JP2002158008A - Nonaqueous secondary cell positive electrode activator, and nonaqueous secondary cell using the same - Google Patents

Nonaqueous secondary cell positive electrode activator, and nonaqueous secondary cell using the same

Info

Publication number
JP2002158008A
JP2002158008A JP2000350739A JP2000350739A JP2002158008A JP 2002158008 A JP2002158008 A JP 2002158008A JP 2000350739 A JP2000350739 A JP 2000350739A JP 2000350739 A JP2000350739 A JP 2000350739A JP 2002158008 A JP2002158008 A JP 2002158008A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
active material
nickel
spinel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000350739A
Other languages
Japanese (ja)
Other versions
JP2002158008A5 (en
JP5013386B2 (en
Inventor
Tokuji Ueda
上田  篤司
Kazutaka Uchitomi
和孝 内富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2000350739A priority Critical patent/JP5013386B2/en
Publication of JP2002158008A publication Critical patent/JP2002158008A/en
Publication of JP2002158008A5 publication Critical patent/JP2002158008A5/ja
Application granted granted Critical
Publication of JP5013386B2 publication Critical patent/JP5013386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary cell positive electrode activator with high voltage enabled to restrain a thermal decomposition of an electrolyte (liquid electrolyte). SOLUTION: The nonaqueous secondary cell positive electrode activator composed of a spinel type lithium nickel manganese complex oxide, operating at 4.5 V or more against the Li voltage standard, is expressed by the formula (1); Li(Lix+x'Mez+z'Niy-x-zMn2-y-x'-z')O4. (In the formula, Me represents at least one element chosen from Ti, Cr, Fe, Co, Cu, Zn, Al, and B, and x, x', y, z, z' are 0<=x<=0.10, 0<=x'<=0.10, 0.01<=y<=1.00, 0<=z<=0.10, 0<=z'<=0.10).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水二次電池用正
極活物質およびそれを用いた非水二次電池用正極に関
し、さらに詳しくは、4.5V以上の作動電圧を示すス
ピネル型結晶構造を持つ非水二次電池用正極活物質およ
びそれを用いた高エネルギー密度でかつ熱的安定性に優
れた非水二次電池用正極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material for a non-aqueous secondary battery and a positive electrode for a non-aqueous secondary battery using the same, and more particularly, to a spinel type crystal having an operating voltage of 4.5 V or more. The present invention relates to a positive electrode active material for a non-aqueous secondary battery having a structure, and a positive electrode for a non-aqueous secondary battery having a high energy density and excellent thermal stability using the same.

【0002】[0002]

【従来の技術】近年、携帯電話やノート型パソコンなど
のポータブル電子機器の発達や、電気自動車の実用化な
どに伴い、小型軽量でかつ高容量の二次電池が必要とさ
れるようになってきた。現在、この要求に応える高容量
二次電池として、正極にLiCoO2 を用い、負極活物
質として炭素系材料を用いたリチウムイオン二次電池が
商品化されている。
2. Description of the Related Art In recent years, with the development of portable electronic devices such as mobile phones and notebook computers and the practical use of electric vehicles, secondary batteries of small size, light weight and high capacity have been required. Was. At present, a lithium ion secondary battery using LiCoO 2 for the positive electrode and a carbon-based material as the negative electrode active material has been commercialized as a high-capacity secondary battery that meets this demand.

【0003】上記リチウムイオン二次電池は、エネルギ
ー密度が高く、かつ小型、軽量化が図れることから、ポ
ータブル電子機器の電源として非常に有望視されてい
る。そして、このリチウムイオン二次電池の正極材料と
して使用されているLiCoO 2 は、製造が容易であ
り、かつ取り扱いが容易なことから、リチウムイオン二
次電池を含む非水二次電池において、好適な正極活物質
として多用されている。
[0003] The above-mentioned lithium ion secondary battery has an energy
-High density, small size and light weight
Is very promising as a power source for portable electronic devices.
You. And, with the cathode material of this lithium ion secondary battery,
LiCoO used as TwoIs easy to manufacture
Lithium ion secondary battery
Non-aqueous secondary batteries including secondary batteries, suitable positive electrode active material
It has been heavily used.

【0004】しかしながら、LiCoO2 は希少金属で
あるコバルト(Co)を原料として製造されるために、
今後、資源不足が深刻になると予想される。また、コバ
ルト自体の価格も高く、価格変動も大きいために、安価
で、しかも供給の安定している正極活物質の開発が望ま
れる。
[0004] However, LiCoO 2 is produced from a rare metal, cobalt (Co), as a raw material.
It is expected that resource shortages will become serious in the future. In addition, since the price of cobalt itself is high and the price fluctuates greatly, it is desired to develop a cathode active material that is inexpensive and has a stable supply.

【0005】そのため、非水二次電池用の正極活物質と
して、LiCoO2 に代えて、スピネル型結晶構造を有
するリチウムマンガン酸化物系材料が注目されている。
このスピネル型構造のリチウムマンガン酸化物には、L
2 Mn4 9 、Li4 Mn 5 12、LiMn2 4
どがあり、それらの中でも、LiMn2 4 がLi(リ
チウム)電位に対して4V領域で充放電が可能であるこ
とから、盛んに研究が行われている(特開平6−768
24号公報、特開平7−73883号公報、特開平7−
230802号公報、特開平7−245106号公報な
ど)。
Therefore, a positive electrode active material for a non-aqueous secondary battery and
And LiCoOTwoHas a spinel-type crystal structure
Lithium manganese oxide-based materials have attracted attention.
The spinel-type lithium manganese oxide has L
iTwoMnFourO9, LiFourMn FiveO12, LiMnTwoOFourWhat
And among them, LiMnTwoOFourIs Li
Charge / discharge in the 4V region with respect to the potential of
Therefore, research has been actively conducted (Japanese Patent Laid-Open No. 6-768).
No. 24, JP-A-7-73883, JP-A-7-83
No. 230802, Japanese Unexamined Patent Publication No. 7-245106.
Etc.)

【0006】ところで、電池の高エネルギー密度化を図
るためには高電位の正極活物質を用いることが1つの方
法であり、また、電気自動車用電源としては300V以
上の高電圧が必要とされるが、LiCoO2 を正極活物
質とする場合は作動電圧が4.2V程度であるため、接
続する電池数が多くなる。そのため、LiCoO2 より
高電圧の正極活物質を用いることが必要になってくる
が、前記のようなスピネル型リチウムマンガン酸化物は
作動電圧が4V以下であるため、LiCoO2 を用いる
場合よりも容量が小さい上に、300Vの高電圧を得る
ためには接続する電池数がLiCoO2 を用いる場合よ
りさらに多くなる。また、負極活物質も高容量であるこ
とが望ましいことから、高容量化が期待できる金属酸化
物、金属窒化物や低温焼成炭素材料を負極活物質として
用いることが考え得るが、それらはLiCoO2 との組
み合わせでは電池電圧が低下してエネルギー密度の低下
を招くため、それらの金属酸化物、金属窒化物などや低
温焼成炭素材料についても、LiCoO2 より高電圧で
作動する正極活物質と組み合わせて用いることによっ
て、その高容量化し得るという特性を発揮させることが
要望されている。
In order to increase the energy density of a battery, one method is to use a positive electrode active material having a high potential, and a high voltage of 300 V or more is required as a power supply for an electric vehicle. However, when LiCoO 2 is used as the positive electrode active material, the operating voltage is about 4.2 V, so that the number of connected batteries increases. Therefore, it is necessary to use a positive electrode active material having a higher voltage than LiCoO 2. However, since the operating voltage of the spinel-type lithium manganese oxide as described above is 4 V or less, the capacity is higher than when LiCoO 2 is used. Is small, and in order to obtain a high voltage of 300 V, the number of connected batteries is even greater than when LiCoO 2 is used. Further, since it is desirable negative electrode active material is also a high capacity, metal oxides higher capacity can be expected, but may considered to use a metal nitride or a low-temperature sintered carbon material as a negative electrode active material, they LiCoO 2 In combination with the above, the battery voltage is reduced and the energy density is reduced, and therefore, such metal oxides, metal nitrides, and low-temperature fired carbon materials are also combined with a positive electrode active material that operates at a higher voltage than LiCoO 2. There is a demand for using such a material to exhibit its characteristic of increasing its capacity.

【0007】そのため、スピネル型リチウムマンガン酸
化物においても高電圧化が検討されており、例えばマン
ガンサイトをニッケルで置換した複合型のリチウムマン
ガン複合酸化物では、金属リチウム電位基準で4.5V
以上の作動電圧が得られることが確認されている(特開
平09−147867号公報、特開平11−73962
号公報など)。
For this reason, higher voltage is being studied for spinel-type lithium manganese oxides. For example, in the case of a composite lithium manganese composite oxide in which manganese sites are replaced with nickel, 4.5 V based on a metal lithium potential is used.
It has been confirmed that the above operating voltage can be obtained (JP-A-09-147867, JP-A-11-73962).
Issue publication).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記の
ような4.5V以上の作動電圧を有するニッケル含有の
リチウムマンガン酸化物を用いることにより、高エネル
ギー密度化を達成できるものの、触媒作用の高いニッケ
ルを含有しているために、電解液(液状電解質)の分解
が比較的低い温度で起こり、ガスが発生すると共に電池
内部の圧力が上昇し、さらに電解液の分解反応が加速さ
れて熱的安定性が低下する。
However, by using a nickel-containing lithium manganese oxide having an operating voltage of 4.5 V or more as described above, high energy density can be achieved, but nickel having a high catalytic action can be achieved. , The decomposition of the electrolyte (liquid electrolyte) occurs at a relatively low temperature, gas is generated and the pressure inside the battery rises, and the decomposition reaction of the electrolyte is accelerated, resulting in thermal stability Is reduced.

【0009】前記問題を解決するため、不燃性の電解液
などを用いることも提案されているが、未だ充分な解決
がなされていない。また、リチウムイオン伝導性ガラス
などの固体電解質を用いることも提案されているが、実
用化の段階には至っていない。したがって、高電圧の正
極活物質を用いた場合の熱的安定性を向上させるために
は、正極活物質自体を電解液の熱分解を引き起こさせな
いものにすることが必要となる。
In order to solve the above problem, it has been proposed to use a nonflammable electrolytic solution or the like, but it has not been sufficiently solved yet. It has also been proposed to use a solid electrolyte such as lithium ion conductive glass, but it has not reached the stage of practical use. Therefore, in order to improve the thermal stability when a high-voltage positive electrode active material is used, it is necessary to make the positive electrode active material itself not to cause thermal decomposition of the electrolytic solution.

【0010】本発明は、上記のような従来技術における
問題点を解決し、高電圧で、かつ電解液の熱分解を抑制
し得る非水二次電池用正極活物質および非水二次電池用
正極を提供することを目的とする。
The present invention solves the above-mentioned problems in the prior art, and provides a positive electrode active material for a non-aqueous secondary battery which is capable of suppressing thermal decomposition of an electrolyte at a high voltage and a non-aqueous secondary battery. It is intended to provide a positive electrode.

【0011】[0011]

【課題を解決するための手段】本発明は、一般式(1) Li(Lix+x'Mez+z'Niy-x-z Mn2-y-x'-z' )O4 (1) (式中、MeはTi、Cr、Fe、Co、Cu、Zn、
AlおよびBよりなる群から選ばれる少なくとも1種で
あり、x、x’、y、z、z’は、それぞれ、0≦x≦
0.10、0≦x’≦0.10、0.01≦y≦1.0
0、0≦z≦0.10、0≦z’≦0.10である)で
表され、かつLi電位基準に対して4.5V以上の作動
電圧を有するスピネル型リチウムニッケルマンガン複合
酸化物が、酸化ニッケル(NiO)の生成を抑制でき、
高電圧であるにもかかわらず、電解液(液状電解質)の
熱分解を抑制できることを見出し、前記課題を解決した
ものである。
According to the present invention, there is provided a compound represented by the general formula (1) Li (Li x + x ′ Me z + z ′ Ni yxz Mn 2-y- x′ -z ′ ) O 4 (1) Where Me is Ti, Cr, Fe, Co, Cu, Zn,
At least one selected from the group consisting of Al and B, wherein x, x ', y, z, z' are each 0 ≦ x ≦
0.10, 0 ≦ x ′ ≦ 0.10, 0.01 ≦ y ≦ 1.0
0, 0 ≦ z ≦ 0.10, 0 ≦ z ′ ≦ 0.10) and a spinel-type lithium nickel manganese composite oxide having an operating voltage of 4.5 V or more with respect to a Li potential. , The generation of nickel oxide (NiO) can be suppressed,
The inventors have found that thermal decomposition of an electrolytic solution (liquid electrolyte) can be suppressed despite high voltage, and the above-mentioned problem has been solved.

【0012】[0012]

【発明の実施の形態】前記のように、LiMn2 4
マンガンサイトの一部をニッケルなどの遷移金属で置換
することにより4.5V以上の作動電圧が得られること
が知られており、このような高電圧のスピネル型リチウ
ムマンガン酸化物を正極活物質として用いることによ
り、高エネルギー密度化を図ることができるが、高温で
のガスの発生が著しいことが判明した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, it is known that an operating voltage of 4.5 V or more can be obtained by substituting a part of the manganese site of LiMn 2 O 4 with a transition metal such as nickel. By using such a high-voltage spinel-type lithium manganese oxide as the positive electrode active material, a high energy density can be achieved, but it has been found that gas generation at a high temperature is remarkable.

【0013】この理由について本発明者らが詳細に検討
したところ、4V程度の充電状態での含LiMn2 4
正極(LiMn2 4 を活物質として含有する正極)と
の共存下ではエステル系有機溶媒は示差熱量分析で20
0℃以上で発熱反応が起こり熱的に安定であるが、5.
1V充電後の含ニッケルリチウムマンガン複合酸化物正
極との共存下では、示差熱量分析で120℃を越えたあ
たりで発熱反応が起こっていることが確認された。
The inventors of the present invention have examined the reason in detail, and found that LiMn 2 O 4 containing about 4 V is charged.
In the presence of a positive electrode (a positive electrode containing LiMn 2 O 4 as an active material), the ester organic solvent was found to be 20
Exothermic reaction occurs at 0 ° C. or higher and is thermally stable.
In the coexistence with the nickel-containing lithium manganese composite oxide positive electrode after 1 V charge, it was confirmed by differential calorimetry that an exothermic reaction occurred at about 120 ° C. or higher.

【0014】前記電解液の分解は、高電圧化を図るため
に、正極活物質が貴な酸化還元電位を有するとともに、
電気化学的に不活性であるにもかかわらず触媒作用が強
い酸化ニッケル(NiO)が存在することによって電解
液の分解の活性化エネルギーが低下するために、より低
温で発熱反応が開始し、生成ガスにより電池内圧の上昇
が起こり、さらに分解反応が加速されることによって生
じやすくなるものと考えられる。
In the decomposition of the electrolytic solution, the positive electrode active material has a noble redox potential in order to increase the voltage,
The presence of nickel oxide (NiO), which is electrochemically inactive but has a strong catalytic action, lowers the activation energy of decomposition of the electrolytic solution. It is considered that the gas increases the internal pressure of the battery and accelerates the decomposition reaction, which is likely to occur.

【0015】そこで、本発明では、上記課題を解決する
ために、一般式(1)のLi〔Li x+x'Mez+z'Ni
y-x-z Mn2-y-x'-z' 4 〕で表されるようにリチウム
過剰組成にすることと、Mnの一部をニッケルと他の元
素で置換することとによって、触媒作用の高い酸化ニッ
ケルの生成を抑制した。
Therefore, the present invention solves the above problems.
Therefore, Li [Li of the general formula (1) x + x 'Mez + z 'Ni
yxzMn2-y-x'-z 'OFour] As represented by lithium
Excessive composition and part of Mn
By substituting with nitrogen, nickel oxide with high catalytic action
Kel generation was suppressed.

【0016】一般式Li〔Niy Mn2-y 〕O4 で表さ
れる固溶体は、y=0.5で固溶限界となり、それ以上
では酸化ニッケル(NiO)が生成すると報告されてい
る。本発明者らが検討したところでは、固溶限界である
Li〔Ni0.5 Mn1.5 〕O 4 は、その合成条件が若干
変化することにより容易に酸化ニッケルが生成する。そ
こで、本発明では、酸化ニッケルの生成を防ぐためにリ
チウム過剰組成にすることによって、ニッケル含有の分
相が電気化学的に不活性なニッケル酸リチウムとして形
成されることを期待した。また、ニッケルよりも固溶限
界の高い金属元素で置換することによってニッケル量を
少なくし、酸化ニッケルの生成を抑制することを試み
た。
The general formula Li [NiyMn2-yOFourRepresented by
Solid solution reaches the solid solution limit at y = 0.5,
Reports that nickel oxide (NiO) is produced
You. According to the study by the present inventors, it is the solid solution limit.
Li [Ni0.5Mn1.5O FourThe synthesis conditions are slightly
The change easily generates nickel oxide. So
Here, in the present invention, in order to prevent the formation of nickel oxide,
By making the composition excessively high, the content of nickel is reduced.
Phase forms as electrochemically inert lithium nickelate
I expected it to be done. In addition, the solid solubility limit is higher than nickel.
Nickel content by substituting a metal element
Attempt to reduce the production of nickel oxide
Was.

【0017】すなわち、Li〔Ni0.5-a Mn1.5+a
4 で示す状態では、固溶状態が安定相として存在する
と仮定し、それを化学量論組成で合成した場合、Li
〔Ni 0.5 Mn1.5 〕O4 の合成反応は下記の反応式1
に示すように進むと考えられる。
That is, Li [Ni0.5-aMn1.5 + a]
OFourIn the state shown by, the solid solution state exists as a stable phase
If it is synthesized with a stoichiometric composition, Li
[Ni 0.5Mn1.5OFourIs represented by the following reaction formula 1.
It is considered to proceed as shown in FIG.

【0018】〔反応式1〕 LiOH・H2 O+0.5Ni(OH)2 +1.5Mn
OOH→1.5/(1.5+a)Li〔Ni0.5-a Mn
1.5+a 〕O4 +a/(1.5+a)LiNiO2 +0.
5a/(1.5+a)NiO
[Reaction formula 1] LiOH.H 2 O + 0.5Ni (OH) 2 + 1.5Mn
OOH → 1.5 / (1.5 + a) Li [Ni 0.5-a Mn
1.5 + a ] O 4 + a / (1.5 + a) LiNiO 2 +0.
5a / (1.5 + a) NiO

【0019】そこで、リチウムを過剰にすることによっ
て、下記の反応で生成する酸化ニッケルを含リチウムニ
ッケル酸化物とすることができると考えた。すなわち、
反応式2に示すように、リチウム過剰量bが増えるにし
たがってLiNiO2 の生成が増え、そのぶん酸化ニッ
ケルの生成が抑制される。
Therefore, it was considered that nickel oxide produced by the following reaction can be made into a lithium-containing nickel oxide by making lithium excessive. That is,
As shown in Reaction Formula 2, the production of LiNiO 2 increases as the excess lithium amount b increases, and the production of nickel oxide is suppressed.

【0020】〔反応式2〕 (1+b)LiOH・H2 O+0.5Ni(OH)2
1.5MnOOH→1.5/(1.5+a)Li〔Ni
0.5-a Mn1.5+a 〕O4 +〔a/(1.5+a)+b〕
LiNiO2 +〔0.5a/(1.5+a)−b〕Ni
[Reaction formula 2] (1 + b) LiOH.H 2 O + 0.5Ni (OH) 2 +
1.5MnOOH → 1.5 / (1.5 + a) Li [Ni
0.5-a Mn 1.5 + a ] O 4 + [a / (1.5 + a) + b]
LiNiO 2 + [0.5a / (1.5 + a) -b] Ni
O

【0021】ちなみに、リチウム不足の場合、下記の反
応式3に示すように、LiNiO2の生成が減少し、そ
のぶん酸化ニッケルの生成割合が増えることになる。
By the way, when lithium is insufficient, as shown in the following reaction formula 3, the production of LiNiO 2 decreases, and the production ratio of nickel oxide increases accordingly.

【0022】〔反応式3〕 (1−b)LiOH・H2 O+0.5Ni(OH)2
1.5MnOOH→1.5/(1.5+a)Li〔Ni
0.5-a Mn1.5+a 〕O4 +〔a/(1.5+a)−b〕
LiNiO2 +〔0.5a/(1.5+a)−b〕Ni
[Reaction formula 3] (1-b) LiOH.H 2 O + 0.5Ni (OH) 2 +
1.5MnOOH → 1.5 / (1.5 + a) Li [Ni
0.5-a Mn 1.5 + a ] O 4 + [a / (1.5 + a) -b]
LiNiO 2 + [0.5a / (1.5 + a) -b] Ni
O

【0023】また、酸化ニッケル(NiO)の生成を防
止する他の方法としては、スピネル骨格中のマンガンと
の固溶限界が高い金属元素、例えば、クロムなどでニッ
ケルを所定量置換することにより単相のスピネル構造を
持つリチウムマンガン複合酸化物を生成させ、それによ
って、酸化ニッケルの生成を抑制することである。言い
換えると、反応式4に示すように、金属元素でスピネル
骨格中のニッケルを置換することによって、酸化ニッケ
ルの生成を抑制することである。
Another method for preventing the formation of nickel oxide (NiO) is to simply replace a predetermined amount of nickel with a metal element having a high solid solubility limit with manganese in the spinel skeleton, such as chromium. The purpose is to produce a lithium manganese composite oxide having a phase spinel structure, thereby suppressing the production of nickel oxide. In other words, as shown in Reaction formula 4, the generation of nickel oxide is suppressed by replacing nickel in the spinel skeleton with a metal element.

【0024】〔反応式4〕 LiOH・H2 O+(0.5−a)Ni(OH)2+a
CrO2 +1.5MnOOH→Li〔Ni0.5-a Cra
Mn1.5 〕O4
[Reaction formula 4] LiOH.H 2 O + (0.5-a) Ni (OH) 2 + a
CrO 2 + 1.5MnOOH → Li [Ni 0.5-a Cr a
Mn 1.5 ] O 4

【0025】本発明の正極活物質のベース材料であるL
i〔Ni0.5 Mn1.5 〕O4 の理論可逆容量は、スピネ
ル単相中でのニッケルの2価から4価の酸化還元反応量
と相関している。そのため、上記の方法により、スピネ
ル相中でのニッケル量を減少させることは、可逆容量を
必然的に低下させる。そこで、リチウム過剰量を決定す
るにあたり、容量低下がベース材料のLi〔Ni0.5
1.5 〕O4 の4%以下で抑制できるリチウム過剰量を
選定した。
L, which is a base material of the positive electrode active material of the present invention,
The theoretical reversible capacity of i [Ni 0.5 Mn 1.5 ] O 4 correlates with the amount of divalent to tetravalent redox reaction of nickel in the spinel single phase. Therefore, reducing the amount of nickel in the spinel phase by the above method necessarily reduces the reversible capacity. Therefore, in determining the lithium excess amount, the decrease in capacity is determined by Li [Ni 0.5 M
An excess amount of lithium that can be suppressed by 4% or less of n 1.5 ] O 4 was selected.

【0026】前記一般式(1)で表されるスピネル型リ
チウムニッケルマンガン複合酸化物の合成にあたって
は、例えば、原料として、水酸化リチウム、二酸化マン
ガン、水酸化ニッケルの粉末を用い、それらの原料粉末
を、所定量秤量し、エタノールを溶媒として、遊星型ボ
ールミルで混合し、その混合粉末を乾燥後、ペレット状
に成形し、100ml/分〜500ml/分の流量で流
した酸素気流中で750℃〜850℃で3時間〜12時
間焼成し、そのペレットを粉砕することによって前記一
般式(1)で表されるスピネル型リチウムニッケルマン
ガン複合化合物が得られる。リチウム源としては、上記
例示の水酸化リチウム以外に、炭酸リチウム、硝酸リチ
ウム、酢酸リチウムなどを用いることができ、また、マ
ンガン源としては、上記例示の電解二酸化マンガン以外
にも、マンガナイト、化学合成二酸化マンガン、炭酸マ
ンガンなどを用いることができる。ただし、得られるリ
チウムニッケルマンガン複合酸化物は結晶構造は立方晶
スピネルであることが必要である。
In synthesizing the spinel-type lithium nickel manganese composite oxide represented by the general formula (1), for example, powders of lithium hydroxide, manganese dioxide, and nickel hydroxide are used as raw materials. Is weighed in a predetermined amount, mixed with ethanol in a planetary ball mill using ethanol as a solvent, and the mixed powder is dried, formed into pellets, and placed at 750 ° C. in an oxygen stream flowing at a flow rate of 100 ml / min to 500 ml / min. By firing at 850 ° C. for 3 hours to 12 hours and pulverizing the pellet, a spinel-type lithium nickel manganese composite compound represented by the general formula (1) is obtained. As the lithium source, other than the above-described lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate and the like can be used. As the manganese source, in addition to the above-described electrolytic manganese dioxide, manganite, chemical Synthetic manganese dioxide, manganese carbonate, or the like can be used. However, it is necessary that the obtained lithium nickel manganese composite oxide has a cubic spinel crystal structure.

【0027】前記一般式Li(Lix+x'Mez+z'Ni
y-x-z Mn2-y-x'-z' )O4 で表されるスピネル型リチ
ウムニッケルマンガン複合酸化物を正極活物質として用
いた正極は、例えば、上記正極活物質に、必要に応じて
導電助剤、バインダーなどを適宜添加して混合し、溶剤
でペースト状にし(バインダーはあらかじめ溶剤に溶解
させておいてから正極活物質などと混合してもよい)、
得られた正極合剤含有ペーストをアルミニウム箔などか
らなる正極集電体に塗布し、乾燥して正極合剤層を形成
し、必要に応じて加圧成形する工程を経ることによって
作製される。ただし、正極の作製方法は、前記例示のも
のに限られることなく、他の方法によってよい。
The general formula Li (Li x + x ′ Me z + z ′ Ni
yxz Mn 2-y- x′ -z ′ ) A positive electrode using a spinel-type lithium nickel manganese composite oxide represented by O 4 as a positive electrode active material may be, for example, a conductive auxiliary as necessary, Agents, binders and the like are appropriately added and mixed, and the mixture is made into a paste with a solvent (the binder may be dissolved in the solvent in advance and then mixed with the positive electrode active material or the like),
The obtained positive electrode mixture-containing paste is applied to a positive electrode current collector made of aluminum foil or the like, dried to form a positive electrode mixture layer, and subjected to pressure molding as necessary. However, the method for manufacturing the positive electrode is not limited to the above-described example, and may be another method.

【0028】前記正極の作製にあたって、導電助剤とし
ては、例えば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛な
ど)やアセチレンブラック、ケッチェンブラックなどの
カーボンブラック系材料などを用いることができる。ま
た、バインダーとしては、例えば、ポリフッ化ビニリデ
ン、ポリテトラフルオロエチレン、エチレンプロピレン
ジエンゴム、フッ素ゴム、スチレンブタジエン、セルロ
ース系樹脂、ポリアクリル酸などを用いることができ
る。
In producing the positive electrode, as the conductive additive, for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black-based materials such as acetylene black, Ketjen black, and the like can be used. As the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, ethylene propylene diene rubber, fluoro rubber, styrene butadiene, cellulose resin, polyacrylic acid, and the like can be used.

【0029】前記正極活物質を含有する正極に対して対
極となる負極の活物質としては、例えば、リチウム、リ
チウム−アルミニウムで代表されるリチウム合金、黒
鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機
高分子化合物の焼成体、メソカーボンマイクロビーズ、
炭素繊維、活性炭などのリチウムイオンを可逆的に吸蔵
・放出できる炭素系材料、Si、Sn、Inなどの合金
またはLiに近い低電位で充放電できる酸化物や窒化物
などの化合物も負極活物質として用いることができる。
Examples of the active material of the negative electrode which is a counter electrode to the positive electrode containing the positive electrode active material include lithium, lithium alloys represented by lithium-aluminum, graphite, pyrolytic carbons, cokes, and glassy materials. Carbons, fired bodies of organic polymer compounds, mesocarbon microbeads,
Carbon-based materials such as carbon fibers and activated carbon that can reversibly occlude and release lithium ions, alloys such as Si, Sn, In, and compounds such as oxides and nitrides that can be charged and discharged at a low potential close to Li can also be used as a negative electrode active material. Can be used as

【0030】負極は、負極活物質がリチウムやリチウム
合金の場合は、そのまま用いるか、あるいは集電体に圧
着することによって作製され、負極活物質が炭素系材料
の場合は、それに、必要に応じて正極の場合と同様のバ
インダーを添加して混合し、溶剤を用いてペースト状に
し(バインダーはあらかじめ溶剤に溶解させておいてか
ら負極活物質と混合してもよい)、得られた負極合剤含
有ペーストを銅箔などからなる負極集電体に塗布し、乾
燥して負極合剤層を形成し、必要に応じて加圧成形する
工程を経ることによって作製される。ただし、負極の作
製方法は、前記例示のものに限られることなく、他の方
法によってもよい。
When the negative electrode active material is lithium or a lithium alloy, the negative electrode is used as it is, or is prepared by press-bonding to a current collector, and when the negative electrode active material is a carbon-based material, the negative electrode is optionally used. The same binder as in the case of the positive electrode is added and mixed, and the mixture is made into a paste using a solvent (the binder may be dissolved in a solvent in advance and then mixed with the negative electrode active material). The paste is prepared by applying the agent-containing paste to a negative electrode current collector made of copper foil or the like, drying it to form a negative electrode mixture layer, and, if necessary, performing pressure molding. However, the method of manufacturing the negative electrode is not limited to the above-described example, and another method may be used.

【0031】電解質としては、非水系の液状電解質、ゲ
ル状ポリマー電解質のいずれも用いることができるが、
本発明においては、通常、電解液と呼ばれる液状電解質
が多用される。そこで、まず、この液状電解質について
「電解液」という表現で詳しく説明する。電解液は、例
えば、有機溶媒を主材とする非水溶媒にリチウム塩など
の電解質塩を溶解させることによって調製されるが、そ
の溶媒としては、例えば、ジメチルカーボネート、ジエ
チルカーボネート、メチルエチルカーボネート、プロピ
オン酸メチルなどの鎖状エステル、リン酸トリメチルな
どの鎖状リン酸トリエステル、1,2−ジメトキシエタ
ン、1,3−ジオキソラン、テトラヒドロフラン、2−
メチル−テトラヒドロフラン、ジエチルエーテルなどを
用いることができる。そのほか、アミンイミド系有機溶
媒やスルホランなどのイオウ系有機溶媒なども用いるこ
とができる。
As the electrolyte, any of a non-aqueous liquid electrolyte and a gel polymer electrolyte can be used.
In the present invention, usually, a liquid electrolyte called an electrolyte is frequently used. Therefore, the liquid electrolyte is first described in detail using the expression “electrolyte solution”. The electrolytic solution is prepared, for example, by dissolving an electrolyte salt such as a lithium salt in a non-aqueous solvent containing an organic solvent as a main material.As the solvent, for example, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, A chain ester such as methyl propionate, a chain phosphate triester such as trimethyl phosphate, 1,2-dimethoxyethane, 1,3-dioxolan, tetrahydrofuran, 2-
Methyl-tetrahydrofuran, diethyl ether and the like can be used. In addition, an amine imide organic solvent and a sulfur organic solvent such as sulfolane can also be used.

【0032】さらにその他の溶媒成分として誘電率の高
いエステル(導電率30以上)を用いることが、電池特
性、特に負荷特性を向上させることから好ましく、その
誘電率の高いエステルの具体例としては、例えば、エチ
レンカーボネート、プロピレンカーボネート、ブチレン
カーボネート、γ−ブチロラクトンなどが挙げられ、ま
た、エチレングリコールサルファイトなどのイオウ系エ
ステルも用いることができるが、環状構造のエステルが
好ましく、特にエチレンカーボネートのような環状カー
ボネートが好ましい。そして、これらの溶媒はそれぞれ
単独でまたは2種以上混合して用いることができる。
It is preferable to use an ester having a high dielectric constant (conductivity of 30 or more) as another solvent component from the viewpoint of improving battery characteristics, particularly load characteristics. Specific examples of the ester having a high dielectric constant include: For example, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, and the like, and sulfur-based esters such as ethylene glycol sulfite can also be used.A cyclic ester is preferable, and particularly, such as ethylene carbonate. Cyclic carbonates are preferred. These solvents can be used alone or in combination of two or more.

【0033】電解液の調製にあたってリチウム塩などの
電解質塩としては、例えば、LiClO4 、LiP
6 、LiBF4 、LiAsF6 、LiSbF6 、Li
CF3 SO3 、LiC4 9 SO3 、LiCF3
2 、Li2 2 4 (SO3 2 、LiN(Rf1
2 )(Rf2 SO2 )〔ここで、Rf1 、Rf2 はフ
ルオロアルキル基を含む置換基である〕、LiN(Rf
3 OSO2 )(Rf4 OSO2)〔ここで、Rf3 、R
4 はフルオロアルキル基である〕、LiCn 2n+1
3 (n≧2)、LiC(Rf5 SO2 2 、LiN
(Rf6 OSO2 2 〔ここでRf5 、Rf6 はフルオ
ロアルキル基である〕、ポリマータイプイミドリチウム
塩などが単独または2種以上混合して用いられる。電解
液中における電解質塩の濃度は、特に限定されるもので
はないが、濃度を0.1mol/l以上、2.0mol
/l以下にするのが好ましい。
In preparing the electrolytic solution, examples of the electrolyte salt such as a lithium salt include LiClO 4 , LiP
F 6, LiBF 4, LiAsF 6 , LiSbF 6, Li
CF 3 SO 3 , LiC 4 F 9 SO 3 , LiCF 3 C
O 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (Rf 1 S
O 2 ) (Rf 2 SO 2 ) [where Rf 1 and Rf 2 are substituents containing a fluoroalkyl group], LiN (Rf
3 OSO 2 ) (Rf 4 OSO 2 ) [where Rf 3 , Rf
f 4 is a fluoroalkyl group], LiC n F 2n + 1 S
O 3 (n ≧ 2), LiC (Rf 5 SO 2 ) 2 , LiN
(Rf 6 OSO 2 ) 2 [where Rf 5 and Rf 6 are fluoroalkyl groups], a polymer type imide lithium salt or the like is used alone or in combination of two or more. The concentration of the electrolyte salt in the electrolyte is not particularly limited, but may be 0.1 mol / l or more and 2.0 mol / l or more.
/ L or less.

【0034】ゲル状ポリマー電解質は、上記電解液をゲ
ル化剤によってゲル化したものに相当するが、そのゲル
化にあたっては、例えば、ポリフッ化ビニリデン、ポリ
エチレンオキサイド、ポリアクリルニトリルなどの直鎖
状ポリマーまたはそれらのコポリマー、紫外線や電子線
などの活性光線の照射によりポリマー化する多官能モノ
マー(例えば、ペンタエリスリトールテトラアクリレー
ト、ジトリメチロールプロパンテトラアクリレート、エ
トキシ化ペンタエリスリトールテトラアクリレート、ジ
ペンタエリスリトールヘキサアクリレートなどの四官能
以上のアクリレートおよび上記アクリレートと同様の四
官能以上のメタクリレートなど)などが用いられる。た
だし、モノマーの場合、モノマーそのものが電解液をゲ
ル化させるのではなく、上記モノマーをポリマー化した
ポリマーがゲル化剤として作用する。
The gel polymer electrolyte corresponds to a gel obtained by gelling the above-mentioned electrolytic solution with a gelling agent. For the gelation, for example, a linear polymer such as polyvinylidene fluoride, polyethylene oxide, and polyacrylonitrile is used. Or, a polyfunctional monomer (eg, pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, ethoxylated pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, etc.) which is polymerized by irradiation with an actinic ray such as an ultraviolet ray or an electron beam. For example, tetrafunctional or higher acrylates and tetrafunctional or higher methacrylates similar to the above acrylates) may be used. However, in the case of a monomer, a polymer obtained by polymerizing the above-mentioned monomer acts as a gelling agent, instead of the monomer itself gelling the electrolytic solution.

【0035】上記のように多官能モノマーを用いて電解
液をゲル化させる場合、必要であれば、重合開始剤とし
て、例えば、ベンゾイル類、ベンゾインアルキルエーテ
ル類、ベンゾフェノン類、ベンゾイルフェニルフォスフ
ィンオキサイド類、アセトフェノン類、チオキサントン
類、アントラキノン類、アミノエステルなども使用する
こともできる。
When the electrolytic solution is gelled using a polyfunctional monomer as described above, if necessary, a polymerization initiator such as benzoyls, benzoin alkyl ethers, benzophenones, benzoylphenylphosphine oxides may be used. , Acetophenones, thioxanthones, anthraquinones, amino esters and the like can also be used.

【0036】[0036]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples.

【0037】実施例1 化学量論組成である比較例1のLi〔Ni0.5
1.5 〕O4 に対して、ニッケルの一部をリチウムで置
換してリチウムを5原子%過剰にした組成式Li〔Li
0.05Ni0.45Mn1.5 〕O4 で表されるスピネル型リチ
ウムニッケルマンガン複合酸化物を合成した。この合成
にあたっては、原料として水酸化リチウム、二酸化マン
ガン、水酸化ニッケルの粉末を用い、それらを前記組成
比となるように所定量秤量し、エタノールを溶媒とし
て、遊星型ボールミルで混合し、その混合粉末を乾燥
後、ペレット状に成形し、300ml/分の流量で流し
た酸素気流中で900℃で12時間焼成することによっ
て行った。そして、その焼成後、ペレットを粉砕した。
なお、以後の実施例や比較例においても、合成条件はこ
の実施例1の場合とほぼ同様である。
Example 1 Li [Ni 0.5 M of Comparative Example 1 having a stoichiometric composition
Composition formula Li [Li] in which a part of nickel is replaced with lithium with respect to n 1.5 ] O 4 to make lithium 5 atom% excess.
A spinel-type lithium nickel manganese composite oxide represented by 0.05 Ni 0.45 Mn 1.5 ] O 4 was synthesized. In this synthesis, powders of lithium hydroxide, manganese dioxide, and nickel hydroxide were used as raw materials, weighed in a predetermined amount so as to have the above composition ratio, mixed with ethanol as a solvent in a planetary ball mill, and mixed. After drying the powder, the powder was formed into a pellet and fired at 900 ° C. for 12 hours in an oxygen gas flow at a flow rate of 300 ml / min. After firing, the pellets were pulverized.
In the following examples and comparative examples, the synthesis conditions are almost the same as in the case of the first embodiment.

【0038】実施例2 マンガンの一部をリチウムで置換してリチウムを5原子
%過剰にした組成式Li〔Li0.05Ni0.45Mn1.5
4 で表されるスピネル型リチウムニッケルマンガン複
合酸化物を合成した。
Example 2 A composition formula Li [Li 0.05 Ni 0.45 Mn 1.5 ] in which a part of manganese was replaced with lithium to make lithium 5 atomic% excess.
A spinel-type lithium nickel manganese composite oxide represented by O 4 was synthesized.

【0039】実施例3 リチウムを5原子%過剰にした組成式Li1.05〔Ni
0.5 Mn1.5 〕O4 で表されるスピネル型リチウムニッ
ケルマンガン複合酸化物を合成した。
Example 3 A composition formula of Li 1.05 [Ni
A spinel-type lithium nickel manganese composite oxide represented by 0.5 Mn 1.5 ] O 4 was synthesized.

【0040】実施例4 ニッケルの一部をリチウムで置換してリチウムを3原子
%過剰にした組成式Li〔Li0.03Ni0.47Mn1.5
4 で表されるスピネル型リチウムニッケルマンガン複
合酸化物を合成した。
Example 4 A composition formula Li [Li 0.03 Ni 0.47 Mn 1.5 ] in which a part of nickel was replaced with lithium to make lithium 3 atomic% excess.
A spinel-type lithium nickel manganese composite oxide represented by O 4 was synthesized.

【0041】実施例5 マンガンの一部をリチウムで置換してリチウムを3原子
%過剰にした組成式Li〔Li0.03Ni0.5 Mn1.47
4 で表されるスピネル型リチウムニッケルマンガン複
合酸化物を合成した。
Example 5 A composition formula Li [Li 0.03 Ni 0.5 Mn 1.47 ] in which a part of manganese is replaced by lithium to make lithium 3 atomic% excess.
A spinel-type lithium nickel manganese composite oxide represented by O 4 was synthesized.

【0042】実施例6 リチウムを3原子%過剰にした組成式Li1.03〔Ni
0.5 Mn1.5 〕O4 で表されるスピネル型リチウムニッ
ケルマンガン複合酸化物を合成した。
Example 6 A composition formula of Li 1.03 [Ni
A spinel-type lithium nickel manganese composite oxide represented by 0.5 Mn 1.5 ] O 4 was synthesized.

【0043】実施例7 ニッケルをクロムで5原子%置換した組成式Li〔Cr
0.05Ni0.45Mn1.5〕O4 で表されるスピネル型リチ
ウムニッケルマンガン複合酸化物を合成した。
Example 7 A composition formula of Li [Cr in which nickel was replaced by 5 atomic% of chromium
A spinel-type lithium nickel manganese composite oxide represented by 0.05 Ni 0.45 Mn 1.5 ] O 4 was synthesized.

【0044】実施例8 ニッケルとマンガンの一部を鉄で5原子%置換した組成
式Li〔Fe0.05Ni 0.475 Mn1.475 〕O4 で表され
るスピネル型リチウムニッケルマンガン複合酸化物を合
成した。
Example 8 Composition in which nickel and manganese were partially replaced with 5 atomic% of iron
The formula Li [Fe0.05Ni 0.475Mn1.475OFourRepresented by
Spinel-type lithium nickel manganese composite oxide
Done.

【0045】実施例9 ニッケルとマンガンの一部をコバルトで5原子%置換し
た組成式Li〔Co0. 05Ni0.475 Mn1.475 〕O4
表されるスピネル型リチウムニッケルマンガン複合酸化
物を合成した。
Example 9 Nickel and manganese were partially substituted with 5 atomic% of cobalt.
Formula Li [Co0. 05Ni0.475Mn1.475OFourso
Represented spinel-type lithium nickel manganese composite oxidation
Was synthesized.

【0046】実施例10 ニッケルとマンガンの一部を鉄で5原子%置換し、かつ
リチウムを5原子%過剰にした組成式Li1.05〔Fe
0.05Ni0.475 Mn1.475 〕O4 表されるスピネル型リ
チウムニッケルマンガン複合酸化物を合成した。
Example 10 A composition formula of Li 1.05 [Fe 1.05 wherein a part of nickel and manganese was replaced by 5 atom% of iron and lithium was increased by 5 atom%.
A spinel-type lithium nickel manganese composite oxide represented by 0.05 Ni 0.475 Mn 1.475 ] O 4 was synthesized.

【0047】実施例11 ニッケルとマンガンの一部をコバルトで5原子%置換
し、かつリチウムを5原子%過剰にした組成式Li1.05
〔Co0.05Ni0.475 Mn1.475 〕O4 で表されるスピ
ネル型リチウムニッケルマンガン複合酸化物を合成し
た。
Example 11 A composition formula Li 1.05 in which nickel and manganese were partially substituted with 5 atomic% of cobalt and lithium was increased by 5 atomic%.
A spinel-type lithium nickel manganese composite oxide represented by [Co 0.05 Ni 0.475 Mn 1.475 ] O 4 was synthesized.

【0048】比較例1 化学量論組成の組成式Li〔Ni0.5 Mn1.5 〕O4
表されるスピネル型リチウムニッケルマンガン複合酸化
物を比較例1とした。
Comparative Example 1 A spinel-type lithium nickel manganese composite oxide represented by a stoichiometric composition formula Li [Ni 0.5 Mn 1.5 ] O 4 was used as Comparative Example 1.

【0049】比較例2 ニッケルの一部をリチウムで置換してリチウムを10原
子%過剰にした組成式Li〔Li0.1 Ni0.4
1.5 〕O4 で表されるスピネル型リチウムニッケルマ
ンガン複合酸化物を合成した。
Comparative Example 2 A composition formula Li [Li 0.1 Ni 0.4 M in which a part of nickel was replaced with lithium to make lithium 10 atomic% excess.
n 1.5 ] O 4 was synthesized.

【0050】比較例3 マンガンの一部をリチウムで置換してリチウムを10原
子%過剰にした組成式Li〔Li0.1 Ni0.5
1.4 〕O4 で表されるスピネル型リチウムニッケルマ
ンガン複合酸化物を合成した。
Comparative Example 3 A composition formula Li [Li 0.1 Ni 0.5 M in which a part of manganese was replaced with lithium to make lithium 10 atomic% excess.
[n 1.4 ] O 4 was synthesized.

【0051】比較例4 リチウムを10原子%過剰にした組成式Li1.1 〔Ni
0.5 Mn1.5 〕O4 で表されるスピネル型リチウムニッ
ケルマンガン複合酸化物を合成した。
Comparative Example 4 Composition formula Li 1.1 [Ni
A spinel-type lithium nickel manganese composite oxide represented by 0.5 Mn 1.5 ] O 4 was synthesized.

【0052】比較例5 リチウムが5原子%不足にした組成式Li0.95〔Ni
0.5 Mn1.5 〕O4 で表されるスピネル型リチウムニッ
ケルマンガン複合酸化物を合成した。
Comparative Example 5 A composition formula Li 0.95 [Ni
A spinel-type lithium nickel manganese composite oxide represented by 0.5 Mn 1.5 ] O 4 was synthesized.

【0053】前記実施例1〜11および比較例1〜5で
合成したスピネル型リチウムニッケルマンガン複合酸化
物を原子吸光分析法を用いて組成分析を行い、Li/N
i比を求めた。その結果を表1と表2に示す。
The composition of the spinel-type lithium nickel manganese composite oxide synthesized in Examples 1 to 11 and Comparative Examples 1 to 5 was analyzed by atomic absorption spectrometry, and Li / N
The i ratio was determined. The results are shown in Tables 1 and 2.

【0054】また、合成したスピネル型リチウムニッケ
ルマンガン複合酸化物について粉末X線回折測定を行
い、その結果から、固溶相は単相の立方晶系であること
を確認した。それらのうち、実施例1〜3、実施例7、
比較例1および比較例5の測定結果を図1に示す。
The synthesized spinel-type lithium nickel manganese composite oxide was subjected to powder X-ray diffraction measurement. From the results, it was confirmed that the solid solution phase was a single-phase cubic system. Among them, Examples 1 to 3, Example 7,
FIG. 1 shows the measurement results of Comparative Example 1 and Comparative Example 5.

【0055】図1に示すように、比較例1と比較例5の
回折図には、酸化ニッケル(NiO)(JCPDS♯4
7−1049;立方晶、a=4.117Å)由来の(2
00)回折線が観測された。一方、実施例1、実施例
2、実施例3では、同様の回折線が観測されたが、若干
高角度側に位置しているので酸化ニッケルに由来するも
のではなく、リチウムニッケル酸化物(立方晶、a=
4.094Å)に由来するものであると考えられる。な
お、実施例7では、前記回折線は観測されなかったこと
から、酸化ニッケルまたはリチウムニッケル酸化物のい
ずれも生成せずに完全固溶体が得られたものと考えられ
る。
As shown in FIG. 1, the diffraction patterns of Comparative Example 1 and Comparative Example 5 show nickel oxide (NiO) (JCPDS # 4).
7-1049; (2) derived from a cubic crystal, a = 4.117 °)
00) Diffraction lines were observed. On the other hand, in Example 1, Example 2, and Example 3, similar diffraction lines were observed. However, since the diffraction lines were located at a slightly higher angle side, they were not derived from nickel oxide, but lithium nickel oxide (cubic). Crystal, a =
4.094Å). In Example 7, since the diffraction line was not observed, it is considered that a complete solid solution was obtained without producing either nickel oxide or lithium nickel oxide.

【0056】つぎに、前記実施例1〜11および比較例
1〜5のスピネル型リチウムニッケルマンガン複合酸化
物についてリチウム二次電池の正極活物質としての特性
を評価した。まず、正極には、N−メチル−2−ピロリ
ドンの存在下で調製した前記スピネル型リチウムニッケ
ルマンガン複合酸化物からなる正極活物質を80重量
%、黒鉛を15重量%およびポリフッ化ビニリデンを5
重量%の割合(ただし、固形分としての割合)で含む正
極合剤含有ペーストをアルミニウム箔に塗布し、乾燥し
て得たものを用いた。そして、負極には金属リチウム箔
を用い、セパレータにはポリプロピレン不織布を用い、
電解液にはエチレンカーボネートとエチルメチルカーボ
ネートとの体積比1:2の混合溶媒にLiPF6 を1.
2mol/l溶解させたものを用い、図2に示すコイン
形非水二次電池を組み立てた。
Next, the properties of the spinel-type lithium nickel manganese composite oxides of Examples 1 to 11 and Comparative Examples 1 to 5 as positive electrode active materials of lithium secondary batteries were evaluated. First, the positive electrode was composed of 80% by weight of the positive electrode active material composed of the spinel-type lithium nickel manganese composite oxide prepared in the presence of N-methyl-2-pyrrolidone, 15% by weight of graphite, and 5% by weight of polyvinylidene fluoride.
A paste obtained by applying a positive electrode mixture-containing paste containing a percentage by weight (however, a percentage as a solid content) to an aluminum foil and drying was used. And, using metal lithium foil for the negative electrode, using polypropylene non-woven fabric for the separator,
For the electrolyte solution, LiPF 6 was added to a mixed solvent of ethylene carbonate and ethyl methyl carbonate at a volume ratio of 1: 2.
The coin-shaped non-aqueous secondary battery shown in FIG. 2 was assembled by using 2 mol / l dissolved.

【0057】ここで図2に示すコイン形非水二次電池に
ついて説明すると、1は正極であり、この正極1には前
記のように実施例1〜11および比較例1〜5のスピネ
ル型リチウムニッケルマンガン複合酸化物をそれぞれ正
極活物質として用いたもので、この正極1はその正極活
物質が実施例1〜11および比較例1〜5に応じて異な
っている。負極2は前記のように金属リチウム箔からな
り、ポリプロピレン不織布からなるセパレータ3を介し
て前記の正極1と対向配置している。電池ケース4はス
テンレス鋼製で、正極側の集電体と端子を兼ねており、
封口板5もステンレス鋼製であって、この封口板5は負
極側の集電体と端子を兼ねている。6はポリプロピレン
製の環状ガスケットであり、この電池内には、図示され
ていないが、前記の電解液が注入されている。なお、負
極2、セパレータ3、電池ケース4、封口板5、環状ガ
スケット6および電解液は、実施例1〜11および比較
例1〜5のいずれにおいても共通である。
Here, the coin-shaped non-aqueous secondary battery shown in FIG. 2 will be described. Reference numeral 1 denotes a positive electrode, and the positive electrode 1 has the spinel lithium of Examples 1 to 11 and Comparative Examples 1 to 5 as described above. The nickel manganese composite oxide was used as a positive electrode active material, and the positive electrode 1 was different in the positive electrode active material according to Examples 1 to 11 and Comparative Examples 1 to 5. The negative electrode 2 is made of a metallic lithium foil as described above, and is disposed to face the positive electrode 1 via a separator 3 made of a nonwoven polypropylene fabric. The battery case 4 is made of stainless steel, and serves as both a current collector and a terminal on the positive electrode side.
The sealing plate 5 is also made of stainless steel, and serves as both a current collector and a terminal on the negative electrode side. Reference numeral 6 denotes an annular gasket made of polypropylene, into which the above-mentioned electrolyte is injected, though not shown. The negative electrode 2, the separator 3, the battery case 4, the sealing plate 5, the annular gasket 6, and the electrolyte are common to Examples 1 to 11 and Comparative Examples 1 to 5.

【0058】これらの非水二次電池について初期放電特
性とサイクル特性を調べた。その際の充放電条件につい
て説明すると、まず、各電池を5.1Vまでで0.2m
A/cm2 の定電流で充電し、その後、0.2mA/c
2 の定電流で放電を行い、3.5Vを放電終止電圧と
した。そして、その放電終了後、すぐに充電を再開し、
それを1サイクルとした。
The initial discharge characteristics and cycle characteristics of these non-aqueous secondary batteries were examined. The charge / discharge conditions at that time will be described.
Charged at a constant current of A / cm 2 and then 0.2 mA / c
Discharge was performed at a constant current of m 2 , and 3.5 V was defined as a discharge end voltage. And immediately after the end of the discharge, restart the charge,
That was one cycle.

【0059】前記の条件で測定した各電池の初期放電容
量と作動電圧を表1と表2に示す。また、前記の条件で
測定した実施例1、実施例2、実施例3、実施例7、比
較例1および比較例5の初期放電曲線を図3に示す。
Tables 1 and 2 show the initial discharge capacity and operating voltage of each battery measured under the above conditions. FIG. 3 shows the initial discharge curves of Example 1, Example 2, Example 3, Example 7, Comparative Example 1 and Comparative Example 5 measured under the above conditions.

【0060】図3に示すように、実施例1〜3、実施例
7、比較例1および比較例5の電池は、いずれも、作動
電圧が4.6V〜4.7Vであり、その初期放電容量は
120mAh/g〜135mAh/gであった。なお、
作動電圧は放電容量が50%時の電圧とした。それらの
結果を表1と表2に示す。上記のように、実施例1〜
3、実施例7、比較例1および比較例5の正極活物質と
して用いたスピネル型リチウムニッケルマンガン複合酸
化物は、作動電圧が4.6V〜4.7Vで、初期放電容
量が120mAh/g〜135mAh/gであることか
ら、それらのほぼ中央値の4.65Vと128mAh/
gとで、そのエネルギー密度を算出すると、エネルギー
密度は593mWh/g(4.65V×128mAh/
g)であった。これに対して、4V級のリチウムマンガ
ン複合酸化物は、作動電位が4.05Vで、放電容量が
115mAh/gであることから、そのエネルギー密度
は466mWh/gである。この結果から明らかなよう
に、実施例1などで用いた正極活物質では、4V級のリ
チウムマンガン系正極活物質に比べて電池を約30%高
エネルギー密度化できる。
As shown in FIG. 3, all of the batteries of Examples 1 to 3, Example 7, Comparative Example 1 and Comparative Example 5 had an operating voltage of 4.6 V to 4.7 V and an initial discharge. The capacity was between 120 mAh / g and 135 mAh / g. In addition,
The operating voltage was a voltage when the discharge capacity was 50%. The results are shown in Tables 1 and 2. As described above, Examples 1 to
3. The spinel-type lithium nickel manganese composite oxide used as the positive electrode active material of Example 7, Comparative Example 1 and Comparative Example 5 has an operating voltage of 4.6 V to 4.7 V and an initial discharge capacity of 120 mAh / g or more. Since they are 135 mAh / g, their median values of 4.65 V and 128 mAh / g
g, the energy density is calculated as 593 mWh / g (4.65 V × 128 mAh / g).
g). On the other hand, the energy density of the 4 V class lithium manganese composite oxide is 466 mWh / g because the operating potential is 4.05 V and the discharge capacity is 115 mAh / g. As is clear from these results, the positive electrode active material used in Example 1 and the like can increase the energy density of the battery by about 30% compared to a 4V-class lithium manganese-based positive electrode active material.

【0061】つぎに、充電時の正極と電解液との共存下
で示差熱量測定を行い、その発熱開始温度を調べた。こ
れは、本発明の正極活物質によれば、電解液との反応性
が低減し、電解液の熱的安定性を向上させることができ
ることを確認するためのものである。
Next, a differential calorimetry was performed in the coexistence of the positive electrode and the electrolyte at the time of charging, and the heat generation starting temperature was examined. This is to confirm that the positive electrode active material of the present invention can reduce the reactivity with the electrolytic solution and improve the thermal stability of the electrolytic solution.

【0062】この示差熱量測定の測定条件は、電池を
5.1Vまで0.2mA/cm2 で充電後、25℃の恒
温槽で48時間放置し、アルゴン雰囲気下のグローブボ
ックス中で電池を分解し、正極を取り出してエチルメチ
ルカーボネートで洗浄し、減圧してエチルメチルカーボ
ネートを除去した後、所定の大きさ(直径3.5mm)
に打ち抜き、未使用の電解液を0.5μl添加し、耐圧
式の示差熱量分析用セルに成型した。
The measurement conditions for the differential calorimetry were as follows: a battery was charged to 5.1 V at 0.2 mA / cm 2 , left in a constant temperature bath at 25 ° C. for 48 hours, and disassembled in a glove box under an argon atmosphere. Then, the positive electrode is taken out, washed with ethyl methyl carbonate, and the pressure is reduced to remove the ethyl methyl carbonate. Then, a predetermined size (3.5 mm in diameter) is obtained.
And 0.5 μl of an unused electrolytic solution was added, and molded into a pressure-resistant cell for differential calorimetry.

【0063】そして、示差熱量測定は上記セルを室温か
ら300℃まで昇温速度3℃/分で昇温させて、その際
の示差熱量変化を調べ、その発熱ピークの高さが1W/
g以上であるものについて、温度上昇に伴って連続した
発熱が起こり、その発熱ピークの低温側で初めて20m
W/g・℃以上の熱量変化が起こる温度を発熱開始温度
とした。その結果を表1および表2に示す。
In the differential calorimetric measurement, the cell was heated from room temperature to 300 ° C. at a rate of 3 ° C./min, and the change in the differential caloric value was examined at that time.
g or more, continuous heat generation occurs as the temperature rises, and 20 m
The temperature at which a change in the amount of heat of W / g · ° C. or more occurred was defined as the heat generation start temperature. The results are shown in Tables 1 and 2.

【0064】[0064]

【表1】 [Table 1]

【0065】[0065]

【表2】 [Table 2]

【0066】また、示差熱量測定の結果のうち、実施例
1、実施例2、実施例3、実施例7、比較例1および比
較例5の示差熱量変化を図4に示す。この図4の縦軸の
熱量としては、測定した活物質量と添加した電解液との
合計質量で割った値を用いた。
FIG. 4 shows the changes in the differential calorific values of Examples 1, 2, 3, and 7 and Comparative Examples 1 and 5 among the results of the differential calorimetric measurement. The value obtained by dividing by the total mass of the measured amount of the active material and the added electrolyte solution was used as the amount of heat on the vertical axis of FIG.

【0067】図4および表2に示すように、比較例1と
比較例5は初期発熱が120〜130℃で開始してお
り、電解液が熱的に不安定になっていた。これに対し
て、酸化ニッケルの生成を抑制した正極活物質、すなわ
ち、実施例1、実施例2、実施例3、実施例7の初期発
熱は200℃以上から開始した。このことから、正極活
物質に関して、酸化ニッケルの生成を抑制することによ
って、共存する電解液の熱的安定性を向上させることが
わかる。
As shown in FIG. 4 and Table 2, in Comparative Examples 1 and 5, the initial heat generation started at 120 to 130 ° C., and the electrolyte was thermally unstable. On the other hand, the initial heat generation of the positive electrode active material in which the generation of nickel oxide was suppressed, that is, Examples 1, 2, 3, and 7 started at 200 ° C. or more. This indicates that the thermal stability of the coexisting electrolyte solution is improved by suppressing the formation of nickel oxide in the positive electrode active material.

【0068】また、表2に示すように、化学量論組成の
比較例1のLi〔Ni0.5 Mn1.5〕O4 は、その放電
容量が130mAh/gであり、その理論容量の147
mAh/gと比較すると約88%の効率である。その理
由として、材料自体が不完全な固溶体であること、また
は高電位であるという実験上の理由が考えられる。ま
た、比較例2や比較例3の放電容量は比較例1の10%
低下であった。これはリチウム量が過剰すぎたためであ
ると考えられる。比較例5もその放電容量は比較例1の
10%低下であった。これは活性なスピネル型リチウム
ニッケルマンガン複合酸化物量が減少したためであると
考えられる。
As shown in Table 2, Li [Ni 0.5 Mn 1.5 ] O 4 of Comparative Example 1 having a stoichiometric composition had a discharge capacity of 130 mAh / g and a theoretical capacity of 147
About 88% efficiency compared to mAh / g. The reasons may be that the material itself is an imperfect solid solution or that it is an experimentally high potential. The discharge capacity of Comparative Example 2 and Comparative Example 3 was 10% of that of Comparative Example 1.
It was a drop. This is considered to be due to the excessive amount of lithium. The discharge capacity of Comparative Example 5 was 10% lower than that of Comparative Example 1. This is probably because the amount of active spinel-type lithium nickel manganese composite oxide was reduced.

【0069】表1に示すように、実施例1、実施例2、
実施例4、実施例5の放電容量は125〜128mAh
/gであり、比較例1の放電容量の4%以下の低下であ
ったことから、リチウム過剰量を5原子%以下にする
か、あるいはリチウムによる金属元素置換量を5原子%
以下にすることが、高エネルギー密度化を保つために必
要であると考えられる。
As shown in Table 1, Examples 1 and 2
Example 4 and Example 5 had a discharge capacity of 125 to 128 mAh.
/ G, which is 4% or less of the discharge capacity of Comparative Example 1. Therefore, the lithium excess amount is set to 5% by atom or less, or the substitution amount of the metal element by lithium is set to 5% by atom.
It is considered that the following is necessary in order to maintain high energy density.

【0070】また、実施例3、実施例6、比較例4など
のように、ニッケル量を一定にしてリチウムの過剰量を
増やした場合、その放電容量に顕著な差は見られず、1
30〜138mAh/gの容量を示し、化学量論組成の
比較例1のLi〔Ni0.5 Mn1.5 〕O4 にと比べると
容量は増加していた。ただし、実施例3と比較例4との
比較から明らかなように、所定量以上にリチウムを過剰
にしても、放電容量の増加は認められなかった。
When the amount of lithium was increased while the amount of nickel was kept constant as in Examples 3, 6 and Comparative Example 4, there was no significant difference in the discharge capacity.
The capacity was 30 to 138 mAh / g, and the capacity was increased as compared with Li [Ni 0.5 Mn 1.5 ] O 4 of Comparative Example 1 having a stoichiometric composition. However, as is clear from the comparison between Example 3 and Comparative Example 4, no increase in the discharge capacity was observed even when lithium was excessively increased beyond a predetermined amount.

【0071】[0071]

【発明の効果】以上説明したように、本発明では、高電
圧で、かつ電解液(液状電解質)の熱分解を抑制できる
非水二次電池用正極活物質および非水二次電池用正極を
提供することができた。
As described above, according to the present invention, a positive electrode active material for a non-aqueous secondary battery and a positive electrode for a non-aqueous secondary battery capable of suppressing thermal decomposition of an electrolytic solution (liquid electrolyte) at a high voltage are provided. Could be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1、実施例2、実施例3、実施例7、比
較例1および比較例5の粉末X線回折図である。
FIG. 1 is a powder X-ray diffraction diagram of Example 1, Example 2, Example 3, Example 7, Comparative Example 1 and Comparative Example 5.

【図2】本発明に係る非水二次電池の一例を模式的に示
す断面図である。
FIG. 2 is a cross-sectional view schematically showing one example of a non-aqueous secondary battery according to the present invention.

【図3】実施例1、実施例2、実施例3、実施例7、比
較例1および比較例5の初期放電曲線図である。
FIG. 3 is an initial discharge curve diagram of Example 1, Example 2, Example 3, Example 7, Comparative Example 1 and Comparative Example 5.

【図4】実施例1、実施例2、実施例3、実施例7、比
較例1および比較例5の示差熱量変化を示す図である。
FIG. 4 is a view showing a change in differential calorific value of Example 1, Example 2, Example 3, Example 7, Comparative Example 1 and Comparative Example 5.

【符号の説明】 1 正極 2 負極 3 セパレータ[Description of Signs] 1 Positive electrode 2 Negative electrode 3 Separator

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一般式(1) Li(Lix+x'Mez+z'Niy-x-z Mn2-y-x'-z' )O4 (1) (式中、MeはTi、Cr、Fe、Co、Cu、Zn、
AlおよびBよりなる群から選ばれる少なくとも1種で
あり、x、x’、y、z、z’は、それぞれ、0≦x≦
0.10、0≦x’≦0.10、0.01≦y≦1.0
0、0≦z≦0.10、0≦z’≦0.10である)で
表され、Li電位基準に対して4.5V以上の作動電圧
を示すスピネル型リチウムニッケルマンガン複合酸化物
からなる非水二次電池用正極活物質。
1. Formula (1) Li (Li x + x ′ Me z + z ′ Ni yxz Mn 2-y- x′ -z ′ ) O 4 (1) (where Me is Ti, Cr, Fe, Co, Cu, Zn,
At least one selected from the group consisting of Al and B, wherein x, x ', y, z, z' are each 0 ≦ x ≦
0.10, 0 ≦ x ′ ≦ 0.10, 0.01 ≦ y ≦ 1.0
0, 0 ≦ z ≦ 0.10, 0 ≦ z ′ ≦ 0.10), and is composed of a spinel-type lithium nickel manganese composite oxide having an operating voltage of 4.5 V or more with respect to the Li potential. Cathode active material for non-aqueous secondary batteries.
【請求項2】 一般式(1)において、x、x’、y、
z、z’が、それぞれ、0≦x≦0.05、0≦x’≦
0.05、0.40≦y≦0.50、0≦z≦0.0
5、0≦z’≦0.05である請求項1記載の非水二次
電池用正極活物質。
2. In the general formula (1), x, x ′, y,
z and z ′ are respectively 0 ≦ x ≦ 0.05 and 0 ≦ x ′ ≦
0.05, 0.40 ≦ y ≦ 0.50, 0 ≦ z ≦ 0.0
5. The positive electrode active material for a non-aqueous secondary battery according to claim 1, wherein 0 ≦ z ′ ≦ 0.05.
【請求項3】 請求項1または2記載の正極活物質を含
有し、粉末X線回折において酸化ニッケル(NiO)の
回折線が観測されないことを特徴とする非水二次電池用
正極。
3. A positive electrode for a non-aqueous secondary battery, comprising the positive electrode active material according to claim 1 or 2, wherein no diffraction line of nickel oxide (NiO) is observed in powder X-ray diffraction.
【請求項4】 請求項1または2記載の正極活物質を含
有し、示差熱量分析において充電状態で有機系液状電解
質との共存下で150℃以下に発熱開始温度を持たない
ことを特徴とする非水二次電池用正極。
4. The positive electrode active material according to claim 1 or 2, characterized in that it does not have an exothermic onset temperature of 150 ° C. or less in a charged state in the presence of an organic liquid electrolyte in a differential calorimetric analysis. Positive electrode for non-aqueous secondary batteries.
JP2000350739A 2000-11-17 2000-11-17 Positive electrode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same Expired - Fee Related JP5013386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000350739A JP5013386B2 (en) 2000-11-17 2000-11-17 Positive electrode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000350739A JP5013386B2 (en) 2000-11-17 2000-11-17 Positive electrode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same

Publications (3)

Publication Number Publication Date
JP2002158008A true JP2002158008A (en) 2002-05-31
JP2002158008A5 JP2002158008A5 (en) 2007-12-20
JP5013386B2 JP5013386B2 (en) 2012-08-29

Family

ID=18823911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000350739A Expired - Fee Related JP5013386B2 (en) 2000-11-17 2000-11-17 Positive electrode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5013386B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831993A1 (en) * 2001-11-08 2003-05-09 Cit Alcatel Insertion lithium compound derived by substitution of dioxide of manganese lithia of spinel structure used for the active material of a rechargeable electrochemical generator
JP2004139853A (en) * 2002-10-18 2004-05-13 Sony Corp Positive electrode activator and nonaqueous electrolyte secondary battery
US7763386B2 (en) 2002-01-08 2010-07-27 Sony Corporation Cathode active material and non-aqueous electrolyte secondary cell using same
CN101908620A (en) * 2010-06-02 2010-12-08 东北大学 Method for preparing lithium ion battery material LiNi0.5Mn1.5-xTixO4
JP2012033279A (en) * 2010-07-28 2012-02-16 Nec Energy Devices Ltd Lithium ion secondary battery
WO2012077472A1 (en) 2010-12-09 2012-06-14 日本電気株式会社 Positive electrode active material for secondary battery and secondary battery using same
WO2012165020A1 (en) 2011-05-30 2012-12-06 日本電気株式会社 Active material for secondary batteries, and secondary battery using same
JP2013089389A (en) * 2011-10-14 2013-05-13 Nissan Motor Co Ltd Positive electrode material for electrochemical device, and electrochemical device including the same
WO2013153690A1 (en) * 2012-04-13 2013-10-17 日本電気株式会社 Positive electrode active material for secondary cell, and secondary cell using same
US20150214571A1 (en) * 2012-08-16 2015-07-30 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and method for producing same
JP2015522932A (en) * 2013-01-28 2015-08-06 エルジー・ケム・リミテッド High voltage lithium secondary battery
WO2016027403A1 (en) 2014-08-20 2016-02-25 Toyota Jidosha Kabushiki Kaisha Secondary battery
US9299475B2 (en) 2010-11-05 2016-03-29 Nec Corporation Positive electrode active material for secondary battery and secondary battery using the same
JP2016110798A (en) * 2014-12-04 2016-06-20 旭化成株式会社 Cathode active material, cathode, and nonaqueous electrolyte secondary battery
JP2016181500A (en) * 2015-03-24 2016-10-13 日亜化学工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery
JP2018116856A (en) * 2017-01-19 2018-07-26 トヨタ自動車株式会社 Positive electrode active material for lithium ion secondary battery
US10170791B2 (en) 2013-01-28 2019-01-01 Lg Chem, Ltd. High-voltage lithium secondary battery
CN117080419A (en) * 2023-10-16 2023-11-17 宁德时代新能源科技股份有限公司 Positive electrode active material, preparation method thereof, positive electrode plate, secondary battery and power utilization device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147867A (en) * 1995-09-13 1997-06-06 Moli Energy 1990 Ltd High-voltage insertion compound for lithium battery
JP2000235857A (en) * 1998-12-18 2000-08-29 Sanyo Electric Co Ltd Lithium secondary battery
JP2001143704A (en) * 1999-11-12 2001-05-25 Japan Energy Corp Method of manufacturing positive electrode material for lithiun secondary battery
JP2001185145A (en) * 1999-12-27 2001-07-06 Nikko Materials Co Ltd Method of manufacturing positive electrode material for lithium secondary battery
JP2002063900A (en) * 2000-08-14 2002-02-28 Hitachi Ltd Positive electrode active material for lithium secondary battery, and lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147867A (en) * 1995-09-13 1997-06-06 Moli Energy 1990 Ltd High-voltage insertion compound for lithium battery
JP2000235857A (en) * 1998-12-18 2000-08-29 Sanyo Electric Co Ltd Lithium secondary battery
JP2001143704A (en) * 1999-11-12 2001-05-25 Japan Energy Corp Method of manufacturing positive electrode material for lithiun secondary battery
JP2001185145A (en) * 1999-12-27 2001-07-06 Nikko Materials Co Ltd Method of manufacturing positive electrode material for lithium secondary battery
JP2002063900A (en) * 2000-08-14 2002-02-28 Hitachi Ltd Positive electrode active material for lithium secondary battery, and lithium secondary battery

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831993A1 (en) * 2001-11-08 2003-05-09 Cit Alcatel Insertion lithium compound derived by substitution of dioxide of manganese lithia of spinel structure used for the active material of a rechargeable electrochemical generator
US7763386B2 (en) 2002-01-08 2010-07-27 Sony Corporation Cathode active material and non-aqueous electrolyte secondary cell using same
JP2004139853A (en) * 2002-10-18 2004-05-13 Sony Corp Positive electrode activator and nonaqueous electrolyte secondary battery
CN101908620A (en) * 2010-06-02 2010-12-08 东北大学 Method for preparing lithium ion battery material LiNi0.5Mn1.5-xTixO4
JP2012033279A (en) * 2010-07-28 2012-02-16 Nec Energy Devices Ltd Lithium ion secondary battery
US9299475B2 (en) 2010-11-05 2016-03-29 Nec Corporation Positive electrode active material for secondary battery and secondary battery using the same
US8877090B2 (en) 2010-12-09 2014-11-04 Nec Corporation Positive electrode active material for secondary battery, and secondary battery using the same
WO2012077472A1 (en) 2010-12-09 2012-06-14 日本電気株式会社 Positive electrode active material for secondary battery and secondary battery using same
US20140367610A1 (en) * 2011-05-30 2014-12-18 Takehiro Noguchi Active material for secondary battery and secondary battery using the same
JPWO2012165020A1 (en) * 2011-05-30 2015-02-23 日本電気株式会社 Secondary battery active material and secondary battery using the same
WO2012165020A1 (en) 2011-05-30 2012-12-06 日本電気株式会社 Active material for secondary batteries, and secondary battery using same
JP2013089389A (en) * 2011-10-14 2013-05-13 Nissan Motor Co Ltd Positive electrode material for electrochemical device, and electrochemical device including the same
WO2013153690A1 (en) * 2012-04-13 2013-10-17 日本電気株式会社 Positive electrode active material for secondary cell, and secondary cell using same
US9236602B2 (en) 2012-04-13 2016-01-12 Nec Corporation Positive electrode active material for secondary battery and secondary battery using the same
JPWO2013153690A1 (en) * 2012-04-13 2015-12-17 日本電気株式会社 Positive electrode active material for secondary battery and secondary battery using the same
US20150214571A1 (en) * 2012-08-16 2015-07-30 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and method for producing same
JP2015522932A (en) * 2013-01-28 2015-08-06 エルジー・ケム・リミテッド High voltage lithium secondary battery
JP2018049835A (en) * 2013-01-28 2018-03-29 エルジー・ケム・リミテッド High-voltage lithium secondary battery
US10170791B2 (en) 2013-01-28 2019-01-01 Lg Chem, Ltd. High-voltage lithium secondary battery
WO2016027403A1 (en) 2014-08-20 2016-02-25 Toyota Jidosha Kabushiki Kaisha Secondary battery
DE112015003816B4 (en) 2014-08-20 2019-03-28 Toyota Jidosha Kabushiki Kaisha secondary battery
US10411232B2 (en) 2014-08-20 2019-09-10 Toyota Jidosha Kabushiki Kaisha Secondary battery
JP2016110798A (en) * 2014-12-04 2016-06-20 旭化成株式会社 Cathode active material, cathode, and nonaqueous electrolyte secondary battery
JP2016181500A (en) * 2015-03-24 2016-10-13 日亜化学工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery
JP2018116856A (en) * 2017-01-19 2018-07-26 トヨタ自動車株式会社 Positive electrode active material for lithium ion secondary battery
CN117080419A (en) * 2023-10-16 2023-11-17 宁德时代新能源科技股份有限公司 Positive electrode active material, preparation method thereof, positive electrode plate, secondary battery and power utilization device

Also Published As

Publication number Publication date
JP5013386B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
JP5910627B2 (en) Secondary battery
EP1130663B1 (en) Positive electrode material for battery and nonaqueous electrolyte secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5013386B2 (en) Positive electrode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same
JPWO2002040404A1 (en) Non-aqueous secondary battery
JP2004253174A (en) Positive pole active material for nonaqueous electrolytic secondary battery
JP2007039266A (en) Manufacturing method of lithium-manganese-nickel complex oxide and positive electrode active material for non-aqueous electrolyte secondary cell
US20010008730A1 (en) Positive electrode for lithium battery
JP2002151070A (en) Nonaqueous electrolyte secondary battery
JP5663567B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP4581333B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
US5716737A (en) Nonaqueous electrolyte secondary battery, cathode active material and method for producing the same
JP2005060162A (en) Method for producing lithium-manganese-nickel composite oxide, and positive pole active material for nonaqueous electrolytic secondary battery using the same
JP4028738B2 (en) Positive electrode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery
JP3661183B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP4530822B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
US20150295243A1 (en) Cathode active material, lithium battery and method of producing cathode active material
JP2002042814A (en) Positive electrode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP4651279B2 (en) Nonaqueous electrolyte secondary battery
JP2001319653A (en) Non-aqueous secondary battery
JP2006196293A (en) Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP4581196B2 (en) Positive electrode for lithium secondary battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110516

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5013386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees