 is MnOTwo, For NiO
To a metal composition ratio ofTwoCO
ThreeWas pulverized and mixed as a Li raw material. Powder after mixing raw materials
Was baked at 750 ° C. for 8 hours. Sample 1 to Sample 10, Sample
Crystal structures 12 to 21 are almost single-phase spinel structures
Was confirmed. In sample 11, is it NiO
Heterogeneous phase was slightly detected.

【0049】作製した正極活物質と導電性付与剤である
炭素を混合し、N−メチルピロリドンにポリフッカビニ
リデン(PVDF)を溶かしたものに分散させスラリー
上とした。正極活物質、導電性付与剤、結着剤の重量比
は88/6/6とした。Al集電体上にスラリーを塗布
した。その後、真空中で12時間乾燥させて、電極材料
とした。電極材料は直径12mmの円に切り出した。そ
の後、3t/cmで加圧成形した。負極はLi金属デ
ィスクを用いた。
The prepared positive electrode active material was mixed with carbon as a conductivity-imparting agent and dispersed in N-methylpyrrolidone in which poly (Fuccavinylidene) (PVDF) was dissolved to obtain a slurry. The weight ratio of the positive electrode active material, the conductivity-imparting agent, and the binder was 88/6/6. The slurry was applied on the Al current collector. Then, it was dried in vacuum for 12 hours to obtain an electrode material. The electrode material was cut into a circle having a diameter of 12 mm. Then, pressure molding was performed at 3 t / cm 2 . A Li metal disk was used as the negative electrode.

【0050】セパレータにはPPのフィルムを使用し、
正極と負極を対向配置させ、コインセル内に配置し、電
解液を満たして密閉した。電解液は、溶媒EC(エチレ
ンカーボネート)/DEC(ジエチルカーボネート)=
3/7(vol−%)に電解質LiPFを1mol/
l溶解させたものを使用した。
A PP film is used for the separator,
The positive electrode and the negative electrode were placed opposite to each other, placed in a coin cell, filled with an electrolytic solution, and sealed. The electrolytic solution is solvent EC (ethylene carbonate) / DEC (diethyl carbonate) =
Electrolyte LiPF 6 was added in an amount of 1 mol / 3/7 (vol-%).
1 The dissolved product was used.

【0051】試料1から試料11までの電池特性の評価
は、0.1Cの充電レートで4.9Vまで充電を行い、
0.1Cのレートで3Vまで放電を行った。試料12か
ら試料21までは、0.1Cの充電レートで5.1Vま
で充電を行い、0.1Cのレートで3Vまで放電を行っ
た。容量および平均動作電圧の測定結果を以下の表1に
示す。Ti置換、Si置換とも容量が増加したことが確
認された。図2にLiNi0.5Mn1.3Ti0.2
(試料5)、LiNi0.5Mn1.5 (試料
1)、LiNi0.5Mn1.5(試料11)の放
電曲線を示す。Ti置換においては、容量の増加ととも
に4.7V近辺領域の放電プラトーの電位が増加する傾
向が見られた。これは、Tiの存在により、Niの電子
状態に変化が生じて放電電位が増加したためと考えられ
る。Ti置換では高容量化と高電圧化の二つの効果によ
り、より高いエネルギー密度が得られることが見いださ
れた。試料1と試料11では、Mn、Niの原料にMn
とNiの複合酸化物を用いた試料1の方が試料11より
も容量が大きく、特に5V放電領域が増加した。これは
試料1の方が試料11よりもスピネル中のMn、Ni、
Liなどが均一に拡散し、高い結晶性の活物質が得られ
たためと考えられる。
Evaluation of battery characteristics of samples 1 to 11
Charges to 4.9V at a charge rate of 0.1C,
It was discharged to 3V at a rate of 0.1C. Sample 12
From sample 21 to sample 21 at a charging rate of 0.1C up to 5.1V.
And then discharge to 3V at a rate of 0.1C.
It was The measurement results of capacity and average operating voltage are shown in Table 1 below.
Show. It is confirmed that the capacity increased with both Ti substitution and Si substitution.
It has been certified. In Figure 2, LiNi0.5Mn1.3Ti0.2
OFour(Sample 5), LiNi0.5Mn1.5O Four(sample
1), LiNi0.5Mn1.5OFourRelease of (Sample 11)
An electric curve is shown. In the Ti substitution, the capacity increases
The slope where the potential of the discharge plateau near 4.7V increases
The direction was seen. This is due to the presence of Ti
This is probably because the discharge potential increased due to a change in state.
It Ti substitution has two effects: high capacity and high voltage.
Found that higher energy density can be obtained
It was In Samples 1 and 11, Mn and Ni were used as raw materials for Mn.
Sample 1 using a composite oxide of Ni and Ni is more than Sample 11
Also had a large capacity, especially the 5V discharge region increased. this is
Sample 1 has more Mn, Ni, and Ni in the spinel than Sample 11.
Li or the like diffuses uniformly, and a highly crystalline active material is obtained.
It is thought to be a tame.

【0052】[0052]

【表1】 [Table 1]

【0053】実施例2 実施例1で得られた正極を使用して、サイクル特性を評
価した。正極は活物質に、LiNi0.5Mn1.5
(試料1)、LiNi0.5Mn1.4Ti0.1
(試料3)、LiNi0.5Mn1.35Ti0.1
(試料4)、LiNi0.5Mn1.3Ti
0.2(試料5)、LiNi0.5Mn1.3Si
0.2(試料7)を使用し、実施例1と同じ方法で
正極電極材料を作製した。負極はグラファイトを活物質
として使用し、導電性付与剤である炭素を混合し、N−
メチルピロリドンにポリフッカビニリデン(PVDF)
を溶かしたものに分散させスラリー状とした。負極活物
質、導電性付与剤、結着剤の重量比は90/1/9とし
た。Cu集電体上にスラリーを塗布した。その後、真空
中で12時間乾燥させて、電極材料とした。電極材料は
直径13mmの円に切り出した。その後、1.5t/c
で加圧成形した。
Example 2 Using the positive electrode obtained in Example 1, cycle characteristics were evaluated. The positive electrode is an active material, LiNi 0.5 Mn 1.5 O
4 (Sample 1), LiNi 0.5 Mn 1.4 Ti 0.1 O
4 (Sample 3), LiNi 0.5 Mn 1.35 Ti 0.1
5 O 4 (Sample 4), LiNi 0.5 Mn 1.3 Ti
0.2 O 4 (Sample 5), LiNi 0.5 Mn 1.3 Si
A positive electrode material was produced in the same manner as in Example 1 using 0.2 O 4 (Sample 7). For the negative electrode, graphite was used as an active material, carbon as a conductivity-imparting agent was mixed, and N-
Methylpyrrolidone to Polyfukka vinylidene (PVDF)
Was dispersed in a melted solution to form a slurry. The weight ratio of the negative electrode active material, the conductivity-imparting agent, and the binder was 90/1/9. The slurry was applied on the Cu current collector. Then, it was dried in vacuum for 12 hours to obtain an electrode material. The electrode material was cut into a circle having a diameter of 13 mm. After that, 1.5t / c
It was pressure molded at m 2 .

【0054】セパレータにはPP(ポリプロピレン)の
フィルムを使用し、正極と負極を対向配置させ、コイン
セル内に配置し、電解液を満たして密閉し、電池を作製
した。電解液は、溶媒EC(エチレンカーボネート)/
DEC(ジエチルカーボネート)=3/7(vol−
%)に電解質LiPFを1mol/l溶解させたもの
を使用した。
A PP (polypropylene) film was used as a separator, and the positive electrode and the negative electrode were placed opposite to each other, placed in a coin cell, filled with an electrolytic solution, and sealed to prepare a battery. The electrolytic solution is a solvent EC (ethylene carbonate) /
DEC (diethyl carbonate) = 3/7 (vol-
%) In which the electrolyte LiPF 6 was dissolved at 1 mol / l was used.

【0055】電池特性の評価は温度45℃の恒温槽中で、
1Cの充電レートで4.75Vまで充電を行い、その
後、4.75Vで定電圧充電を行った。トータルの充電
時間を150分とした。次に1Cのレートで3Vまで放
電を行った。これを繰り返して300サイクル後の容量
を評価した。結果を表2に示す。
The battery characteristics were evaluated in a constant temperature bath at a temperature of 45 ° C.
It was charged up to 4.75 V at a charge rate of 1 C, and then constant voltage charging was performed at 4.75 V. The total charging time was 150 minutes. Next, discharge was performed up to 3 V at a rate of 1C. By repeating this, the capacity after 300 cycles was evaluated. The results are shown in Table 2.

【0056】Ti置換およびSi置換した正極活物質を
使用することによってサイクル後の容量維持率が増加し
たことが確認された。
It was confirmed that the capacity retention rate after cycling was increased by using the Ti-substituted and Si-substituted positive electrode active materials.

【0057】[0057]

【表2】 [Table 2]

【0058】[0058]

【発明の効果】以上説明したように本発明によれば、従
来にない高容量、高エネルギー密度を有する正極材料が
提供される。具体的には、リチウムイオン二次電池の正
極材料で、高容量で、Liに対して4.5V以上の高電
圧を有する高エネルギー密度の正極材料が提供される。
As described above, according to the present invention, a positive electrode material having an unprecedentedly high capacity and high energy density is provided. Specifically, a positive electrode material for a lithium-ion secondary battery, which has a high capacity and a high energy density of 4.5 V or higher with respect to Li, is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る二次電池の断面構造を示す図であ
る。
FIG. 1 is a diagram showing a cross-sectional structure of a secondary battery according to the present invention.

【図2】本発明の正極活物質を用いた正極の放電曲線で
ある。
FIG. 2 is a discharge curve of a positive electrode using the positive electrode active material of the present invention.

【符号の説明】[Explanation of symbols]

1 正極活物質層 2 負極活物質層 3 正極集電体 4 負極集電体 5 セパレータ 6 正極外装缶 7 負極外装缶 8 絶縁パッキング部 1 Positive electrode active material layer 2 Negative electrode active material layer 3 Positive electrode current collector 4 Negative electrode current collector 5 separator 6 Positive electrode can 7 Negative electrode exterior can 8 Insulation packing part

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AB06 AC06 AD06 AE05 5H029 AJ03 AK03 AL02 AL06 AL07 AL11 AL12 AL18 AM02 AM03 AM04 AM05 AM07 BJ03 CJ02 CJ08 DJ17 HJ02 HJ18 5H050 AA08 BA17 CA09 CB02 CB07 CB08 CB11 CB12 CB29 FA19 GA02 GA10 HA02 HA18    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G048 AA04 AB06 AC06 AD06 AE05                 5H029 AJ03 AK03 AL02 AL06 AL07                       AL11 AL12 AL18 AM02 AM03                       AM04 AM05 AM07 BJ03 CJ02                       CJ08 DJ17 HJ02 HJ18                 5H050 AA08 BA17 CA09 CB02 CB07                       CB08 CB11 CB12 CB29 FA19                       GA02 GA10 HA02 HA18

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(I) Li(MMn2−x−y)O (I) (式中、0.4<x、0<y、x+y<2、0<a<
1.2である。Mは、Ni、Co、Fe、CrおよびC
uよりなる群から選ばれ、少なくともNiを含む一種以
上の金属元素を含む。Aは、Si、Tiから選ばれる少
なくとも一種の金属元素を含む。但し、AがTiだけを
含む場合には、Aの比率yの値は、0.1<yであ
る。)で表されるスピネル型リチウムマンガン複合酸化
物を含むことを特徴とする二次電池用正極活物質。
1. The following general formula (I) Li a (M x Mn 2−x−y A y ) O 4 (I) (wherein 0.4 <x, 0 <y, x + y <2, 0 < a <
1.2. M is Ni, Co, Fe, Cr and C
It contains one or more metal elements selected from the group consisting of u and containing at least Ni. A contains at least one metal element selected from Si and Ti. However, when A contains only Ti, the value of the ratio y of A is 0.1 <y. ) A positive electrode active material for a secondary battery, comprising a spinel type lithium manganese composite oxide represented by
【請求項2】 請求項1に記載の二次電池用正極活物質
において、前記一般式(I)中、MがNiであることを
特徴とする二次電池用正極活物質。
2. The positive electrode active material for a secondary battery according to claim 1, wherein M in the general formula (I) is Ni.
【請求項3】 請求項1または2記載の二次電池用正極
活物質において、前記一般式(I)中、AがSiである
ことを特徴とする二次電池用正極活物質。
3. The positive electrode active material for a secondary battery according to claim 1, wherein A is Si in the general formula (I).
【請求項4】 請求項1または2記載の二次電池用正極
活物質において、前記一般式(I)中、AがTiである
ことを特徴とする二次電池用正極活物質。
4. The positive electrode active material for a secondary battery according to claim 1, wherein A is Ti in the general formula (I).
【請求項5】 請求項1乃至2いずれかに記載の二次電
池用正極活物質において、前記一般式(I)中、AがS
iおよびTiを含むことを特徴とする二次電池用正極活
物質。
5. The positive electrode active material for a secondary battery according to claim 1, wherein A is S in the general formula (I).
A positive electrode active material for a secondary battery, which contains i and Ti.
【請求項6】 請求項1乃至5のいずれかに記載の二次
電池用正極活物質は、LiCO、LiOH、Li
O、LiSOから選ばれた一つのLi原料とLi以
外の金属の複合酸化物の原料の混合物を焼成して得られ
たものであることを特徴とする二次電池用正極活物質。
6. The positive electrode active material for a secondary battery according to claim 1, wherein Li 2 CO 3 , LiOH and Li 2 are used.
A positive electrode active material for a secondary battery, which is obtained by firing a mixture of one Li raw material selected from O and Li 2 SO 4 and a raw material of a composite oxide of a metal other than Li.
【請求項7】 請求項1乃至6いずれかに記載の二次電
池用正極活物質において、前記一般式(I)中、Mの比
率xの値は、0.4<x<0.6であることを特徴とす
る二次電池用正極活物質。
7. The positive electrode active material for a secondary battery according to claim 1, wherein the value of the ratio x of M in the general formula (I) is 0.4 <x <0.6. A positive electrode active material for a secondary battery, which is characterized by being present.
【請求項8】 請求項1乃至7いずれかに記載の二次電
池用正極活物質において、リチウム基準電位に対する平
均放電電圧が4.5V以上であることを特徴とする二次
電池用正極活物質。
8. The positive electrode active material for a secondary battery according to claim 1, wherein an average discharge voltage with respect to a lithium reference potential is 4.5 V or more. .
【請求項9】 請求項1乃至8いずれかに記載の二次電
池用正極活物質が結着剤により結着されてなることを特
徴とする二次電池用正極。
9. A positive electrode for a secondary battery, comprising the positive electrode active material for a secondary battery according to claim 1 bound by a binder.
【請求項10】 請求項9に記載の二次電池用正極と、
セパレータを介して該二次電池用正極と対向配置された
負極とを備えたことを特徴とする二次電池。
10. A positive electrode for a secondary battery according to claim 9,
A secondary battery comprising a positive electrode for a secondary battery and a negative electrode arranged to face the secondary battery via a separator.
JP2002293082A 2001-10-18 2002-10-04 Non-aqueous electrolyte secondary battery electrode material Expired - Fee Related JP4325167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293082A JP4325167B2 (en) 2001-10-18 2002-10-04 Non-aqueous electrolyte secondary battery electrode material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-320675 2001-10-18
JP2001320675 2001-10-18
JP2002293082A JP4325167B2 (en) 2001-10-18 2002-10-04 Non-aqueous electrolyte secondary battery electrode material

Publications (2)

Publication Number Publication Date
JP2003197194A true JP2003197194A (en) 2003-07-11
JP4325167B2 JP4325167B2 (en) 2009-09-02

Family

ID=27615550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293082A Expired - Fee Related JP4325167B2 (en) 2001-10-18 2002-10-04 Non-aqueous electrolyte secondary battery electrode material

Country Status (1)

Country Link
JP (1) JP4325167B2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135701A (en) * 2003-10-29 2005-05-26 Nec Corp Electrolyte for secondary battery and secondary battery using it
JP2005149750A (en) * 2003-11-11 2005-06-09 Nec Corp Nonaqueous electrolyte secondary battery
JP2005149985A (en) * 2003-11-18 2005-06-09 Japan Storage Battery Co Ltd Manufacturing method of non-aqueous electrolytic solution secondary battery
JP2005251677A (en) * 2004-03-08 2005-09-15 Nec Corp Nonaqueous electrolyte solution secondary battery
JP2007200646A (en) * 2006-01-25 2007-08-09 Nec Tokin Corp Lithium secondary battery
JP2008511960A (en) * 2004-09-03 2008-04-17 ユーシカゴ・アーゴン・リミテッド・ライアビリティ・カンパニー Manganese oxide composite electrode for lithium battery
JP2008511967A (en) * 2004-09-01 2008-04-17 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ インコーポレイテッド Battery having molten salt electrolyte and high-voltage positive electrode active material
JP2010097845A (en) * 2008-10-17 2010-04-30 Nec Tokin Corp Positive electrode active material for secondary battery, and secondary battery using the same
JP2011096672A (en) * 2010-12-27 2011-05-12 Nec Corp Nonaqueous electrolyte secondary battery
JP2012033279A (en) * 2010-07-28 2012-02-16 Nec Energy Devices Ltd Lithium ion secondary battery
WO2012060444A1 (en) * 2010-11-05 2012-05-10 日本電気株式会社 Positive electrode active material for secondary battery, and secondary battery using same
WO2012124243A1 (en) * 2011-03-14 2012-09-20 株式会社豊田自動織機 Cathode active material for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery using same
WO2012165020A1 (en) 2011-05-30 2012-12-06 日本電気株式会社 Active material for secondary batteries, and secondary battery using same
JP2013143262A (en) * 2012-01-11 2013-07-22 Toyota Motor Corp Lithium ion secondary battery
JP2013206746A (en) * 2012-03-28 2013-10-07 Gs Yuasa Corp Active material for lithium secondary battery, lithium secondary battery electrode including the same, and lithium secondary battery
WO2013153690A1 (en) * 2012-04-13 2013-10-17 日本電気株式会社 Positive electrode active material for secondary cell, and secondary cell using same
WO2014030764A1 (en) 2012-08-24 2014-02-27 三井金属鉱業株式会社 Spinel lithium-manganese-nickel-containing composite oxide
KR20160009016A (en) 2013-05-17 2016-01-25 미쓰이금속광업주식회사 Positive electrode active material for lithium secondary battery
KR20160009015A (en) 2013-05-17 2016-01-25 미쓰이금속광업주식회사 Positive electrode active material for lithium secondary battery
WO2016012851A1 (en) 2014-07-22 2016-01-28 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
DE102015111800A1 (en) 2014-07-22 2016-01-28 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for a lithium secondary battery, positive electrode for a lithium secondary battery, and lithium secondary battery
KR20160028483A (en) 2013-12-04 2016-03-11 미쓰이금속광업주식회사 Spinel-type lithium cobalt manganese-containing complex oxide
US9337486B2 (en) 2012-09-25 2016-05-10 Mitsui Mining & Smelting Co., Ltd. Spinel-type lithium-manganese composite oxide
JP5949555B2 (en) * 2010-12-13 2016-07-06 日本電気株式会社 Method for producing positive electrode active material for secondary battery, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP2016181500A (en) * 2015-03-24 2016-10-13 日亜化学工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery
US9537140B2 (en) 2012-04-27 2017-01-03 Mitsui Mining & Smelting Co., Ltd. Manganese spinel-type lithium transition metal oxide
EP3219678A1 (en) * 2016-03-17 2017-09-20 Bayerische Motoren Werke Aktiengesellschaft Silicon doping of high voltage spinel
JP2017171548A (en) * 2016-03-24 2017-09-28 国立大学法人信州大学 Lithium complex oxide, positive electrode active material for lithium secondary batteries, and lithium secondary battery
JP2017188245A (en) * 2016-04-04 2017-10-12 株式会社豊田中央研究所 Positive electrode active material for nonaqueous electrolyte secondary battery, lithium secondary battery, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
US9966601B2 (en) 2015-03-24 2018-05-08 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery
WO2018168470A1 (en) 2017-03-14 2018-09-20 三井金属鉱業株式会社 Spinel type lithium nickel manganese-containing composite oxide
US10263256B2 (en) 2015-09-17 2019-04-16 Mitsui Mining & Smelting Co., Ltd. Spinel type lithium nickel manganese-containing composite oxide
US10276867B2 (en) 2015-04-30 2019-04-30 Mitsui Mining & Smelting Co., Ltd. 5V-class spinel-type lithium-manganese-containing composite oxide
US10446842B2 (en) 2015-04-30 2019-10-15 Mitsui Mining & Smelting Co., Ltd. 5V-class spinel-type lithium-manganese-containing composite oxide
US10468677B2 (en) 2016-02-29 2019-11-05 Mitsui Mining & Smelting Co., Ltd. Spinel-type lithium-manganese-containing complex oxide
JP2020181653A (en) * 2019-04-23 2020-11-05 国立大学法人 新潟大学 Method for manufacturing positive electrode material, positive electrode material, and lithium ion secondary battery including the same
US11824188B2 (en) 2017-08-14 2023-11-21 Mitsui Mining & Smelting Co., Ltd. Positive electrode active material for all-solid-state lithium secondary batteries

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135701A (en) * 2003-10-29 2005-05-26 Nec Corp Electrolyte for secondary battery and secondary battery using it
JP4701601B2 (en) * 2003-10-29 2011-06-15 日本電気株式会社 Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP2005149750A (en) * 2003-11-11 2005-06-09 Nec Corp Nonaqueous electrolyte secondary battery
JP4697382B2 (en) * 2003-11-11 2011-06-08 日本電気株式会社 Nonaqueous electrolyte secondary battery
JP2005149985A (en) * 2003-11-18 2005-06-09 Japan Storage Battery Co Ltd Manufacturing method of non-aqueous electrolytic solution secondary battery
JP4618404B2 (en) * 2004-03-08 2011-01-26 日本電気株式会社 Non-aqueous electrolyte secondary battery
JP2005251677A (en) * 2004-03-08 2005-09-15 Nec Corp Nonaqueous electrolyte solution secondary battery
JP2008511967A (en) * 2004-09-01 2008-04-17 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ インコーポレイテッド Battery having molten salt electrolyte and high-voltage positive electrode active material
JP2008511960A (en) * 2004-09-03 2008-04-17 ユーシカゴ・アーゴン・リミテッド・ライアビリティ・カンパニー Manganese oxide composite electrode for lithium battery
JP2007200646A (en) * 2006-01-25 2007-08-09 Nec Tokin Corp Lithium secondary battery
JP2010097845A (en) * 2008-10-17 2010-04-30 Nec Tokin Corp Positive electrode active material for secondary battery, and secondary battery using the same
JP2012033279A (en) * 2010-07-28 2012-02-16 Nec Energy Devices Ltd Lithium ion secondary battery
JPWO2012060444A1 (en) * 2010-11-05 2014-05-12 日本電気株式会社 Positive electrode active material for secondary battery and secondary battery using the same
WO2012060444A1 (en) * 2010-11-05 2012-05-10 日本電気株式会社 Positive electrode active material for secondary battery, and secondary battery using same
JP5958343B2 (en) * 2010-11-05 2016-07-27 日本電気株式会社 Positive electrode active material for secondary battery and secondary battery using the same
US9299475B2 (en) 2010-11-05 2016-03-29 Nec Corporation Positive electrode active material for secondary battery and secondary battery using the same
JP5949555B2 (en) * 2010-12-13 2016-07-06 日本電気株式会社 Method for producing positive electrode active material for secondary battery, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP2011096672A (en) * 2010-12-27 2011-05-12 Nec Corp Nonaqueous electrolyte secondary battery
WO2012124243A1 (en) * 2011-03-14 2012-09-20 株式会社豊田自動織機 Cathode active material for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery using same
WO2012165020A1 (en) 2011-05-30 2012-12-06 日本電気株式会社 Active material for secondary batteries, and secondary battery using same
JP2013143262A (en) * 2012-01-11 2013-07-22 Toyota Motor Corp Lithium ion secondary battery
JP2013206746A (en) * 2012-03-28 2013-10-07 Gs Yuasa Corp Active material for lithium secondary battery, lithium secondary battery electrode including the same, and lithium secondary battery
JPWO2013153690A1 (en) * 2012-04-13 2015-12-17 日本電気株式会社 Positive electrode active material for secondary battery and secondary battery using the same
US9236602B2 (en) 2012-04-13 2016-01-12 Nec Corporation Positive electrode active material for secondary battery and secondary battery using the same
WO2013153690A1 (en) * 2012-04-13 2013-10-17 日本電気株式会社 Positive electrode active material for secondary cell, and secondary cell using same
US9537140B2 (en) 2012-04-27 2017-01-03 Mitsui Mining & Smelting Co., Ltd. Manganese spinel-type lithium transition metal oxide
US9240595B2 (en) 2012-08-24 2016-01-19 Mitsui Mining & Smelting Co., Ltd. Spinel type lithium-manganese-nickel-containing composite oxide
WO2014030764A1 (en) 2012-08-24 2014-02-27 三井金属鉱業株式会社 Spinel lithium-manganese-nickel-containing composite oxide
US9337486B2 (en) 2012-09-25 2016-05-10 Mitsui Mining & Smelting Co., Ltd. Spinel-type lithium-manganese composite oxide
KR20160009016A (en) 2013-05-17 2016-01-25 미쓰이금속광업주식회사 Positive electrode active material for lithium secondary battery
KR20160009015A (en) 2013-05-17 2016-01-25 미쓰이금속광업주식회사 Positive electrode active material for lithium secondary battery
US10468672B2 (en) 2013-05-17 2019-11-05 Mitsui Mining & Smelting Co., Ltd. Positive electrode active material for lithium secondary battery
US10186706B2 (en) 2013-05-17 2019-01-22 Mitsui Mining & Smelting Co., Ltd. Positive electrode active material for lithium secondary battery
KR20160028483A (en) 2013-12-04 2016-03-11 미쓰이금속광업주식회사 Spinel-type lithium cobalt manganese-containing complex oxide
US9786914B2 (en) 2013-12-04 2017-10-10 Mitsui Mining & Smelting Co., Ltd. Spinel-type lithium cobalt manganese-containing complex oxide
DE102015111800B9 (en) 2014-07-22 2022-06-23 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
DE102015111800B4 (en) 2014-07-22 2022-04-28 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
US9786907B2 (en) 2014-07-22 2017-10-10 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2016012851A1 (en) 2014-07-22 2016-01-28 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US10312514B2 (en) 2014-07-22 2019-06-04 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
DE102015111800A1 (en) 2014-07-22 2016-01-28 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for a lithium secondary battery, positive electrode for a lithium secondary battery, and lithium secondary battery
JP2016181500A (en) * 2015-03-24 2016-10-13 日亜化学工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery
US9966601B2 (en) 2015-03-24 2018-05-08 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery
US10276867B2 (en) 2015-04-30 2019-04-30 Mitsui Mining & Smelting Co., Ltd. 5V-class spinel-type lithium-manganese-containing composite oxide
US10446842B2 (en) 2015-04-30 2019-10-15 Mitsui Mining & Smelting Co., Ltd. 5V-class spinel-type lithium-manganese-containing composite oxide
US10263256B2 (en) 2015-09-17 2019-04-16 Mitsui Mining & Smelting Co., Ltd. Spinel type lithium nickel manganese-containing composite oxide
US10468677B2 (en) 2016-02-29 2019-11-05 Mitsui Mining & Smelting Co., Ltd. Spinel-type lithium-manganese-containing complex oxide
EP3219678A1 (en) * 2016-03-17 2017-09-20 Bayerische Motoren Werke Aktiengesellschaft Silicon doping of high voltage spinel
JP2017171548A (en) * 2016-03-24 2017-09-28 国立大学法人信州大学 Lithium complex oxide, positive electrode active material for lithium secondary batteries, and lithium secondary battery
JP2017188245A (en) * 2016-04-04 2017-10-12 株式会社豊田中央研究所 Positive electrode active material for nonaqueous electrolyte secondary battery, lithium secondary battery, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
WO2018168470A1 (en) 2017-03-14 2018-09-20 三井金属鉱業株式会社 Spinel type lithium nickel manganese-containing composite oxide
KR20190112030A (en) 2017-03-14 2019-10-02 미쓰이금속광업주식회사 Spinel-type lithium nickel manganese-containing oxide
US11799079B2 (en) 2017-03-14 2023-10-24 Mitsui Mining & Smelting Co., Ltd. Spinel type lithium nickel manganese-containing composite oxide
US11824188B2 (en) 2017-08-14 2023-11-21 Mitsui Mining & Smelting Co., Ltd. Positive electrode active material for all-solid-state lithium secondary batteries
JP2020181653A (en) * 2019-04-23 2020-11-05 国立大学法人 新潟大学 Method for manufacturing positive electrode material, positive electrode material, and lithium ion secondary battery including the same
JP7254284B2 (en) 2019-04-23 2023-04-10 国立大学法人 新潟大学 Method for manufacturing positive electrode material and method for manufacturing lithium ion secondary battery

Also Published As

Publication number Publication date
JP4325167B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
JP4325167B2 (en) Non-aqueous electrolyte secondary battery electrode material
KR100479900B1 (en) Positive Electrode Active Material, Positive Electrode and Non-Aqueous Electrolyte Secondary Battery Using Thereof
JP4539816B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery
JP4698126B2 (en) Non-aqueous electrolyte secondary battery
JP4696557B2 (en) Active material for lithium secondary battery, production method thereof, raw material used therefor, and lithium secondary battery
JP4853608B2 (en) Lithium secondary battery
JP5169850B2 (en) Non-aqueous electrolyte secondary battery
JP5641560B2 (en) Positive electrode active material for secondary battery and secondary battery using the same
JP3675439B2 (en) Positive electrode active material for secondary battery, and positive electrode for secondary battery and secondary battery using the same
US9356284B2 (en) Active material for secondary battery
CN103456923A (en) Manufacturing method of positive electrode active material and positive electrode active material
JP6007904B2 (en) Secondary battery active material and secondary battery using the same
JP4192477B2 (en) Positive electrode active material for secondary battery, and positive electrode for secondary battery and secondary battery using the same
JP4458232B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5459757B2 (en) Positive electrode active material for secondary battery and secondary battery using the same
JP2004014270A (en) Rechargeable battery
JP2974213B1 (en) Positive electrode active material for lithium secondary battery, method for producing the same and use thereof
JP2005322480A (en) Positive pole active material for lithium secondary battery, and lithium secondary battery using it
JP5942852B2 (en) Positive electrode active material for secondary battery and secondary battery using the same
JP5447615B2 (en) Electrolyte and non-aqueous electrolyte secondary battery
JP4867153B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for secondary battery, and non-aqueous electrolyte secondary battery
EP3982460A1 (en) Manufacturing method of lithium secondary battery
JP2009123556A (en) Positive electrode active material for secondary battery, positive electrode for secondary battery using it and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4325167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees