JP2016178225A - Anisotropic conductive connection structure, anisotropic conductive connection method, and anisotropic conductive adhesive - Google Patents

Anisotropic conductive connection structure, anisotropic conductive connection method, and anisotropic conductive adhesive Download PDF

Info

Publication number
JP2016178225A
JP2016178225A JP2015058068A JP2015058068A JP2016178225A JP 2016178225 A JP2016178225 A JP 2016178225A JP 2015058068 A JP2015058068 A JP 2015058068A JP 2015058068 A JP2015058068 A JP 2015058068A JP 2016178225 A JP2016178225 A JP 2016178225A
Authority
JP
Japan
Prior art keywords
anisotropic conductive
terminal
base substrate
conductive adhesive
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015058068A
Other languages
Japanese (ja)
Inventor
裕樹 大関
Hiroki Ozeki
裕樹 大関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2015058068A priority Critical patent/JP2016178225A/en
Priority to CN202210519422.4A priority patent/CN115151035A/en
Priority to CN201680014182.5A priority patent/CN107432084A/en
Priority to PCT/JP2016/057473 priority patent/WO2016152543A1/en
Priority to KR1020177024611A priority patent/KR101991191B1/en
Priority to TW105108116A priority patent/TWI690250B/en
Publication of JP2016178225A publication Critical patent/JP2016178225A/en
Priority to HK18104540.7A priority patent/HK1245567A1/en
Priority to JP2020151670A priority patent/JP7386773B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/189Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C09J171/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C09J171/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • C09J2467/005Presence of polyester in the release coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combinations Of Printed Boards (AREA)
  • Non-Insulated Conductors (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic conductive connection structure which is manufactured in a simpler process, achieves high reliability, and is new and improved, and to provide an anisotropic conductive connection method and an anisotropic conductive adhesive.SOLUTION: According to one aspect of the invention, in order to achieve the above object, an anisotropic conductive connection structure includes: a base substrate; a first terminal provided on the base substrate; a flexible substrate; a wiring pattern provided on the flexible substrate; an insulative protection film covering the wiring pattern; a second terminal connected with the wiring pattern; and an anisotropic conductive adhesive which makes anisotropic conductive connection between the first terminal and the second terminal. The insulative protection film is disposed at the outer side of the base substrate in a plane direction. The anisotropic conductive adhesive extends from the second terminal to a base substrate side end part of the insulative protection film.SELECTED DRAWING: Figure 1

Description

本発明は、異方性導電接続構造体、異方性導電接続方法、及び異方性導電接着剤に関する。   The present invention relates to an anisotropic conductive connection structure, an anisotropic conductive connection method, and an anisotropic conductive adhesive.

例えば特許文献1、2には、表示パネルをモジュール化するために、ベース基板(表示パネル側を構成する基板)側の端子列と、フレキシブル基板側の端子列とを異方性導電接着剤により異方性導電接続することが開示されている。この技術においては、ベース基板側の端子列上に異方性導電接着剤を介してフレキシブル基板側の端子を設置する。すなわち、ベース基板側の端子列とフレキシブル基板側の端子列とで異方性導電接着剤を挟持する。ついで、ベース基板側の端子列とフレキシブル基板側の端子列とを熱圧着する。これにより、ベース基板側の端子列とフレキシブル基板側の端子列とを異方性導電接続する。   For example, in Patent Documents 1 and 2, in order to modularize a display panel, a terminal row on the base substrate (substrate constituting the display panel side) side and a terminal row on the flexible substrate side are made of anisotropic conductive adhesive. Anisotropic conductive connection is disclosed. In this technique, a terminal on the flexible substrate side is installed on a terminal row on the base substrate side via an anisotropic conductive adhesive. That is, the anisotropic conductive adhesive is sandwiched between the terminal row on the base substrate side and the terminal row on the flexible substrate side. Next, the terminal row on the base substrate side and the terminal row on the flexible substrate side are thermocompression bonded. Thus, the terminal row on the base substrate side and the terminal row on the flexible substrate side are anisotropically conductively connected.

ところで、フレキシブル基板には、フレキシブル基板側の端子に接続された配線パターンが形成されている。このため、フレキシブル基板の折り曲げ時に配線パターンが基板(特に基板の角部)に接触し、配線パターンが断線する可能性がある。そこで、特許文献1、2に開示された技術では、配線パターン上に絶縁性保護膜(ソルダーレジスト)を形成し、この絶縁性保護膜をベース基板上の領域まで形成する。これによって、フレキシブル基板の折り曲げ時に配線パターンがベース基板に接触することを防止している。   By the way, a wiring pattern connected to the terminal on the flexible substrate side is formed on the flexible substrate. For this reason, a wiring pattern may contact a board | substrate (especially corner | angular part of a board | substrate) at the time of bending of a flexible substrate, and a wiring pattern may disconnect. Therefore, in the techniques disclosed in Patent Documents 1 and 2, an insulating protective film (solder resist) is formed on the wiring pattern, and this insulating protective film is formed up to the region on the base substrate. This prevents the wiring pattern from contacting the base substrate when the flexible substrate is bent.

特開2002−358026号公報JP 2002-358026 A 特開2009−135388号公報JP 2009-135388 A

しかし、特許文献1、2に開示された技術では、ベース基板側の端子列とフレキシブル基板側の端子列とを熱圧着する際に、絶縁性保護膜がベース基板に接触してしまう場合があった。この場合、ベース基板側の端子列とフレキシブル基板側の端子列との間に十分な圧力が加わらなくなってしまう。言い換えれば、絶縁性保護膜がベース基板に接触すると、絶縁性保護膜によってベース基板側の端子列とフレキシブル基板側の端子列との近接が阻害されてしまう。このため、ベース基板側の端子列とフレキシブル基板側の端子列とが接続不良を起こす場合があった。   However, in the techniques disclosed in Patent Documents 1 and 2, when the base substrate side terminal row and the flexible substrate side terminal row are thermocompression bonded, the insulating protective film may come into contact with the base substrate. It was. In this case, sufficient pressure is not applied between the terminal row on the base substrate side and the terminal row on the flexible substrate side. In other words, when the insulating protective film comes into contact with the base substrate, the insulating protective film hinders the proximity of the terminal row on the base substrate side and the terminal row on the flexible substrate side. For this reason, connection failure may occur between the terminal row on the base substrate side and the terminal row on the flexible substrate side.

さらに、ベース基板側の端子列とフレキシブル基板側の端子列とを熱圧着する際に、異方性導電接続に関与しない異方性導電接着剤は、各端子列を構成する端子同士の隙間に流動し、その後、各端子列の外部に流動する。ここで、絶縁性保護膜がベース基板に接触してしまうと、ベース基板側の端子同士の隙間から外部に流動しようとする異方性導電接着剤が絶縁性保護膜によってせき止められてしまう。この場合、多くの異方性導電接着剤がベース基板側の端子間に残留してしまう。すなわち、ベース基板側の端子間には、異方性導電接着剤を構成する導電粒子が多く滞留してしまう。そして、これらの導電粒子は、ベース基板側の端子同士を道通させてしまう(すなわち端子間がショートする)場合があった。このように、特許文献1、2に開示された技術では、基板側の端子列とフレキシブル基板側の端子列とを異方性道通接続した構造体、即ち異方性導電接続構造体の信頼性が低いという問題があった。   Furthermore, when thermocompression bonding the terminal row on the base board side and the terminal row on the flexible board side, the anisotropic conductive adhesive not involved in the anisotropic conductive connection is placed in the gap between the terminals constituting each terminal row. It flows and then flows outside each terminal row. Here, when the insulating protective film comes into contact with the base substrate, the anisotropic conductive adhesive that tends to flow to the outside through the gap between the terminals on the base substrate side is blocked by the insulating protective film. In this case, many anisotropic conductive adhesives remain between the terminals on the base substrate side. That is, a large amount of conductive particles constituting the anisotropic conductive adhesive stay between the terminals on the base substrate side. These conductive particles sometimes cause the terminals on the base substrate side to pass through (that is, the terminals are short-circuited). As described above, in the technologies disclosed in Patent Documents 1 and 2, the reliability of the structure in which the terminal row on the board side and the terminal row on the flexible board side are anisotropically connected, that is, the anisotropic conductive connection structure is high. There was a problem of being low.

上記問題を解決するための技術として、絶縁性保護膜を基板の面方向(基板の厚さ方向に垂直な方向)外側に配置する技術が提案されている。しかし、この技術では、絶縁性保護膜と異方性導電接着剤層(基板側の端子列とフレキシブル基板側の端子列とを異方性導電接続する接着剤層)との間に隙間が形成される場合があった。この場合、当該隙間に存在する配線パターンはむき出しになってしまう。このように、配線パターンの一部がむき出しになると、この部分に異物が付着して配線パターンがショートする場合があった。また、フレキシブル基板を折り曲げた際に、配線パターンのむき出し部分が破断する場合があった。したがって、この技術によっても、異方性導電接続構造体の信頼性を向上させることができなかった。   As a technique for solving the above problem, a technique has been proposed in which an insulating protective film is disposed on the outside in the surface direction of the substrate (direction perpendicular to the thickness direction of the substrate). However, in this technique, a gap is formed between the insulating protective film and the anisotropic conductive adhesive layer (adhesive layer that connects the terminal row on the board side and the terminal row on the flexible board side in an anisotropic conductive manner). There was a case. In this case, the wiring pattern existing in the gap is exposed. As described above, when a part of the wiring pattern is exposed, foreign matter may adhere to this part and the wiring pattern may be short-circuited. Further, when the flexible substrate is bent, the exposed portion of the wiring pattern may break. Therefore, even with this technique, the reliability of the anisotropic conductive connection structure cannot be improved.

そこで、配線パターンのむき出し部分を封止剤で保護する技術が提案されている。しかし、この技術では、配線パターンのむき出し部分を封止剤で覆う工程が別途必要となる。この工程では、基板側の端子列とフレキシブル基板側の端子列とを熱圧着した後、ベース基板とフレキシブル基板との接続構造体をひっくり返す。これにより、配線パターンのむき出し部分を上方に向ける。そして、当該配線パターンのむき出し部分に封止剤を注入し、封止剤に光源から光を照射する。これにより、封止剤を硬化させる。このように、配線パターンのむき出し部分を封止剤で覆う工程には非常に手間がかかるので、表示パネルとフレキシブル基板との接着に要する手間が増大してしまう。   Therefore, a technique for protecting the exposed portion of the wiring pattern with a sealant has been proposed. However, this technique requires a separate step of covering the exposed portion of the wiring pattern with a sealant. In this step, after the terminal row on the substrate side and the terminal row on the flexible substrate side are thermocompression bonded, the connection structure of the base substrate and the flexible substrate is turned over. As a result, the exposed portion of the wiring pattern is directed upward. And a sealing agent is inject | poured into the exposed part of the said wiring pattern, and light is irradiated to a sealing agent from a light source. Thereby, a sealing agent is hardened. As described above, since the process of covering the exposed portion of the wiring pattern with the sealant is very laborious, the labor required for bonding the display panel and the flexible substrate increases.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、より簡単な工程によって作製可能であり、かつ、高い信頼性を有する、新規かつ改良された異方性導電接続構造体、異方性導電接続方法、及び異方性導電接着剤を提供することにある。   Accordingly, the present invention has been made in view of the above problems, and the object of the present invention is a new and improved difference that can be manufactured by a simpler process and has high reliability. An object is to provide a anisotropic conductive connection structure, an anisotropic conductive connection method, and an anisotropic conductive adhesive.

上記課題を解決するために、本発明のある観点によれば、ベース基板と、ベース基板に設けられた第1の端子と、フレキシブル基板と、フレキシブル基板に設けられた配線パターンと、配線パターンを覆う絶縁性保護膜と、配線パターンに接続された第2の端子と、第1の端子と、第2の端子とを異方性導電接続する異方性導電接着剤層と、を備え、絶縁性保護膜は、ベース基板の面方向外側に配置され、異方性導電接着剤層は、第2の端子から絶縁性保護膜のベース基板側の端部まで伸びている、異方性導電接続構造体が提供される。   In order to solve the above problems, according to an aspect of the present invention, there is provided a base substrate, a first terminal provided on the base substrate, a flexible substrate, a wiring pattern provided on the flexible substrate, and a wiring pattern. An insulating protective film for covering, a second terminal connected to the wiring pattern, a first terminal, and an anisotropic conductive adhesive layer for anisotropically connecting the second terminal, and insulating The anisotropic protective film is disposed on the outer side in the surface direction of the base substrate, and the anisotropic conductive adhesive layer extends from the second terminal to the end of the insulating protective film on the base substrate side. A structure is provided.

ここで、ベース基板の絶縁性保護膜側の端部から絶縁性保護膜のベース基板側の端部までの距離は0.3mm以下であってもよい。   Here, the distance from the end of the base substrate on the insulating protective film side to the end of the insulating protective film on the base substrate side may be 0.3 mm or less.

さらに、異方性導電接着剤層の30℃弾性率は4.0GPa以下であってもよい。   Furthermore, the 30 ° C. elastic modulus of the anisotropic conductive adhesive layer may be 4.0 GPa or less.

本発明の他の観点によれば、第1の端子が設けられたベース基板を準備する工程と、配線パターンと、配線パターンを覆う絶縁性保護膜と、配線パターンに接続された第2の端子とが設けられたフレキシブル基板を準備する工程と、未硬化の重合性化合物と、熱硬化開始剤と、導電性粒子とを含む異方性導電接着剤を準備する工程と、第1の端子と第2の端子とで異方性導電接着剤を挟持し、かつ、絶縁性保護膜をベース基板の面方向外側に配置する工程と、ベース基板とフレキシブル基板とを熱圧着することで、第1の端子と第2の端子とを異方性導電接続するとともに、異方性導電接着剤を絶縁性保護膜のベース基板側の端部まで流動させる工程と、を含む、異方性導電接続方法が提供される。各材料を準備する工程の順序は問われない。   According to another aspect of the present invention, a step of preparing a base substrate provided with a first terminal, a wiring pattern, an insulating protective film covering the wiring pattern, and a second terminal connected to the wiring pattern A step of preparing a flexible substrate provided with: an uncured polymerizable compound; a thermosetting initiator; and an anisotropic conductive adhesive including conductive particles; a first terminal; By sandwiching the anisotropic conductive adhesive with the second terminal and disposing the insulating protective film on the outer side in the surface direction of the base substrate, and thermocompression bonding the base substrate and the flexible substrate, the first And anisotropically connecting the second terminal and the second terminal, and flowing an anisotropic conductive adhesive to the end of the insulating protective film on the base substrate side. Is provided. The order of the steps for preparing each material is not limited.

ここで、異方性導電接着剤は、さらに光硬化開始剤を含み、異方性導電接着剤を絶縁性保護膜のベース基板側の端部まで流動させた後、ベース基板の面方向外側に流動した異方性導電接着剤に光を照射してもよい。   Here, the anisotropic conductive adhesive further includes a photocuring initiator, and after flowing the anisotropic conductive adhesive to the end portion of the insulating protective film on the base substrate side, the anisotropic conductive adhesive is moved outwardly in the surface direction of the base substrate. You may irradiate light to the anisotropic conductive adhesive which flowed.

また、フレキシブル基板は、ベース基板の上方に配置されており、異方性導電接着剤の下方から異方性導電接着剤に光を照射してもよい。   Further, the flexible substrate is disposed above the base substrate, and the anisotropic conductive adhesive may be irradiated with light from below the anisotropic conductive adhesive.

また、異方性導電接着剤は異方性導電フィルムであり、異方性導電フィルムの厚さは、第1の端子と第2の端子との合計高さの少なくとも1.4倍以上であってもよい。   The anisotropic conductive adhesive is an anisotropic conductive film, and the thickness of the anisotropic conductive film is at least 1.4 times the total height of the first terminal and the second terminal. May be.

本発明の他の観点によれば、未硬化の重合性化合物と、熱硬化開始剤と、導電性粒子とを含み、未硬化状態での最低溶融粘度が100〜1000Pa・sであり、完全硬化後の30℃弾性率が4.0GPa以下である、異方性導電接着剤が提供される。   According to another aspect of the present invention, the composition includes an uncured polymerizable compound, a thermosetting initiator, and conductive particles, and has a minimum melt viscosity of 100 to 1000 Pa · s in an uncured state and is completely cured. An anisotropic conductive adhesive having a later 30 ° C. elastic modulus of 4.0 GPa or less is provided.

ここで、異方性導電接着剤は、さらに光硬化開始剤を含んでいてもよい。   Here, the anisotropic conductive adhesive may further contain a photocuring initiator.

本発明の上記観点によれば、絶縁性保護膜は、ベース基板の面方向外側に配置される。したがって、絶縁性保護膜は第1の端子と第2の端子との近接を阻害しないので、第1の端子と第2の端子との接続不良が生じにくい。さらに、第1の端子同士の隙間に流動した異方性導電接着剤は、第1の端子列の外部にスムーズに流動することができる。したがって、第1の端子同士がショートしにくくなる。したがって、異方性導電接続構造体の信頼性が向上する。   According to the above aspect of the present invention, the insulating protective film is disposed on the outer side in the surface direction of the base substrate. Therefore, since the insulating protective film does not hinder the proximity of the first terminal and the second terminal, poor connection between the first terminal and the second terminal hardly occurs. Furthermore, the anisotropic conductive adhesive that has flowed into the gap between the first terminals can smoothly flow to the outside of the first terminal row. Therefore, it becomes difficult for the first terminals to short-circuit each other. Therefore, the reliability of the anisotropic conductive connection structure is improved.

さらに、本発明の上記観点では、接着剤層が絶縁性保護膜まで到達している。このため、接着剤層と絶縁性保護膜との間には隙間が形成されない。したがって、配線パターンのむき出し部分が形成されないので、配線パターンのむき出し部分を封止剤によって封止する工程が不要となる。このため、異方性導電接続構造体をより簡単な工程によって作製することができる。   Furthermore, in the above aspect of the present invention, the adhesive layer reaches the insulating protective film. For this reason, no gap is formed between the adhesive layer and the insulating protective film. Therefore, since the exposed portion of the wiring pattern is not formed, a step of sealing the exposed portion of the wiring pattern with the sealant is not necessary. For this reason, an anisotropic conductive connection structure can be produced by a simpler process.

以上説明したように本発明によれば、高い信頼性を有する異方性導電接続構造体をより簡単な工程によって作製可能である。   As described above, according to the present invention, an anisotropic conductive connection structure having high reliability can be manufactured by a simpler process.

本発明の実施形態に係る異方性導電接続構造体の構成を模式的に示す側断面図である。It is a sectional side view which shows typically the structure of the anisotropic conductive connection structure which concerns on embodiment of this invention. 異方性導電接続構造体の製造工程の一部を示す側断面図である。It is a sectional side view which shows a part of manufacturing process of an anisotropic conductive connection structure. 異方性導電接続構造体の製造工程の一部を示す側断面図である。It is a sectional side view which shows a part of manufacturing process of an anisotropic conductive connection structure. 樹脂フロー量の測定方法を説明するための斜視図である。It is a perspective view for demonstrating the measuring method of the resin flow amount. 樹脂フロー量の測定方法を説明するための平面図である。It is a top view for demonstrating the measuring method of the resin flow amount. 樹脂フロー量の測定方法を説明するための平面図である。It is a top view for demonstrating the measuring method of the resin flow amount. 異方性導電接着剤層と絶縁性保護膜との間に隙間が形成されている態様の例を模式的に示す側断面図である。It is a sectional side view which shows typically the example of the aspect in which the clearance gap is formed between the anisotropic conductive adhesive layer and the insulating protective film. 異方性導電接着剤層と絶縁性保護膜との間に隙間が形成されている態様の他の例を模式的に示す側断面図である。It is a sectional side view which shows typically the other example of the aspect by which the clearance gap is formed between the anisotropic conductive adhesive layer and the insulating protective film.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

<1.異方性導電接続構造体の構成>
まず、図1に基づいて、本実施形態に係る異方性導電接続構造体1の構成について説明する。
<1. Configuration of Anisotropic Conductive Connection Structure>
First, based on FIG. 1, the structure of the anisotropic conductive connection structure 1 which concerns on this embodiment is demonstrated.

異方性導電接続構造体1(以下、単に「接続構造体1」とも称する)は、ベース基板10、第1の端子11、第1の配線パターン12、フレキシブル基板20、第2の端子21、第2の配線パターン22、絶縁性保護膜30、及び異方性導電接着剤層40(以下、単に「接着剤層40」とも称する)を備える。   The anisotropic conductive connection structure 1 (hereinafter, also simply referred to as “connection structure 1”) includes a base substrate 10, a first terminal 11, a first wiring pattern 12, a flexible substrate 20, a second terminal 21, A second wiring pattern 22, an insulating protective film 30, and an anisotropic conductive adhesive layer 40 (hereinafter simply referred to as “adhesive layer 40”) are provided.

ベース基板10は、例えば表示パネルを構成するガラス基板であるが、フレキシブル基板20と異方性導電接続される基板であれば特に制限されない。また、ベース基板10の厚さも特に制限されないが、本実施形態では、厚さが0.7mm以下であっても、接着剤層40がベース基板10の裏面(第1の端子列及び配線パターン12が形成される面と反対側の面)に回りこみにくい。また、ベース基板10の端部10aには、面取り部10bが形成されていてもよい。   The base substrate 10 is, for example, a glass substrate constituting a display panel, but is not particularly limited as long as it is a substrate that is anisotropically conductively connected to the flexible substrate 20. Further, the thickness of the base substrate 10 is not particularly limited, but in this embodiment, the adhesive layer 40 is formed on the back surface of the base substrate 10 (the first terminal row and the wiring pattern 12) even if the thickness is 0.7 mm or less. The surface on the side opposite to the surface on which the is formed is difficult to wrap around. Further, a chamfered portion 10 b may be formed at the end portion 10 a of the base substrate 10.

第1の端子11は、ベース基板10の端部10a上に複数設けられる。第1の端子11同士は互いに平行になっており、複数の第1の端子11によって第1の端子列が形成される。なお、端部10a上に面取り部10bが形成される場合、第1の端子11は、面取り部10bよりもベース基板10の中心側(内側)に形成されれば良い。第1の端子11の各々は、第2の端子21と異方性導電接続される。   A plurality of first terminals 11 are provided on the end portion 10 a of the base substrate 10. The first terminals 11 are parallel to each other, and a plurality of first terminals 11 form a first terminal row. In addition, when the chamfered part 10b is formed on the edge part 10a, the 1st terminal 11 should just be formed in the center side (inner side) of the base substrate 10 rather than the chamfered part 10b. Each of the first terminals 11 is anisotropically conductively connected to the second terminal 21.

第1の端子11を構成する材料は、導電性を有するものであれば特に制限されない。第1の端子11を構成する材料としては、例えば、アルミニウム、銀、ニッケル、銅、および金などの金属、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化インジウム、導電性酸化スズ、アンチモンスズ酸化物(ATO)、および導電性酸化亜鉛などの導電性金属酸化物、ポリアニリン、ポリピロール、およびポリチオフェンなどの導電性高分子などが挙げられる。第1の端子11を構成する金属は、各種金属(たとえば、金、すず等)によってめっきされていてもよい。なお、ベース基板10が表示パネルの基板となる場合、表示パネルに表示される画像の視認性を確保する必要がある。したがって、この場合、第1の端子11は、透明導電性物質(ITO、IZOなど)で形成されることが好ましい。   The material which comprises the 1st terminal 11 will not be restrict | limited especially if it has electroconductivity. Examples of the material constituting the first terminal 11 include metals such as aluminum, silver, nickel, copper, and gold, indium tin oxide (ITO), indium zinc oxide (IZO), indium oxide, conductive tin oxide, Examples thereof include conductive metal oxides such as antimony tin oxide (ATO) and conductive zinc oxide, and conductive polymers such as polyaniline, polypyrrole, and polythiophene. The metal constituting the first terminal 11 may be plated with various metals (for example, gold, tin, etc.). When the base substrate 10 is a display panel substrate, it is necessary to ensure the visibility of an image displayed on the display panel. Therefore, in this case, the first terminal 11 is preferably formed of a transparent conductive material (ITO, IZO, etc.).

第1の配線パターン12は、第1の端子11から伸びる配線パターンであり、ベース基板10上に設けられる。第1の配線パターン12を構成する材料は、第1の端子11と同様であれば良い。   The first wiring pattern 12 is a wiring pattern extending from the first terminal 11 and is provided on the base substrate 10. The material constituting the first wiring pattern 12 may be the same as that of the first terminal 11.

フレキシブル基板20は、可撓性および柔軟性が高い材料で形成された基板である。フレキシブル基板20を構成する材料は特に制限されず、公知のフレキシブル基板に適用される材料は本実施形態にも適用可能である。フレキシブル基板20を構成する材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルサルフォン、ポリエチレン、ポリカーボネート、ポリイミド、およびアクリル樹脂などの樹脂の他、薄膜化された金属またはガラス等が挙げられる。なお、ベース基板10が表示パネルの基板となる場合、表示パネルに表示される画像の視認性を確保する必要がある。したがって、この場合、フレキシブル基板20は、可視光の透過率が高い透明樹脂で形成されることが好ましい。   The flexible substrate 20 is a substrate formed of a material having high flexibility and flexibility. The material which comprises the flexible substrate 20 is not restrict | limited in particular, The material applied to a well-known flexible substrate is applicable also to this embodiment. Examples of the material constituting the flexible substrate 20 include thinned metal or glass in addition to resins such as polyethylene terephthalate, polyethylene naphthalate, polyether sulfone, polyethylene, polycarbonate, polyimide, and acrylic resin. . When the base substrate 10 is a display panel substrate, it is necessary to ensure the visibility of an image displayed on the display panel. Therefore, in this case, the flexible substrate 20 is preferably formed of a transparent resin having a high visible light transmittance.

第2の端子21は、フレキシブル基板20の端部20a上に複数設けられる。第2の端子21同士は互いに平行になっており、複数の第2の端子21によって第2の端子列が形成される。第2の端子21の各々は、第1の端子11と異方性導電接続される。すなわち、第1の端子列と第2の端子列とは異方性導電接続される。第2の端子21を構成する材料は、第1の端子11と同様であれば良い。   A plurality of second terminals 21 are provided on the end portion 20 a of the flexible substrate 20. The second terminals 21 are parallel to each other, and a plurality of second terminals 21 form a second terminal row. Each of the second terminals 21 is anisotropically conductively connected to the first terminal 11. That is, the first terminal row and the second terminal row are anisotropically conductively connected. The material constituting the second terminal 21 may be the same as that of the first terminal 11.

第2の配線パターン22は、第2の端子列から伸びる配線パターンであり、ベース基板10上に設けられる。第2の配線パターン22を構成する材料は、第1の端子11と同様であれば良い。   The second wiring pattern 22 is a wiring pattern extending from the second terminal row, and is provided on the base substrate 10. The material constituting the second wiring pattern 22 may be the same as that of the first terminal 11.

絶縁性保護膜30は、配線パターン22を覆う膜である。絶縁性保護膜30は、絶縁性を有する膜であり、配線パターン22を保護する。絶縁性保護膜30は、ソルダーレジストとも称される。絶縁性保護膜30を構成する材料は特に制限されず、従来のフレキシブル基板に適用されるソルダーレジスト材料であれば本実施形態にも好適に適用可能である。   The insulating protective film 30 is a film that covers the wiring pattern 22. The insulating protective film 30 is an insulating film and protects the wiring pattern 22. The insulating protective film 30 is also called a solder resist. The material which comprises the insulating protective film 30 is not restrict | limited in particular, If it is the soldering resist material applied to the conventional flexible substrate, it can apply suitably also to this embodiment.

本実施形態では、絶縁性保護膜30は、ベース基板10の面方向(ベース基板10の厚さ方向に垂直な方向)外側に配置される。上述したように、絶縁性保護膜30がベース基板10上に配置される場合、第1の端子列と第2の端子列との接続不良、第1の端子11同士のショートといった問題が生じうるからである。なお、ベース基板10の端部10a(絶縁性保護膜30側の端部)から絶縁性保護膜30のベース基板10側の端部30aまでの距離Lは特に制限されない。本実施形態では、第1の端子列と第2の端子列とを熱圧着する際に、異方性導電接着剤を絶縁性保護膜30まで流動させる。したがって、距離Lに応じて、異方性導電接着剤の最低溶融粘度を調整すればよい。最低溶融粘度が小さいほど、異方性導電接着剤の流動量が大きくなる。ただし、距離Lは、0.3mm以下であることが好ましい。この場合、第1の端子列と第2の端子列との熱圧着時に異方性導電接着剤をより確実に絶縁性保護膜30まで流動させることができる。これは、距離Lが0より大きい場合に、より顕著である。また、ベース基板10の厚みが過度に薄い場合、例えば0.2μm以下の場合は、距離Lは0以下としてもよく、絶縁性保護膜30の端部30aが面取り部10b上に配置される範囲であればよく、0〜−0.2mmが好ましい。接着剤層40がベース基板10の裏面に回り込むことを抑制するためである。詳細を述べると、Lがマイナスの値になることは、絶縁性保護膜30のベース基板10側の端部30aがベース基板10上に配置されることを意味する。ただし、この場合であっても、絶縁性保護膜30の端部30aは、ベース基板10の面取り部10b上に配置されれば、第1の端子列と第2の端子列とを熱圧着する際に、絶縁性保護膜30がベース基板10に接触しにくくなる。また、絶縁性保護膜30は、熱圧着時に異方性導電接着剤の流動を阻害しにくくなる。   In the present embodiment, the insulating protective film 30 is disposed outside the surface direction of the base substrate 10 (direction perpendicular to the thickness direction of the base substrate 10). As described above, when the insulating protective film 30 is disposed on the base substrate 10, problems such as poor connection between the first terminal row and the second terminal row and a short circuit between the first terminals 11 may occur. Because. The distance L from the end portion 10a of the base substrate 10 (end portion on the insulating protective film 30 side) to the end portion 30a of the insulating protective film 30 on the base substrate 10 side is not particularly limited. In this embodiment, the anisotropic conductive adhesive is caused to flow to the insulating protective film 30 when the first terminal row and the second terminal row are thermocompression bonded. Therefore, the minimum melt viscosity of the anisotropic conductive adhesive may be adjusted according to the distance L. The smaller the minimum melt viscosity, the greater the amount of anisotropic conductive adhesive flowing. However, the distance L is preferably 0.3 mm or less. In this case, the anisotropic conductive adhesive can flow more reliably to the insulating protective film 30 during the thermocompression bonding between the first terminal row and the second terminal row. This is more noticeable when the distance L is greater than zero. When the thickness of the base substrate 10 is excessively thin, for example, 0.2 μm or less, the distance L may be 0 or less, and the range in which the end 30a of the insulating protective film 30 is disposed on the chamfered portion 10b. 0 to -0.2 mm is preferable. This is to prevent the adhesive layer 40 from entering the back surface of the base substrate 10. More specifically, a negative value of L means that the end portion 30 a of the insulating protective film 30 on the base substrate 10 side is disposed on the base substrate 10. However, even in this case, if the end portion 30a of the insulating protective film 30 is disposed on the chamfered portion 10b of the base substrate 10, the first terminal row and the second terminal row are thermocompression bonded. At this time, it becomes difficult for the insulating protective film 30 to contact the base substrate 10. Moreover, the insulating protective film 30 becomes difficult to inhibit the flow of the anisotropic conductive adhesive during thermocompression bonding.

接着剤層40は、後述する異方性導電接着剤が硬化したものである。接着剤層40は、第1の端子列と第2の端子列とを異方性導電接続する。さらに、接着剤層40は、第2の端子列から絶縁性保護膜30のベース基板側の端部30aまで伸びている。このため、本実施形態では、接着剤層40と絶縁性保護膜30との間に隙間は形成されない。すなわち、配線パターン22のうち、絶縁性保護膜30で覆われていない部分は、接着剤層40によって保護される。なお、接着剤層40は、絶縁性保護膜30まで伸びていればよいが、絶縁性保護膜30の端部30aを覆っていることが好ましい。この場合、接着剤層40は、絶縁性保護膜30で覆われていない部分をより確実に保護することができる。   The adhesive layer 40 is obtained by curing an anisotropic conductive adhesive described later. The adhesive layer 40 makes an anisotropic conductive connection between the first terminal row and the second terminal row. Furthermore, the adhesive layer 40 extends from the second terminal row to the end 30a of the insulating protective film 30 on the base substrate side. For this reason, in this embodiment, no gap is formed between the adhesive layer 40 and the insulating protective film 30. That is, a portion of the wiring pattern 22 that is not covered with the insulating protective film 30 is protected by the adhesive layer 40. The adhesive layer 40 only needs to extend to the insulating protective film 30, but preferably covers the end 30 a of the insulating protective film 30. In this case, the adhesive layer 40 can more reliably protect the portion not covered with the insulating protective film 30.

接着剤層40の上記以外の物性は特に制限されないが、30℃弾性率が4.0GPa以下であることが好ましい。本実施形態では、接着剤層40はベース基板10の面方向外側まで形成されているので、フレキシブル基板20の折り曲げ時に接着剤層40も折り曲げられる。したがって、30℃弾性率が4.0GPa以下であれば、フレキシブル基板20の折り曲げが容易となる。なお、接着剤層40を構成する材料については、後述する異方性導電接着剤の項にて詳細に説明する。   The physical properties of the adhesive layer 40 other than those described above are not particularly limited, but the 30 ° C. elastic modulus is preferably 4.0 GPa or less. In the present embodiment, since the adhesive layer 40 is formed to the outside in the surface direction of the base substrate 10, the adhesive layer 40 is also bent when the flexible substrate 20 is bent. Therefore, if the 30 ° C. elastic modulus is 4.0 GPa or less, the flexible substrate 20 can be easily bent. In addition, the material which comprises the adhesive bond layer 40 is demonstrated in detail in the term of the anisotropic conductive adhesive mentioned later.

<2.異方性導電接着剤>
接着剤層40は、異方性導電接着剤を硬化したものである。そこで、ここでは、異方性導電接着剤について説明する。異方性導電接着剤は、少なくとも、重合性化合物、熱硬化開始剤、及び導電性粒子を含む。
<2. Anisotropic conductive adhesive>
The adhesive layer 40 is obtained by curing an anisotropic conductive adhesive. Therefore, here, the anisotropic conductive adhesive will be described. The anisotropic conductive adhesive includes at least a polymerizable compound, a thermosetting initiator, and conductive particles.

重合性化合物は、熱硬化開始剤または光硬化開始剤と共に硬化する樹脂である。硬化した重合性化合物は、接着剤層40内で第1の端子列と第2の端子列とを接着するとともに、導電性粒子を接着剤層40内に保持する。重合性化合物は、後述する物性を満たすものであれば特に制限されない。重合性化合物としては、例えばエポキシ重合性化合物、及びアクリル重合性化合物等が挙げられる。エポキシ重合性化合物は、分子内に1つまたは2つ以上のエポキシ基を有するモノマー、オリゴマー、またはプレポリマーである。エポキシ重合性化合物としては、各種ビスフェノール型エポキシ樹脂(ビスフェノールA型、F型等)、ノボラック型エポキシ樹脂、ゴムおよびウレタン等の各種変性エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、及びこれらのプレポリマー等が挙げられる。   The polymerizable compound is a resin that cures together with a thermosetting initiator or a photocuring initiator. The cured polymerizable compound adheres the first terminal row and the second terminal row in the adhesive layer 40 and holds the conductive particles in the adhesive layer 40. The polymerizable compound is not particularly limited as long as it satisfies the physical properties described below. Examples of the polymerizable compound include an epoxy polymerizable compound and an acrylic polymerizable compound. The epoxy polymerizable compound is a monomer, oligomer, or prepolymer having one or more epoxy groups in the molecule. As epoxy polymerizable compounds, various bisphenol type epoxy resins (bisphenol A type, F type, etc.), novolac type epoxy resins, various modified epoxy resins such as rubber and urethane, naphthalene type epoxy resins, biphenyl type epoxy resins, phenol novolac type Examples thereof include epoxy resins, stilbene type epoxy resins, triphenolmethane type epoxy resins, dicyclopentadiene type epoxy resins, triphenylmethane type epoxy resins, and prepolymers thereof.

アクリル重合性化合物は、分子内に1つまたは2つ以上のアクリル基を有するモノマー、オリゴマー、またはプレポリマーである。アクリル重合性化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2−ヒドロキシ−1,3−ジアクリロキシプロパン、2,2−ビス[4−(アクリロキシメトキシ)フェニル]プロパン、2,2−ビス[4−(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアネレート、およびウレタンアクリレート等が挙げられる。   The acrylic polymerizable compound is a monomer, oligomer, or prepolymer having one or more acrylic groups in the molecule. Examples of acrylic polymerizable compounds include methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, epoxy acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylol propane triacrylate, dimethylol tricyclodecane diacrylate, and tetramethylene glycol. Tetraacrylate, 2-hydroxy-1,3-diacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxyethoxy) phenyl] propane, Examples include dicyclopentenyl acrylate, tricyclodecanyl acrylate, tris (acryloxyethyl) isocyanate, and urethane acrylate. That.

本実施形態では、上記で列挙した重合性化合物のうちいずれか1種を用いてもよく、2種以上を任意に組み合わせて用いてもよい。   In the present embodiment, any one of the polymerizable compounds listed above may be used, or two or more may be used in any combination.

熱硬化開始剤は、熱によって上記重合性化合物とともに硬化する材料である。熱硬化開始剤の種類も特に制限されない。熱硬化開始剤としては、例えば、エポキシ重合性化合物を硬化させる熱アニオンまたは熱カチオン硬化開始剤、アクリル重合性化合物を硬化させる熱ラジカル重合型硬化剤等が挙げられる。本実施形態では、重合性化合物によって適切な熱硬化開始剤を選択すればよい。   The thermosetting initiator is a material that is cured together with the polymerizable compound by heat. The kind of thermosetting initiator is not particularly limited. Examples of the thermosetting initiator include a thermal anion or thermal cation curing initiator that cures the epoxy polymerizable compound, and a thermal radical polymerization curing agent that cures the acrylic polymerizable compound. In this embodiment, an appropriate thermosetting initiator may be selected depending on the polymerizable compound.

導電性粒子は、接着剤層40内で第1の端子列と第2の端子列とを異方性導電接続する材料である。具体的には、接着剤層40内で第1の端子列と第2の端子列とで挟持された導電性粒子は、第1の端子列と第2の端子列とを導通させる。一方、他の導電性粒子(例えば、第1の端子11同士の隙間に入り込んだ導電性粒子、第2の端子21同士の隙間に入り込んだ導電性粒子等)は、接着剤層40内で分散しているため、互いに導通していない。したがって、導電性粒子は、接着剤層40内で第1の端子11同士及び第2の端子21同士の絶縁性を維持しつつ、第1の端子列と第2の端子列とを導通させることができる。すなわち、導電性粒子は、接着剤層40内で第1の端子列と第2の端子列とを異方性導電接続する。   The conductive particles are a material that anisotropically conductively connects the first terminal row and the second terminal row within the adhesive layer 40. Specifically, the conductive particles sandwiched between the first terminal row and the second terminal row in the adhesive layer 40 make the first terminal row and the second terminal row conductive. On the other hand, other conductive particles (for example, conductive particles that have entered the gap between the first terminals 11, conductive particles that have entered the gap between the second terminals 21, etc.) are dispersed in the adhesive layer 40. Are not connected to each other. Therefore, the conductive particles make the first terminal row and the second terminal row conductive while maintaining the insulation between the first terminals 11 and the second terminals 21 in the adhesive layer 40. Can do. That is, the conductive particles make an anisotropic conductive connection between the first terminal row and the second terminal row in the adhesive layer 40.

導電性粒子の種類は特に制限されない。導電性粒子としては、例えば、金属粒子、および金属被覆樹脂粒子等が挙げられる。金属粒子としては、例えば、ニッケル、コバルト、銅、銀、金、またはパラジウムなどの金属粒子等が挙げられる。金属被覆樹脂粒子としては、例えば、スチレン−ジビニルベンゼン共重合体、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂、アクリル樹脂、またはスチレン−シリカ複合樹脂などのコア樹脂粒子の表面を、ニッケル、銅、金、またはパラジウムなどの金属で被覆した粒子等が挙げられる。導電性粒子の表面には、金もしくはパラジウム薄膜、または圧着時には破壊される程度に薄い絶縁樹脂薄膜などが形成されてもよい。   The kind of conductive particles is not particularly limited. Examples of the conductive particles include metal particles and metal-coated resin particles. Examples of the metal particles include metal particles such as nickel, cobalt, copper, silver, gold, or palladium. Examples of the metal-coated resin particles include nickel, copper, gold, or palladium on the surface of core resin particles such as styrene-divinylbenzene copolymer, benzoguanamine resin, cross-linked polystyrene resin, acrylic resin, or styrene-silica composite resin. And particles coated with a metal such as On the surface of the conductive particles, a gold or palladium thin film, or an insulating resin thin film that is thin enough to be destroyed during pressure bonding may be formed.

本実施形態の異方性導電接着剤は、さらに光硬化開始剤を含んでいることが好ましい。詳細は後述するが、本実施形態では、第1の端子列及び第2の端子列で異方性導電接着剤を挟持し、ついで、ヒートツール等の加熱加圧部材を用いて第1の端子列及び第2の端子列を熱圧着する。このとき、異方性導電接着剤の一部は、第1の端子列及び第2の端子列からベース基板10の面方向外側に流動して、絶縁性保護膜30まで到達する。第1の端子列及び第2の端子列の間に存在する異方性導電接着剤には、加熱加圧部材から十分な熱量が供給される。このため、第1の端子列及び第2の端子列の間に存在する異方性導電接着剤は、加熱加圧部材からの熱量だけで硬化可能である。しかし、第1の端子列及び第2の端子列からベース基板10の面方向外側に流動した異方性導電接着剤には、加熱加圧部材からの熱量が十分に供給されない可能性がある。このため、第1の端子列及び第2の端子列からベース基板10の面方向外側に流動した異方性導電接着剤は、加熱加圧部材からの熱量だけでは十分に硬化しない可能性がある。そこで、本実施形態の異方性導電接着剤は、さらに光硬化開始剤を含んでいることが好ましい。この場合、第1の端子列及び第2の端子列からベース基板10の面方向外側に流動した異方性導電接着剤に光を照射することで、当該異方性導電接着剤も十分に硬化させることができる。   The anisotropic conductive adhesive of this embodiment preferably further contains a photocuring initiator. Although details will be described later, in this embodiment, the anisotropic conductive adhesive is sandwiched between the first terminal row and the second terminal row, and then the first terminal using a heating and pressing member such as a heat tool. The row and the second terminal row are thermocompression bonded. At this time, a part of the anisotropic conductive adhesive flows from the first terminal row and the second terminal row to the outside in the surface direction of the base substrate 10 and reaches the insulating protective film 30. A sufficient amount of heat is supplied from the heating and pressing member to the anisotropic conductive adhesive existing between the first terminal row and the second terminal row. For this reason, the anisotropic conductive adhesive existing between the first terminal row and the second terminal row can be cured only by the amount of heat from the heating and pressing member. However, there is a possibility that the amount of heat from the heating and pressing member is not sufficiently supplied to the anisotropic conductive adhesive flowing from the first terminal row and the second terminal row to the outside in the surface direction of the base substrate 10. For this reason, the anisotropic conductive adhesive that has flowed from the first terminal row and the second terminal row to the outside in the surface direction of the base substrate 10 may not be sufficiently cured only by the amount of heat from the heating and pressing member. . Therefore, it is preferable that the anisotropic conductive adhesive of this embodiment further contains a photocuring initiator. In this case, the anisotropic conductive adhesive is sufficiently cured by irradiating the anisotropic conductive adhesive flowing from the first terminal row and the second terminal row to the outside in the surface direction of the base substrate 10. Can be made.

なお、光硬化開始剤の種類も特に制限されない。光硬化開始剤としては、例えば、エポキシ重合性化合物を硬化させる光アニオンまたは光カチオン硬化開始剤、アクリル重合性化合物を硬化させる光ラジカル重合型硬化剤等が挙げられる。本実施形態では、重合性化合物によって適切な光硬化開始剤を選択すればよい。第1の端子列及び第2の端子列からベース基板10の面方向外側に流動した異方性導電接着剤が加熱加圧部材からの熱量だけで十分に硬化する場合、光硬化開始剤は異方性導電接着剤に添加されなくても良い。   In addition, the kind in particular of photocuring initiator is not restrict | limited. Examples of the photocuring initiator include a photoanion or photocationic curing initiator that cures an epoxy polymerizable compound, and a photo radical polymerization curing agent that cures an acrylic polymerizable compound. In this embodiment, an appropriate photocuring initiator may be selected depending on the polymerizable compound. When the anisotropic conductive adhesive that has flowed from the first terminal row and the second terminal row to the outside in the surface direction of the base substrate 10 is sufficiently cured only by the amount of heat from the heating and pressing member, the photocuring initiator is different. It may not be added to the isotropic conductive adhesive.

また、異方性導電接着剤には、上記の成分の他、膜形成樹脂、各種添加剤等を含めてもよい。膜形成樹脂は、異方性導電接着剤をフィルム形状としたい場合に異方性導電接着剤に添加される。膜形成樹脂の種類は、後述する特性を満たすものであれば特に制限されない。膜形成樹脂としては、例えば、エポキシ樹脂、フェノキシ樹脂、ポリエステルウレタン樹脂、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ポリイミド樹脂、ブチラール樹脂などの種々の樹脂を用いることができる。また、本実施形態では、これらの膜形成樹脂のうちいずれか1種だけを使用することもできるし、2種以上を任意に組み合わせて使用することもできる。なお、膜形成樹脂は、膜形成性および接着信頼性を良好にするという観点からは、フェノキシ樹脂であることが好ましい。   In addition to the above components, the anisotropic conductive adhesive may include a film-forming resin, various additives, and the like. The film-forming resin is added to the anisotropic conductive adhesive when the anisotropic conductive adhesive is desired to have a film shape. The type of film forming resin is not particularly limited as long as it satisfies the characteristics described later. As the film forming resin, for example, various resins such as an epoxy resin, a phenoxy resin, a polyester urethane resin, a polyester resin, a polyurethane resin, an acrylic resin, a polyimide resin, and a butyral resin can be used. In the present embodiment, only one of these film-forming resins can be used, or two or more can be used in any combination. In addition, it is preferable that film forming resin is a phenoxy resin from a viewpoint of making film forming property and adhesive reliability favorable.

異方性導電接着剤に添加可能な添加剤としては、シランカップリング剤、無機フィラー、着色剤、酸化防止剤、および防錆剤等が挙げられる。シランカップリング剤の種類は特に制限されない。シランカップリング剤としては、例えば、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系のシランカップリング剤等が挙げられる。異方性導電接着剤にこれらのシランカップリング剤が添加された場合、ガラス基板等の無機基板への接着性を向上させることができる。   Examples of additives that can be added to the anisotropic conductive adhesive include silane coupling agents, inorganic fillers, colorants, antioxidants, and rust inhibitors. The kind of silane coupling agent is not particularly limited. Examples of the silane coupling agent include epoxy-based, amino-based, mercapto-sulfide-based, and ureido-based silane coupling agents. When these silane coupling agents are added to the anisotropic conductive adhesive, adhesion to an inorganic substrate such as a glass substrate can be improved.

また、無機フィラーは、異方性導電接着剤の流動性及び膜強度、特に後述する最低溶融粘度を調整するための添加剤である。無機フィラーの種類も特に制限されない。無機フィラーとしては、例えば、シリカ、タルク、酸化チタン、炭酸カルシウム、酸化マグネシウム等が挙げられる。   The inorganic filler is an additive for adjusting the fluidity and film strength of the anisotropic conductive adhesive, particularly the minimum melt viscosity described later. The kind of inorganic filler is not particularly limited. Examples of the inorganic filler include silica, talc, titanium oxide, calcium carbonate, and magnesium oxide.

異方性導電接着剤の最低溶融粘度は、100〜1000Pa・sである。この条件が満たされる場合に、異方性導電接着剤は、第1の端子列と第2の端子列とを熱圧着する際に、絶縁性保護膜30まで到達することができる。ここで、異方性導電接着剤の最低溶融粘度は、重合性化合物の種類を変更することで調整することもできるが、上記の無機フィラーの添加量によって調整することもできる。無機フィラーの添加量が少ないほど、異方性導電接着剤の最低溶融粘度が小さくなる傾向がある。したがって、無機フィラーの添加量を調整することで、異方性導電接着剤の最低溶融粘度を容易に調整することができる。なお、異方性導電接着剤の最低溶融粘度は、100〜800Pa・sであることが好ましく、200〜600Pa・sであることがより好ましい。これらの条件が満たされる場合に、異方性導電接着剤は、絶縁性保護膜30までより確実に到達することができる。   The minimum melt viscosity of the anisotropic conductive adhesive is 100 to 1000 Pa · s. When this condition is satisfied, the anisotropic conductive adhesive can reach the insulating protective film 30 when the first terminal row and the second terminal row are thermocompression bonded. Here, the minimum melt viscosity of the anisotropic conductive adhesive can be adjusted by changing the type of the polymerizable compound, but can also be adjusted by the amount of the inorganic filler added. There exists a tendency for the minimum melt viscosity of an anisotropic conductive adhesive to become small, so that there are few addition amounts of an inorganic filler. Therefore, the minimum melt viscosity of the anisotropic conductive adhesive can be easily adjusted by adjusting the addition amount of the inorganic filler. The minimum melt viscosity of the anisotropic conductive adhesive is preferably 100 to 800 Pa · s, and more preferably 200 to 600 Pa · s. When these conditions are satisfied, the anisotropic conductive adhesive can reach the insulating protective film 30 more reliably.

また、異方性導電接着剤の完全硬化後の30℃弾性率は、4.0GPa以下であることが好ましい。上述したように、本実施形態では、完全硬化後の異方性導電接着剤、即ち接着剤層40はベース基板10の面方向外側まで形成されているので、フレキシブル基板20の折り曲げ時に接着剤層40も折り曲げられる。したがって、30℃弾性率が4.0GPa以下であれば、フレキシブル基板20の折り曲げが容易となる。また、30℃弾性率が4.0GPa以下であれば、フレキシブル基板20の折り曲げ時に接着剤層40が剥がれにくくなる。すなわち、接着剤層40の接着強度が十分に高くなる。異方性導電接着剤の30℃弾性率は、例えば、膜形成樹脂及び重合性化合物の種類、配合量を変更することで調整することができる。   Moreover, it is preferable that the 30 degreeC elastic modulus after complete hardening of an anisotropic conductive adhesive is 4.0 GPa or less. As described above, in the present embodiment, the anisotropic conductive adhesive after complete curing, that is, the adhesive layer 40 is formed to the outside in the surface direction of the base substrate 10, so that the adhesive layer is folded when the flexible substrate 20 is bent. 40 is also folded. Therefore, if the 30 ° C. elastic modulus is 4.0 GPa or less, the flexible substrate 20 can be easily bent. If the 30 ° C. elastic modulus is 4.0 GPa or less, the adhesive layer 40 is difficult to peel off when the flexible substrate 20 is bent. That is, the adhesive strength of the adhesive layer 40 is sufficiently increased. The 30 degreeC elasticity modulus of an anisotropic conductive adhesive can be adjusted by changing the kind and compounding quantity of film forming resin and a polymeric compound, for example.

また、異方性導電接着剤の樹脂フロー量は、1.3〜2.5であることが好ましく、1.5〜2.3であることがより好ましい。樹脂フロー量の値がこれらの範囲内の値となる場合に、異方性導電接着剤は、絶縁性保護膜30までより確実に到達することができる。   Further, the resin flow amount of the anisotropic conductive adhesive is preferably 1.3 to 2.5, and more preferably 1.5 to 2.3. When the value of the resin flow amount is a value within these ranges, the anisotropic conductive adhesive can reach the insulating protective film 30 more reliably.

異方性導電接着剤は、ペースト状の異方性導電ペーストであってもよく、膜形成樹脂をさらに含有することでフィルム状に形成された異方性導電フィルムであってもよい。ここで、異方性導電フィルムを異方性導電接着剤として用いる場合、異方性導電フィルムは、剥離フィルム上に設けられることが望ましい。剥離フィルムは、例えば、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly−4−methylpentene−1)、PTFE(Polytetrafluoroethylene)等にシリコーン等の剥離剤を塗布したものである。剥離フィルムは、異方性導電フィルムの乾燥を防ぐとともに、異方性導電フィルムの形状を維持する。   The anisotropic conductive adhesive may be a paste-like anisotropic conductive paste, or may be an anisotropic conductive film formed into a film by further containing a film-forming resin. Here, when using an anisotropic conductive film as an anisotropic conductive adhesive, it is desirable that the anisotropic conductive film is provided on a release film. The release film is made of, for example, PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methylpentene-1), PTFE (Polytetrafluoroethylene), or other release agent such as silicone. The release film prevents the anisotropic conductive film from drying and maintains the shape of the anisotropic conductive film.

<3.異方性導電接続方法>
次に、図2及び図3に基づいて、接続構造体1の製造方法、すなわち異方性導電接続方法について説明する。なお、ここでは、異方性導電接着剤として、光硬化開始剤を含む異方性導電フィルムを使用する場合を一例として製造方法を説明する。まず、第1の端子列が設けられたベース基板10を準備する。さらに、第2の端子列、配線パターン22、絶縁性保護膜30が設けられたフレキシブル基板20を準備する。さらに、上述した特性を有する異方性導電フィルム50を準備する。
<3. Anisotropic conductive connection method>
Next, the manufacturing method of the connection structure 1, that is, the anisotropic conductive connection method will be described with reference to FIGS. Here, the manufacturing method will be described by taking as an example a case where an anisotropic conductive film containing a photocuring initiator is used as the anisotropic conductive adhesive. First, the base substrate 10 provided with the first terminal row is prepared. Furthermore, the flexible substrate 20 provided with the second terminal row, the wiring pattern 22, and the insulating protective film 30 is prepared. Furthermore, an anisotropic conductive film 50 having the above-described characteristics is prepared.

ついで、図2に示すように、第1の端子列と第2の端子列とで異方性導電フィルム50を挟持する。例えば、ベース基板10を何らかの試料台に設置する。ついで、異方性導電フィルム50を第1の端子列上に設置し、仮圧着する。ここで、仮圧着は、例えば加熱加圧部材を異方性導電フィルム50に押し当てることにより行われる。仮圧着時の温度は本圧着時の温度よりも低く、異方性導電フィルム50が硬化しない程度の温度とされる。ついで、第2の端子列が第1の端子列に対向するように、フレキシブル基板20をベース基板10上に設置する。ここで、絶縁性保護膜30はベース基板10の面方向外側に配置する。また、異方性導電フィルム50の厚さは、第1の端子列と第2の端子列との合計高さの1.4倍以上であることが好ましい。この場合、異方性導電フィルム50は、より確実に絶縁性保護膜30に流動することができる。   Next, as shown in FIG. 2, the anisotropic conductive film 50 is sandwiched between the first terminal row and the second terminal row. For example, the base substrate 10 is installed on some sample stage. Next, the anisotropic conductive film 50 is placed on the first terminal row and temporarily crimped. Here, the temporary pressure bonding is performed, for example, by pressing a heating and pressing member against the anisotropic conductive film 50. The temperature at the time of temporary pressure bonding is lower than the temperature at the time of final pressure bonding, and is set to a temperature at which the anisotropic conductive film 50 is not cured. Next, the flexible substrate 20 is installed on the base substrate 10 so that the second terminal row faces the first terminal row. Here, the insulating protective film 30 is disposed on the outer side in the surface direction of the base substrate 10. Moreover, it is preferable that the thickness of the anisotropic conductive film 50 is 1.4 times or more of the total height of the first terminal row and the second terminal row. In this case, the anisotropic conductive film 50 can flow to the insulating protective film 30 more reliably.

ついで、第1の端子列と第2の端子列とを熱圧着(本圧着)する。例えば、第1の端子列及び第2の端子列の全域を加熱加圧可能な加熱加圧部材100を用意し、この加熱加圧部材100をフレキシブル基板20の上方からフレキシブル基板20に押し当てる。加熱加圧部材100による加圧位置は、第1の端子列及び第2の端子列の直上とする。加熱加圧部材100の加圧力、温度、加圧時間は、異方性導電フィルム50の材質等によって適宜調整すればよい。すなわち、これらのパラメータは、異方性導電フィルム50が絶縁性保護膜30まで流動し、その状態で硬化するように調整されればよい。   Next, the first terminal row and the second terminal row are subjected to thermocompression bonding (main compression bonding). For example, a heating and pressing member 100 capable of heating and pressing the entire area of the first terminal row and the second terminal row is prepared, and the heating and pressing member 100 is pressed against the flexible substrate 20 from above the flexible substrate 20. The pressing position by the heating and pressing member 100 is directly above the first terminal row and the second terminal row. What is necessary is just to adjust suitably the pressurizing force of the heating pressurization member 100, temperature, and pressurization time with the material of the anisotropic conductive film 50, etc. FIG. That is, these parameters may be adjusted so that the anisotropic conductive film 50 flows to the insulating protective film 30 and is cured in that state.

これにより、異方性導電フィルム50の一部は、第1の端子列及び第2の端子列の間に残留し、残りは第1の端子11同士の隙間、第2の端子21同士の隙間、または第1の端子列及び第2の端子列の外側に流動する。流動後の異方性導電フィルム50は、図3に示すように、異方性導電接続部分40a、第1の流動部分40b、第2の流動部分40cに区分される。異方性導電接続部分40aは、第1の端子列と第2の端子列との間に残留し、これらを導通する。第1の流動部分40bは、第1の端子列及び第2の端子列から面方向内側に流動した部分である。第2の流動部分40cは、第1の端子列及び第2の端子列から面方向外側に流動し、絶縁性保護膜30に到達した部分である。第1の流動部分40b、第2の流動部分40cは、絶縁性を維持している。したがって、本圧着により第1の端子列及び第2の端子列が異方性導電接続される。   Thereby, a part of the anisotropic conductive film 50 remains between the first terminal row and the second terminal row, and the rest is a gap between the first terminals 11 and a gap between the second terminals 21. Or flow outside the first terminal row and the second terminal row. As shown in FIG. 3, the anisotropic conductive film 50 after flowing is divided into an anisotropic conductive connecting portion 40a, a first flowing portion 40b, and a second flowing portion 40c. The anisotropic conductive connection portion 40a remains between the first terminal row and the second terminal row and conducts them. The first flowing portion 40b is a portion that flows inward in the plane direction from the first terminal row and the second terminal row. The second flow portion 40 c is a portion that flows outward in the surface direction from the first terminal row and the second terminal row and reaches the insulating protective film 30. The first fluid portion 40b and the second fluid portion 40c maintain insulation. Therefore, the first terminal row and the second terminal row are anisotropically conductively connected by the main pressure bonding.

異方性導電接続部分40a、及び第1の流動部分40bは加熱加圧部材100から与えられる熱量によって十分に硬化する。ただし、第2の流動部分40cは、加熱加圧部材100から与えられる熱量だけでは十分に硬化しない場合がある。そこで、図3に示すように、流動部分40cの下方から光(例えばUV光)を照射する。光の強度、照射時間は、第2の流動部分40cが十分に硬化する値であれば良い。これにより、異方性導電フィルム50を完全に硬化することができる。なお、光照射による硬化は、熱圧着から時間が経ってから行われてもよい。硬化した異方性導電フィルム50は、上述した接着剤層40となる。   The anisotropic conductive connection portion 40 a and the first flow portion 40 b are sufficiently cured by the amount of heat applied from the heating and pressing member 100. However, the second fluid portion 40c may not be sufficiently cured only by the amount of heat given from the heating and pressing member 100. Therefore, as shown in FIG. 3, light (for example, UV light) is irradiated from below the flow portion 40c. The light intensity and the irradiation time may be values that sufficiently cure the second fluid portion 40c. Thereby, the anisotropic conductive film 50 can be hardened | cured completely. In addition, hardening by light irradiation may be performed after time passes from thermocompression bonding. The cured anisotropic conductive film 50 becomes the adhesive layer 40 described above.

以上により、本実施形態によれば、接続構造体1の絶縁性保護膜30は、ベース基板10の面方向外側に配置される。したがって、絶縁性保護膜30は第1の端子列と第2の端子列との近接を阻害しないので、第1の端子列と第2の端子列との接続不良が生じにくい。さらに、第1の端子11同士の隙間に流動した異方性導電接着剤は、第1の端子列の外部にスムーズに流動することができる。したがって、第1の端子11同士がショートしにくくなる。したがって、接続構造体1の信頼性が向上する。   As described above, according to the present embodiment, the insulating protective film 30 of the connection structure 1 is disposed on the outer side in the surface direction of the base substrate 10. Therefore, since the insulating protective film 30 does not hinder the proximity of the first terminal row and the second terminal row, poor connection between the first terminal row and the second terminal row hardly occurs. Furthermore, the anisotropic conductive adhesive that has flowed into the gap between the first terminals 11 can flow smoothly to the outside of the first terminal row. Therefore, it becomes difficult for the first terminals 11 to short-circuit each other. Therefore, the reliability of the connection structure 1 is improved.

さらに、本実施形態では、接着剤層40が絶縁性保護膜30まで到達している。このため、接着剤層40と絶縁性保護膜30との間には隙間が形成されない。したがって、配線パターン22のむき出し部分が形成されないので、配線パターンのむき出し部分を封止剤によって封止する工程が不要となる。このため、接続構造体1をより簡単な工程によって作製することができる。   Furthermore, in the present embodiment, the adhesive layer 40 reaches the insulating protective film 30. For this reason, no gap is formed between the adhesive layer 40 and the insulating protective film 30. Therefore, since the exposed portion of the wiring pattern 22 is not formed, a process of sealing the exposed portion of the wiring pattern with the sealant becomes unnecessary. For this reason, the connection structure 1 can be produced by a simpler process.

なお、封止剤を用いて接続構造体を作製する技術においては、加熱加圧部材及び光源を備える製造装置を用いて接続構造体を作製する。一方、本実施形態においても加熱加圧部材及び光源を使用する。したがって、従来の製造装置をほとんどそのまま(例えば光源の設置位置を変える等の調整だけで)本実施形態の製造装置として流用することができる。   In addition, in the technique which produces a connection structure using a sealing agent, a connection structure is produced using a manufacturing apparatus provided with a heating and pressing member and a light source. On the other hand, a heating and pressing member and a light source are also used in this embodiment. Therefore, the conventional manufacturing apparatus can be used as the manufacturing apparatus of the present embodiment almost as it is (for example, only by changing the installation position of the light source).

(異方性導電フィルムの作製)
(実施例1)
フェノキシ樹脂(品名:PKHC、巴工業社製)50質量部、ウレタンアクリルオリゴマー(品名:EB−600、ダイセル・サイテック社製)40質量部、アクリルモノマー(品名:A−DCP、新中村化学社製)5質量部、シランカップリング剤(品名:KBM−503、信越シリコーン社製)2質量部、熱硬化開始剤として、パーヘキサC(日本油脂社製)5質量部、光硬化開始剤としてベンゾフェノン5質量部、導電性粒子(品名:AUL704、粒径4μm積水化学工業社製)6質量部を混合することで、接着剤組成物を作製した。そして、別途用意した厚さ38μmの剥離処理PETフィルムに接着剤組成物をバーコータにより塗工、乾燥することで、厚さ20μmの異方性導電フィルムを得た。
(Preparation of anisotropic conductive film)
Example 1
Phenoxy resin (product name: PKHC, manufactured by Sakai Kogyo Co., Ltd.) 50 parts by mass, urethane acrylic oligomer (product name: EB-600, manufactured by Daicel Cytec Co., Ltd.) 40 parts by mass, acrylic monomer (product name: A-DCP, manufactured by Shin-Nakamura Chemical Co., Ltd.) ) 5 parts by mass, 2 parts by mass of a silane coupling agent (product name: KBM-503, manufactured by Shin-Etsu Silicone), 5 parts by mass of Perhexa C (manufactured by NOF Corporation) as a thermosetting initiator, and benzophenone 5 as a photocuring initiator An adhesive composition was prepared by mixing 6 parts by mass of 6 parts by mass and conductive particles (product name: AUL704, particle size 4 μm, manufactured by Sekisui Chemical Co., Ltd.). Then, an adhesive composition was applied to a separately prepared release-treated PET film having a thickness of 38 μm with a bar coater and dried to obtain an anisotropic conductive film having a thickness of 20 μm.

(実施例2)
実施例1で作成した接着剤組成物に、増粘剤として疎水性シリカ(品名:AEROSIL972、EVONIK社製)を4質量部追加した他は実施例1と同様の処理を行うことで、厚さ20μmの異方性導電フィルムを得た。
(Example 2)
The thickness of the adhesive composition prepared in Example 1 was the same as in Example 1 except that 4 parts by mass of hydrophobic silica (product name: AEROSIL972, manufactured by EVONIK) was added as a thickener. A 20 μm anisotropic conductive film was obtained.

(実施例3)
フェノキシ樹脂(品名:PKHC、巴工業社製)50質量部、ウレタンアクリルオリゴマー(品名:EB−600、ダイセル・サイテック社製)35質量部、アクリルモノマー(品名:A−DCP、新中村化学社製)15質量部、シランカップリング剤(品名:KBM−503、信越シリコーン社製)2質量部、熱硬化開始剤としてパーヘキサC(日本油脂社製)5質量部、光硬化開始剤としてベンゾフェノン5質量部、導電性粒子(品名:AUL704、粒径4μm積水化学工業社製)6質量部を混合することで接着剤組成物を得た。そして、別途用意した厚さ38μmの剥離処理PETフィルムに接着剤組成物をバーコータにより塗工、乾燥することで、厚さ20μmの異方性導電フィルムを得た。
(Example 3)
Phenoxy resin (product name: PKHC, manufactured by Sakai Kogyo Co., Ltd.) 50 parts by mass, urethane acrylic oligomer (product name: EB-600, manufactured by Daicel Cytec Co., Ltd.) 35 parts by mass, acrylic monomer (product name: A-DCP, manufactured by Shin-Nakamura Chemical Co., Ltd.) ) 15 parts by mass, 2 parts by mass of a silane coupling agent (product name: KBM-503, manufactured by Shin-Etsu Silicone), 5 parts by mass of Perhexa C (manufactured by NOF Corporation) as a thermosetting initiator, and 5 mass of benzophenone as a photocuring initiator Part and conductive particles (product name: AUL704, particle size 4 μm, manufactured by Sekisui Chemical Co., Ltd.) 6 parts by mass were mixed to obtain an adhesive composition. Then, an adhesive composition was applied to a separately prepared release-treated PET film having a thickness of 38 μm with a bar coater and dried to obtain an anisotropic conductive film having a thickness of 20 μm.

(実施例4)
実施例1で作成した接着剤組成物から、光硬化開始剤であるベンゾフェノンを抜いた他は、実施例1と同様の処理を行うことで、厚さ20μmの異方性導電フィルムを得た。
Example 4
An anisotropic conductive film having a thickness of 20 μm was obtained by performing the same treatment as in Example 1 except that the photocurable initiator benzophenone was removed from the adhesive composition prepared in Example 1.

(実施例5)
実施例1で作成した接着剤組成物に、増粘剤として疎水性シリカ(品名:AEROSIL972、EVONIK社製)を8質量部追加した他は、実施例1と同様の処理を行うことで、厚さ20μmの異方性導電フィルムを得た。
(Example 5)
By performing the same treatment as in Example 1 except that 8 parts by mass of hydrophobic silica (product name: AEROSIL972, manufactured by EVONIK) was added to the adhesive composition prepared in Example 1 as a thickener. An anisotropic conductive film having a thickness of 20 μm was obtained.

(実施例6)
フェノキシ樹脂(品名:PKFE、巴工業社製)50質量部、ウレタンアクリルオリゴマー(品名:EB−600、ダイセル・サイテック社製)25質量部、アクリルモノマー(品名:A−9300、新中村化学社製)25質量部、シランカップリング剤(品名:KBM−503、信越シリコーン社製)2質量部、熱硬化開始剤としてパーヘキサC(日本油脂社製)5質量部、光硬化開始剤としてベンゾフェノン5質量部、導電性粒子(品名:AUL704、粒径4μm積水化学工業社製)6質量部を混合することで、接着剤組成物を作製した。そして、別途用意した厚さ38μmの剥離処理PETフィルムに接着剤組成物をバーコータにより塗工、乾燥することで、厚さ20μmの異方性導電フィルムを得た。
(Example 6)
50 parts by mass of phenoxy resin (product name: PKFE, manufactured by Sakai Kogyo Co., Ltd.), 25 parts by mass of urethane acrylic oligomer (product name: EB-600, manufactured by Daicel-Cytec), acrylic monomer (product name: A-9300, manufactured by Shin-Nakamura Chemical Co., Ltd.) ) 25 parts by mass, 2 parts by mass of a silane coupling agent (product name: KBM-503, manufactured by Shin-Etsu Silicone), 5 parts by mass of Perhexa C (manufactured by NOF Corporation) as a thermosetting initiator, and 5 mass of benzophenone as a photocuring initiator Part and conductive particles (product name: AUL704, particle size: 4 μm, manufactured by Sekisui Chemical Co., Ltd.) were mixed to prepare an adhesive composition. Then, an adhesive composition was applied to a separately prepared release-treated PET film having a thickness of 38 μm with a bar coater and dried to obtain an anisotropic conductive film having a thickness of 20 μm.

(比較例1)
実施例1で作成した接着剤組成物に、増粘剤として疎水性シリカ(品名:AEROSIL972、EVONIK社製)を12質量部追加した他は、実施例1と同様の処理を行うことで、厚さ20μmの異方性導電フィルムを得た。
(Comparative Example 1)
By performing the same treatment as in Example 1 except that 12 parts by mass of hydrophobic silica (product name: AEROSIL972, manufactured by EVONIK) was added to the adhesive composition prepared in Example 1 as a thickener. An anisotropic conductive film having a thickness of 20 μm was obtained.

(比較例2)
エポキシ樹脂(品名:jER4004、三菱化学社製)50質量部、ウレタンアクリルオリゴマー(品名:EB−600、ダイセル・サイテック社製)40質量部、アクリルモノマー(品名:A−DCP、新中村化学社製)5質量部、シランカップリング剤(品名:KBM−503、信越シリコーン社製)2質量部、熱硬化開始剤としてパーヘキサC(日本油脂社製)5質量部、光硬化開始剤としてベンゾフェノン5質量部、導電性粒子(品名:AUL704、粒径4μm積水化学工業社製)6質量部を混合することで、接着剤組成物を作製した。そして、別途用意した厚さ38μmの剥離処理PETフィルムに接着剤組成物をバーコータにより塗工、乾燥することで、厚さ20μmの異方性導電フィルムを得た。
(Comparative Example 2)
Epoxy resin (product name: jER4004, manufactured by Mitsubishi Chemical Corporation) 50 parts by mass, urethane acrylic oligomer (product name: EB-600, manufactured by Daicel Cytec) 40 parts by mass, acrylic monomer (product name: A-DCP, manufactured by Shin-Nakamura Chemical Co., Ltd.) ) 5 parts by mass, 2 parts by mass of a silane coupling agent (product name: KBM-503, manufactured by Shin-Etsu Silicone), 5 parts by mass of Perhexa C (manufactured by NOF Corporation) as a thermosetting initiator, and 5 mass of benzophenone as a photocuring initiator Part and conductive particles (product name: AUL704, particle size: 4 μm, manufactured by Sekisui Chemical Co., Ltd.) were mixed to prepare an adhesive composition. Then, an adhesive composition was applied to a separately prepared release-treated PET film having a thickness of 38 μm with a bar coater and dried to obtain an anisotropic conductive film having a thickness of 20 μm.

(最低溶融粘度の測定)
作成した異方性導電フィルムの最低溶融粘度を測定した。まず異方性導電フィルムを重ね合わせて厚み300μmの積層シートを作成した。ついで、溶融粘度計(Thermo Fisher Scientific社製)に積層シートをセットした。そして、昇温速度10℃/min、周波数1Hz、加圧力1N、測定温度範囲30〜180℃の条件で溶融粘度計を駆動することで、異方性導電フィルムの最低溶融粘度を測定した。測定結果を表1にまとめて示す。
(Measurement of minimum melt viscosity)
The minimum melt viscosity of the produced anisotropic conductive film was measured. First, a laminated sheet having a thickness of 300 μm was formed by overlaying anisotropic conductive films. Next, the laminated sheet was set on a melt viscometer (manufactured by Thermo Fisher Scientific). And the minimum melt viscosity of the anisotropic conductive film was measured by driving a melt viscometer on the conditions of temperature rising rate 10 degree-C / min, frequency 1Hz, applied pressure 1N, and measurement temperature range 30-180 degreeC. The measurement results are summarized in Table 1.

(樹脂フロー量の測定)
つぎに、樹脂フロー量を測定した。ここで、樹脂フロー量の測定方法を図4〜図6に基づいて説明する。作成した異方性導電フィルムを2.0mm幅にカットした。ついで、図4に示すように、カット済みの異方性導電フィルム50をノンアルカリガラス(厚み0.7μm)150で挟んだ。ついで、2.0mm幅のヒートツールで180℃−4MPa−6secの加熱加圧条件でノンアルカリガラス150の上方から異方性導電フィルム50を加圧した。加圧部分は、異方性導電フィルム50の直上とした。そして、加圧前後の樹脂広がり量を測定し、この結果から樹脂フロー量を測定した。すなわち、図6に示す加圧後の幅B(ここでの幅Bは、異方性導電フィルム50の幅の最大値とする)を図5に示す加圧前の幅A(=2.0mm)で除算することで、樹脂フロー量を測定した。結果を表1にまとめて示す。
(Measurement of resin flow)
Next, the amount of resin flow was measured. Here, a method for measuring the resin flow amount will be described with reference to FIGS. The produced anisotropic conductive film was cut into a width of 2.0 mm. Next, as shown in FIG. 4, the cut anisotropic conductive film 50 was sandwiched between non-alkaline glass (thickness 0.7 μm) 150. Next, the anisotropic conductive film 50 was pressed from above the non-alkali glass 150 under a heating and pressing condition of 180 ° C.-4 MPa-6 sec with a 2.0 mm wide heat tool. The pressurizing portion was directly above the anisotropic conductive film 50. And the resin spread amount before and behind pressurization was measured, and the resin flow amount was measured from this result. That is, the width B after pressurization shown in FIG. 6 (the width B here is the maximum width of the anisotropic conductive film 50) is the width A before pressurization shown in FIG. 5 (= 2.0 mm). The resin flow amount was measured by dividing by. The results are summarized in Table 1.

(弾性率の測定)
作成した異方性導電フィルムを200℃のオーブンにて完全硬化させたのち、完全硬化したフィルムを幅2mm,長さ50mmにカットした。そして、フィルムをDMA(SII社製)にセットし、DMAを引っ張りモードにて駆動した。そして、30℃弾性率E’の測定を行った。結果を表1にまとめて示す。
(Measurement of elastic modulus)
The prepared anisotropic conductive film was completely cured in an oven at 200 ° C., and then the completely cured film was cut into a width of 2 mm and a length of 50 mm. Then, the film was set in DMA (manufactured by SII), and the DMA was driven in the pulling mode. And the 30 degreeC elasticity modulus E 'was measured. The results are summarized in Table 1.

(評価用接続構造体の作製)
ベース基板として、ITOパターンガラスを用意した。このITOパターンガラスには、ITOからなる第1の端子が50μmピッチで形成されている。また、第1の端子の高さは200nmであり、ガラス部分の厚さは0.7μmであった。
(Preparation of connection structure for evaluation)
ITO pattern glass was prepared as a base substrate. In this ITO pattern glass, first terminals made of ITO are formed at a pitch of 50 μm. The height of the first terminal was 200 nm, and the thickness of the glass portion was 0.7 μm.

また、フレキシブル基板として、ポリイミド製のフレキシブル基板を準備した。フレキシブル基板の厚さは38μmであった。また、このフレキシブル基板には、すずめっきされた銅からなる第2の端子が50μmピッチで形成されている。第2の端子の高さは8μmであった。したがって、異方性導電フィルムの厚さは、第1の端子と第2の端子との合計高さの1.4倍以上となる。また、第2の端子からは、第2の端子と同じ材料で構成される第2の配線パターンが形成されており、第2の配線パターンは絶縁性保護膜(SN9000 、日立化成株式会社)で覆われていた。   Moreover, the flexible substrate made from a polyimide was prepared as a flexible substrate. The thickness of the flexible substrate was 38 μm. In addition, second terminals made of tin-plated copper are formed on the flexible substrate at a pitch of 50 μm. The height of the second terminal was 8 μm. Therefore, the thickness of the anisotropic conductive film is 1.4 times or more of the total height of the first terminal and the second terminal. Further, a second wiring pattern made of the same material as the second terminal is formed from the second terminal, and the second wiring pattern is an insulating protective film (SN9000, Hitachi Chemical Co., Ltd.). It was covered.

ついで、予め用意した試料台にベース基板を設置した。そして、第1の端子上に上記で作製した異方性導電フィルムを仮貼りし、剥離処理PETフィルムを異方性導電フィルムから引き剥がした。ついで、第2の端子が第1の端子に対向するように、フレキシブル基板をベース基板上に設置した。ここで、絶縁性保護膜はベース基板の面方向外側に配置した。ベース基板の絶縁性保護膜側の端部から絶縁性保護膜のベース基板側の端部までの距離は0.3mmとした。   Next, a base substrate was set on a sample stage prepared in advance. And the anisotropic conductive film produced above was temporarily stuck on the 1st terminal, and peeling process PET film was peeled off from the anisotropic conductive film. Next, the flexible substrate was placed on the base substrate so that the second terminal was opposed to the first terminal. Here, the insulating protective film is disposed on the outer side in the surface direction of the base substrate. The distance from the end of the base substrate on the insulating protective film side to the end of the insulating protective film on the base substrate side was 0.3 mm.

ついで、緩衝材として厚さ150μmのテフロン(登録商標)膜をフレキシブル基板上に設置した。ついで、1.2mm幅のヒートツールをフレキシブル基板の上方からフレキシブル基板に押し当てた。ヒートツールによる加圧位置は、第1の端子列及び第2の端子列の直上とした。加熱加圧条件は、180℃−4MPa−6secとした。ついで、第1の端子及び第2の端子からベース基板の面方向外側に流動した異方性導電フィルムに下方から紫外線を照射した。紫外線の照射は、LEDタイプの紫外線照射装置(ウシオ電機株式会社製)を用いて行った。照射時間は5秒とした。また、照射強度を100mW/cm、波長を365nmとした。以上の工程により、接続構造体を作製した。 Next, a Teflon (registered trademark) film having a thickness of 150 μm was placed on the flexible substrate as a buffer material. Next, a 1.2 mm wide heat tool was pressed against the flexible substrate from above the flexible substrate. The pressurizing position by the heat tool was directly above the first terminal row and the second terminal row. The heating and pressing conditions were 180 ° C.-4 MPa-6 sec. Subsequently, the anisotropic conductive film which flowed from the first terminal and the second terminal to the outside in the surface direction of the base substrate was irradiated with ultraviolet rays from below. The ultraviolet irradiation was performed using an LED type ultraviolet irradiation device (USHIO INC.). The irradiation time was 5 seconds. The irradiation intensity was 100 mW / cm 2 and the wavelength was 365 nm. The connection structure was produced through the above steps.

(接着剤層のはみ出し量評価)
接着剤層のベース基板の面方向外側へのはみ出し量を光学顕微鏡観察により評価した。結果を表1にまとめて示す。接着剤層が絶縁性保護膜まで到達している場合をOKと評価した。また、接着剤層が絶縁性保護膜まで到達していない場合をNGと評価した。ここで、NGの態様としては、異方性導電接着剤の最低溶融粘度が高すぎるために、接着剤層が絶縁性保護膜に到達していない態様と、異方性導電接着剤の最低溶融粘度が低すぎるために、接着剤層が絶縁性保護膜に到達せずにベース基板の裏面側に回りこんでしまう態様の2通り想定される。本実施例では、前者の態様をNG1、後者の態様をNG2と評価した。NG1の例を図7に、NG2の例を図8にしめす。いずれの例でも、接着剤層40と絶縁性保護膜30との間に隙間22aが形成されているのがわかる。隙間22aでは、配線パターン22がむき出しになってしまう。
(Evaluation of protruding amount of adhesive layer)
The amount of protrusion of the adhesive layer to the outside in the surface direction of the base substrate was evaluated by observation with an optical microscope. The results are summarized in Table 1. The case where the adhesive layer reached the insulating protective film was evaluated as OK. Moreover, the case where the adhesive bond layer did not reach the insulating protective film was evaluated as NG. Here, as an aspect of NG, since the minimum melt viscosity of the anisotropic conductive adhesive is too high, the adhesive layer does not reach the insulating protective film, and the minimum melt of the anisotropic conductive adhesive Since the viscosity is too low, it is assumed that the adhesive layer does not reach the insulating protective film and wraps around the back side of the base substrate. In this example, the former mode was evaluated as NG1, and the latter mode was evaluated as NG2. An example of NG1 is shown in FIG. 7, and an example of NG2 is shown in FIG. In any example, it can be seen that a gap 22 a is formed between the adhesive layer 40 and the insulating protective film 30. In the gap 22a, the wiring pattern 22 is exposed.

(導通抵抗測定)
接続構造体を85℃/相対湿度85%の環境下で500時間放置する信頼性評価試験を行った。ついで、信頼性評価試験前後で接続構造体の導通抵抗を測定した。具体的には、接続構造体に電流1mAを流したときの導通抵抗値を4端子法により測定した。測定にはデジタルマルチメータ(横河電機社製)を用いた。2Ω未満をA、5Ω未満をB、5Ω以上をCと評価した。測定結果を表1に示す。
(Conduction resistance measurement)
A reliability evaluation test was conducted in which the connection structure was left in an environment of 85 ° C./85% relative humidity for 500 hours. Subsequently, the conduction resistance of the connection structure was measured before and after the reliability evaluation test. Specifically, the conduction resistance value when a current of 1 mA was passed through the connection structure was measured by a four-terminal method. A digital multimeter (manufactured by Yokogawa Electric Corporation) was used for the measurement. Less than 2Ω was evaluated as A, less than 5Ω was evaluated as B, and 5Ω or more was evaluated as C. The measurement results are shown in Table 1.

(接着強度測定)
接続構造体を85℃/相対湿度85%の環境下で500時間放置する信頼性評価試験を行った。ついで、信頼性評価試験前後で接続構造体の接着強度を測定した。測定は引張り試験機(AND社製)を用いて行った。すなわち、接続構造体のベース基板を試料台に保持し、フレキシブル基板を上方から引っ張りあげた。測定速度(引張速度)は50mm/secとした。そして、フレキシブル基板(詳細には第2の端子)が第1の端子から完全に剥がれたときの引張強度を接着強度とした。7N/cm以上をA、5〜7N/cmをB、5N/cm未満をCと評価した。接着強度が低い場合、フレキシブル基板の屈曲時に接着剤層が剥がれる可能性がある。測定結果を表1にまとめて示す。
(Adhesive strength measurement)
A reliability evaluation test was conducted in which the connection structure was left in an environment of 85 ° C./85% relative humidity for 500 hours. Subsequently, the adhesive strength of the connection structure was measured before and after the reliability evaluation test. The measurement was performed using a tensile tester (manufactured by AND). That is, the base substrate of the connection structure was held on the sample stage, and the flexible substrate was pulled up from above. The measurement speed (tensile speed) was 50 mm / sec. The tensile strength when the flexible substrate (specifically, the second terminal) was completely peeled off from the first terminal was defined as the adhesive strength. 7 N / cm or more was evaluated as A, 5-7 N / cm as B, and less than 5 N / cm as C. When the adhesive strength is low, the adhesive layer may peel off when the flexible substrate is bent. The measurement results are summarized in Table 1.

(ショートテスト)
接続構造体のベース基板とフレキシブル基板との境界部分に平均粒子径3μm(球相当直径の算術平均値)のNi粉末を振り、接続構造体に均一に振動を与えた。その後、第1の端子と第2の端子との間に15Vの電圧をかけて絶縁抵抗を測定した。10Ω以上の場合をOK、10Ω未満の場合をNGと評価した。測定結果を表1にまとめて示す。
(Short test)
Ni powder having an average particle diameter of 3 μm (arithmetic mean value of sphere equivalent diameter) was sprinkled on the boundary portion between the base substrate and the flexible substrate of the connection structure to uniformly vibrate the connection structure. Thereafter, a voltage of 15 V was applied between the first terminal and the second terminal, and the insulation resistance was measured. The case of 10 6 Ω or more was evaluated as OK, and the case of less than 10 6 Ω was evaluated as NG. The measurement results are summarized in Table 1.

Figure 2016178225
Figure 2016178225

実施例1〜3については、すべて良好な結果となった。実施例4は、光硬化剤を抜いたことにより、信頼性評価試験後の接着強度が、実施例1〜3と比較し、やや低下する傾向が見られた。しかし、実用上は問題ないレベルであった。実施例5では、最低溶融粘度が他の実施例1〜4よりも高くなっている。このため、接着剤層のはみ出し量が不十分となり、接着剤層が絶縁性保護膜に到達しなかった。ただし、絶縁性保護膜をさらにベース基板側に近づけ、両者の距離を0.2mmとした場合には、接着剤層が絶縁性保護膜に到達した。この結果、ショートテストでOKの結果が得られた。実施例6では、30℃弾性率が他の実施例1〜5よりも高くなった。このため、接着剤層が物性的に硬くなり、接着強度が低下した。ただし、実用上は問題ないレベルであった。比較例1では、最低溶融粘度が1000を超えている。このため、接着剤層のはみ出し量が不十分となり、接着剤層が絶縁性保護膜に到達しなかった。比較例2では、最低溶融粘度が100未満となっている。このため、接着剤層がベース基板の裏面に回りこみ、絶縁性保護膜に到達しなかった。   For Examples 1 to 3, all the results were satisfactory. In Example 4, the adhesive strength after the reliability evaluation test tended to slightly decrease compared to Examples 1 to 3 by removing the photocuring agent. However, the level was practically acceptable. In Example 5, the minimum melt viscosity is higher than in other Examples 1 to 4. For this reason, the protrusion amount of the adhesive layer became insufficient, and the adhesive layer did not reach the insulating protective film. However, when the insulating protective film was brought closer to the base substrate side and the distance between them was 0.2 mm, the adhesive layer reached the insulating protective film. As a result, an OK result was obtained in the short test. In Example 6, the 30 ° C. elastic modulus was higher than in other Examples 1 to 5. For this reason, the adhesive layer became hard physically and the adhesive strength was lowered. However, there was no problem in practical use. In Comparative Example 1, the minimum melt viscosity exceeds 1000. For this reason, the protrusion amount of the adhesive layer became insufficient, and the adhesive layer did not reach the insulating protective film. In Comparative Example 2, the minimum melt viscosity is less than 100. For this reason, the adhesive layer wraps around the back surface of the base substrate and does not reach the insulating protective film.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

1 接続構造体
10 ベース基板
11 第1の端子
12 第1の配線パターン
20 フレキシブル基板
21 第2の端子
22 第2の配線パターン
30 絶縁性保護膜
40 接着剤層
50 異方性導電フィルム
DESCRIPTION OF SYMBOLS 1 Connection structure 10 Base board 11 1st terminal 12 1st wiring pattern 20 Flexible board 21 2nd terminal 22 2nd wiring pattern 30 Insulating protective film 40 Adhesive layer 50 Anisotropic conductive film

Claims (9)

ベース基板と、
前記ベース基板に設けられた第1の端子と、
フレキシブル基板と、
前記フレキシブル基板に設けられた配線パターンと、
前記配線パターンを覆う絶縁性保護膜と、
前記配線パターンに接続された第2の端子と、
前記第1の端子と、前記第2の端子とを異方性導電接続する異方性導電接着剤層と、を備え、
前記絶縁性保護膜は、前記ベース基板の面方向外側に配置され、
前記異方性導電接着剤層は、前記第2の端子から前記絶縁性保護膜の前記ベース基板側の端部まで伸びている、異方性導電接続構造体。
A base substrate;
A first terminal provided on the base substrate;
A flexible substrate;
A wiring pattern provided on the flexible substrate;
An insulating protective film covering the wiring pattern;
A second terminal connected to the wiring pattern;
An anisotropic conductive adhesive layer for anisotropically conductively connecting the first terminal and the second terminal;
The insulating protective film is disposed on the outside in the surface direction of the base substrate,
The anisotropic conductive connection structure, wherein the anisotropic conductive adhesive layer extends from the second terminal to an end of the insulating protective film on the base substrate side.
前記ベース基板の前記絶縁性保護膜側の端部から前記絶縁性保護膜の前記ベース基板側の端部までの距離は0.3mm以下である、請求項1記載の異方性導電接続構造体。   The anisotropic conductive connection structure according to claim 1, wherein a distance from an end portion of the base substrate on the insulating protective film side to an end portion of the insulating protective film on the base substrate side is 0.3 mm or less. . 前記異方性導電接着剤層の30℃弾性率は4.0GPa以下である、請求項1または2記載の異方性導電接続構造体。   The anisotropic conductive connection structure according to claim 1 or 2, wherein the anisotropic conductive adhesive layer has a 30 ° C elastic modulus of 4.0 GPa or less. 第1の端子が設けられたベース基板を準備する工程と、
配線パターンと、前記配線パターンを覆う絶縁性保護膜と、前記配線パターンに接続された第2の端子とが設けられたフレキシブル基板を準備する工程と、
未硬化の重合性化合物と、熱硬化開始剤と、導電性粒子とを含む異方性導電接着剤を準備する工程と、
前記第1の端子と前記第2の端子とで前記異方性導電接着剤を挟持し、かつ、前記絶縁性保護膜を前記ベース基板の面方向外側に配置する工程と、
前記ベース基板と前記フレキシブル基板とを熱圧着することで、前記第1の端子と前記第2の端子とを異方性導電接続するとともに、前記異方性導電接着剤を前記絶縁性保護膜の前記ベース基板側の端部まで流動させる工程と、を含む、異方性導電接続方法。
Preparing a base substrate provided with a first terminal;
Preparing a flexible substrate provided with a wiring pattern, an insulating protective film covering the wiring pattern, and a second terminal connected to the wiring pattern;
Preparing an anisotropic conductive adhesive comprising an uncured polymerizable compound, a thermosetting initiator, and conductive particles;
Sandwiching the anisotropic conductive adhesive between the first terminal and the second terminal, and disposing the insulating protective film on the outside in the surface direction of the base substrate;
By thermocompression bonding the base substrate and the flexible substrate, the first terminal and the second terminal are anisotropically conductively connected, and the anisotropic conductive adhesive is attached to the insulating protective film. An anisotropic conductive connection method comprising: flowing to an end portion on the base substrate side.
前記異方性導電接着剤は、さらに光硬化開始剤を含み、
前記異方性導電接着剤を前記絶縁性保護膜の前記ベース基板側の端部まで流動させた後、前記ベース基板の面方向外側に流動した前記異方性導電接着剤に光を照射する、請求項4記載の異方性導電接続方法。
The anisotropic conductive adhesive further includes a photocuring initiator,
Irradiating light to the anisotropic conductive adhesive that has flowed to the outside in the surface direction of the base substrate after flowing the anisotropic conductive adhesive to the end of the insulating protective film on the base substrate side, The anisotropic conductive connection method according to claim 4.
前記フレキシブル基板は、前記ベース基板の上方に配置されており、
前記異方性導電接着剤の下方から前記異方性導電接着剤に光を照射する、請求項5記載の異方性導電接続方法。
The flexible substrate is disposed above the base substrate,
The anisotropic conductive connection method according to claim 5, wherein the anisotropic conductive adhesive is irradiated with light from below the anisotropic conductive adhesive.
前記異方性導電接着剤は異方性導電フィルムであり、
前記異方性導電フィルムの厚さは、前記第1の端子と前記第2の端子との合計高さの少なくとも1.4倍以上である、請求項4〜6の何れか1項に記載の異方性導電接続方法。
The anisotropic conductive adhesive is an anisotropic conductive film,
7. The thickness of the anisotropic conductive film according to claim 4, wherein the thickness of the anisotropic conductive film is at least 1.4 times the total height of the first terminal and the second terminal. Anisotropic conductive connection method.
未硬化の重合性化合物と、熱硬化開始剤と、導電性粒子とを含み、
未硬化状態での最低溶融粘度が100〜1000Pa・sであり、
完全硬化後の30℃弾性率が4.0GPa以下である、異方性導電接着剤。
An uncured polymerizable compound, a thermosetting initiator, and conductive particles;
The minimum melt viscosity in an uncured state is 100 to 1000 Pa · s,
An anisotropic conductive adhesive having a 30 ° C. elastic modulus of 4.0 GPa or less after complete curing.
さらに光硬化開始剤を含む、請求項8記載の異方性導電接着剤。
The anisotropic conductive adhesive according to claim 8, further comprising a photocuring initiator.
JP2015058068A 2015-03-20 2015-03-20 Anisotropic conductive connection structure, anisotropic conductive connection method, and anisotropic conductive adhesive Pending JP2016178225A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2015058068A JP2016178225A (en) 2015-03-20 2015-03-20 Anisotropic conductive connection structure, anisotropic conductive connection method, and anisotropic conductive adhesive
CN202210519422.4A CN115151035A (en) 2015-03-20 2016-03-09 Anisotropic conductive connection structure, anisotropic conductive connection method, and anisotropic conductive adhesive
CN201680014182.5A CN107432084A (en) 2015-03-20 2016-03-09 Anisotropic conductive connection structural bodies, anisotropic conductive connection method and anisotropically conducting adhesive
PCT/JP2016/057473 WO2016152543A1 (en) 2015-03-20 2016-03-09 Anisotropic conductive connection structure, anisotropic conductive connection method, and anisotropic conductive adhesive
KR1020177024611A KR101991191B1 (en) 2015-03-20 2016-03-09 Anisotropic conductive connection structure, anisotropic conductive connection method and anisotropic conductive adhesive
TW105108116A TWI690250B (en) 2015-03-20 2016-03-16 Anisotropic conductive connection structure, anisotropic conductive connection method and anisotropic conductive adhesive
HK18104540.7A HK1245567A1 (en) 2015-03-20 2018-04-06 Anisotropic conductive connection structure, anisotropic conductive connection method, and anisotropic conductive adhesive
JP2020151670A JP7386773B2 (en) 2015-03-20 2020-09-09 Anisotropic conductive adhesive, connected structure, anisotropic conductive connection method, and method for manufacturing connected structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015058068A JP2016178225A (en) 2015-03-20 2015-03-20 Anisotropic conductive connection structure, anisotropic conductive connection method, and anisotropic conductive adhesive

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020151670A Division JP7386773B2 (en) 2015-03-20 2020-09-09 Anisotropic conductive adhesive, connected structure, anisotropic conductive connection method, and method for manufacturing connected structure

Publications (1)

Publication Number Publication Date
JP2016178225A true JP2016178225A (en) 2016-10-06

Family

ID=56977311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015058068A Pending JP2016178225A (en) 2015-03-20 2015-03-20 Anisotropic conductive connection structure, anisotropic conductive connection method, and anisotropic conductive adhesive

Country Status (6)

Country Link
JP (1) JP2016178225A (en)
KR (1) KR101991191B1 (en)
CN (2) CN107432084A (en)
HK (1) HK1245567A1 (en)
TW (1) TWI690250B (en)
WO (1) WO2016152543A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016221703A (en) * 2015-05-27 2016-12-28 ブラザー工業株式会社 Liquid ejection device, method of manufacturing liquid ejection device, wiring member, and method of manufacturing wiring member
WO2018101003A1 (en) * 2016-11-29 2018-06-07 デクセリアルズ株式会社 Anisotropic electrically-conductive adhesive agent

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2539684B (en) 2015-06-24 2018-04-04 Dst Innovations Ltd Method of surface-mounting components
KR102587764B1 (en) * 2018-11-21 2023-10-10 미쓰이 가가쿠 가부시키가이샤 Anisotropic conductive sheet, anisotropic conductive composite sheet, anisotropic conductive sheet set, electrical inspection device and electrical inspection method
JP2021036575A (en) * 2018-12-17 2021-03-04 東芝ホクト電子株式会社 Light-emitting device, protecting method of junction part, manufacturing method of light-emitting device, and vehicle lamp
WO2023171294A1 (en) * 2022-03-08 2023-09-14 株式会社村田製作所 Stretchable device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541091U (en) * 1991-10-31 1993-06-01 住友ベークライト株式会社 Anisotropic conductive crimping device
JP2000165009A (en) * 1998-11-30 2000-06-16 Optrex Corp Electrode terminal connecting structure
JP2006022230A (en) * 2004-07-08 2006-01-26 Sumitomo Bakelite Co Ltd Anisotropically conductive adhesive and anisotropically conductive adhesive film
WO2010038753A1 (en) * 2008-09-30 2010-04-08 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic electroconductive adhesive and method for manufacturing connected structure using the anisotropic electroconductive adhesive
JP2010199527A (en) * 2009-03-31 2010-09-09 Sony Chemical & Information Device Corp Junction element and method for manufacturing the same
JP2012175004A (en) * 2011-02-23 2012-09-10 Sekisui Chem Co Ltd Method of manufacturing connection structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3792554B2 (en) 2001-03-26 2006-07-05 シャープ株式会社 Display module and flexible wiring board connection method
JP2009135388A (en) 2007-10-30 2009-06-18 Hitachi Chem Co Ltd Circuit connecting method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541091U (en) * 1991-10-31 1993-06-01 住友ベークライト株式会社 Anisotropic conductive crimping device
JP2000165009A (en) * 1998-11-30 2000-06-16 Optrex Corp Electrode terminal connecting structure
JP2006022230A (en) * 2004-07-08 2006-01-26 Sumitomo Bakelite Co Ltd Anisotropically conductive adhesive and anisotropically conductive adhesive film
WO2010038753A1 (en) * 2008-09-30 2010-04-08 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic electroconductive adhesive and method for manufacturing connected structure using the anisotropic electroconductive adhesive
JP2010199527A (en) * 2009-03-31 2010-09-09 Sony Chemical & Information Device Corp Junction element and method for manufacturing the same
JP2012175004A (en) * 2011-02-23 2012-09-10 Sekisui Chem Co Ltd Method of manufacturing connection structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016221703A (en) * 2015-05-27 2016-12-28 ブラザー工業株式会社 Liquid ejection device, method of manufacturing liquid ejection device, wiring member, and method of manufacturing wiring member
WO2018101003A1 (en) * 2016-11-29 2018-06-07 デクセリアルズ株式会社 Anisotropic electrically-conductive adhesive agent
JP2018088498A (en) * 2016-11-29 2018-06-07 デクセリアルズ株式会社 Anisotropic Conductive Adhesive
CN109997237A (en) * 2016-11-29 2019-07-09 迪睿合株式会社 Anisotropically conducting adhesive
JP2021168387A (en) * 2016-11-29 2021-10-21 デクセリアルズ株式会社 Anisotropically conductive adhesive
JP7359804B2 (en) 2016-11-29 2023-10-11 デクセリアルズ株式会社 Anisotropic conductive adhesive, light emitting device, and method for manufacturing the light emitting device

Also Published As

Publication number Publication date
TWI690250B (en) 2020-04-01
KR20170113622A (en) 2017-10-12
CN115151035A (en) 2022-10-04
HK1245567A1 (en) 2018-08-24
TW201644337A (en) 2016-12-16
CN107432084A (en) 2017-12-01
KR101991191B1 (en) 2019-06-19
WO2016152543A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
WO2016152543A1 (en) Anisotropic conductive connection structure, anisotropic conductive connection method, and anisotropic conductive adhesive
KR101344965B1 (en) Anisotropic conductive film, united object, and process for producing united object
WO2012137754A1 (en) Anisotropic conductive film, method for producing connected body, and connected body
JP2014096531A (en) Method for manufacturing connection structure and connection method
KR101973823B1 (en) Anisotropic conductive connection material, film laminate, connection method, and connection structure
JP5956362B2 (en) Anisotropic conductive film, connection method, and joined body
JP7386773B2 (en) Anisotropic conductive adhesive, connected structure, anisotropic conductive connection method, and method for manufacturing connected structure
TWI540195B (en) A circuit connecting material and a connecting method using the same, and a connecting structure
TW201621924A (en) Anisotropic conductive film and connecting method
CN107230646B (en) Method for manufacturing connector
CN112543795B (en) Method for producing connection structure and connection film
TW201834858A (en) Anisotropic conductive connection structure body, method for manufacturing the same, anisotropic conductive film, and anisotropic conductive paste
TWI837173B (en) Method for manufacturing connection structure and connection film
KR101992549B1 (en) Anisotropic electroconduction connection method and anisotropic electroconduction connection structure
JP6431572B2 (en) Connection film, connection film manufacturing method, connection structure, connection structure manufacturing method, and connection method
JP2015187945A (en) Conductive particle, method of producing conductive particle, conductive adhesive, method of producing connection body, and electronic component connection method
JP6177642B2 (en) Connection film, connection structure, method for manufacturing connection structure, connection method
WO2016117613A1 (en) Method for producing connected body, method for connecting electronic component, and connected body
JP2016178226A (en) Anisotropic connection structure
JP2017098413A (en) Repair method and connection method
JP2015170647A (en) Method of manufacturing connection body, connection method for electronic component, and connection body
JP2015159171A (en) Manufacturing method of connection body, connection method of circuit member, and connection body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190315

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200609