JP2015022950A - Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof - Google Patents

Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof Download PDF

Info

Publication number
JP2015022950A
JP2015022950A JP2013151284A JP2013151284A JP2015022950A JP 2015022950 A JP2015022950 A JP 2015022950A JP 2013151284 A JP2013151284 A JP 2013151284A JP 2013151284 A JP2013151284 A JP 2013151284A JP 2015022950 A JP2015022950 A JP 2015022950A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
electrolyte secondary
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013151284A
Other languages
Japanese (ja)
Other versions
JP6273707B2 (en
Inventor
大石憲吾
Kengo Oishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2013151284A priority Critical patent/JP6273707B2/en
Publication of JP2015022950A publication Critical patent/JP2015022950A/en
Application granted granted Critical
Publication of JP6273707B2 publication Critical patent/JP6273707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for nonaqueous electrolyte secondary batteries which allows the balance among a low-temperature output characteristic, a cycle characteristic, a load characteristic, other battery characteristics and the cost to be achieved.SOLUTION: A positive electrode active material for nonaqueous electrolyte secondary batteries comprises, as a primary component, secondary particles of a lithium transition metal complex oxide expressed by the following general formula: LiNiMnCoO(where 0.3≤x≤0.6; 0.2≤y≤0.5; 0.5≤x+y≤1.0; 0.0≤z≤0.30; and 1.0≤x/y). The secondary particles has a specific surface area of 2.5-12 m/g, and includes at least one element M selected from a group consisting of boron, silicon, and phosphorus.

Description

本願発明は、リチウムイオン二次電池等の非水電解液二次電池用正極活物質に関するものである。また、前記正極活物質を用いた非水電解液二次電池に関するものである。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. The present invention also relates to a non-aqueous electrolyte secondary battery using the positive electrode active material.

近年、ビデオカメラ、携帯電話、ノートパソコン等の携帯機器の普及及び小型化が進み、その電源用にリチウムイオン二次電池等の非水電解液二次電池が用いられるようになってきている。更に、最近の環境問題への対応から、電気自動車等の動力用電池としても注目されている。   In recent years, portable devices such as video cameras, mobile phones, and notebook personal computers have become widespread and downsized, and non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have been used for power supplies. Furthermore, it has been attracting attention as a power battery for electric vehicles and the like due to recent environmental problems.

リチウムイオン二次電池用正極活物質としてはLiCoO(コバルト酸リチウム)が4V級の二次電池を構成できるものとして一般的に広く採用されている。LiCoOを正極活物質として用いた場合、放電容量が約160mAh/gで実用化されている。 As a positive electrode active material for a lithium ion secondary battery, LiCoO 2 (lithium cobaltate) is generally widely used as a material capable of constituting a 4V class secondary battery. When LiCoO 2 is used as the positive electrode active material, it has been put into practical use with a discharge capacity of about 160 mAh / g.

LiCoOの原料であるコバルトは希少資源であり且つ偏在しているため、コストがかかり、また、原料供給について不安が生じる。 Cobalt, which is a raw material for LiCoO 2 , is a scarce resource and is unevenly distributed, and thus costs are high and anxiety arises regarding the supply of raw materials.

こうした事情に応じ、LiNiO(ニッケル酸リチウム)も検討されている。LiNiOは実用的には4V級で放電容量約200mAh/gの二次電池を実現可能である。しかし、充放電時の正極活物質の結晶構造の安定性に難がある。 In response to such circumstances, LiNiO 2 (lithium nickelate) has also been studied. LiNiO 2 can practically realize a secondary battery having a discharge capacity of about 200 mAh / g with a 4V class. However, the stability of the crystal structure of the positive electrode active material during charge / discharge is difficult.

これらの事情に鑑み、コバルト酸リチウムのコバルト、あるいはニッケル酸リチウムのニッケルを他の元素で置換する技術が存在する。置換する元素やその量は目的によって異なるが、Li(Ni,Mn,Co)O(ニッケルマンガンコバルト酸リチウム)に代表される所謂多元系のリチウム遷移金属複合酸化物が提案されている。 In view of these circumstances, there is a technique for replacing cobalt of lithium cobaltate or nickel of lithium nickelate with other elements. The so-called multi-element lithium transition metal composite oxide typified by Li (Ni, Mn, Co) O 2 (lithium nickel manganese cobaltate) has been proposed, although the element to be substituted and its amount vary depending on the purpose.

ところで、正極活物質として用いられるリチウム遷移金属複合酸化物は通常粉体である。粉体は一次粒子の形状、一次粒子の凝集具合(つまり二次粒子の状態)、粒度分布等が粉体全体の特性や粉体を含む系全体の特性に影響するため、目的に応じて粉体の各種特性が制御される。粉体と系内の他の要素との関係に影響する指標には比表面積や粒子間の空間に関する指標がある。粒子間の空間に関する指標の一つには細孔容積がある。   By the way, the lithium transition metal composite oxide used as the positive electrode active material is usually a powder. Since the shape of primary particles, the degree of aggregation of primary particles (that is, the state of secondary particles), and the particle size distribution affect the characteristics of the entire powder and the characteristics of the entire system including the powder, Various characteristics of the body are controlled. Indicators affecting the relationship between the powder and other elements in the system include indicators relating to the specific surface area and the space between particles. One index related to the space between particles is the pore volume.

特許文献1には原料化合物を含むスラリーを湿式粉砕し、噴霧乾燥した後焼成することで得られ、比表面積が異なる複数の複合酸化物粉体の例が記載されている。また、好ましい比表面積の範囲が記載されているが、その範囲がどう好ましいのかは記載が無い。   Patent Document 1 describes an example of a plurality of composite oxide powders obtained by wet-grinding a slurry containing a raw material compound, spray-drying and then firing, and having different specific surface areas. Moreover, although the range of the preferable specific surface area is described, it is not described how the range is preferable.

特許文献2の表3には所謂共沈法によって得られる複合炭酸塩と、リチウム化合物とを混合し、焼成することで得られる様々な比表面積のリチウム遷移金属複合酸化物の例が記載されている。また、負荷特性と安全性の観点から好ましい比表面積の範囲の記載があるが、低温出力特性の観点や細孔に関する記載はない。   Table 3 of Patent Literature 2 describes examples of lithium transition metal composite oxides having various specific surface areas obtained by mixing and baking a composite carbonate obtained by a so-called coprecipitation method and a lithium compound. Yes. In addition, there is a description of a preferable specific surface area range from the viewpoint of load characteristics and safety, but there is no description of low temperature output characteristics and pores.

特許文献3の表2には特定圧力範囲における水銀圧入量や、細孔分布曲線において特定範囲に現れたピークに関する細孔容量について様々な値をとるリチウム遷移金属複合酸化物粉体の例が記載されている。また、負荷特性及び充填性の観点から細孔分布に関する複数の規定について好ましい範囲が記載されている。また、電池性能(具体的な性能は不明)及び嵩密度の観点から好ましい比表面積の範囲の記載が記載されている。しかし低温出力特性の観点に関する記載はない。   Table 2 of Patent Document 3 describes examples of lithium transition metal composite oxide powders that take various values for the amount of mercury intrusion in a specific pressure range and the pore capacity related to the peak appearing in the specific range in the pore distribution curve. Has been. Moreover, the preferable range is described about several prescription | regulations regarding pore distribution from a viewpoint of a load characteristic and a filling property. Moreover, the description of the range of a specific surface area preferable from a viewpoint of battery performance (specific performance is unknown) and a bulk density is described. However, there is no description regarding the viewpoint of low-temperature output characteristics.

特開2003−034537号公報JP 2003-034537 A 特開2009−205893号公報JP 2009-205893 A 特開2009−158167号公報JP 2009-158167 A

前述の多元系のリチウム遷移金属複合酸化物のなかでもLiNi1/3Mn1/3Co1/3等の遷移金属の比が1:1:1近辺のニッケルマンガンコバルト酸リチウムは、コスト、安全性、充放電容量等のバランスが良いが、低温においては出力特性が下がる傾向にある。また、組成範囲によっては大電流放電によって容量が低下する(負荷特性の悪化)、正極の正極活物質層を厚くするとサイクル特性が低下する、といった傾向をも示す。このようなリチウム遷移金属複合酸化物を正極活物質として用いた非水電解液二次電池を、電気自動車等種々の環境での使用が想定される機器の動力源として使用すると、機器の性能が使用環境によって大きく変化することになる。 Among the multi-element lithium transition metal composite oxides described above, lithium nickel cobalt oxide having a ratio of transition metal such as LiNi 1/3 Mn 1/3 Co 1/3 O 2 in the vicinity of 1: 1: 1 is low in cost. Although the balance of safety, charge / discharge capacity, etc. is good, output characteristics tend to decrease at low temperatures. In addition, depending on the composition range, the capacity decreases due to large current discharge (deterioration of load characteristics), and the cycle characteristics decrease when the positive electrode active material layer of the positive electrode is thickened. When a non-aqueous electrolyte secondary battery using such a lithium transition metal composite oxide as a positive electrode active material is used as a power source for equipment that is expected to be used in various environments such as electric vehicles, the performance of the equipment is improved. It will vary greatly depending on the usage environment.

本願発明はこのような事情に鑑みなされたものである。本願発明の目的は、低温出力特性、サイクル特性及び負荷特性と、他の電池特性及びコストとを両立した非水電解液二次電池を実現可能な正極活物質を提供することである。   The present invention has been made in view of such circumstances. The objective of this invention is providing the positive electrode active material which can implement | achieve the non-aqueous-electrolyte secondary battery which made low-temperature output characteristics, cycling characteristics, load characteristics, and other battery characteristics and cost compatible.

上記目的を達成するために本願発明者らは鋭意検討を重ね、本願発明を完成するに至った。本願発明者らは特定組成のリチウム遷移金属複合酸化物の二次粒子について、その比表面積を制御し、さらに特定元素を二次粒子に含有させることで低温出力特性、サイクル特性及び負荷特性と他の特性とを両立させられることを見出した。本願発明の非水電解液二次電池用正極活物質は、一般式Li1+zNiMnCo1−x−y(0.3≦x≦0.6、0.2≦y≦0.5、0.6≦x+y≦1.0、0.0≦z≦0.30、1.0≦x/y)で表されるリチウム遷移金属複合酸化物の二次粒子を主成分とし、前記二次粒子が、比表面積が2.5m/g以上12m/g以下であり、さらに、ホウ素、ケイ素及びリンからなる群より選択される少なくとも一種の元素Mを含有することを特徴とする。 In order to achieve the above object, the inventors of the present application have made extensive studies and have completed the present invention. The inventors of the present invention control the specific surface area of the secondary particles of the lithium transition metal composite oxide having a specific composition, and further include a specific element in the secondary particles to provide low temperature output characteristics, cycle characteristics, load characteristics, and the like. It has been found that it is possible to achieve both characteristics. The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention has a general formula Li 1 + z Ni x Mn y Co 1-xy O 2 (0.3 ≦ x ≦ 0.6, 0.2 ≦ y ≦ 0). 0.5, 0.6 ≦ x + y ≦ 1.0, 0.0 ≦ z ≦ 0.30, 1.0 ≦ x / y), and the secondary particles of lithium transition metal composite oxide represented by The secondary particles have a specific surface area of 2.5 m 2 / g or more and 12 m 2 / g or less, and further contain at least one element M selected from the group consisting of boron, silicon and phosphorus. To do.

本願発明の非水電解液二次電池は、本願発明の正極活物質を正極に用いたことを特徴とする。   The nonaqueous electrolyte secondary battery of the present invention is characterized in that the positive electrode active material of the present invention is used for the positive electrode.

本願発明の非水電解液二次電池用正極活物質は上記の特徴を備えているため、低温出力特性、サイクル特性及び負荷特性と他の特性とが両立し、且つ低コストである、従来よりもバランスのとれた正極活物質となる。また、本願発明の非水電解液二次電池は、使用環境を問わず各種電池特性のバランスが良くなり、さらに低コストで製造することが可能になる。   Since the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention has the above-described characteristics, the low-temperature output characteristics, cycle characteristics, load characteristics, and other characteristics are compatible, and the cost is low. Becomes a well-balanced positive electrode active material. In addition, the non-aqueous electrolyte secondary battery of the present invention has a good balance of various battery characteristics regardless of the use environment, and can be manufactured at a lower cost.

図1は本願発明の正極活物質の形態の一例を表す模式図である。FIG. 1 is a schematic diagram showing an example of the form of the positive electrode active material of the present invention. 図2は本願発明の正極活物質の主成分であるリチウム遷移金属複合酸化物において、遷移金属間の関係を表す三元図である。FIG. 2 is a ternary diagram showing the relationship between transition metals in the lithium transition metal composite oxide which is the main component of the positive electrode active material of the present invention.

以下、本願発明の非水電解液二次電池用正極活物質について、実施の形態及び実施例を用いて詳細に説明する。但し、本願発明はこれら実施の形態及び実施例に限定されるものではない。   Hereinafter, the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention will be described in detail using embodiments and examples. However, the present invention is not limited to these embodiments and examples.

本願発明の非水電解液二次電池用正極活物質は特定組成の二次粒子を主成分とし、その二次粒子は特定範囲の比表面積を有し、さらに特定元素Mを含有する。以下、組成、比表面積、及び特定元素Mを中心に説明する。   The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention mainly comprises secondary particles having a specific composition, the secondary particles having a specific surface area within a specific range, and further containing a specific element M. Hereinafter, the composition, the specific surface area, and the specific element M will be mainly described.

[組成]
本願発明の非水電解液二次電池用正極活物質は、一般式
Li1+zNiMnCo1−x−y
(0.3≦x≦0.6、0.2≦y≦0.5、0.6≦x+y≦1.0、0.0≦z≦0.30、1.0≦x/y)
で表されるリチウム遷移金属複合酸化物の二次粒子を主成分とする。組成がこの範囲のリチウム遷移金属複合酸化物は、低コストで且つ安全性、充放電容量等の電池特性のバランスが良い。しかしながら、動作環境が低温になると、出力特性が低下する傾向にある。特に電気自動車等の動力源としては不十分である。この点については後述する。また、上記組成の内ある組成範囲では正極の正極活物質層を厚くするとサイクル特性が悪化することがある。また、別のある組成範囲では負荷特性が悪化することがある。
[composition]
The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention has a general formula of Li 1 + z Ni x Mn y Co 1-xy O 2.
(0.3 ≦ x ≦ 0.6, 0.2 ≦ y ≦ 0.5, 0.6 ≦ x + y ≦ 1.0, 0.0 ≦ z ≦ 0.30, 1.0 ≦ x / y)
The secondary particles of a lithium transition metal composite oxide represented by A lithium transition metal composite oxide having a composition in this range is low in cost and has a good balance of battery characteristics such as safety and charge / discharge capacity. However, when the operating environment becomes low temperature, the output characteristics tend to deteriorate. In particular, it is insufficient as a power source for electric vehicles and the like. This point will be described later. In addition, when the positive electrode active material layer of the positive electrode is thickened within the above composition range, the cycle characteristics may be deteriorated. In addition, the load characteristics may deteriorate in another certain composition range.

遷移金属において、ニッケルの比率が高いと充放電容量が増加する傾向にあるが、高すぎると安全性の低下やコストアップにつながる。このことを踏まえると、xの範囲は0.4≦x≦0.6であると容量、安全性及びコストのバランスがとれていて好ましい。   In transition metals, if the ratio of nickel is high, the charge / discharge capacity tends to increase. However, if the ratio is too high, safety is lowered and costs are increased. In view of this, it is preferable that the range of x is 0.4 ≦ x ≦ 0.6 because the balance of capacity, safety and cost is balanced.

一方、マンガンの比率が高いとコストダウンと安全性向上が見込めるが、高すぎると他の電池特性に悪影響を及ぼし得る。このことを踏まえると、yの範囲は0.3≦y≦0.5であるとコストを含む各種特性のバランスがとれていて好ましい。   On the other hand, if the manganese ratio is high, cost reduction and safety improvement can be expected, but if it is too high, other battery characteristics may be adversely affected. In view of this, it is preferable that the range of y is 0.3 ≦ y ≦ 0.5 because various characteristics including cost are balanced.

一方、コバルトの比率が高いと種々の電池特性において向上が期待できるが、高すぎると安全性の低下やコストアップにつながる。これらを踏まえると、x+yの範囲は0.8≦x+y≦1.0がコストと電池特性とのバランスがとれて好ましい。   On the other hand, if the ratio of cobalt is high, improvement in various battery characteristics can be expected, but if it is too high, safety is lowered and cost is increased. In consideration of these, the range of x + y is preferably 0.8 ≦ x + y ≦ 1.0 because the cost and battery characteristics are balanced.

リチウムの遷移金属元素に対する比率が高いと導電性が向上する傾向に、低いと容量増加の傾向にある。このことを踏まえると、zの範囲は0.05≦z≦0.20が容量と導電性とのバランスがとれて好ましい。   When the ratio of lithium to the transition metal element is high, the conductivity tends to improve, and when the ratio is low, the capacity tends to increase. In view of this, it is preferable that the range of z is 0.05 ≦ z ≦ 0.20 because the balance between the capacity and the conductivity is achieved.

ニッケルに対するマンガンの比率が高くなると異相を生成し易くなる。一方低すぎるとマンガンの効果が不十分になる。このことを踏まえると、x/yの範囲は1.0≦x/yとする。この上で前述の通りx及びyを調整する。   When the ratio of manganese to nickel increases, heterogeneous phases are likely to be generated. On the other hand, if it is too low, the effect of manganese will be insufficient. Considering this, the range of x / y is 1.0 ≦ x / y. Then, as described above, x and y are adjusted.

遷移金属に関するこれらの関係は図2における太線内の範囲Aで表され、好ましい範囲はその内側にある範囲Bで表される。   These relations regarding the transition metal are represented by a range A within a bold line in FIG. 2, and a preferable range is represented by a range B inside thereof.

前記組成のリチウム遷移金属複合酸化物はコストを含む種々の特性のバランスが良いが、低温出力特性が満足いくものではない。場合によっては負荷特性及び/又はサイクル特性も不十分である。その為、二次粒子の比表面積を制御し、さらに元素Mを含有させる必要がある。   The lithium transition metal composite oxide having the above composition has a good balance of various characteristics including cost, but the low-temperature output characteristics are not satisfactory. In some cases, load characteristics and / or cycle characteristics are also insufficient. Therefore, it is necessary to control the specific surface area of the secondary particles and further contain the element M.

[比表面積]
前記二次粒子の比表面積は、2.5m/g以上12m/g以下とする。比表面積が大きいと同じ組成であっても多くの電池特性は向上する傾向にあるが、高すぎると集電体上に正極活物質を塗布し辛くなる。これらのことを踏まえると、比表面積の好ましい範囲は3.0m/g以上7.0m/g以下である。なお、比表面積はBET法に代表されるガス吸着法によって求められる値を用いる。また、比表面積が大きくなるとサイクル特性がやや悪化することがあるが、後述の元素Mが存在しているとサイクル特性も十分向上する。
[Specific surface area]
The specific surface area of the secondary particles is 2.5 m 2 / g or more and 12 m 2 / g or less. If the specific surface area is large, many battery characteristics tend to be improved even if the composition is the same, but if it is too high, it becomes difficult to apply the positive electrode active material on the current collector. Considering these facts, a preferable range of the specific surface area is 3.0 m 2 / g or more and 7.0 m 2 / g or less. In addition, the value calculated | required by the gas adsorption method represented by BET method is used for a specific surface area. Further, when the specific surface area is increased, the cycle characteristics may be slightly deteriorated. However, if the element M described later is present, the cycle characteristics are sufficiently improved.

[元素M]
前述の組成及び比表面積を満たしたリチウム遷移金属複合酸化物の二次粒子に、さらにホウ素、ケイ素及びリンからなる群より選択される少なくとも一種の元素Mを含有させる。図1は元素Mを含有させた二次粒子の形態の一例を表す模式図である。元素Mの一部はリチウム遷移金属複合酸化物に固溶し得るが、少なくとも一部はリチウム遷移金属複合酸化物の一次粒子111の表面に存在し、リチウム遷移金属複合酸化物の二次粒子11の一部として元素Mの存在領域12を形成する。元素Mの存在形態はいくつかとり得るが、いずれも元素Mの化合物は別粒子としてリチウム遷移金属複合酸化物の一次粒子111とは単に接触しているのではなく、物理的及び/又は化学的結合によって強固に結合している。
[Element M]
At least one element M selected from the group consisting of boron, silicon and phosphorus is further included in the secondary particles of the lithium transition metal composite oxide satisfying the above composition and specific surface area. FIG. 1 is a schematic diagram showing an example of the form of secondary particles containing the element M. FIG. A part of the element M can be dissolved in the lithium transition metal composite oxide, but at least a part thereof is present on the surface of the primary particle 111 of the lithium transition metal composite oxide, and the secondary particle 11 of the lithium transition metal composite oxide. The existence region 12 of the element M is formed as a part. There are several possible forms of the element M. In any case, the compound of the element M is not simply in contact with the primary particle 111 of the lithium transition metal composite oxide as a separate particle, but physically and / or chemically. It is firmly bonded by bonding.

このような元素Mの存在領域12の存在が、二次粒子の形状維持、正極活物質と集電体との結着力強化に寄与していると考えられる。このため、本願発明の正極活物質はその比表面積が大きいにも拘わらず充放電の繰り返しによる各種特性低下が抑制される。結果、サイクル特性を含む各種電池特性を向上させることができるようになる。   The existence of the element M existence region 12 is considered to contribute to maintaining the shape of the secondary particles and enhancing the binding force between the positive electrode active material and the current collector. For this reason, although the positive electrode active material of this invention has the large specific surface area, the various characteristic fall by repetition of charging / discharging is suppressed. As a result, various battery characteristics including cycle characteristics can be improved.

元素Mの含有量は、少なすぎれば前述の効果が十分現れず、多すぎればリチウムイオンの脱離・挿入と無関係な領域が増え、結果として充放電容量の低下につながるので適宜調節する。元素Mの含有量は、リチウム遷移金属複合酸化物の全遷移金属に対して物質量比で0.05%以上あればサイクル特性向上がはっきり確認できるようになる。ある程度以上多くなるとサイクル特性向上の効果は飽和するので、通常5%あれば十分である。   If the content of the element M is too small, the above-described effect is not sufficiently exhibited. If the content is too large, a region unrelated to lithium ion desorption / insertion increases, resulting in a decrease in charge / discharge capacity. If the content of the element M is 0.05% or more in terms of the substance amount ratio with respect to the total transition metals of the lithium transition metal composite oxide, the improvement of the cycle characteristics can be clearly confirmed. If it exceeds a certain level, the effect of improving the cycle characteristics is saturated, so 5% is usually sufficient.

[二次粒子の粒度分布]
前記二次粒子のメジアン径は、小さすぎると二次粒子の嵩密度が低下し、大きすぎると正極活物質を塗布し辛く、また、電池性能に悪影響を与えるので適宜調節する。メジアン径の好ましい範囲は2μm以上25μm以下である。より好ましくは7μm以上15μm以下である。なお、メジアン径はレーザー回折法により体積基準の頻度分布曲線(ヒストグラム)を粒度分布として得、積算値が50%となる値を用いる。
[Particle size distribution of secondary particles]
If the median diameter of the secondary particles is too small, the bulk density of the secondary particles decreases, and if it is too large, it is difficult to apply the positive electrode active material, and the battery performance is adversely affected. A preferable range of the median diameter is 2 μm or more and 25 μm or less. More preferably, they are 7 micrometers or more and 15 micrometers or less. For the median diameter, a volume-based frequency distribution curve (histogram) is obtained as a particle size distribution by laser diffraction, and a value at which the integrated value is 50% is used.

[正極活物質の製造方法]
以下、本願発明の正極活物質の製造方法について説明する。製造方法は特に限定されない。
[Method for producing positive electrode active material]
Hereinafter, the manufacturing method of the positive electrode active material of this invention is demonstrated. The manufacturing method is not particularly limited.

<原料化合物>
目的元素を含有する酸化物、炭酸塩、硫酸塩、硝酸塩、水酸化物等を適宜選択する。単一の原料化合物に複数の目的元素が含有されていてもよいし、逆に単一の目的元素について、複数の原料化合物を用いてもよい。前者の例としては、ニッケルとマンガンの原料としてニッケルとマンガンの複合炭酸塩が選択し得る。後者の例としては、リチウムの原料化合物として水酸化リチウムと炭酸リチウムを一定の比で混合したものが選択し得る。原料化合物の一次粒子径や比表面積を調節することで、リチウム遷移金属複合酸化物粒子の二次粒子の比表面積をある程度調節可能である。
<Raw compound>
An oxide, carbonate, sulfate, nitrate, hydroxide or the like containing the target element is appropriately selected. A plurality of target elements may be contained in a single raw material compound, and conversely, a plurality of raw material compounds may be used for a single target element. As the former example, a composite carbonate of nickel and manganese can be selected as a raw material for nickel and manganese. As an example of the latter, what mixed lithium hydroxide and lithium carbonate by a fixed ratio can be selected as a raw material compound of lithium. By adjusting the primary particle size and specific surface area of the raw material compound, the specific surface area of the secondary particles of the lithium transition metal composite oxide particles can be adjusted to some extent.

<混合>
原料化合物を混合して原料混合物を得る。原料化合物を羽根式撹拌機等で混合する乾式混合、原料化合物をスラリー化し、ビーズミル等粉砕も兼ねて混合する湿式混合等公知の混合方法を適宜採用すればよい。湿式混合を採用した場合は噴霧乾燥法等公知の乾燥方法を適宜採用してスラリーを乾燥し、最終的な原料混合物とする。
<Mixed>
Raw material compounds are mixed to obtain a raw material mixture. A known mixing method such as dry mixing in which the raw material compound is mixed with a blade-type stirrer, etc., or wet mixing in which the raw material compound is slurried and mixed also for pulverization such as a bead mill may be appropriately employed. When wet mixing is employed, a known drying method such as spray drying is appropriately employed to dry the slurry to obtain a final raw material mixture.

<焼成>
得られた原料混合物を焼成する。焼成温度は、低すぎればリチウム化合物との反応が不十分にある、あるいは十分な結晶性を得られない傾向に、また、高すぎれば本願発明の粒子形状を得られない傾向にあるので注意が必要である。組成にも依るが、概ね700℃以上1000℃以下が好ましい。より好ましくは800℃以上950℃以下である。焼成時間は最高温度を保持する時間として3時間以上あれば十分である。焼成時の雰囲気として、大気雰囲気あるいは酸素雰囲気を適宜使用できる。
<Baking>
The obtained raw material mixture is fired. If the firing temperature is too low, the reaction with the lithium compound will be insufficient, or sufficient crystallinity will not be obtained, and if it is too high, the particle shape of the present invention will not be obtained. is necessary. Although it depends on the composition, approximately 700 ° C. or higher and 1000 ° C. or lower is preferable. More preferably, it is 800 degreeC or more and 950 degrees C or less. It is sufficient that the firing time is 3 hours or more as the time for maintaining the maximum temperature. An air atmosphere or an oxygen atmosphere can be appropriately used as the firing atmosphere.

上記を踏まえた上で、焼成温度を調節し、得られるリチウム遷移金属複合酸化物の二次粒子の比表面積を調節する。焼成温度を低くすると比表面積は高く、焼成温度を高くすると比表面積は低くなる傾向にあるので、調節された原料化合物スラリーの比表面積等を踏まえて適宜調節する。   Based on the above, the firing temperature is adjusted, and the specific surface area of the secondary particles of the obtained lithium transition metal composite oxide is adjusted. If the firing temperature is lowered, the specific surface area is high, and if the firing temperature is raised, the specific surface area tends to be low. Therefore, the specific surface area of the adjusted raw material compound slurry is adjusted as appropriate.

<後処理>
焼成後、必要に応じて粗砕、粉砕、乾式篩い等の処理を行い、本願発明の正極活物質を得る。
<Post-processing>
After firing, if necessary, treatments such as crushing, pulverization, and dry sieving are performed to obtain the positive electrode active material of the present invention.

以下、実施例及び比較例を用い、より具体的に説明する。   Hereinafter, it demonstrates more concretely using an Example and a comparative example.

炭酸リチウム、メジアン径8.9μmであり組成がNi/Mn=5/5である酸化物原料及びホウ酸を、その物質量比がLi:Ni:Mn:B=1.05:0.5:0.5:2.6×10−2となるように秤量し、純水に分散してスラリーを調製した。このスラリーをジルコニアボールで湿式粉砕し、スラリー中の固形分のメジアン径を0.19μmに調節した。次に、このスラリー(固形分含有量12.5重量%)を、三流体ノズル型スプレードライヤーを用いて噴霧乾燥し、原料混合物を得た。乾燥ガスには空気を用い、乾燥ガス導入量は74L/min、スラリー導入量は18×10−3L/minとした。また、乾燥入り口温度は240℃とした。得られた原料混合物約40gをアルミナ製るつぼに仕込み、空気雰囲気下875℃で9時間焼成(昇降温速度3.33℃/min)し、一般式Li1.05(Ni0.5Mn0.5)Oで表されるリチウム遷移金属複合酸化物にホウ素を2.6mol%含有する二次粒子を得た。 Lithium carbonate, an oxide raw material having a median diameter of 8.9 μm and a composition of Ni / Mn = 5/5 and boric acid, the mass ratio of Li: Ni: Mn: B = 1.05: 0.5: 0.5: 2.6 × 10 −2 Weighed so as to be dispersed in pure water to prepare a slurry. This slurry was wet pulverized with zirconia balls, and the median diameter of the solid content in the slurry was adjusted to 0.19 μm. Next, this slurry (solid content 12.5% by weight) was spray-dried using a three-fluid nozzle type spray dryer to obtain a raw material mixture. Air was used as the dry gas, the dry gas introduction amount was 74 L / min, and the slurry introduction amount was 18 × 10 −3 L / min. The drying inlet temperature was 240 ° C. About 40 g of the obtained raw material mixture was charged into an alumina crucible and fired at 875 ° C. for 9 hours in an air atmosphere (heating rate 3.33 ° C./min) to obtain a general formula Li 1.05 (Ni 0.5 Mn 0.005 ) . 5 ) Secondary particles containing 2.6 mol% of boron in the lithium transition metal composite oxide represented by O 2 were obtained.

ホウ酸の代わりに二酸化ケイ素を用い、その物質量比がLi:Ni:Mn:Si=1.11:Ni:Mn:Si=1.05:0.5:0.5:1.7×10−2となるように秤量する以外実施例1と同様にして原料混合物を得た。得られた原料混合物を、焼成温度が990℃である以外実施例1と同様に焼成し、一般式Li1.05(Ni0.5Mn0.5)Oで表されるリチウム遷移金属複合酸化物にケイ素を1.7mol%含有する二次粒子を得た。 Silicon dioxide is used instead of boric acid, and the mass ratio is Li: Ni: Mn: Si = 1.11: Ni: Mn: Si = 1.05: 0.5: 0.5: 1.7 × 10. A raw material mixture was obtained in the same manner as in Example 1 except that the weight was adjusted to −2 . The obtained raw material mixture was fired in the same manner as in Example 1 except that the firing temperature was 990 ° C., and the lithium transition metal composite represented by the general formula Li 1.05 (Ni 0.5 Mn 0.5 ) O 2 Secondary particles containing 1.7 mol% of silicon in the oxide were obtained.

ホウ酸の代わりにリン酸リチウムを用い、その物質量比がLi:Ni:Mn:P=1.11:Ni:Mn:Si=1.05:0.5:0.5:1.8×10−2となるように秤量する以外実施例1と同様にして原料混合物を得た。得られた原料混合物を、焼成温度が980℃である以外実施例1と同様に焼成し、一般式Li1.05(Ni0.5Mn0.5)Oで表されるリチウム遷移金属複合酸化物にリンを1.7mol%含有する二次粒子を得た。 Lithium phosphate is used instead of boric acid, and the mass ratio is Li: Ni: Mn: P = 1.11: Ni: Mn: Si = 1.05: 0.5: 0.5: 1.8 × A raw material mixture was obtained in the same manner as in Example 1 except for weighing to 10 −2 . The obtained raw material mixture was fired in the same manner as in Example 1 except that the firing temperature was 980 ° C., and the lithium transition metal composite represented by the general formula Li 1.05 (Ni 0.5 Mn 0.5 ) O 2 Secondary particles containing 1.7 mol% of phosphorus in the oxide were obtained.

[比較例1]
焼成温度が930℃である以外実施例1と同様にし、一般式Li1.05(Ni0.5Mn0.5)Oで表されるリチウム遷移金属複合酸化物にホウ素を2.6mol%含有する二次粒子を得た。
[Comparative Example 1]
In the same manner as in Example 1 except that the firing temperature is 930 ° C., 2.6 mol% of boron is added to the lithium transition metal composite oxide represented by the general formula Li 1.05 (Ni 0.5 Mn 0.5 ) O 2. Secondary particles contained were obtained.

[比較例2]
焼成温度が1045℃である以外実施例2と同様にし、一般式Li1.05(Ni0.5Mn0.5)Oで表されるリチウム遷移金属複合酸化物にケイ素を1.7mol%含有する二次粒子を得た。
[Comparative Example 2]
In the same manner as in Example 2 except that the firing temperature is 1045 ° C., 1.7 mol% of silicon is added to the lithium transition metal composite oxide represented by the general formula Li 1.05 (Ni 0.5 Mn 0.5 ) O 2. Secondary particles contained were obtained.

[比較例3]
焼成温度が1020℃である以外実施例3と同様にし、一般式Li1.05(Ni0.5Mn0.5)Oで表されるリチウム遷移金属複合酸化物にリンを1.8mol%含有する二次粒子を得た。
[Comparative Example 3]
In the same manner as in Example 3 except that the firing temperature was 1020 ° C., 1.8 mol% of phosphorus was added to the lithium transition metal composite oxide represented by the general formula Li 1.05 (Ni 0.5 Mn 0.5 ) O 2. Secondary particles contained were obtained.

[比較例4]
炭酸リチウム及びメジアン径8.9μmであり組成がNi/Mn=5/5である酸化物原料を、その物質量比がLi:Ni:Mn=1.05:0.5:0.5となるように秤量する以外実施例1と同様にして原料混合物を得た。得られた原料混合物を、焼成温度が950℃である以外実施例1と同様に焼成し、一般式Li1.05(Ni0.5Mn0.5)Oで表されるリチウム遷移金属複合酸化物の二次粒子を得た。
[Comparative Example 4]
An oxide raw material having lithium carbonate and a median diameter of 8.9 μm and a composition of Ni / Mn = 5/5 has a mass ratio of Li: Ni: Mn = 1.05: 0.5: 0.5. Thus, the raw material mixture was obtained like Example 1 except weighing. The obtained raw material mixture was fired in the same manner as in Example 1 except that the firing temperature was 950 ° C., and the lithium transition metal composite represented by the general formula Li 1.05 (Ni 0.5 Mn 0.5 ) O 2 Oxide secondary particles were obtained.

[比較例5]
焼成温度が1010℃である以外比較例4と同様にし、一般式Li1.05(Ni0.50Mn0.50)Oで表されるリチウム遷移金属複合酸化物の二次粒子を得た。
[Comparative Example 5]
Secondary particles of lithium transition metal composite oxide represented by the general formula Li 1.05 (Ni 0.50 Mn 0.50 ) O 2 were obtained in the same manner as in Comparative Example 4 except that the firing temperature was 1010 ° C. .

[二次電池の作製]
以下の要領で各種評価用の二次電池を作製した。
[Production of secondary battery]
Secondary batteries for various evaluations were produced in the following manner.

[出力特性評価用]
正極活物質の粉末90重量%、導電材となる炭素粉末5重量%及びポリフッ化ビニリデン(PVDF)5重量%をノルマルメチルピロリドン(NMP)に分散・溶解し、混練してペーストを調整した。これをアルミニウム箔からなる集電体に塗布して乾燥させ、圧延して正極板とした。尚、圧延後の正極合剤膜の密度は2.7g/cmとなるようにした。
[For output characteristics evaluation]
A paste was prepared by dispersing and dissolving 90% by weight of the positive electrode active material powder, 5% by weight of carbon powder to be a conductive material and 5% by weight of polyvinylidene fluoride (PVDF) in normal methylpyrrolidone (NMP), and kneading. This was applied to a current collector made of aluminum foil, dried, and rolled to obtain a positive electrode plate. The density of the positive electrode mixture film after rolling was set to 2.7 g / cm 3 .

負極活物質として、黒鉛材料を用いた。負極活物質の粉末97.5重量%、カルボキシメチルセルロース(CMC)1.5重量%及びスチレンブタジエンゴム(SBR)1.0重量%を水に分散し、混練してペーストを調整した。これを銅箔からなる集電体に塗布し乾燥させ、圧延して負極板とした。   A graphite material was used as the negative electrode active material. A paste was prepared by dispersing 97.5% by weight of negative electrode active material powder, 1.5% by weight of carboxymethyl cellulose (CMC) and 1.0% by weight of styrene butadiene rubber (SBR) in water and kneading. This was applied to a current collector made of copper foil, dried, and rolled to obtain a negative electrode plate.

エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)を体積比3:7で混合した。得られた混合溶媒に電解質として六フッ化リン酸リチウム(LiPF)を溶解し、濃度1mol/Lの非水電解液を調整した。 Ethylene carbonate (EC) and methyl ethyl carbonate (MEC) were mixed at a volume ratio of 3: 7. Lithium hexafluorophosphate (LiPF 6 ) was dissolved as an electrolyte in the obtained mixed solvent to prepare a nonaqueous electrolytic solution having a concentration of 1 mol / L.

セパレータとして多孔性ポリエチレンフィルムを用いた。   A porous polyethylene film was used as a separator.

正極板及び負極板にリード電極を取り付け、正極、セパレータ、負極の順に重ねた。これらをラミネートパックに収納し、電解液を注入してラミネートパックを封止してラミネート型二次電池を得た。これを出力特性評価に用いた。   Lead electrodes were attached to the positive electrode plate and the negative electrode plate, and the positive electrode, the separator, and the negative electrode were stacked in this order. These were stored in a laminate pack, an electrolyte solution was injected, and the laminate pack was sealed to obtain a laminate type secondary battery. This was used for output characteristic evaluation.

[負荷特性評価用]
出力特性評価用電池と同様に正極板、非水電解液及びセパレータを用意した。また、リチウム箔からなる負極を用意した。
[For load characteristics evaluation]
A positive electrode plate, a non-aqueous electrolyte, and a separator were prepared in the same manner as the output characteristic evaluation battery. Moreover, the negative electrode which consists of lithium foil was prepared.

正極板及び負極板にリード電極を取り付け、負極、セパレータ、正極を順に容器に収納した。負極はステンレス製の容器底部に電気的に接続され、容器底部が負極端子となる。セパレータはテフロン(登録商標)製の容器側部によって固定される。正極のリード電極の先端は容器外部に導出され、正極端子となる。正負極の端子は、容器側部によって電気的に絶縁されている。収納後電解液を注入し、ステンレス製の容器蓋部によって封止し、密閉型の二次電池を得た。これを負荷特性評価に用いた。   A lead electrode was attached to the positive electrode plate and the negative electrode plate, and the negative electrode, the separator, and the positive electrode were sequentially accommodated in a container. The negative electrode is electrically connected to a stainless steel container bottom, and the container bottom serves as a negative electrode terminal. The separator is fixed by the side of the container made of Teflon (registered trademark). The tip of the positive lead electrode is led out of the container and becomes a positive terminal. The positive and negative terminals are electrically insulated by the container side. After storage, the electrolyte was poured and sealed with a stainless steel container lid to obtain a sealed secondary battery. This was used for load characteristic evaluation.

[サイクル特性評価用]
負極活物質として、炭素材料を用いた。負極活物質の粉末97.5重量%、スチレンブタジエンゴム1.0重量%及び1.5重量%のカルボキシメチルセルロース(CMC)水溶液とを混練してペーストを調整し、これを銅箔からなる集電体に塗布し乾燥させ、板状に成型して負極板とした。
[For cycle characteristics evaluation]
A carbon material was used as the negative electrode active material. A paste was prepared by kneading 97.5% by weight of negative electrode active material powder, 1.0% by weight of styrene butadiene rubber and 1.5% by weight of carboxymethylcellulose (CMC) aqueous solution, and this was collected from a copper foil. It was applied to the body, dried and molded into a plate shape to obtain a negative electrode plate.

出力特性評価用電池と同様に正極板、非水電解液及びセパレータを用意した。   A positive electrode plate, a non-aqueous electrolyte, and a separator were prepared in the same manner as the output characteristic evaluation battery.

正極板及び負極板にリード電極を取り付け、出力特性評価用電池と同様にラミネート型二次電池を得た。これをサイクル特性評価に用いた。   Lead electrodes were attached to the positive electrode plate and the negative electrode plate, and a laminate type secondary battery was obtained in the same manner as the output characteristic evaluation battery. This was used for cycle characteristic evaluation.

[電池特性の評価]
以下の要領で各種電池特性の評価を行った。
[Evaluation of battery characteristics]
Various battery characteristics were evaluated in the following manner.

[出力特性]
25℃の環境下、満充電電圧を4.2Vとして充電深度50%まで定電流充電し、その後特定の電流値iでパルス放電・充電を行った。パルスは10秒印加後開放3分で放電と充電を順次繰り返した。パルス放電・充電の電流値iは0.04A、0.08A、0.12A、0.16A及び0.20Aとした。電流値iをグラフ横軸に、パルス放電10秒後の電圧値Vをグラフ縦軸にそれぞれプロットし、i−Vプロットにおいて直線線形が保たれる電流範囲で傾きの絶対値を求め、電池抵抗R(25)とした。
[Output characteristics]
Under an environment of 25 ° C., a full charge voltage was set to 4.2 V, and constant current charging was performed to a charge depth of 50%, and then pulse discharge / charge was performed at a specific current value i. After applying the pulse for 10 seconds, discharging and charging were repeated in 3 minutes. The pulse discharge / charge current values i were 0.04A, 0.08A, 0.12A, 0.16A and 0.20A. The current value i is plotted on the horizontal axis of the graph, the voltage value V after 10 seconds of pulse discharge is plotted on the vertical axis of the graph, and the absolute value of the slope is obtained in the current range in which linear linearity is maintained in the i-V plot. R (25).

−25℃の環境下、満充電電圧を4.2Vとして充電深度50%まで定電流充電し、その後特定の電流値でパルス放電を行った。パルスは10秒印加後開放10分で放電のみ行った。パルス放電の電流値iは0.04A、0.06A、0.08A、0.10Aとした。以下R(25)同様にして電池抵抗を求め、R(−25)とした。これらRが低いことは、出力特性が高いことを意味する。   Under an environment of −25 ° C., the full charge voltage was set to 4.2 V, and constant current charging was performed until the charge depth was 50%, and then pulse discharge was performed at a specific current value. The pulse was discharged only for 10 minutes after the application for 10 seconds. The pulse discharge current value i was set to 0.04 A, 0.06 A, 0.08 A, and 0.10 A. Thereafter, the battery resistance was determined in the same manner as R (25), and was set to R (-25). Low R means high output characteristics.

[負荷特性評価]
満充電電圧4.3V、充電負荷0.2C(1C:満充電の状態から1時間で放電を終了させる電流値)で定電流定電圧充電した。その後、放電電圧2.75V、放電負荷0.2Cで定電流放電し、放電電圧までに放出した電荷を通常放電容量Q(0.2C)とした。一方、充電電圧4.3V、放電電圧2.75V、放電負荷0.2C、1C、3Cの順で、それぞれ充電と放電を行い、3Cのときの放電容量を負荷放電容量Q(3C)とした。負荷放電容量の通常放電容量に対する比(≡Q(3C)/Q(0.2C)を負荷効率Pとした。Q(3C)及び負荷放電容量及び負荷効率が高いことは、負荷特性が良いことを意味する。
[Load characteristic evaluation]
The battery was charged at a constant current and a constant voltage at a full charge voltage of 4.3 V and a charge load of 0.2 C (1 C: a current value at which discharge was completed in 1 hour from a fully charged state). Thereafter, constant current discharge was performed at a discharge voltage of 2.75 V and a discharge load of 0.2 C, and the charge released up to the discharge voltage was defined as a normal discharge capacity Q d (0.2 C). On the other hand, the charge voltage 4.3 V, discharge voltage 2.75 V, discharge load 0.2 C, 1C, in the order of 3C, respectively performs charging and discharging, the load discharge capacity and the discharge capacity when the 3C Q d and (3C) did. Load ratio for normal discharge capacity of the discharge capacity (≡Q d (3C) / Q d (0.2C) .Q d (3C that the load efficiency P r a) and the load discharge capacity and that the load efficiency is high, the load Means good characteristics.

[サイクル特性評価]
25℃の環境下、満充電電圧4.2V、放電電圧2.75V、正極に対する電流密度1.35mA/cmで定電流定電圧充電及び定電流放電を200回繰り返す。200回目の放電容量の、1回目の放電容量に対する比を容量維持率P(200)とする。容量維持率が高いことはサイクル特性が良いことを意味する。
[Cycle characteristic evaluation]
In an environment of 25 ° C., constant current and constant voltage charging and constant current discharging are repeated 200 times at a full charge voltage of 4.2 V, a discharge voltage of 2.75 V, and a current density of 1.35 mA / cm 2 with respect to the positive electrode. The ratio of the discharge capacity at the 200th time to the discharge capacity at the 1st time is defined as a capacity retention rate P s (200). A high capacity retention rate means good cycle characteristics.

実施例1〜3及び比較例1〜5について、正極活物質の製造条件及び特性を表1に、電池特性を表2に示す。   About Examples 1-3 and Comparative Examples 1-5, the manufacturing conditions and characteristics of a positive electrode active material are shown in Table 1, and battery characteristics are shown in Table 2.

Figure 2015022950
Figure 2015022950

Figure 2015022950
Figure 2015022950

表1、2において、実施例1及び比較例1、実施例2及び比較例2、実施例3及び比較例3並びに比較例4及び比較例5より、比表面積が高いことで出力特性(特に低温出力特性)及び負荷特性が向上していることが分かる。一方、実施例1〜3及び比較例4より、元素Mを存在させることでサイクル特性が格段に向上することが分かる。   In Tables 1 and 2, the output characteristics (especially low temperature) due to the higher specific surface area than Example 1 and Comparative Example 1, Example 2 and Comparative Example 2, Example 3 and Comparative Example 3, and Comparative Example 4 and Comparative Example 5. It can be seen that the output characteristics) and the load characteristics are improved. On the other hand, from Examples 1 to 3 and Comparative Example 4, it can be seen that the presence of the element M significantly improves the cycle characteristics.

本願発明の正極活物質を正極用いることで、使用環境を問わず大出力を取り出し可能な非水電解液二次電池を実現することができる。このような非水電解液二次電池は、電気自動車、ハイブリッド電気自動車等の種々の使用環境が想定される機器の動力源として好適に使用可能である。   By using the positive electrode active material of the present invention as a positive electrode, it is possible to realize a non-aqueous electrolyte secondary battery capable of taking out a large output regardless of the use environment. Such a non-aqueous electrolyte secondary battery can be suitably used as a power source for devices that are expected to be used in various environments such as electric vehicles and hybrid electric vehicles.

1 正極活物質
11 リチウム遷移金属複合酸化物の二次粒子
111 リチウム遷移金属複合酸化物の一次粒子
12 元素Mの存在領域
DESCRIPTION OF SYMBOLS 1 Positive electrode active material 11 Secondary particle of lithium transition metal complex oxide 111 Primary particle of lithium transition metal complex oxide 12 Existence area of element M

Claims (7)

一般式
Li1+zNiMnCo1−x−y
(0.3≦x≦0.6、0.2≦y≦0.5、0.6≦x+y≦1.0、0.0≦z≦0.30、1.0≦x/y)
で表されるリチウム遷移金属複合酸化物の二次粒子を主成分とし、前記二次粒子が、比表面積が2.5m/g以上12m/g以下であり、さらに、ホウ素、ケイ素及びリンからなる群より選択される少なくとも一種の元素Mを含有する、非水電解液二次電池用正極活物質。
General formula Li 1 + z Ni x Mn y Co 1-xy O 2
(0.3 ≦ x ≦ 0.6, 0.2 ≦ y ≦ 0.5, 0.6 ≦ x + y ≦ 1.0, 0.0 ≦ z ≦ 0.30, 1.0 ≦ x / y)
And the secondary particles have a specific surface area of 2.5 m 2 / g to 12 m 2 / g, and boron, silicon and phosphorus A positive electrode active material for a nonaqueous electrolyte secondary battery, comprising at least one element M selected from the group consisting of:
前記リチウム遷移金属複合酸化物について、0.4≦x≦0.6である請求項1に記載の正極活物質。   The positive electrode active material according to claim 1, wherein 0.4 ≦ x ≦ 0.6 for the lithium transition metal composite oxide. 前記リチウム遷移金属複合酸化物について、0.3≦y≦0.5である請求項1又は2に記載の正極活物質。   The positive electrode active material according to claim 1, wherein the lithium transition metal composite oxide satisfies 0.3 ≦ y ≦ 0.5. 前記リチウム遷移金属複合酸化物について、0.8≦x+y≦1.0である請求項1乃至3のいずれか一項に記載の正極活物質。   The positive electrode active material according to claim 1, wherein the lithium transition metal composite oxide satisfies 0.8 ≦ x + y ≦ 1.0. 前記元素Mの含有量が、前記リチウム遷移金属複合酸化物の全遷移金属に対して物質量比で0.05%以上5%以下である、請求項1乃至4のいずれか一項に記載の正極活物質。   5. The element M according to claim 1, wherein the content of the element M is 0.05% or more and 5% or less in a substance amount ratio with respect to all transition metals of the lithium transition metal composite oxide. Positive electrode active material. 前記二次粒子のメジアン径が2μm以上25μm以下である、請求項1乃至5のいずれか一項に記載の正極活物質。   The positive electrode active material according to claim 1, wherein a median diameter of the secondary particles is 2 μm or more and 25 μm or less. 請求項1乃至6のいずれか一項に記載の正極活物質を正極に用いた非水電解液二次電池。   A non-aqueous electrolyte secondary battery using the positive electrode active material according to claim 1 as a positive electrode.
JP2013151284A 2013-07-22 2013-07-22 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same Active JP6273707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013151284A JP6273707B2 (en) 2013-07-22 2013-07-22 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013151284A JP6273707B2 (en) 2013-07-22 2013-07-22 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2015022950A true JP2015022950A (en) 2015-02-02
JP6273707B2 JP6273707B2 (en) 2018-02-07

Family

ID=52487212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013151284A Active JP6273707B2 (en) 2013-07-22 2013-07-22 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP6273707B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4276941A1 (en) 2022-05-11 2023-11-15 Prime Planet Energy & Solutions, Inc. Positive electrode active material and manufacturing method for the same, and nonaqueous electrolyte secondary battery including positive electrode active material
EP4276935A1 (en) 2022-05-11 2023-11-15 Prime Planet Energy & Solutions, Inc. Nonaqueous electrolyte secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050582A (en) * 2003-07-30 2005-02-24 Mitsubishi Chemicals Corp Positive pole for lithium secondary battery and lithium secondary battery using it
JP2008270161A (en) * 2006-12-26 2008-11-06 Mitsubishi Chemicals Corp Lithium transition metal based compound powder, manufacturing method thereof, spray drying body used as calcination precursor thereof, and positive electrode for lithium secondary battery using the powder, and lithium secondary battery
WO2011083861A1 (en) * 2010-01-08 2011-07-14 三菱化学株式会社 Powder for positive electrode material for lithium secondary battery and process for production thereof, and positive electrode for lithium secondary battery and lithium secondary battery each utilizing the powder
JP2011228292A (en) * 2010-04-01 2011-11-10 Mitsubishi Chemicals Corp Positive electrode active material for lithium secondary battery and manufacturing method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050582A (en) * 2003-07-30 2005-02-24 Mitsubishi Chemicals Corp Positive pole for lithium secondary battery and lithium secondary battery using it
JP2008270161A (en) * 2006-12-26 2008-11-06 Mitsubishi Chemicals Corp Lithium transition metal based compound powder, manufacturing method thereof, spray drying body used as calcination precursor thereof, and positive electrode for lithium secondary battery using the powder, and lithium secondary battery
WO2011083861A1 (en) * 2010-01-08 2011-07-14 三菱化学株式会社 Powder for positive electrode material for lithium secondary battery and process for production thereof, and positive electrode for lithium secondary battery and lithium secondary battery each utilizing the powder
JP2011228292A (en) * 2010-04-01 2011-11-10 Mitsubishi Chemicals Corp Positive electrode active material for lithium secondary battery and manufacturing method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4276941A1 (en) 2022-05-11 2023-11-15 Prime Planet Energy & Solutions, Inc. Positive electrode active material and manufacturing method for the same, and nonaqueous electrolyte secondary battery including positive electrode active material
EP4276935A1 (en) 2022-05-11 2023-11-15 Prime Planet Energy & Solutions, Inc. Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6273707B2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
JP5382061B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and positive electrode slurry using the positive electrode composition
JP5401035B2 (en) Lithium ion secondary battery
JP5703626B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP6575048B2 (en) The positive electrode composition for nonaqueous electrolyte secondary batteries, the nonaqueous electrolyte secondary battery, and the manufacturing method of the positive electrode composition for nonaqueous electrolyte secondary batteries.
US10516159B2 (en) Positive electrode active material for nonaqueous secondary battery
JP5099168B2 (en) Lithium ion secondary battery
JP2008177346A (en) Energy storage device
JP5842596B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing positive electrode slurry for non-aqueous electrolyte secondary battery
JP2008153017A (en) Positive active material for nonaqueous electrolyte secondary battery
JP5017778B2 (en) Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP2012099316A (en) Cathode active material for lithium-ion secondary battery, and lithium-ion secondary battery
JP6191351B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2015088343A (en) Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries
JP5017010B2 (en) Lithium secondary battery
JP2014067508A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
JP2010282858A (en) Lithium ion battery
JP6273707B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2018195419A (en) Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
JP6233101B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP5585847B2 (en) Method for producing electrode active material
JP5658058B2 (en) Lithium ion secondary battery
JP6554725B2 (en) Non-aqueous electrolyte battery
JP5958119B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery
WO2016046868A1 (en) Positive active material for lithium ion secondary battery, positive electrode material, and lithium ion secondary battery
WO2015019851A1 (en) Positive electrode active material, positive electrode and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171225

R150 Certificate of patent or registration of utility model

Ref document number: 6273707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250