JP2018088498A - Anisotropic Conductive Adhesive - Google Patents

Anisotropic Conductive Adhesive Download PDF

Info

Publication number
JP2018088498A
JP2018088498A JP2016231826A JP2016231826A JP2018088498A JP 2018088498 A JP2018088498 A JP 2018088498A JP 2016231826 A JP2016231826 A JP 2016231826A JP 2016231826 A JP2016231826 A JP 2016231826A JP 2018088498 A JP2018088498 A JP 2018088498A
Authority
JP
Japan
Prior art keywords
anisotropic conductive
conductive adhesive
particles
light
inorganic binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016231826A
Other languages
Japanese (ja)
Inventor
青木 正治
Masaharu Aoki
正治 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2016231826A priority Critical patent/JP2018088498A/en
Priority to PCT/JP2017/040440 priority patent/WO2018101003A1/en
Priority to CN201780072639.2A priority patent/CN109997237A/en
Priority to TW106141316A priority patent/TWI788313B/en
Publication of JP2018088498A publication Critical patent/JP2018088498A/en
Priority to JP2021093104A priority patent/JP7359804B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J1/00Adhesives based on inorganic constituents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Led Device Packages (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic conductive adhesive which includes an excellent heat resistance and light resistance energy properties.SOLUTION: An anisotropic conductive adhesive that connects a light emission element onto an electrode of a wiring pattern of a substrate, includes: an inorganic binder; and a conductive particle. Since an adhesive component is an inorganic material, excellent heat resistance and light resistance energy properties can be obtained. Specifically, even when an ultraviolet light LED that emits an ultraviolet light of a light energy having two to three times stronger than a blue is mounted, the excellent heat resistance and the light resistance energy properties can be obtained.SELECTED DRAWING: Figure 1

Description

本発明は、LED(Light Emitting Diode)を実装するための異方性導電接着剤に関する。   The present invention relates to an anisotropic conductive adhesive for mounting an LED (Light Emitting Diode).

従来、LEDのチップ部品を回路基板に実装する手法として、ワイヤーボンド接合が知られている。しかしながら、ワイヤーボンド接合は、ワイヤーが切断し、電気的接続不良が発生する場合がある。また、ワイヤーボンド接合は、基板の汎用性が低く、小型化やフレキシブル化が困難である。   Conventionally, wire bonding is known as a method of mounting LED chip components on a circuit board. However, in the wire bond bonding, the wire is cut and an electrical connection failure may occur. Moreover, the wire bond bonding has low versatility of the substrate, and it is difficult to reduce the size and flexibility.

ワイヤーボンド接合の課題を解決する手法として、特許文献1、2には、エポキシ系接着剤に導電粒子を分散させ、フィルム状に成形した異方性導電フィルムを使用し、LEDをフリップチップ実装する方法が提案されている。   As a technique for solving the problem of wire bond bonding, Patent Documents 1 and 2 disclose that an anisotropic conductive film in which conductive particles are dispersed in an epoxy adhesive and formed into a film is used, and an LED is flip-chip mounted. A method has been proposed.

特開2010−24301号公報JP 2010-24301 A 特開2012−186322号公報JP 2012-186322 A

フリップチップ実装用の従来の異方性導電接着剤は、LEDの照度を高めるために大電流を流した場合、大電流の熱により接着強度が低下し、LEDが剥離することがあった。また、従来の異方性導電接着剤を用いて紫外線LEDを実装した場合、青色LEDの2〜3倍の強さの光エネルギーにより接着強度が低下し、LEDが不点灯となることがあった。   In the conventional anisotropic conductive adhesive for flip chip mounting, when a large current is applied to increase the illuminance of the LED, the adhesive strength decreases due to the heat of the large current, and the LED may be peeled off. In addition, when an ultraviolet LED is mounted using a conventional anisotropic conductive adhesive, the adhesive strength decreases due to light energy twice to three times as strong as that of a blue LED, and the LED may not light up. .

本発明は、上述した従来技術における課題を解決するものであり、優れた耐熱性及び耐光エネルギー性を有する異方性導電接着剤を提供する。   The present invention solves the above-described problems in the prior art, and provides an anisotropic conductive adhesive having excellent heat resistance and light energy resistance.

本発明者らは、鋭意検討を行った結果、異方性導電接着剤の接着剤成分(バインダー)を無機材料とすることにより、優れた耐熱性及び耐光エネルギー性が得られることを見出した。   As a result of intensive studies, the present inventors have found that excellent heat resistance and light energy resistance can be obtained by using an adhesive component (binder) of an anisotropic conductive adhesive as an inorganic material.

すなわち、本発明に係る異方性導電接着剤は、基板の配線パターンの電極上に発光素子を接続させる異方性導電接着剤であって、無機バインダーと、導電粒子とを含有することを特徴とする。   That is, the anisotropic conductive adhesive according to the present invention is an anisotropic conductive adhesive for connecting a light emitting element on an electrode of a wiring pattern of a substrate, and contains an inorganic binder and conductive particles. And

また、本発明に係る発光装置は、配線パターンを有する基板と、前記配線パターンの電極上に形成された異方性導電膜と、前記異方性導電膜上に実装された発光素子とを備え、前記異方性導電膜が、無機バインダーと、導電粒子とを含有する異方性導電接着剤の硬化物であることを特徴とする。   The light emitting device according to the present invention includes a substrate having a wiring pattern, an anisotropic conductive film formed on an electrode of the wiring pattern, and a light emitting element mounted on the anisotropic conductive film. The anisotropic conductive film is a cured product of an anisotropic conductive adhesive containing an inorganic binder and conductive particles.

また、本発明に係る発光装置の製造方法は、基板の配線パターンの電極上に、無機バインダーと、導電粒子とを含有する異方性導電接着剤を塗布し、前記異方性導電接着剤を介して発光素子を加熱圧着させることを特徴とする。   In the method for manufacturing a light emitting device according to the present invention, an anisotropic conductive adhesive containing an inorganic binder and conductive particles is applied on an electrode of a wiring pattern of a substrate, and the anisotropic conductive adhesive is applied. The light-emitting element is heat-pressed through.

本発明によれば、接着剤成分が無機材料であるため、優れた耐熱性及び耐光エネルギー性を得ることができる。   According to the present invention, since the adhesive component is an inorganic material, excellent heat resistance and light energy resistance can be obtained.

図1は、発光装置の一例を示す断面図である。FIG. 1 is a cross-sectional view illustrating an example of a light emitting device. 図2は、LED実装サンプルの作製工程を説明するための図である。FIG. 2 is a diagram for explaining a manufacturing process of the LED mounting sample. 図3は、ダイシェア強度試験の概要を示す断面図である。FIG. 3 is a cross-sectional view showing an outline of the die shear strength test.

以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.異方性導電接着剤
2.発光装置
3.実施例
Hereinafter, embodiments of the present invention will be described in detail in the following order with reference to the drawings.
1. 1. Anisotropic conductive adhesive 2. Light emitting device Example

<1.異方性導電接着剤>
本実施の形態に係る異方性導電接着剤は、基板の配線パターンの電極上に発光素子を接続させる異方性導電接着剤であって、無機バインダーと、導電粒子とを含有する。接着剤成分が無機材料であることにより、優れた耐熱性及び耐光エネルギー性を得ることができる。
<1. Anisotropic conductive adhesive>
The anisotropic conductive adhesive according to the present embodiment is an anisotropic conductive adhesive for connecting a light emitting element on an electrode of a wiring pattern on a substrate, and contains an inorganic binder and conductive particles. When the adhesive component is an inorganic material, excellent heat resistance and light energy resistance can be obtained.

[無機バインダー]
無機バインダーの主成分としては、アルカリ金属ケイ酸塩、リン酸塩、及びシリカゾルからなる群から選ばれる少なくとも1種であることが好ましく、中でも、分子式MO・nSiO(MはNa、K、Liのいずれか1種であり、nはモル比である。)で表されるアルカリ金属ケイ酸塩を用いることが好ましい。
[Inorganic binder]
The main component of the inorganic binder is preferably at least one selected from the group consisting of alkali metal silicates, phosphates, and silica sols. Among these, molecular formula M 2 O · nSiO 2 (M is Na, K , Li and n is a molar ratio.) It is preferable to use an alkali metal silicate represented by the following formula.

アルカリ金属ケイ酸塩の金属Mは、一般にNa>K>Liの順で接着性が良好である。このため、無機バインダーの主成分は、ケイ酸ナトリウム(水ガラス)であることが好ましい。ケイ酸ナトリウムとしては、JIS K1408に準拠するケイ酸ナトリウム1号〜3号を用いることが好ましく、中でも、接着力の観点からケイ酸ナトリウム3号を用いることが好ましい。   The metal M of the alkali metal silicate generally has good adhesion in the order of Na> K> Li. For this reason, it is preferable that the main component of an inorganic binder is sodium silicate (water glass). As sodium silicate, sodium silicate Nos. 1 to 3 in accordance with JIS K1408 are preferably used, and sodium silicate No. 3 is preferably used from the viewpoint of adhesive strength.

また、無機バインダーは、接着力を向上させるため、硬化剤として、Zn、Mg、Cのいずれか1種の酸化物、水酸化物、Na、K、Caのいずれか1種のケイ化物、ケイフッ化物、Al、Znのいずれか1種のリン酸塩、Ca、Ba、Mgのいずれか1種のホウ酸塩を含有してもよい。   In addition, in order to improve the adhesive force, the inorganic binder is used as a curing agent such as any one of oxides, hydroxides, hydroxides, Na, K, and Ca of any one of Zn, Mg, and C. Any one kind of phosphate, Ca, Ba, Mg may be contained.

[導電粒子]
導電粒子としては、半田粒子、金属粒子、及び樹脂粒子に金属が被覆された樹脂コア導電粒子からなる群から選ばれる少なくとも1種であるであることが好ましい。中でも、半田粒子を用いることが好ましく、半田粒子と樹脂コア粒子とを併用することが好ましい。
[Conductive particles]
The conductive particles are preferably at least one selected from the group consisting of solder particles, metal particles, and resin core conductive particles in which resin particles are coated with metal. Among these, it is preferable to use solder particles, and it is preferable to use solder particles and resin core particles in combination.

導電粒子の平均粒径は、1μm以上30μm以下であることが好ましく、より好ましくは5μm以上25μm以下である。導電粒子の配合量は、無機バインダー100質量部に対して3〜120質量部であることが好ましく、10〜80質量部であることがより好ましい。   The average particle diameter of the conductive particles is preferably 1 μm or more and 30 μm or less, and more preferably 5 μm or more and 25 μm or less. The blending amount of the conductive particles is preferably 3 to 120 parts by mass and more preferably 10 to 80 parts by mass with respect to 100 parts by mass of the inorganic binder.

半田粒子としては、例えばJIS Z 3282−1999に規定されている、Sn−Pb系、Pb−Sn−Sb系、Sn−Sb系、Sn−Pb−Bi系、Bi−Sn系、Sn−Cu系、Sn−Pb−Cu系、Sn−In系、Sn−Ag系、Sn−Pb−Ag系、Pb−Ag系などから、電極材料や接続条件などに応じて適宜選択して用いることができる。また、半田粒子の形状は、粒状、燐片状などから適宜選択することができる。また、半田粒子は、異方性を向上させるために絶縁層で被覆されていても構わない。また、半田の融点は、100〜250℃であることが好ましく、150〜200℃であることがより好ましい。なお、半田粒子は、圧着時の十分な荷重により、半田粒子の融点以下の実装温度でも端子(電極)との間で合金を形成することができる。   Examples of the solder particles include Sn-Pb, Pb-Sn-Sb, Sn-Sb, Sn-Pb-Bi, Bi-Sn, and Sn-Cu based on JIS Z 3282-1999. , Sn—Pb—Cu, Sn—In, Sn—Ag, Sn—Pb—Ag, Pb—Ag, and the like can be appropriately selected according to the electrode material, connection conditions, and the like. Further, the shape of the solder particles can be appropriately selected from granular, flake shaped, and the like. The solder particles may be covered with an insulating layer in order to improve anisotropy. Moreover, it is preferable that melting | fusing point of solder is 100-250 degreeC, and it is more preferable that it is 150-200 degreeC. Note that the solder particles can form an alloy with the terminals (electrodes) even at a mounting temperature lower than the melting point of the solder particles by a sufficient load at the time of pressure bonding.

半田粒子の配合量は、20〜120質量部であることが好ましい。はんだ粒子の配合量が少なすぎると優れた放熱特性が得られなくなり、配合量が多すぎると異方性が損なわれ、優れた接続信頼性が得られない。   The blending amount of the solder particles is preferably 20 to 120 parts by mass. If the blending amount of the solder particles is too small, excellent heat dissipation characteristics cannot be obtained, and if the blending amount is too large, anisotropy is impaired and excellent connection reliability cannot be obtained.

半田粒子と樹脂コア導電粒子とを併用する場合、半田粒子は、樹脂コア導電粒子よりも平均粒径が大きいことが好ましく、半田粒子の平均粒径は、樹脂コア導電粒子の平均粒径の120〜800%であることが好ましく、200〜500%であることがより好ましい。半田粒子の平均粒径が樹脂コア導電粒子よりも大きいことにより、圧着時に半田粒子に十分に荷重が加わり、半田粒子の融点以下の実装温度でも端子(電極)との間で合金を形成することができる。   When the solder particles and the resin core conductive particles are used in combination, the solder particles preferably have an average particle size larger than that of the resin core conductive particles, and the average particle size of the solder particles is 120, which is the average particle size of the resin core conductive particles. It is preferable that it is -800%, and it is more preferable that it is 200-500%. Because the average particle size of the solder particles is larger than that of the resin core conductive particles, a sufficient load is applied to the solder particles during crimping, and an alloy is formed between the terminals (electrodes) even at a mounting temperature below the melting point of the solder particles. Can do.

金属粒子としては、例えば、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金などの各種金属又はこれらの合金を用いることができる。   As the metal particles, for example, various metals such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, gold, or alloys thereof can be used.

樹脂コア導電粒子の樹脂粒子としては、例えば、エポキシ樹脂、フェノール樹脂、アクリル樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂などを用いることができる。また、樹脂粒子を被覆する金属としては、例えば、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金などの各種金属又はこれらの合金を用いることができる。   As the resin particles of the resin core conductive particles, for example, epoxy resin, phenol resin, acrylic resin, acrylonitrile / styrene (AS) resin, benzoguanamine resin, divinylbenzene resin, styrene resin, and the like can be used. Moreover, as a metal which coat | covers a resin particle, various metals, such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, gold | metal | money, or these alloys can be used, for example.

また、本実施の形態に係る異方性導電接着剤は、粘度や線膨張を調整するため、無機フィラーをさらに含有してもよい。無機フィラーとしては、例えば、シリカ、アルミナ、酸化チタン、窒化アルミニウム、炭酸カルシウム、酸化マグネシウムなどが挙げられる。無機フィラーの平均粒径は、10nm〜10μmであることが好ましく、無機フィラーの配合量は、無機バインダー100質量部に対して1〜100質量部であることが好ましい。   Moreover, the anisotropic conductive adhesive according to the present embodiment may further contain an inorganic filler in order to adjust viscosity and linear expansion. Examples of the inorganic filler include silica, alumina, titanium oxide, aluminum nitride, calcium carbonate, and magnesium oxide. The average particle size of the inorganic filler is preferably 10 nm to 10 μm, and the blending amount of the inorganic filler is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the inorganic binder.

また、異方性導電接着剤は、LEDからの出射光を反射し、高い光取り出し効率を得るため、TiO、BN、ZnO、Alなどの白色無機粒子を含有してもよい。白色無機粒子の平均粒径は、反射させる光の波長の1/2以上であることが好ましい。 In addition, the anisotropic conductive adhesive may contain white inorganic particles such as TiO 2 , BN, ZnO, and Al 2 O 3 in order to reflect light emitted from the LED and obtain high light extraction efficiency. The average particle size of the white inorganic particles is preferably at least 1/2 of the wavelength of light to be reflected.

このような異方性導電接着剤によれば、接着剤成分が無機材料であることにより、優れた耐熱性及び耐光エネルギー性を得ることができる。特に、青色LEDの2〜3倍の強さの光エネルギーの紫外線を発光する紫外線LEDを実装した場合でも、優れた耐熱性及び耐光エネルギー性を得ることができる。   According to such an anisotropic conductive adhesive, excellent heat resistance and light energy resistance can be obtained because the adhesive component is an inorganic material. In particular, even when an ultraviolet LED that emits ultraviolet light having a light energy 2 to 3 times that of a blue LED is mounted, excellent heat resistance and light energy resistance can be obtained.

<2.発光装置>
本実施の形態に係る発光装置は、配線パターンを有する基板と、配線パターンの電極上に形成された異方性導電膜と、異方性導電膜上に実装された発光素子とを備え、異方性導電膜が、前述した無機バインダーと、導電粒子とを含有する異方性導電接着剤の硬化物である。これにより、優れた耐熱性及び耐光エネルギー性を得ることができる。
<2. Light emitting device>
The light emitting device according to the present embodiment includes a substrate having a wiring pattern, an anisotropic conductive film formed on an electrode of the wiring pattern, and a light emitting element mounted on the anisotropic conductive film. The anisotropic conductive film is a cured product of the anisotropic conductive adhesive containing the above-described inorganic binder and conductive particles. Thereby, the outstanding heat resistance and light energy resistance can be obtained.

また、本実施の形態に係る発光装置の製造方法は、基板の配線パターンの電極上に、無機バインダーと、導電粒子とを含有する異方性導電接着剤を塗布し、異方性導電接着剤を介して発光素子を加熱圧着させるものである。   Further, in the method for manufacturing the light emitting device according to the present embodiment, an anisotropic conductive adhesive containing an inorganic binder and conductive particles is applied on the electrodes of the wiring pattern of the substrate, and the anisotropic conductive adhesive is applied. The light emitting element is thermocompression-bonded via the substrate.

図1は、発光装置の一例を示す断面図である。発光素子は、例えばn−GaNからなる第1導電型クラッド層11と、例えばInAlGa1−x−yN層からなる活性層12と、例えばp−GaNからなる第2導電型クラッド層113とを備え、いわゆるダブルヘテロ構造を有する。また、パッシベーション層14により第1導電型クラッド層11の一部に形成された第1導電型電極11aと、第2導電型クラッド層13の一部に形成された第2導電型電極13aとを備える。第1導電型電極11aと第2導電型電極13aとの間に電圧が印加されると、活性層12にキャリアが集中し、再結合することにより発光が生じる。 FIG. 1 is a cross-sectional view illustrating an example of a light emitting device. The light emitting element includes a first conductivity type clad layer 11 made of, for example, n-GaN, an active layer 12 made of, for example, an In x Al y Ga 1-xy N layer, and a second conductivity type clad made of, for example, p-GaN. A layer 113 and a so-called double heterostructure. Further, a first conductivity type electrode 11 a formed on a part of the first conductivity type cladding layer 11 by the passivation layer 14 and a second conductivity type electrode 13 a formed on a part of the second conductivity type cladding layer 13 are provided. Prepare. When a voltage is applied between the first conductivity type electrode 11a and the second conductivity type electrode 13a, carriers are concentrated on the active layer 12, and light is emitted by recombination.

発光素子は、特に限定されず、発光波長が200〜300nm程度の紫外線を発光する紫外線LEDであっても、発光波長が460nm程度の青色光を発光する青色LEDであってもよい。光エネルギー式(E=hc/λ)による計算によれば、青色LEDの光エネルギーは2.8eVであり、紫外線LEDの光エネルギーは4.1〜6.2eVであり、紫外線LEDは、青色LEDの2〜3倍の強さの光エネルギーを有することになるが、本実施の形態では、異方性導電接着剤の接着剤成分が無機材料であるため、紫外線LEDを用いた場合でも接着強度の低下を抑制し、優れた耐熱性及び耐光エネルギー性を得ることができる。   The light emitting element is not particularly limited, and may be an ultraviolet LED that emits ultraviolet light having an emission wavelength of about 200 to 300 nm or a blue LED that emits blue light having an emission wavelength of about 460 nm. According to the calculation by the light energy formula (E = hc / λ), the light energy of the blue LED is 2.8 eV, the light energy of the ultraviolet LED is 4.1 to 6.2 eV, and the ultraviolet LED is a blue LED. However, in this embodiment, since the adhesive component of the anisotropic conductive adhesive is an inorganic material, the adhesive strength can be obtained even when an ultraviolet LED is used. Can be suppressed, and excellent heat resistance and light energy resistance can be obtained.

基板は、基材21上に第1導電型用回路パターン22と、第2導電型用回路パターン23とを備え、発光素子の第1導電型電極11a及び第2導電型電極13aに対応する位置にそれぞれ電極を有する。   The substrate includes a first conductivity type circuit pattern 22 and a second conductivity type circuit pattern 23 on a base material 21, and positions corresponding to the first conductivity type electrode 11a and the second conductivity type electrode 13a of the light emitting element. Each has an electrode.

基板は、透光基板であることが好ましい。基材21が透光基板である場合、基材31は、ガラス、PET(polyethylene terephthalate)などの透明基材であることが好ましく、第1導電型用回路パターン22、第2導電型用回路パターン23、及びその電極は、ITO(Indium-Tin-Oxide)、IZO(Indium-Zinc-Oxide)、ZnO(Zinc-Oxide)、IGZO(Indium-Gallium-Zinc-Oxide)などの透明導電膜であることが好ましい。基板が透光基板であることにより、基板側を表示面(発光面)とすることが可能となる。   The substrate is preferably a translucent substrate. When the base material 21 is a translucent substrate, the base material 31 is preferably a transparent base material such as glass or PET (polyethylene terephthalate), and the first conductive type circuit pattern 22 and the second conductive type circuit pattern. 23, and its electrode is a transparent conductive film such as ITO (Indium-Tin-Oxide), IZO (Indium-Zinc-Oxide), ZnO (Zinc-Oxide), IGZO (Indium-Gallium-Zinc-Oxide) Is preferred. Since the substrate is a light-transmitting substrate, the substrate side can be a display surface (light emitting surface).

異方性導電膜30は、前述した異方性導電接着剤が硬化したものであり、発光素子の端子(電極11a、13a)と基板の端子(電極)との間に導電粒子31が捕捉されることにより、発光素子と基板とが電気的に接続される。   The anisotropic conductive film 30 is obtained by curing the above-described anisotropic conductive adhesive, and the conductive particles 31 are captured between the terminals (electrodes 11a and 13a) of the light emitting element and the terminals (electrodes) of the substrate. As a result, the light emitting element and the substrate are electrically connected.

このような発光装置によれば、異方性導電接着剤の接着剤成分が無機材料であることにより、優れた耐熱性及び耐光エネルギー性を得ることができる。特に、青色LEDの2〜3倍の強さの光エネルギーの紫外線を発光する紫外線LEDを実装した場合でも、優れた耐熱性及び耐光エネルギー性を得ることができる。
<3.実施例>
According to such a light emitting device, excellent heat resistance and light resistance can be obtained because the adhesive component of the anisotropic conductive adhesive is an inorganic material. In particular, even when an ultraviolet LED that emits ultraviolet light having a light energy 2 to 3 times that of a blue LED is mounted, excellent heat resistance and light energy resistance can be obtained.
<3. Example>

以下、本発明の実施例について説明する。本実施例では、各種の異方性導電接着剤を作製した。そして、異方性導電接着剤を用いて基板上に青色LEDチップを実装してLED実装サンプルAを作製し、初期及び高温高湿連続点灯試験後のダイシェア強度を測定して耐熱性を評価した。また、異方性導電接着剤を用いて基板上に紫外線LEDチップを実装してLED実装サンプルBを作製し、初期、TCT(Temperature Cycling Test)試験後及び高温高湿連続点灯試験後の順電圧を測定して耐熱性及び耐光エネルギー性について評価した。なお、本発明は、これらの実施例に限定されるものではない。   Examples of the present invention will be described below. In this example, various anisotropic conductive adhesives were produced. Then, a blue LED chip was mounted on the substrate using an anisotropic conductive adhesive to produce an LED mounting sample A, and the heat resistance was evaluated by measuring the die shear strength after the initial and high-temperature and high-humidity continuous lighting tests. . In addition, an ultraviolet LED chip is mounted on a substrate using an anisotropic conductive adhesive to prepare an LED mounting sample B, and forward voltage after initial, TCT (Temperature Cycling Test) test and after high temperature and high humidity continuous lighting test Were measured for heat resistance and light energy resistance. The present invention is not limited to these examples.

[LED実装サンプルの作製]
図2は、LED実装サンプルの作製工程を説明するための図である。図2に示すように、LED実装サンプルを作製した。金属配線が形成されたセラミック基板41をステージ上に配置し、セラミック基板41上に異方性導電接着剤40をスタンピング法にて塗布した。そして、異方性導電接着剤40上に、LEDチップ42を60gの加重で搭載し、加熱圧着ボンダー43を用いて、ヘッドとステージを加熱して加熱圧着実装し、LED実装サンプルA又はLED実装サンプルBを得た。
[Production of LED mounting sample]
FIG. 2 is a diagram for explaining a manufacturing process of the LED mounting sample. As shown in FIG. 2, an LED mounting sample was produced. A ceramic substrate 41 on which metal wiring was formed was placed on a stage, and an anisotropic conductive adhesive 40 was applied on the ceramic substrate 41 by a stamping method. Then, the LED chip 42 is mounted on the anisotropic conductive adhesive 40 with a load of 60 g, and the head and the stage are heated by thermocompression bonding using the thermocompression bonder 43, and the LED mounting sample A or LED mounting is performed. Sample B was obtained.

[ダイシェア強度の測定]
LEDチップ42として青色LED(定格350mA、サイズ45mm角、波長460nm)を用いて、LED実装サンプルAを作製した。
[Die shear strength measurement]
An LED mounting sample A was produced using a blue LED (rated 350 mA, size 45 mm square, wavelength 460 nm) as the LED chip 42.

図3は、ダイシェア強度試験の概要を示す断面図である。図3に示すように、ダイシェアテスターを用いて、ツール50のせん断速度20μm/sec、温度25℃の条件で各LED実装サンプルAの初期、及び高温高湿連続点灯試験後のダイシェア強度を測定した。高温高湿連続点灯試験は、温度85℃−湿度90%−500時間の条件で連続点灯させた。   FIG. 3 is a cross-sectional view showing an outline of the die shear strength test. As shown in FIG. 3, using a die shear tester, the die shear strength is measured at the initial stage of each LED mounting sample A and after the high temperature and high humidity continuous lighting test under the conditions of a shear rate of the tool 50 of 20 μm / sec and a temperature of 25 ° C. did. In the high-temperature and high-humidity continuous lighting test, lighting was continuously performed under conditions of a temperature of 85 ° C., a humidity of 90%, and 500 hours.

[順電圧の測定]
LEDチップ42として青色LED(ナイトライドセミコンダクター社、NS355C−2SAA、定格20mA、順電圧3.61V、波長355nm)を用いて、LED実装サンプルBを作製した。
[Measurement of forward voltage]
An LED mounting sample B was prepared using a blue LED (Nitride Semiconductor, NS355C-2SAA, rated 20 mA, forward voltage 3.61 V, wavelength 355 nm) as the LED chip 42.

各LED実装サンプルBの初期、TCT試験後、及び高温高湿連続点灯試験後の順電圧を測定した。TCT試験は、LED実装サンプルBを、−40℃及び100℃の雰囲気に各30分間曝し、これを1サイクルとする冷熱サイクルを1000サイクル行った。高温高湿連続点灯試験は、温度85℃−湿度90%−1000時間、20mAの条件で連続点灯させた。LEDの初期の順電圧から0.1V以上変化したものをNGと評価した。   The forward voltage after each LED mounting sample B, after the TCT test, and after the high temperature and high humidity continuous lighting test was measured. In the TCT test, the LED mounting sample B was exposed to an atmosphere of −40 ° C. and 100 ° C. for 30 minutes each, and 1000 cycles of a cooling / heating cycle were performed. In the high-temperature and high-humidity continuous lighting test, the lighting was continuously performed under the conditions of a temperature of 85 ° C., a humidity of 90% and 1000 hours, and 20 mA. What changed 0.1V or more from the initial forward voltage of LED was evaluated as NG.

<実施例1>
表1に示すように、水ガラス(JIS K1408に示すケイ酸ナトリウム3号)100質量部、及び半田粒子(粒径10〜25μm、融点180℃、千住金属工業社製)60質量部を秤量して添加し、遊星攪拌機にて2000rpm/2minで攪拌して、異方性導電接着剤を作製した。この異方性導電接着剤を介してセラミック基板上にLEDチップを搭載し、ヘッドを150℃、ステージを50℃に加熱し、実装温度(到達トップ温度)100℃、60秒間の条件で加熱圧着実装し、LED実装サンプルA、Bを得た。表1に、LED実装サンプルAの初期及び高温高湿連続点灯試験後のダイシェア強度、並びにLED実装サンプルBの初期、TCT試験後及び高温高湿連続点灯試験後の順電圧の測定結果を示す。
<Example 1>
As shown in Table 1, 100 parts by mass of water glass (sodium silicate No. 3 shown in JIS K1408) and 60 parts by mass of solder particles (particle size 10 to 25 μm, melting point 180 ° C., manufactured by Senju Metal Industry Co., Ltd.) are weighed. And stirred with a planetary stirrer at 2000 rpm / 2 min to prepare an anisotropic conductive adhesive. An LED chip is mounted on a ceramic substrate through this anisotropic conductive adhesive, the head is heated to 150 ° C., the stage is heated to 50 ° C., and the thermocompression bonding is performed at a mounting temperature (attained top temperature) of 100 ° C. for 60 seconds. After mounting, LED mounting samples A and B were obtained. Table 1 shows the die shear strength after the initial stage of the LED mounting sample A and after the high temperature and high humidity continuous lighting test, and the measurement results of the forward voltage after the initial stage, after the TCT test and after the high temperature and high humidity continuous lighting test of the LED mounting sample B.

<実施例2>
表1に示すように、水ガラス(JIS K1408に示すケイ酸ナトリウム3号)100質量部、及び樹脂コア導電粒子(平均粒径5μm、ニッケルメッキ、樹脂コア粒子(日本化学社製EHコア))10質量部を秤量して添加し、遊星攪拌機にて2000rpm/2minで攪拌して、異方性導電接着剤を作製した。これ以外は、実施例1と同様に、LED実装サンプルA、Bを作製した。
<Example 2>
As shown in Table 1, 100 parts by mass of water glass (sodium silicate No. 3 shown in JIS K1408) and resin core conductive particles (average particle size 5 μm, nickel plating, resin core particles (EH Core manufactured by Nippon Kagaku Co., Ltd.)) 10 parts by mass was weighed and added, and stirred with a planetary stirrer at 2000 rpm / 2 min to produce an anisotropic conductive adhesive. Other than this, in the same manner as in Example 1, LED mounting samples A and B were produced.

<実施例3>
表1に示すように、水ガラス(JIS K1408に示すケイ酸ナトリウム3号)100質量部、半田粒子(粒径10〜25μm、融点180℃、千住金属工業社製)30質量部、及び樹脂コア導電粒子(平均粒径5μm、ニッケルメッキ、樹脂コア粒子(日本化学社製EHコア))5質量部を秤量して添加し、遊星攪拌機にて2000rpm/2minで攪拌して、異方性導電接着剤を作製した。これ以外は、実施例1と同様に、LED実装サンプルA、Bを作製した
<Example 3>
As shown in Table 1, 100 parts by mass of water glass (sodium silicate No. 3 shown in JIS K1408), 30 parts by mass of solder particles (particle size 10 to 25 μm, melting point 180 ° C., Senju Metal Industry Co., Ltd.), and resin core 5 parts by weight of conductive particles (average particle size 5 μm, nickel plating, resin core particles (EH core manufactured by Nippon Kagaku)) are weighed and added, and stirred with a planetary stirrer at 2000 rpm / 2 min, anisotropic conductive bonding An agent was prepared. Except this, LED mounting samples A and B were produced in the same manner as in Example 1.

<実施例4>
表1に示すように、水ガラス(JIS K1408に示すケイ酸ナトリウム3号)100質量部、半田粒子(粒径10〜25μm、融点180℃、千住金属工業社製)60質量部、及びシリカ粒子(日本アエロジル社製アエロジルRX300)7質量部を秤量して添加し、遊星攪拌機にて2000rpm/2minで攪拌して、異方性導電接着剤を作製した。これ以外は、実施例1と同様に、LED実装サンプルA、Bを作製した
<Example 4>
As shown in Table 1, 100 parts by mass of water glass (sodium silicate No. 3 shown in JIS K1408), 60 parts by mass of solder particles (particle size 10 to 25 μm, melting point 180 ° C., Senju Metal Industry Co., Ltd.), and silica particles (Aerosil RX300 manufactured by Nippon Aerosil Co., Ltd.) 7 parts by weight were weighed and added, and stirred with a planetary stirrer at 2000 rpm / 2 min to prepare an anisotropic conductive adhesive. Except this, LED mounting samples A and B were produced in the same manner as in Example 1.

<比較例1>
表1に示すように、異方性導電接着剤として、デクセリアルズ社製のアミン系硬化剤含有液状異方性導電接着剤(BPシリーズ、樹脂:エポキシ樹脂、粒子:Ni粒子)を使用した。この異方性導電接着剤を介してセラミック基板上にLEDチップを搭載し、ヘッドを200℃、ステージを50℃に加熱し、実装温度(到達トップ温度)150℃、30秒間の条件で加熱圧着実装し、LED実装サンプルA、Bを得た。
<Comparative Example 1>
As shown in Table 1, as the anisotropic conductive adhesive, an amine-based curing agent-containing liquid anisotropic conductive adhesive (BP series, resin: epoxy resin, particle: Ni particle) manufactured by Dexialials was used. An LED chip is mounted on a ceramic substrate via this anisotropic conductive adhesive, the head is heated to 200 ° C., the stage is heated to 50 ° C., and thermocompression bonding is performed at a mounting temperature (attained top temperature) of 150 ° C. for 30 seconds. After mounting, LED mounting samples A and B were obtained.

<比較例2>
表1に示すように、異方性導電接着剤として、デクセリアルズ社製のカチオン硬化ACF(樹脂:エポキシ樹脂、粒子:ニッケル被覆樹脂粒子、粒子径:3μm、厚み:6μm、樹脂密度:60Kpcs/mm)を使用した。この異方性導電接着剤を介してセラミック基板上にLEDチップを搭載し、ヘッドを250℃、ステージを70℃に加熱し、実装温度(到達トップ温度)180℃、30秒間の条件で加熱圧着実装し、LED実装サンプルA、Bを得た。
<Comparative example 2>
As shown in Table 1, as an anisotropic conductive adhesive, a cation-cured ACF manufactured by Dexerials (resin: epoxy resin, particles: nickel-coated resin particles, particle size: 3 μm, thickness: 6 μm, resin density: 60 Kpcs / mm) 2 ) was used. An LED chip is mounted on a ceramic substrate through this anisotropic conductive adhesive, the head is heated to 250 ° C., the stage is heated to 70 ° C., and the thermocompression bonding is performed at a mounting temperature (attained top temperature) of 180 ° C. for 30 seconds. After mounting, LED mounting samples A and B were obtained.

<比較例3>
表1に示すように、シリコン樹脂(信越化学社製KER2500)100質量部、及び半田粒子(粒径10〜25μm、融点180℃、千住金属工業社製)60質量部を秤量して添加し、遊星攪拌機にて2000rpm/2minで攪拌して、異方性導電接着剤を作製した。この異方性導電接着剤を介してセラミック基板上にLEDチップを搭載し、ヘッドを290℃、ステージを60℃に加熱し、実装温度(到達トップ温度)200℃、60秒間の条件で加熱圧着実装し、LED実装サンプルA、Bを得た。
<Comparative Example 3>
As shown in Table 1, 100 parts by mass of silicon resin (KE 2500 manufactured by Shin-Etsu Chemical Co., Ltd.) and 60 parts by mass of solder particles (particle size 10 to 25 μm, melting point 180 ° C., Senju Metal Industry Co., Ltd.) were weighed and added. Stirring was performed at 2000 rpm / 2 min with a planetary stirrer to prepare an anisotropic conductive adhesive. An LED chip is mounted on a ceramic substrate via this anisotropic conductive adhesive, the head is heated to 290 ° C., the stage is heated to 60 ° C., and thermocompression bonding is performed at a mounting temperature (attained top temperature) of 200 ° C. for 60 seconds. After mounting, LED mounting samples A and B were obtained.

Figure 2018088498
Figure 2018088498

比較例1のようにアミン系硬化剤含有液状異方性導電接着剤を用いた場合、アミン硬化系−エポキシ樹脂の極性により吸水性が高いため、LED実装サンプルAは、高温高湿連続点灯試験においてダイシェア強度が低下し、LED実装サンプルBは、高温高湿連続点灯試験において順電圧が大きく変化した。   When an amine-based curing agent-containing liquid anisotropic conductive adhesive is used as in Comparative Example 1, since the water absorption is high due to the polarity of the amine curing system-epoxy resin, the LED mounting sample A is a high-temperature, high-humidity continuous lighting test. , The die shear strength decreased, and the forward voltage of the LED mounting sample B greatly changed in the high-temperature and high-humidity continuous lighting test.

また、比較例2のようにカチオン硬化ACFを用いた場合、LED実装サンプルAは、高温高湿連続点灯試験において青色LEDが剥がれてしまい、LED実装サンプルBは、TCT試験において300時間で不点灯となり、高温高湿連続点灯試験において130時間で不点灯となった。   In addition, when the cation-cured ACF is used as in Comparative Example 2, the blue LED peels off in the LED mounting sample A in the high temperature and high humidity continuous lighting test, and the LED mounting sample B does not light in 300 hours in the TCT test. Thus, in the high-temperature and high-humidity continuous lighting test, lighting was not performed in 130 hours.

また、比較例3のようにシリコン樹脂ACFを用いた場合、シリコン樹脂が柔らかいことから、LED実装サンプルAは、高いダイシェア強度が得られず、LED実装サンプルBは、TCT試験において200時間で不点灯となり、高温高湿連続点灯試験において200時間で不点灯となった。   Further, when the silicon resin ACF is used as in Comparative Example 3, since the silicon resin is soft, the LED mounting sample A cannot obtain a high die shear strength, and the LED mounting sample B does not reach 200 hours in the TCT test. It turned on, and it turned off in 200 hours in the high temperature and high humidity continuous lighting test.

一方、実施例1〜4のように水ガラスを含有する無機ACFを用いた場合、LED実装サンプルAは、高温高湿連続点灯試験においてもダイシェア強度が低下せず、LED実装サンプルBは、TCT試験、及び高温高湿連続点灯試験においても順電圧の変化が小さかった。すなわち、水ガラスを含有する無機ACFを用いることにより、優れた耐熱性及び耐光エネルギー性が得られることがわかった。   On the other hand, when the inorganic ACF containing water glass is used as in Examples 1 to 4, the LED mounting sample A does not decrease the die shear strength even in the high-temperature and high-humidity continuous lighting test, and the LED mounting sample B is TCT. The change in forward voltage was also small in the test and the high-temperature and high-humidity continuous lighting test. That is, it was found that excellent heat resistance and light energy resistance can be obtained by using inorganic ACF containing water glass.

11 第1導電型クラッド層、11a 第1導電型電極、12 活性層、13 第2導電型クラッド層、13a 第2導電型電極、14 パッシベーション層、21 基材、22 第1導電型用回路パターン、23 第2導電型用回路パターン、30 異方性導電膜、 31 導電性粒子、40 異方性導電接着剤、41 セラミック基板、42 LEDチップ、43 加熱圧着ボンダー、50 ツール
DESCRIPTION OF SYMBOLS 11 1st conductivity type clad layer, 11a 1st conductivity type electrode, 12 Active layer, 13 2nd conductivity type clad layer, 13a 2nd conductivity type electrode, 14 Passivation layer, 21 Base material, 22 Circuit pattern for 1st conductivity type , 23 Circuit pattern for second conductivity type, 30 anisotropic conductive film, 31 conductive particles, 40 anisotropic conductive adhesive, 41 ceramic substrate, 42 LED chip, 43 thermocompression bonder, 50 tool

Claims (9)

基板の配線パターンの電極上に発光素子を接続させる異方性導電接着剤であって、
無機バインダーと、導電粒子とを含有する異方性導電接着剤。
An anisotropic conductive adhesive for connecting a light emitting element on an electrode of a wiring pattern on a substrate,
An anisotropic conductive adhesive containing an inorganic binder and conductive particles.
前記無機バインダーが、分子式MO・nSiO(MはNa、K、Liのいずれか1種であり、nはモル比である。)で表されるアルカリ金属ケイ酸塩を主成分とする請求項1記載の異方性導電接着剤。 The inorganic binder is mainly composed of an alkali metal silicate represented by the molecular formula M 2 O · nSiO 2 (M is any one of Na, K, and Li, and n is a molar ratio). The anisotropic conductive adhesive according to claim 1. 前記無機バインダーが、JIS K1408に準拠するケイ酸ナトリウム3号を主成分とする請求項1記載の異方性導電接着剤。   The anisotropic conductive adhesive according to claim 1, wherein the inorganic binder is mainly composed of sodium silicate No. 3 based on JIS K1408. 前記導電粒子が、半田粒子、金属粒子、及び樹脂粒子に金属が被覆された樹脂コア導電粒子からなる群から選ばれる少なくとも1種である請求項1乃至3のいずれか1項に記載の異方性導電接着剤。   4. The anisotropic material according to claim 1, wherein the conductive particles are at least one selected from the group consisting of solder particles, metal particles, and resin core conductive particles in which resin particles are coated with metal. Conductive adhesive. 前記導電粒子の配合量が、前記無機バインダー100質量部に対して3〜120質量部である請求項1乃至4のいずれか1項に記載の異方性導電接着剤。   The anisotropic conductive adhesive according to any one of claims 1 to 4, wherein a blending amount of the conductive particles is 3 to 120 parts by mass with respect to 100 parts by mass of the inorganic binder. 前記発光素子が、紫外線を発光する請求項1乃至5のいずれか1項に記載の異方性導電接着剤。   The anisotropic conductive adhesive according to claim 1, wherein the light emitting element emits ultraviolet light. 無機粒子をさらに含有する請求項1乃至6のいずれか1項に記載の異方性導電接着剤。   The anisotropic conductive adhesive according to claim 1, further comprising inorganic particles. 配線パターンを有する基板と、
前記配線パターンの電極上に形成された異方性導電膜と、
前記異方性導電膜上に実装された発光素子とを備え、
前記異方性導電膜が、無機バインダーと、導電粒子とを含有する異方性導電接着剤の硬化物である発光装置。
A substrate having a wiring pattern;
An anisotropic conductive film formed on the electrode of the wiring pattern;
A light emitting device mounted on the anisotropic conductive film,
The light emitting device in which the anisotropic conductive film is a cured product of an anisotropic conductive adhesive containing an inorganic binder and conductive particles.
基板の配線パターンの電極上に、無機バインダーと、導電粒子とを含有する異方性導電接着剤を塗布し、前記異方性導電接着剤を介して発光素子を加熱圧着させる発光装置の製造方法。

A method for manufacturing a light-emitting device, wherein an anisotropic conductive adhesive containing an inorganic binder and conductive particles is applied on an electrode of a wiring pattern on a substrate, and a light-emitting element is heated and pressure-bonded via the anisotropic conductive adhesive .

JP2016231826A 2016-11-29 2016-11-29 Anisotropic Conductive Adhesive Pending JP2018088498A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016231826A JP2018088498A (en) 2016-11-29 2016-11-29 Anisotropic Conductive Adhesive
PCT/JP2017/040440 WO2018101003A1 (en) 2016-11-29 2017-11-09 Anisotropic electrically-conductive adhesive agent
CN201780072639.2A CN109997237A (en) 2016-11-29 2017-11-09 Anisotropically conducting adhesive
TW106141316A TWI788313B (en) 2016-11-29 2017-11-28 Anisotropic conductive adhesive
JP2021093104A JP7359804B2 (en) 2016-11-29 2021-06-02 Anisotropic conductive adhesive, light emitting device, and method for manufacturing the light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016231826A JP2018088498A (en) 2016-11-29 2016-11-29 Anisotropic Conductive Adhesive

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021093104A Division JP7359804B2 (en) 2016-11-29 2021-06-02 Anisotropic conductive adhesive, light emitting device, and method for manufacturing the light emitting device

Publications (1)

Publication Number Publication Date
JP2018088498A true JP2018088498A (en) 2018-06-07

Family

ID=62242422

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016231826A Pending JP2018088498A (en) 2016-11-29 2016-11-29 Anisotropic Conductive Adhesive
JP2021093104A Active JP7359804B2 (en) 2016-11-29 2021-06-02 Anisotropic conductive adhesive, light emitting device, and method for manufacturing the light emitting device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021093104A Active JP7359804B2 (en) 2016-11-29 2021-06-02 Anisotropic conductive adhesive, light emitting device, and method for manufacturing the light emitting device

Country Status (4)

Country Link
JP (2) JP2018088498A (en)
CN (1) CN109997237A (en)
TW (1) TWI788313B (en)
WO (1) WO2018101003A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289098A (en) * 1998-01-30 1999-10-19 Patent Treuhand Ges Elektr Gluehlamp Mbh Optoelectronic semiconductor device and illuminating lamp or lamp
JP2003249689A (en) * 2001-12-18 2003-09-05 Nichia Chem Ind Ltd Light emitting device
JP2007273753A (en) * 2006-03-31 2007-10-18 Kyocera Corp Light emitting device and light emitting module
JP2009140975A (en) * 2007-12-04 2009-06-25 Panasonic Electric Works Co Ltd Semiconductor light-emitting device and lighting device using it and manufacturing process of semiconductor light-emitting device
JP2013168622A (en) * 2011-03-28 2013-08-29 Fujifilm Corp Reflection substrate for light-emitting element and method for manufacturing the same
JP2013536540A (en) * 2010-06-09 2013-09-19 海洋王照明科技股▲ふん▼有限公司 Conductive adhesive mixture, fluorescent screen anode plate and method for producing them
JP2013195364A (en) * 2012-03-22 2013-09-30 Tatsuta Electric Wire & Cable Co Ltd Liquid detection sensor
JP2013243344A (en) * 2012-04-23 2013-12-05 Nichia Chem Ind Ltd Light-emitting device
JP2015090887A (en) * 2013-11-05 2015-05-11 株式会社日本セラテック Light-emitting element and light-emitting device
JP2015098588A (en) * 2013-10-17 2015-05-28 デクセリアルズ株式会社 Anisotropic conductive adhesive and connection structure
WO2015191273A1 (en) * 2014-06-10 2015-12-17 3M Innovative Properties Company Flexible led assembly with uv protection
WO2016148004A1 (en) * 2015-03-18 2016-09-22 デクセリアルズ株式会社 Method for manufacturing light emitting device
JP2016178225A (en) * 2015-03-20 2016-10-06 デクセリアルズ株式会社 Anisotropic conductive connection structure, anisotropic conductive connection method, and anisotropic conductive adhesive

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146972A (en) * 1985-12-20 1987-06-30 Oosakashi Water-glass adhesive
EP1857181A4 (en) * 2005-02-15 2011-06-15 Mitsui Chemicals Inc Photocatalyst, method for producing same, liquid dispersion containing photocatalyst and photocatalyst coating composition
JP2009014097A (en) * 2007-07-04 2009-01-22 Ntn Corp Hydrostatic bearing pad
JP4344399B1 (en) * 2009-01-26 2009-10-14 トリオ・セラミックス株式会社 Curable inorganic composition
JP2010192834A (en) * 2009-02-20 2010-09-02 Hitachi High-Technologies Corp Acf thermocompression bonding apparatus
CN102834927A (en) * 2010-04-02 2012-12-19 株式会社则武 Paste composition for solar cell, method for producing same, and solar cell
KR101714049B1 (en) * 2010-10-29 2017-03-08 엘지이노텍 주식회사 Light emitting device package
JP5609716B2 (en) * 2011-03-07 2014-10-22 デクセリアルズ株式会社 Light-reflective anisotropic conductive adhesive and light-emitting device
US9676969B2 (en) * 2011-08-03 2017-06-13 Hitachi Chemical Company, Ltd. Composition set, conductive substrate and method of producing the same, and conductive adhesive composition
US20150129847A1 (en) * 2012-05-18 2015-05-14 Konica Minolta, Inc. Method for producing conductive substrate, conductive substrate, and organic electronic element
JP5856903B2 (en) * 2012-05-18 2016-02-10 東ソ−・エフテック株式会社 Trifluoromethyl group-containing optically active β-amino acid derivative and process for producing the same
KR101705068B1 (en) * 2012-06-12 2017-02-09 코닝정밀소재 주식회사 Inorganic adhesive composition and method for hermetic sealing using the same
JP2014065766A (en) * 2012-09-24 2014-04-17 Dexerials Corp Anisotropic conductive adhesive
JP6176910B2 (en) * 2012-09-24 2017-08-09 デクセリアルズ株式会社 Method for manufacturing connection structure
JP2015046497A (en) * 2013-08-28 2015-03-12 富士フイルム株式会社 Reflection substrate for led light-emitting element, wiring board for led light-emitting element and led package
JP6347635B2 (en) * 2014-03-19 2018-06-27 デクセリアルズ株式会社 Anisotropic conductive adhesive
JP6430148B2 (en) * 2014-05-23 2018-11-28 デクセリアルズ株式会社 Adhesive and connection structure
JP6634668B2 (en) * 2014-08-29 2020-01-22 大日本印刷株式会社 Manufacturing method of mounting board and mounting board

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289098A (en) * 1998-01-30 1999-10-19 Patent Treuhand Ges Elektr Gluehlamp Mbh Optoelectronic semiconductor device and illuminating lamp or lamp
JP2003249689A (en) * 2001-12-18 2003-09-05 Nichia Chem Ind Ltd Light emitting device
JP2007273753A (en) * 2006-03-31 2007-10-18 Kyocera Corp Light emitting device and light emitting module
JP2009140975A (en) * 2007-12-04 2009-06-25 Panasonic Electric Works Co Ltd Semiconductor light-emitting device and lighting device using it and manufacturing process of semiconductor light-emitting device
JP2013536540A (en) * 2010-06-09 2013-09-19 海洋王照明科技股▲ふん▼有限公司 Conductive adhesive mixture, fluorescent screen anode plate and method for producing them
JP2013168622A (en) * 2011-03-28 2013-08-29 Fujifilm Corp Reflection substrate for light-emitting element and method for manufacturing the same
JP2013195364A (en) * 2012-03-22 2013-09-30 Tatsuta Electric Wire & Cable Co Ltd Liquid detection sensor
JP2013243344A (en) * 2012-04-23 2013-12-05 Nichia Chem Ind Ltd Light-emitting device
JP2015098588A (en) * 2013-10-17 2015-05-28 デクセリアルズ株式会社 Anisotropic conductive adhesive and connection structure
JP2015090887A (en) * 2013-11-05 2015-05-11 株式会社日本セラテック Light-emitting element and light-emitting device
WO2015191273A1 (en) * 2014-06-10 2015-12-17 3M Innovative Properties Company Flexible led assembly with uv protection
WO2016148004A1 (en) * 2015-03-18 2016-09-22 デクセリアルズ株式会社 Method for manufacturing light emitting device
JP2016178225A (en) * 2015-03-20 2016-10-06 デクセリアルズ株式会社 Anisotropic conductive connection structure, anisotropic conductive connection method, and anisotropic conductive adhesive

Also Published As

Publication number Publication date
TW201834275A (en) 2018-09-16
JP2021168387A (en) 2021-10-21
CN109997237A (en) 2019-07-09
WO2018101003A1 (en) 2018-06-07
TWI788313B (en) 2023-01-01
JP7359804B2 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
CN106062119B (en) Anisotropically conducting adhesive
JP5370372B2 (en) Semiconductor device and manufacturing method thereof
TWI626293B (en) Anisotropic conductive adhesive
CN101621101A (en) LED and production method thereof
JP6176910B2 (en) Method for manufacturing connection structure
JP6066643B2 (en) Anisotropic conductive adhesive
TW554553B (en) Sub-mount for high power light emitting diode
WO2010084746A1 (en) Semiconductor device and method for manufacturing same
WO2015046326A1 (en) Light emitting device, anisotropic conductive adhesive and method for manufacturing light emitting device
TW201533212A (en) Anisotropic conductive adhesive and connection structure
EP2975658A1 (en) Light-emitting module
WO2016033229A1 (en) Flip chip led package
US20140183575A1 (en) Light emitting device and manufacturing method thereof
KR20200108117A (en) Light-emitting device and method for manufacturing light-emitting device
TWI669721B (en) Anisotropic conductive adhesive
JP7359804B2 (en) Anisotropic conductive adhesive, light emitting device, and method for manufacturing the light emitting device
JP6430148B2 (en) Adhesive and connection structure
US20060157859A1 (en) Led packaging method and package structure
WO2021131586A1 (en) Anisotropic electrically-conductive adhesive agent
JP2014065765A (en) Anisotropic conductive adhesive
TWM295793U (en) Light emitting diode package structure
JP2007081104A (en) Method for manufacturing light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210302