JP2016180597A - フレッティング疲労評価方法 - Google Patents

フレッティング疲労評価方法 Download PDF

Info

Publication number
JP2016180597A
JP2016180597A JP2015059464A JP2015059464A JP2016180597A JP 2016180597 A JP2016180597 A JP 2016180597A JP 2015059464 A JP2015059464 A JP 2015059464A JP 2015059464 A JP2015059464 A JP 2015059464A JP 2016180597 A JP2016180597 A JP 2016180597A
Authority
JP
Japan
Prior art keywords
analysis
contact
mesh size
stress
fretting fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015059464A
Other languages
English (en)
Other versions
JP6546420B2 (ja
Inventor
能智 宮城
Yoshitomo Miyagi
能智 宮城
櫻井 剛
Takeshi Sakurai
剛 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2015059464A priority Critical patent/JP6546420B2/ja
Publication of JP2016180597A publication Critical patent/JP2016180597A/ja
Application granted granted Critical
Publication of JP6546420B2 publication Critical patent/JP6546420B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

【課題】評価精度を維持しつつ、効率的な評価が可能とされたフレッティング疲労評価方法を提供する。
【解決手段】評価対象部材の接触面に接触部材が接触した状態で、接触面を含む領域を複数の要素に分割して接触部材モデルを生成するモデル生成ステップS1と、応力分布を推定する応力分布推定ステップS2とを含み、応力分布推定ステップS2は、接触部材モデルを解析することで、接触面から評価対象部材の内部方向における深さ位置と、深さ位置における応力値との組である解析点を、複数の異なる深さ位置において取得する解析点取得ステップS21と、深さ位置が所定値以上となる解析点のうちから所定数を代表解析点として選択する代表解析点選択ステップS22と、代表解析点に基づいて得られる深さ位置に対する応力分布を、評価対象部材の接触面からの内部方向における応力分布として決定する応力分布決定ステップS23と、を有する。
【選択図】図2

Description

本開示は、フレッティング疲労の評価方法に関する。
一般に、フレッティング疲労試験は、試験片(評価対象部材)に接触片を所定の面圧で接触させた状態で、試験片に繰返し負荷をかけて行われる。そして、この試験を通して試験片のフレッティング疲労強度を求め、実部材の健全性評価が行われる。これまで様々な形態のフレッティング疲労の研究が公表されているものの、接触の形態、面圧、滑り量、材質等、限定された条件のクライテリアしか分からず、設計評価に使用するのが容易ではない。また、接触形態の差異(エッジ型/平面型)や表面状態(粗さ、残留応力)の影響等について十分に評価できていない。
ところで、試験片と接触片を接触させた状態において試験をすると、接触片の端部に接触する試験片の位置に局所的な高い面圧が生じる(エッジ型)。そして、繰返し負荷により滑りが生じた場合に高い応力が発生し、その高応力部分でフレッティング疲労き裂が発生する。そこで、特許文献1では、この接触端部に発生するピーク応力を解析することで、面圧等の条件に関わらず接触端を持つフレティング疲労の評価を可能としている。しかし、例えば、エンジン連接棒と上部冠との合わせ面など、接触端部がない形状に対する評価(平面型)に特許文献1の評価方法を適用することは困難である。この点、特許文献2に開示される技術は、接触端部の影響を受けにくい接触片形状に適用可能な方法となっている。
特開2001−281121号公報 特開2014−13200号公報
上記の特許文献2に開示されるフレッティング疲労の評価方法では、有限要素法(FEM)に基づく解析が行われている。通常、フレッティング疲労の評価では、高い評価精度を得るために、実機3Dモデルに対して10μmサイズのメッシュを用いたFEMが望まし。しかし、このような細かいメッシュを用いてモデル化を行うと、その分だけFEMの解析結果を得るまでに多大な時間を要するという課題がある。
上述の事情に鑑みて、本発明の少なくとも一実施形態は、評価精度を維持しつつ、効率的な評価が可能とされたフレッティング疲労評価方法を提供することを目的とする。
(1)本発明の少なくとも一実施形態に係るフレッティング疲労評価方法は、
評価対象部材と、前記評価対象部材の接触面に接触する接触部材とが接触した状態でモデル化された接触部材モデルに基づいてフレッティング疲労を評価するフレッティング疲労評価方法であって、
前記フレッティング疲労評価方法は、
前記接触部材モデルにおける前記接触面を含む領域を複数の要素に分割するためのメッシュサイズであって、前記評価に要求される評価精度に対応した要求メッシュサイズよりも粗い大きさとなる解析メッシュサイズを用いて前記接触部材モデルを生成するモデル生成ステップと、
前記接触部材モデルを解析することで、前記評価対象部材の接触面における応力分布を推定する応力分布推定ステップを含み、
前記応力分布推定ステップは、
前記接触部材モデルを解析することで、前記接触面から前記評価対象部材の内部方向における深さ位置と、前記深さ位置における応力値との組である解析点を、複数の異なる前記深さ位置において取得する解析点取得ステップと、
前記深さ位置が所定値以上となる前記解析点のうちから所定数を代表解析点として選択する代表解析点選択ステップと、
前記代表解析点に基づいて得られる前記深さ位置に対する応力分布を、前記要求メッシュサイズを用いた前記接触部材モデルの解析によって得られる前記深さ位置に対する応力分布に相当するものとして、前記評価対象部材の接触面の応力分布として決定する応力分布決定ステップと、を有する。
上記(1)の構成によれば、接触部材モデルは、評価精度を満足するために必要とされるメッシュサイズ(要求メッシュサイズ)よりも粗いメッシュサイズ(解析メッシュサイズ)によって生成され、この接触部材モデルの解析を通して解析点(深さ位置、応力値)を得ている。そして、接触面からの深さ位置が所定値以上となる解析点のうちの所定数からなる代表解析点に基づいて評価対象部材の接触面における応力分布を取得することで、要求メッシュサイズを有するモデルの解析を通して得られる応力分布と同等のものを取得することができる。つまり、より粗いメッシュサイズSを用いたモデルの解析によって得られる代表解析点を用いることで、より細かいメッシュサイズSを用いたモデルの解析結果と同等な評価精度を得ることができる。このため、より粗いメッシュサイズSを用いたモデルを解析することで解析時間を短縮することができ、フレッティング疲労評価の効率化を図ることができる。
(2)幾つかの実施形態では、上記(1)の構成において、
前記代表解析点選択ステップは、前記要求メッシュサイズを用いて生成される前記接触部材モデルの解析により得られる、複数の前記解析点からなる応力分布上の応力値と、前記解析メッシュサイズを用いて生成される前記接触部材モデルの解析により得られる、複数の前記解析点からなる応力分布上の応力値との同一の前記深さ位置における差分が所定の範囲内となる前記深さ位置を、前記所定値として、前記代表解析点を選択する。
上記(2)の構成によれば、代表解析点として採用される解析点を選択する基準(上記の所定値)が、要求メッシュサイズを用いた解析により得られる応力値と、解析メッシュサイズを用いた解析により得られる応力値とが一致するような深さ位置rを有する解析点とされる。つまり、解析メッシュサイズを用いた解析により得られた代表解析点は、要求メッシュサイズを用いることで得られる解析点と同様な値となり、その代表解析点から応力分布が求められることになる。このため、解析メッシュサイズを用いて解析することで、より細かい要求メッシュサイズを用いるのと同等の解析結果を得ることができ、応力分布の推定精度を維持しつつ、解析時間を短縮することができる。
(3)幾つかの実施形態では、上記(1)〜(2)の構成において、
前記解析メッシュサイズは、前記解析メッシュサイズを用いた前記接触モデルの解析を通して得られる前記ピーク応力値と、前記要求メッシュサイズを用いた前記接触モデルの解析を通して得られる前記ピーク応力値との誤差が所定の範囲内となるように決定される。
上記(3)の構成によれば、解析メッシュサイズを適切に設定することにより、応力分布の推定精度を維持しながら、解析時間を短縮することができる。
(4)幾つかの実施形態では、上記(1)〜(3)の構成において、
前記代表解析点には、前記深さ位置rが前記所定値となる前記解析点が含まれる。
上記(4)の構成によれば、接触面により近い解析点を用いることにより、要求される推定精度での上記の応力分布を取得することが可能と共に、推定精度を向上させることができる。
(5)幾つかの実施形態では、上記(1)〜(4)の構成において、
前記代表解析点は、連続する前記解析点から選択される。
上記(5)の構成によれば、要求される推定精度での上記の応力分布を取得することができる。
(6)幾つかの実施形態では、上記(1)〜(5)の構成において、
前記代表解析点に含まれる前記解析点の数となる前記所定数は3つである。
上記(6)の構成によれば、要求される推定精度での上記の応力分布を取得することができる。
(7)幾つかの実施形態では、上記(1)〜(6)の構成において、
前記要求メッシュサイズは10μmであり、
前記解析メッシュサイズは250μm以下である。
上記(7)の構成によれば、10μmのメッシュサイズSを用いたモデルによる解析精度が、250μmのメッシュサイズSを用いたモデルの解析によって得ることができる。また、解析時間を大幅に短縮することができる。
(8)幾つかの実施形態では、上記(7)の構成において、
前記代表解析点が選択される前記深さ位置の範囲となる前記所定値は750μmである。
上記(8)の構成によれば、要求される推定精度の上記の応力分布を取得することができる。
(9)幾つかの実施形態では、上記(7)の構成において、
前記代表解析点が選択される前記深さ位置の範囲となる前記所定値は、前記評価対象部材の前記接触面から3つめの前記解析点である。
上記(9)の構成によれば、要求される推定精度の上記の応力分布を取得することができる。
(10)幾つかの実施形態では、上記(1)〜(9)の構成において、
前記評価対象部材の接触面における応力分布に基づいて応力拡大係数を求める応力拡大係数取得ステップと、
前記応力拡大係数に基づいて取得される応力拡大係数範囲と所定のクライテリアとを比較することで前記評価対象部材の接触面におけるフレッティング疲労を評価する評価ステップと、をさらに備える。
上記(10)の構成によれば、応力拡大係数に基づいて、評価対象部材のフレッティング疲労やその安全性を評価することができる。
本発明の少なくとも一実施形態によれば、評価精度を維持しつつ、効率的な評価が可能とされたフレッティング疲労評価方法が提供される。
本発明の一実施形態に係るフレッティング疲労評価方法が適用される、部材の接触面同士で接触している接触部材を例示する図である。 本発明の一実施形態に係るフレッティング疲労評価方法のフロー図である。 平面型接触の接触形態を説明するための図である。 エッジ型接触の接触形態を説明するための図である。 本発明の一実施形態に係るフレッティング疲労評価装置5の構成を示す図である。 本発明の一実施形態に係るピストンロッドを模擬した接触部材モデル4の正面図である。 本発明の一実施形態に係る接触部材モデルの解析により得られる、解析点Pと、代表解析点と、応力分布と、ピーク応力との関係を説明するための図である。 本発明の一実施形態に係る要求メッシュサイズと解析メッシュサイズとのそれぞれを用いて生成された接触部材モデルに基づいて解析された応力分布を比較して示す図である。 応力拡大係数範囲(ΔK値)のクライテリアの一例を示す図である。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
図1は、本発明の一実施形態に係るフレッティング疲労評価方法が適用される、部材の接触面同士で接触している接触部材を例示する図である。また、図2は、本発明の一実施形態に係るフレッティング疲労評価方法のフロー図である。そして、互いに接触する2つの部材(接触部材)のうちの一方を評価対象部材とすると、図1に示されるような、評価対象部材と、この評価対象部材の接触面に接触する接触部材とが接触した状態の構成に対して、このフレッティング疲労評価方法は適用される。図1の例示では、2つの接触部材は、ピストンロッドを形成する連接棒1と上部冠2であり、連接棒1と上部冠2は、それぞれ、相互に接触する平坦な接触面(連接棒1の接触面1a、上部冠2の接触面2a)を有している。
図1に例示されるピストンロッドについて説明すると、ピストンロッドは、一方の接触部材である連接棒1と、他方の接触部材である上部冠2とを有する。連接棒1は、その先端にピストン(図示せず)が接合されるピストン接合穴を有し、基端に形成されている面が接触面1aとなっている。一方、上部冠2は、クランク軸(図示せず)に接合されるクランク軸接合穴を有し、外周の一部に形成されている面が接触面2aとなっている。そして、連接棒1の接触面1aと上部冠2の接触面2aとは合わされて直接接触しており、左右の端部のそれぞれにおいて接触面1a、2aの法線方向からボルト31が挿入されることで、合計2箇所で締結されている。このため、連接棒1の接触面1aおよび上部冠2の接触面2aには、このボルト31の締結により、ボルト31の周囲において局所的に高い面圧が生じている。なお、上部冠2は、クランク軸への接合においてクランク軸接合穴が開放されるように2分割されており、2分割された両者が相互にボルト32で締結されている。
このピストンロッドは、エンジンの運転時においては、不図示のピストンが図1の紙面上下方向(接触面1a、2aが対向する方向)に移動するのに伴って連接棒1が上下に移動する。また、この連接棒1の移動に伴って、連接棒1に連結され上部冠2も移動することにより不図示のクランク軸が回転されることになる。このような連接棒1と上部冠2との繰り返し運動により、連接棒1の接触面1aと上部冠2の接触面2aには、それぞれの接触面に接触(当接)している他方の接触面を介して繰り返し負荷がかかることになる。この際、連接棒1の接触面1aおよび上部冠2の接触面2aの部分が図1の紙面左右方向(接触面1a、2aに沿う方向)に変形する場合、各接触面には、各接触面に沿う方向の滑りが生じる。これによって、連接棒1の接触面1aと上部冠2の接触面2aには、例えば、局所的な高い面圧が生じているボルト31の周囲や、連接棒1の接触面1aの端部が位置する付近の上部冠2の接触面2aにおいて、フレッティング疲労によるき裂9が発生するおそれがある。
このき裂9の発生しやすい個所の接触形態について説明すると、ボルト31の周囲における接触形態は、図3Aに示されるような平面型接触に分類され、一方、連接棒1の接触面1aの端部が位置する上部冠2の接触面2aの接触形態は、図3Bに示されるようなエッジ型接触に分類される。図3A〜図3Bのそれぞれでは、下側の部材を評価対象部材とし、上側の部材を評価対象部材の接触面に接触する接触部材とされている。そして、一定の押しつけ力で両者が接触された状態で、上下方向や左右方向に移動される繰り返しの負荷をかけた際の、評価対象部材の接触面に生じる面圧と、この接触面から部材の内部方向(法線方向)における各位置(深さ位置r)での応力σが示されている。評価対象部材の接触面に生じる面圧については、平面型接触(図3A)では、評価対象部材の接触面には均等となるような面圧が生じている。これに対して、エッジ型接触(図3B)では、接触部材の端部が接する評価対象部材の部分(原点)から遠い位置では面圧は均等となるように生じているが、原点に近づくほど高くなる領域がある。一方、評価対象部材に生じる応力値は、平面型接触(図3A)では深さ位置rにかかわらず、ある程度の深さまで一定となっている。これに対して、エッジ型接触(図3B)では、接触面における応力値が最も高く、深さ位置rが大きくなるに従って小さくなっている。また、エッジ型接触では上述の端部にき裂が発生・進展するが、平面型接触では、接触面に発生する凝着からき裂が発生し、進展することになる。
このような、部材の接触面同士で接触している接触部材を有するピストンロッドなどでは、製品(半完成品)のフレッティング疲労を設計段階において評価することで、フレッティング疲労を低減できるように製品を設計することが望ましい。以下では、本発明の一実施形態に係るフレッティング疲労評価方法について説明する。このフレッティング疲労評価方法は、評価対象部材と、前記評価対象部材の接触面に接触する接触部材とが接触した状態でモデル化された接触部材モデル4を作成し、この接触部材モデル4に基づいてフレッティング疲労を評価する。
幾つかの実施形態では、フレッティング疲労評価装置5を用いて、このフレッティング疲労評価方法を実施しても良い。また、このフレッティング疲労評価装置5は、図4に示される実施形態のように、フレッティング疲労評価プログラム6を含むコンピュータであっても良い。すなわち、フレッティング疲労評価プログラム6を含むコンピュータ(フレッティング疲労評価装置5)は、各種演算を行うCPU51(Central Processing Unit:中央演算装置)と、CPU51のワークエリア等となるメモリ52(主記憶装置)と、ハードディスクドライブ装置や半導体記憶デバイス等で構成される補助記憶装置53とを備え、これらは、内部バスなどの内部通信線56を介して相互にデータをやり取りすることが可能となっている。また、図4の例示では、コンピュータは、ネットワークを介して外部と通信するための通信インタフェース54と、入力装置及び表示装置の入出力インタフェース55とを備えている。これらは、上記の内部通信線56に接続されることで、内部通信線56に接続される機能同士の通信が可能となっている。なお、図4では、入力装置として、キーボード57やマウス58が例示されており、出力装置として、ディスプレイ等の表示装置59が例示されている。
そして、上記の補助記憶装置53には、フレッティング疲労評価プログラム6と、OS(Operating System)プログラムなどが予め格納されており、フレッティング疲労評価プログラム6がコンピュータにインストールされた状態にある。また、補助記憶装置53には、互いに接触する接触部材(上述の評価対象部材および接触部材)に関する材料物性などの特性データや、フレッティング疲労評価結果が記憶されても良い。なお、補助記憶装置53に格納されるデータやプログラムのうち、フレッティング疲労評価プログラム6や上記の特性データ、評価結果については、通信インタフェース54を介するなどによって、コンピュータと通信回線を通じて接続されるもの(例えば、データサーバ)に格納されても良い。そして、フレッティング疲労評価プログラム6は、評価実行時において、上述の補助記憶装置53やデータサーバなどからメモリ52にロードされることで、フレッティング疲労評価プログラム6が備える各種機能部がCPU51によって実行されるよう構成されている。
また、入力装置としてのキーボード57およびマウス58からは、本実施形態のフレッティング疲労評価方法を実行するための必要なデータや評価者(ユーザ)の指示などが入力される。表示装置59には、フレッティング疲労評価プログラム6がCPU51によって実行された処理結果を表示される。
そして、上記に説明さえるようなフレッティング疲労評価装置5は、図4に示されるように、後述するモデル生成ステップ(ステップS1)を実行するモデル生成部61と、後述する応力分布推定ステップ(ステップS2)を実行するモデル解析部62と、フレッティング疲労を評価する評価部63を備えることで、フレッティング疲労に対する評価を行うよう構成されている。
以下、図2に示される本発明の一実施形態に係るフレッティング疲労評価方法を説明する。ここでの説明では、連接棒1の接触面1aと、上部冠2の接触面2aとがエッジ型接触している箇所(図1の矢印Tで示される部分)について、上部冠2を評価対象部材、連接棒1を評価対象部材の接触面に接触する接触部材として評価を実施することを例に、図2のフローに従って説明する。なお、上部冠2を評価対象部材として説明するが、連接棒1を評価対象部材とした場合も同様となる。また、平面型接触の場合には、接触面に凝着を設定するなどして同様に解析しても良い。
本発明の一実施形態に係るフレッティング疲労評価方法は、図2に示されるように、接触部材モデル4における接触面(1a、2a)を含む領域を複数の要素に分割するためのメッシュサイズSであって、フレッティング疲労の評価に要求される評価精度に対応した要求メッシュサイズSrよりも粗い大きさとなる解析メッシュサイズSaを用いて接触部材モデル4を生成するモデル生成ステップ(ステップS1)と、接触部材モデル4を解析することで、評価対象部材の接触面(例えば、上部冠2の接触面2a)における応力分布σ(r)を推定する応力分布推定ステップ(ステップS2)と、を含む。そして、推定される応力分布σ(r)に基づいて、評価対象部材のフレッティング疲労が評価されることになる(例えば、図2のステップS3〜ステップS4)。以下、これらのステップS1〜S2について、順に説明する。
図2のモデル生成ステップ(ステップS1)では、実機を模擬した接触部材モデル4を作成する。具体的には、図5に示されるように、評価対象部材(上部冠2)と、評価対象部材の接触面(上部冠2の接触面2a)に接触する連接棒1とが接触した状態でモデル化された接触部材モデル4を生成する。図5の例示では、図1に示される連接棒1、上部冠2を有限要素法(FEM:Finite Element Method)に基づく複数の微小要素(メッシュ)で表現することで、評価対象部位の接触部材モデル4を作成している。すなわち、複数の微小要素の集まりとして連接棒1と上部冠2がモデル化されて表現される。より詳細には、各部材(連接棒1、上部冠2)の内部は、それぞれ四角形や三角形のメッシュによって分割されている。また、図5に例示される接触部材モデル4は、接触面付近の応力が部材内部に比べて高く、連接棒1の端部付近にフレッティング疲労によるき裂が発生する恐れがあるため、接触面1a、2aの付近の部分が細かなメッシュで表現されており、それ以外は、接触面付近よりも粗いメッシュで表現されている。なお、図5の例示では、接触部材モデル4の一部のみが拡大して示されている。
このメッシュサイズSは、一般には、細かいほどFEMによる解析精度(計算精度)が高まるが、メッシュサイズSが細かいと解析時に解くべき連立方程式のマトリクスサイズが大きくなり、計算時間が増大してしまう。このため、図5に例示される接触部材モデル4においては、接触面とそれ以外の部分でメッシュサイズSが異なるように設定されている。そして、フレッティング疲労の評価においては、接触面におけるメッシュサイズSは、例えば10μmで行うことが望ましいが、図5の例示のように接触面付近のみを10μmとすることで計算負荷の軽減を図った場合でも、接触部材モデル4の解析に多くの計算時間を要することになる。
そこで、このモデル生成ステップ(ステップS1)では、接触部材モデル4における接触面(1a、2a)を含む領域を複数の要素に分割するためのメッシュサイズSrを、この評価に要求される評価精度に対応した要求メッシュサイズSrよりも粗い大きさとなる解析メッシュサイズSaとし、この解析メッシュサイズSaを用いて前記接触部材モデルを生成する。具体的には、例えば、必要とされるメッシュサイズS(要求メッシュサイズSr)が10μmの場合であっても、10μmのメッシュサイズを用いずに、その代わりに、例えば250μmなどのより粗いメッシュサイズS(解析メッシュサイズSa)を用いて接触部材モデル4を生成する。
なお、この接触部材モデル4の生成は、プリポストプロセッサとなるソフトウェア(コンピュータプログラム)を実行することで作成しても良い。プリポストプロセッサは、数値解析計算において、数値解析の計算そのものを担当するソルバを実行する前後において、モデル作成などの準備作業や結果の表示を行うことが可能なものであり、プリプロセッサで形状データや境界条件がユーザによって設定され、ソルバで計算した数値データをポストプロセッサで表示することが通常行われている。この場合には、プリポストプロセッサがモデル生成部61の機能を担うことになる。また、接触部材モデル4が予め補助記憶装置53やデータサーバに記憶されていてもよく、この場合、モデル生成部61によって、補助記憶装置53やデータサーバから接触部材モデル4が取得される。
続いて、図2のステップS2となる応力分布推定ステップでは、接触部材モデル4を解析することで、評価対象部材(この場合は、上部冠2)の接触面2aからの内部方向における応力分布を推定する。これは、上部冠2の接触面2a(評価対象部材の接触面)のき裂の発生有無やき裂先端の応力状態の評価を、評価対象部材の接触面近傍における応力分布σ(r)に基づいて行うためである。例えば、接触部材モデル4の解析を通して得られる上記の応力分布σ(r)に基づいて、き裂先端付近の応力分布の強さを表す物理量(MP・√m)である応力拡大係数(K値)を求め、応力拡大係数(K値)に基づいて評価を行うことができる。そして、この応力分布推定ステップ(ステップS2)は、図2に示されるように、後述する、解析点取得ステップ(ステップS21)と、代表解析点選択ステップ(ステップS22)と、応力分布決定ステップ(ステップS23)と、を含む。以下、ステップS21〜ステップS23(図2)について説明する。
図2のステップS21における解析点取得ステップでは、接触部材モデル4を解析することで、評価対象部材である上部冠2の接触面2aから評価対象部材(上部冠2)の内部方向における深さ位置rと、この深さ位置rにおける応力値との組である解析点Pを、複数の異なる深さ位置rにおいて取得する。具体的には、解析において、接触部材モデル4における連接棒1および上部冠2を、その接触面1a、2aに沿う方向(図5に示す矢印Aおよび矢印Bの方向)に相対移動させることで弾性変形させ(FEM弾性解析)、各接触面1a、2aの各相対滑り量および面圧を解析する(弾性解析)。この解析により、接触部材モデル4における上部冠2の接触面2aを原点0として、この上部冠2の接触面2aからの内部方向(法線方向)における位置となる深さ位置rにおける応力値が取得される(図6の黒丸)。なお、この解析によって、連接棒1の接触面1aおよび上部冠2の接触面2aのそれぞれについて、相対滑り量および面圧が取得されても良く、同様に、連接棒1の応力値の分布が取得されても良い。
ここで、これらの解析点Pから、上部冠2の接触面2aの応力分布σ(r)を求める手法を説明する。評価対象部材の接触面2aなど、応力特異場となる応力分布σ(r)は下記(1)式で表される。下記(1)式のHは応力特異場の強さ、λは応力特異場の特異性の指数であり、これらは応力特異場パラメータと呼ばれる。また、rは深さ位置である。
σ(r)=H・r^(-λ)・・・(1)
エッジ型接触がモデル化された上記の接触部材モデル4においては、評価対象部材の接触面(上部冠2の接触面2a)の応力が応力特異場になる。そして、FEMの解析により得られた解析点Pのうちから複数の代表解析点Pe(例えば、3点)を選択し、この代表解析点Peを通る上記(1)で示される形態の曲線を見つける。例えば、代表解析点Peから最小二乗法により求めても良い。このようにして応力特異場パラメータ(強さH、指数λ)が特定されることで、上記(1)式で表される応力分布σ(r)が求められる。
また、応力拡大係数(K値)の算出のために、評価対象部材の接触面における応力値(ピーク応力値ap)を求める場合には、上記で求められる応力分布σ(r)を用いて解析点Pを接触面まで外挿することで求めることができる。すなわち、深さ位置r=0が評価対象部材の接触面であり、その位置における応力値がピーク応力値apとなる。ところが、上記式の通り、この応力分布σ(r)は深さ位置r=0において無限大に発散する。そこで、例えば、深さ位置rが、0.01mmや、0.005mm、0.001mmなどの表面近傍の任意の値における応力値を求め、この応力値をピーク応力σapとする。
なお、図6には、上記の解析点Pと、代表解析点Peと、応力分布σ(r)と、ピーク応力σapとの関係が示されている。図6において、横軸は深さ位置rを示し、上部冠2の接触面2aを始点として、始点からからの内部方向(法線方向)における位置を示す。また、縦軸は、この深さ位置rにおける応力値を示す。また、解析点Pが黒丸で示され、応力分布σ(r)が破線、ピーク応力σapが×印でそれぞれ示されている。そして、図6に示されるように、解析点Pのうちの代表解析点Peに一致するような破線を求めることで、特異場パラメータ(強さH、指数λ)が取得される。また、接触面近傍の深さ位置rからピーク応力σapが取得される。主上記の応力分布σ(r)が。また、応力分布σ(r)は接触面(r=0)において無限大となっており(応力特異場)、その近傍の任意の深さ位置r(例えば、r0)における応力値(σ(r0))が、ピーク応力値apとして取得されている。
そこで、次のステップS22における代表解析点選択ステップでは、解析点Pの中から代表解析点Peを選ぶが、代表解析点選択ステップでは、この深さ位置rが所定値以上となる解析点Pのうちから所定数を代表解析点Peとして選択する。このように、代表解析点Peとして選択される解析点Pを、所定値以上の深さ位置rとなるもののうちから選択する理由を、図7を用いて説明する。
図7は、要求メッシュサイズSrと解析メッシュサイズSaとのそれぞれを用いて生成された接触部材モデル4に基づいて解析された応力分布を比較して示す図である。また、図7においては、要求メッシュサイズSrを10μmであり、解析メッシュサイズSaを250μmとしており、このため、解析点は、前者では、0.01mm(10μm)から得られているが、後者では、0.25mm(250μm)から得られている。
図7に示されるように、同一の深さ位置rで両者を比較すると、丸印で示される10μmメッシュサイズSの解析点Pと、三角印で示される250μmメッシュサイズSの解析点Pは、所定値以上の深さ位置rにおいてより良く一致している。具体的には、接触面に最も近い側の解析点Pから順に数えると、250μmメッシュサイズSの解析点Pのうちの第1番目の解析点P(深さ位置r=250μm)および第2番目の解析点P(深さ位置r=250×2=500μm)は、10μmメッシュサイズSの解析点Pとの差分が大きい。また、250μmメッシュサイズSの第1番目と10μmメッシュサイズSとの間の差分に対して、250μmメッシュサイズSの第2番目と10μmメッシュサイズSとの間の差分は小さくなっており、250μmメッシュサイズSの第3番目(深さ位置r=250×3=750μm)以降と10μmメッシュサイズSとの差分はほとんどなくなっている。
そこで、解析メッシュサイズSaの解析点Pのうち、要求メッシュサイズSrと概ね一致するような解析点Pから代表解析点Peを選択し、上記に説明したように、代表解析点Peに基づいて応力分布σ(r)を求める。そうすると、図7に示されるように、解析メッシュサイズSaを用いて求められた線である破線で示される応力分布σ(r)は、要求メッシュサイズSrを用いて求められた線である実線で示される応力分布σ(r)と、概ね一致することになる。
なお、図7の例示では、代表解析点Peを選択する基準となる上述した深さ位置rの所定値は750μmとなり、言い換えると、250μmを用いた解析結果のうちの第3番目の解析点Pとなる。また、図7の例示では、代表解析点Peは、黒塗りの三角印で示される、750μmの解析点Pから連続する3つの解析点となっている。他の幾つかの実施形態では、代表解析点Peは、所定値となる750μmとなる3番目の点を含まなくても良いし、連続する解析点Pから選択されていなくても良い。
すなわち、代表解析点Peを選択する基準となる上述した深さ位置rの所定値は、要求メッシュサイズSrを用いて生成される接触部材モデル4の解析により得られる、複数の解析点Pからなる応力分布σ(r)上の応力値と、解析メッシュサイズSaを用いて生成される接触部材モデル4の解析により得られる、複数の解析点Pからなる応力σ(r)上の応力値との同一の深さ位置における差分が所定の範囲内となる深さ位置となっている。なお、この差分の基準となる所定の範囲は、±10MPa以内であっても良い。
そして、次のステップS23における応力分布決定ステップでは、上述した代表解析点Peに基づいて得られる、深さ位置rに対する応力分布σ(r)を、評価対象部材の接触面(上部冠2の接触面2a)からの内部方向における応力分布σ(r)として決定する。すなわち、このようにして求められた応力分布σ(r)は、要求メッシュサイズSrを用いた接触部材モデル4の解析によって得られる深さ位置rに対する応力分布σ(r)に近似するものとなる。つまり、解析メッシュサイズSaによる解析結果から、要求メッシュサイズSrによる解析結果と同等の解析結果が得られることになる。
その後、取得された応力分布σ(r)に基づいて、評価部材のフレッティング疲労の評価がなされる。例えば、図2に示される実施形態では、次のステップS3において、接触部材モデル4の解析に基づいて取得される応力分布σ(r)に基づいて、応力拡大係数(K値)が求められている。具体的には、エッジ接触による局所応力分布に固有き裂a0を想定して、重ね合わせ法によりK値が算出されている。この重ね合わせ法では上述のピーク応力σapが必要となる。なお、固有き裂a0は、下限界応力拡大係数範囲ΔKth、Δσw(疲労限)、材料データ(硬さなど)から求まるものであり、a0=(1/π)(ΔKth/fΔσw)^2となる。ここで、f=1.12/[{1+1.464(a/c)^1.65}^(1/2)]であり、a/c=0.4となる。
また、図2に示される実施形態では、次のステップS4では、接触部材モデル4の解析により算出された応力拡大係数(K値)から、応力拡大係数(K値)の変化幅となる応力拡大係数範囲(ΔK値)が求められ、この応力拡大係数範囲(ΔK値)と、硬さなどの材料データから推定されるクライテリア(図8参照)と比較し、評価対象部材(この実施形態では、上部冠2)のフレッティング疲労が評価されている。すなわち、図8は、横軸の1−Rである。このRは、応力分布における最小と最大の比となる(R=σmin/σmax)。また、図8の縦軸は、下限界応力拡大係数範囲ΔKthとなる。そして、応力拡大係数範囲ΔKが、図8で示されるクライテリアのどの領域に位置するかで、評価対象部材の接触面におけるフレッティング疲労の状態が評価され、位置する領域によって、き裂が進展、き裂が発生・停留、き裂未発生との評価がなされる。
上記の構成によれば、接触部材モデル4は、評価精度を満足するために必要とされるメッシュサイズS(要求メッシュサイズSr)よりも粗いメッシュサイズS(解析メッシュサイズSa)によって生成され、この接触部材モデル4の解析を通して解析点P(深さ位置、応力値)を得ている。そして、接触面からの深さ位置rが所定値以上となる解析点のうちの所定数からなる代表解析点Peに基づいて評価対象部材の接触面における応力分布σ(r)を取得することで、要求メッシュサイズSrを有するモデルの解析を通して得られる応力分布と同等のものを取得することができる。つまり、より粗いメッシュサイズSを用いたモデルの解析によって得られる代表解析点Peを用いることで、より細かいメッシュサイズSを用いたモデルの解析結果と同等な評価精度を得ることができる。このため、より粗いメッシュサイズSを用いたモデルを解析することで解析時間を短縮することができ、フレッティング疲労評価の効率化を図ることができる。
また、代表解析点Peとして採用される解析点Pを選択する基準(所定値)が、要求メッシュサイズSrを用いた解析により得られる応力値と、解析メッシュサイズSaを用いた解析により得られる応力値とが一致するような深さ位置rを有する解析点Pとされる。つまり、解析メッシュサイズSaを用いた解析により得られた代表解析点Peは、要求メッシュサイズSrを用いることで得られる解析点Pと同様となり、その代表解析点Peから応力分布が求められることになる。このため、解析メッシュサイズSaを用いて解析することで、より細かい要求メッシュサイズSrを用いるのと同等の解析結果を得ることができ、ピーク応力の推定精度を維持しつつ、解析時間を短縮することができる。
また、他の幾つかの実施形態では、解析メッシュサイズSaは、解析メッシュサイズSaを用いた接触モデル4の解析を通して得られるピーク応力値σapと、要求メッシュサイズSrを用いた接触モデル4の解析を通して得られるピーク応力値σapとの誤差が所定の範囲内となるように決定される。つまり、要求メッシュサイズSrに対して用いられる解析メッシュサイズSaの粗さは、両者のピーク応力値σaの誤差によって選択しても良い。例えば、10μmのメッシュサイズSを用いてえられたピーク応力σapと、種々の解析メッシュサイズSa(〜250μm、500μm)を用いて生成された接触部材モデル4の解析を通して得られたピーク応力σapとをそれぞれ求め、両者の誤差を比較した。その結果、250μm以内の解析メッシュサイズSaを用いて解析されたピーク応力σapと、10μmの要求メッシュサイズSrを用いて解析されたピーク応力σapとの誤差は、±10%以内であり、それ以上の粗さの解析メッシュサイズSaでは誤差が広がることが確認された。このため、10μmのメッシュサイズSを用いたモデルによる解析精度と同等な解析結果が、250μm以下のメッシュサイズSを用いたモデルの解析によって得ることができる。また、これによって、解析時間を大幅に短縮することができる。
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。

1 連接棒(接触部材)
1a 接触面
2 上部冠(接触部材)
2a 接触面
31 ボルト
32 ボルト
4 接触部材モデル

5 フレッティング疲労評価装置
51 CPU
52 メモリ
53 補助記憶装置
54 通信インタフェース
55 入出力インタフェース
56 内部通信線
57 キーボード
58 マウス
59 表示装置

6 フレッティング疲労評価プログラム
61 モデル生成部
62 モデル解析部
63 評価部

9 き裂


P 解析点
Pe 代表解析点
S メッシュサイズ
Sr 要求メッシュサイズ
Sa 解析メッシュサイズ

r 深さ位置
σap ピーク応力

Claims (10)

  1. 評価対象部材と、前記評価対象部材の接触面に接触する接触部材とが接触した状態でモデル化された接触部材モデルに基づいてフレッティング疲労を評価するフレッティング疲労評価方法であって、
    前記フレッティング疲労評価方法は、
    前記接触部材モデルにおける前記接触面を含む領域を複数の要素に分割するためのメッシュサイズであって、前記評価に要求される評価精度に対応した要求メッシュサイズよりも粗い大きさとなる解析メッシュサイズを用いて前記接触部材モデルを生成するモデル生成ステップと、
    前記接触部材モデルを解析することで、前記評価対象部材の接触面からの内部方向における応力分布を推定する応力分布推定ステップを含み、
    前記応力分布推定ステップは、
    前記接触部材モデルを解析することで、前記評価対象部材の前記接触面からの内部方向における深さ位置と、前記深さ位置における応力値との組である解析点を、複数の異なる前記深さ位置において取得する解析点取得ステップと、
    前記深さ位置が所定値以上となる前記解析点のうちから所定数を代表解析点として選択する代表解析点選択ステップと、
    前記代表解析点に基づいて得られる前記深さ位置に対する応力分布を、前記評価対象部材の接触面からの内部方向における応力分布として決定する応力分布決定ステップと、を有することを特徴とするフレッティング疲労評価方法。
  2. 前記代表解析点選択ステップは、前記要求メッシュサイズを用いて生成される前記接触部材モデルの解析により得られる、複数の前記解析点からなる応力分布上の応力値と、前記解析メッシュサイズを用いて生成される前記接触部材モデルの解析により得られる、複数の前記解析点からなる応力分布上の応力値との同一の前記深さ位置における差分が所定の範囲内となる前記深さ位置を、前記所定値として、前記代表解析点を選択することを特徴とする請求項1に記載のフレッティング疲労評価方法。
  3. 前記解析メッシュサイズは、前記解析メッシュサイズを用いた前記接触モデルの解析を通して得られる前記ピーク応力値と、前記要求メッシュサイズを用いた前記接触モデルの解析を通して得られる前記ピーク応力値との誤差が所定の範囲内となるように決定されることを特徴とする請求項1または2に記載のフレッティング疲労評価方法。
  4. 前記代表解析点には、前記深さ位置rが前記所定値となる前記解析点が含まれることを特徴とする請求項1〜3のいずれか一項に記載のフレッティング疲労評価方法。
  5. 前記代表解析点は、連続する前記解析点から選択されることを特徴とする請求項1〜4のいずれか一項に記載のフレッティング疲労評価方法。
  6. 前記代表解析点に含まれる前記解析点の数となる前記所定数は3つであることを特徴とする請求項1〜5のいずれか一項に記載のフレッティング疲労評価方法。
  7. 前記要求メッシュサイズは10μmであり、
    前記解析メッシュサイズは250μm以下であることを特徴とする請求項1〜6のいずれか一項に記載のフレッティング疲労評価方法。
  8. 前記代表解析点が選択される前記深さ位置の範囲となる前記所定値は750μmであることを特徴とする請求項7に記載のフレッティング疲労評価方法。
  9. 前記代表解析点が選択される前記深さ位置の範囲となる前記所定値は、前記評価対象部材の前記接触面から3つめの前記解析点であることを特徴とする請求項7に記載のフレッティング疲労評価方法。
  10. 前記評価対象部材の接触面における応力分布に基づいて応力拡大係数を求める応力拡大係数取得ステップと、
    前記応力拡大係数に基づいて取得される応力拡大係数範囲と所定のクライテリアとを比較することで前記評価対象部材の接触面におけるフレッティング疲労を評価する評価ステップと、をさらに備えることを特徴とする請求項1〜9のいずれか1項に記載のフレッティング疲労評価方法。
JP2015059464A 2015-03-23 2015-03-23 フレッティング疲労評価方法 Active JP6546420B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015059464A JP6546420B2 (ja) 2015-03-23 2015-03-23 フレッティング疲労評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015059464A JP6546420B2 (ja) 2015-03-23 2015-03-23 フレッティング疲労評価方法

Publications (2)

Publication Number Publication Date
JP2016180597A true JP2016180597A (ja) 2016-10-13
JP6546420B2 JP6546420B2 (ja) 2019-07-17

Family

ID=57132665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015059464A Active JP6546420B2 (ja) 2015-03-23 2015-03-23 フレッティング疲労評価方法

Country Status (1)

Country Link
JP (1) JP6546420B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108732035A (zh) * 2018-04-28 2018-11-02 南京航空航天大学 一种榫连接结构的高温微动疲劳寿命测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193702A (ja) * 1997-12-26 1999-07-21 Toshiba Corp タービンロータの亀裂進展予測方法
JP2006283681A (ja) * 2005-04-01 2006-10-19 Hitachi Ltd 蒸気タービン動翼と蒸気タービンロータ及びそれを用いた蒸気タービン並びにその発電プラント
US20120259593A1 (en) * 2011-04-07 2012-10-11 El-Zein Mohamad S Method for the prediction of fatigue life for welded structures
JP2012198164A (ja) * 2011-03-23 2012-10-18 Jfe Steel Corp レーザ重ね溶接継手の強度評価方法
US20140000080A1 (en) * 2012-06-28 2014-01-02 Eurocopter Method of fabricating a mechanical part, including a method of predicting the risks of crack initiation in the part in a "fretting-fatigue" situation
JP2014013200A (ja) * 2012-07-04 2014-01-23 Mitsubishi Heavy Ind Ltd フレッティング疲労評価方法およびフレッティング疲労評価装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193702A (ja) * 1997-12-26 1999-07-21 Toshiba Corp タービンロータの亀裂進展予測方法
JP2006283681A (ja) * 2005-04-01 2006-10-19 Hitachi Ltd 蒸気タービン動翼と蒸気タービンロータ及びそれを用いた蒸気タービン並びにその発電プラント
JP2012198164A (ja) * 2011-03-23 2012-10-18 Jfe Steel Corp レーザ重ね溶接継手の強度評価方法
US20120259593A1 (en) * 2011-04-07 2012-10-11 El-Zein Mohamad S Method for the prediction of fatigue life for welded structures
US20140000080A1 (en) * 2012-06-28 2014-01-02 Eurocopter Method of fabricating a mechanical part, including a method of predicting the risks of crack initiation in the part in a "fretting-fatigue" situation
JP2014013200A (ja) * 2012-07-04 2014-01-23 Mitsubishi Heavy Ind Ltd フレッティング疲労評価方法およびフレッティング疲労評価装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108732035A (zh) * 2018-04-28 2018-11-02 南京航空航天大学 一种榫连接结构的高温微动疲劳寿命测试方法
CN108732035B (zh) * 2018-04-28 2020-07-28 南京航空航天大学 一种榫连接结构的高温微动疲劳寿命测试方法

Also Published As

Publication number Publication date
JP6546420B2 (ja) 2019-07-17

Similar Documents

Publication Publication Date Title
US10303809B2 (en) Automatic creation of fasteners for simulating a computer-aided design (CAD) model
US10867083B2 (en) Technique for generating approximate design solutions
JP6852426B2 (ja) 成形性評価方法、プログラム及び記録媒体
CN103267507A (zh) 基于有限元分析提取机械结构平面的平面度误差的方法
JP7110976B2 (ja) 成形性評価方法、プログラム及び記録媒体
Chernyatin et al. A computational tool for estimating stress fields along a surface crack front
JP7054199B2 (ja) 残留応力分布の測定方法、算出方法及びプログラム
US20190087511A1 (en) Design-information processing apparatus and non-transitory computer readable medium
CN109388833B (zh) 一种基于疲劳寿命的弹性元件结构优化设计方法
JP6546420B2 (ja) フレッティング疲労評価方法
Chung Elastic–plastic contact analysis of an ellipsoid and a rigid flat
US9791356B2 (en) Joint analyzing method, product designing method, and joint analyzing system
JP7206902B2 (ja) 成形性評価方法、プログラム及び記録媒体
US20080183438A1 (en) Method and system for analyzing three-dimensional linkages
US11120180B2 (en) Methods and systems for conducting a time-marching numerical simulation of a deep drawing metal forming process for manufacturing a product or part
JP2014013200A (ja) フレッティング疲労評価方法およびフレッティング疲労評価装置
JP6308544B2 (ja) 2物体間の接触面圧計算方法および2物体間の接触面圧計算コンピュータプログラム
US11468204B2 (en) Method for measuring wrinkles with reference to target surface
JP6303815B2 (ja) 鍛造割れ予測方法、鍛造割れ予測プログラム、および記録媒体
JP7275203B2 (ja) 組立評価システム及びその方法並びにプログラム
KR102058093B1 (ko) 겹쳐진 엘리먼트가 포함된 하이 오더 메쉬 구조를 갖는 그래픽 모델의 메쉬 품질 향상을 위한 그래픽 처리 장치 및 방법
US11763046B2 (en) Techniques for automatically selecting simulation tools for and performing related simulations on computer-generated designs
WO2019131185A1 (ja) 解析結果データ削減装置、解析結果データ削減方法及び解析結果データ削減プログラム
KR20230061879A (ko) 용접 수축 마진 예측 장치
KR20230017592A (ko) 용접부 피로 수명 예측 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190621

R150 Certificate of patent or registration of utility model

Ref document number: 6546420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150