JP2014065765A - Anisotropic conductive adhesive - Google Patents

Anisotropic conductive adhesive Download PDF

Info

Publication number
JP2014065765A
JP2014065765A JP2012210222A JP2012210222A JP2014065765A JP 2014065765 A JP2014065765 A JP 2014065765A JP 2012210222 A JP2012210222 A JP 2012210222A JP 2012210222 A JP2012210222 A JP 2012210222A JP 2014065765 A JP2014065765 A JP 2014065765A
Authority
JP
Japan
Prior art keywords
particles
led
anisotropic conductive
conductive adhesive
diamond particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012210222A
Other languages
Japanese (ja)
Inventor
Akira Ishigami
明 石神
Moriyuki Kanizawa
士行 蟹澤
Hideji Namiki
秀次 波木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2012210222A priority Critical patent/JP2014065765A/en
Publication of JP2014065765A publication Critical patent/JP2014065765A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic conductive adhesive which is capable of achieving high heat dissipation performance.SOLUTION: Conductive particles (31) and diamond particles (32) with an average grain diameter smaller than that of the conductive particles (31) are dispersed in a binder. In an LED package which is obtained by thermal compression bonding using this anisotropic conductive adhesive, terminals (electrodes (12a, 14a)) of an LED element and terminals (electrodes (22a, 23a)) of a substrate are electrically connected with each other through the conductive particles (31), while the diamond particles (32) are caught between the terminals of the LED element and the terminals of the substrate.

Description

本発明は、導電性粒子が分散された異方性導電接着剤に関し、特に、ドライバーIC(Integrated Circuit)、LED(Light Emitting Diode)等のチップ(素子)が発する熱を放熱することが可能な異方性導電接着剤に関する。   The present invention relates to an anisotropic conductive adhesive in which conductive particles are dispersed, and in particular, can dissipate heat generated by a chip (element) such as a driver IC (Integrated Circuit) or an LED (Light Emitting Diode). The present invention relates to an anisotropic conductive adhesive.

従来、LED素子を基板に実装する工法として、ワイヤーボンド工法が用いられている。ワイヤーボンド工法は、図3に示すように、LED素子の電極(第1導電型電極104a及び第2導電型電極102a)面を上に向け(フェイスアップ)、そのLED素子と基板の電気的接合をワイヤーボンド(WB)301a、301bで行い、LED素子と基板との接着には、ダイボンド材302を用いる。   Conventionally, a wire bond method has been used as a method for mounting LED elements on a substrate. As shown in FIG. 3, in the wire bonding method, the electrodes (first conductivity type electrode 104a and second conductivity type electrode 102a) of the LED element face upward, and the LED element and the substrate are electrically joined. Is performed by wire bonding (WB) 301a and 301b, and a die bonding material 302 is used for bonding the LED element and the substrate.

しかし、このようなワイヤーボンドで電気的接続を得る方法では、電極(第1導電型電極104a及び第2導電型電極102a)からのワイヤーボンドの物理的破断・剥離のリスクがあるため、より信頼性の高い技術が求められている。さらに、ダイボンド材302の硬化プロセスは、オーブン硬化で行われるため、生産に時間が掛かる。   However, in such a method of obtaining electrical connection by wire bonding, there is a risk of physical breakage / peeling of the wire bond from the electrodes (the first conductivity type electrode 104a and the second conductivity type electrode 102a). High-quality technology is required. Furthermore, since the curing process of the die bond material 302 is performed by oven curing, it takes time for production.

ワイヤーボンドを用いない工法として、図4に示すように、LED素子の電極(第1導電型電極104a及び第2導電型電極102a)面を基板側に向け(フェイスダウン、フリップチップ)、そのLED素子と基板との電気的接続に、銀ペーストに代表される導電性ベースト303a、303bを用いる方法がある。   As shown in FIG. 4, the LED element electrodes (first conductivity type electrode 104a and second conductivity type electrode 102a) face toward the substrate side (face down, flip chip) as shown in FIG. There is a method of using conductive bases 303a and 303b typified by silver paste for electrical connection between the element and the substrate.

しかし、導電性ペースト303a、303bは、接着力が弱いため、封止樹脂304による補強が必要である。さらに、封止樹脂304の硬化プロセスは、オーブン硬化で行われるため、生産に時間が掛かる。   However, since the conductive pastes 303a and 303b have low adhesive strength, reinforcement with the sealing resin 304 is necessary. Furthermore, since the curing process of the sealing resin 304 is performed by oven curing, production takes time.

導電性ペーストを用いない工法として、図5に示すように、LED素子の電極面を基板側に向け(フェイスダウン、フリップチップ)、そのLED素子と基板との電気的接続及び接着に、絶縁性の接着剤バインダー305中に導電性粒子306を分散させた異方性導電接着剤を用いる方法がある。異方性導電接着剤は、接着プロセスが短いため、生産効率が良い。また、異方性導電接着剤は、安価であり、透明性、接着性、耐熱性、機械的強度、電気絶縁性等に優れている。   As a method of using no conductive paste, as shown in FIG. 5, the electrode surface of the LED element is directed to the substrate side (face down, flip chip), and the electrical connection and adhesion between the LED element and the substrate are insulative. There is a method of using an anisotropic conductive adhesive in which conductive particles 306 are dispersed in an adhesive binder 305. Since the anisotropic conductive adhesive has a short bonding process, the production efficiency is good. An anisotropic conductive adhesive is inexpensive and excellent in transparency, adhesiveness, heat resistance, mechanical strength, electrical insulation, and the like.

また、近年、フリップチップ実装するためのLED素子が開発されている。このFC実装用LED素子は、パッシベーション105により、電極面積を大きく取る設計が可能であるため、バンプレス実装が可能となる。また、発光層の下に反射膜を設けることによって光取り出し効率が良くなる。   In recent years, LED elements for flip chip mounting have been developed. Since the FC mounting LED element can be designed to have a large electrode area by the passivation 105, bumpless mounting is possible. Further, the light extraction efficiency is improved by providing a reflective film under the light emitting layer.

FC実装用LED素子を基板に実装する工法としては、図6に示すように、金スズ共晶接合が用いられている。金スズ共晶接合は、チップ電極を金とスズの合金307で形成し、フラックスを基板に塗布し、チップを搭載、加熱することで基板電極と、共晶接合させる工法である。しかし、このようなはんだ接続工法は、加熱中のチップズレや洗浄しきれなかったフラックスによる信頼性への悪影響があるため歩留まりが悪い。また、高度な実装技術が必要である。   As a method for mounting the FC mounting LED element on the substrate, gold-tin eutectic bonding is used as shown in FIG. Gold-tin eutectic bonding is a method in which a chip electrode is formed of an alloy 307 of gold and tin, a flux is applied to a substrate, the chip is mounted and heated, and eutectic bonding is performed with the substrate electrode. However, such a solder connection method has a bad yield because there is an adverse effect on reliability due to chip displacement during heating or flux that could not be cleaned. In addition, advanced mounting technology is required.

金スズ共晶を用いない工法として、図7に示すように、LED素子の電極面と基板との電気的接続に、はんだペーストを用いるはんだ接続工法がある。しかし、このようなはんだ接続工法は、ペーストが等方性の導電性を有するため、pn電極間がショートしてしまい歩留まりが悪い。   As a method not using gold-tin eutectic, there is a solder connection method using a solder paste for electrical connection between the electrode surface of the LED element and the substrate, as shown in FIG. However, in such a solder connection method, since the paste has isotropic conductivity, the pn electrodes are short-circuited and the yield is poor.

はんだペーストを用いない工法として、図8に示すように、LED素子と基板との電気的接続及び接着に、図5と同様、絶縁性のバインダー中に導電性粒子を分散させたACFなどの異方性導電接着剤を用いる方法がある。異方性導電接着剤は、pn電極間に絶縁性のバインダーが充填される。よって、ショートが発生しにくいため歩留まりが良い。また、接着プロセスが短いため、生産効率が良い。   As shown in FIG. 8, as a method not using a solder paste, the electrical connection and adhesion between the LED element and the substrate are different from each other, such as ACF in which conductive particles are dispersed in an insulating binder, as in FIG. There is a method using an anisotropic conductive adhesive. The anisotropic conductive adhesive is filled with an insulating binder between the pn electrodes. Accordingly, the yield is good because short-circuiting hardly occurs. Moreover, since the bonding process is short, the production efficiency is good.

ところで、LED素子の活性層(ジャンクション)103は、光の他に多くの熱を発生し、発光層温度(Tj=ジャンクション温度)が100℃以上になると、LEDの発光効率が低下し、LEDの寿命が短くなる。このため、活性層103の熱を効率良く逃がすための構造が必要である。   By the way, the active layer (junction) 103 of the LED element generates a lot of heat in addition to light, and when the light emitting layer temperature (Tj = junction temperature) reaches 100 ° C. or more, the luminous efficiency of the LED decreases, Life is shortened. Therefore, a structure for efficiently releasing the heat of the active layer 103 is necessary.

図3に示すようなWB実装では、活性層103がLED素子の上側に位置するため、発生した熱が基板側に効率良く伝わらないため放熱性が悪い。   In the WB mounting as shown in FIG. 3, since the active layer 103 is located on the upper side of the LED element, the generated heat is not efficiently transferred to the substrate side, so the heat dissipation is poor.

また、図4、6、7に示すようなフリップチップ実装を行うと、活性層103が基板側に位置するため、熱が基板側に効率良く伝わる。図4、7に示すように、電極間を導電性ペースト303a、303bで接合した場合、高効率で放熱することができるが、導電性ペースト303a、303bによる接続は、上記で述べたように接続信頼性が悪い。また、図6に示すように、金スズ共晶接合を行った場合も、上記で述べたのと同様に接続信頼性が悪い。   Further, when flip-chip mounting as shown in FIGS. 4, 6, and 7 is performed, the active layer 103 is located on the substrate side, so that heat is efficiently transmitted to the substrate side. As shown in FIGS. 4 and 7, when the electrodes are joined with the conductive pastes 303a and 303b, heat can be radiated with high efficiency, but the connection with the conductive pastes 303a and 303b is connected as described above. Reliability is bad. Also, as shown in FIG. 6, even when gold-tin eutectic bonding is performed, the connection reliability is poor as described above.

また、図5、8に示すように、導電性ペースト303a、303bを用いずにACF(Anisotropic conductive film)やACP(Anisotropic Conductive Paste)等の異方性導電接着剤でフリップチップ実装することで、活性層103が基板側近く配置され、熱が基板側に効率良く伝わる。また、接着力が高いため、高い接続信頼性が得られる。   Also, as shown in FIGS. 5 and 8, by using flip-chip mounting with an anisotropic conductive adhesive such as ACF (Anisotropic Conductive Paste) or ACP (Anisotropic Conductive Paste) without using the conductive pastes 303a and 303b, The active layer 103 is disposed near the substrate side, and heat is efficiently transmitted to the substrate side. Moreover, since the adhesive force is high, high connection reliability can be obtained.

特開2000−123639号公報Japanese Unexamined Patent Publication No. 2000-1223639

しかしながら、従来の異方性導電接着剤の硬化物の熱伝導率は、0.2W/(m・K)程度であるため、LED素子から発生する熱を基板側に十分に逃がすことができない。また、異方性導電接着剤を用いたフリップチップ実装では、電気接続部分の導電性粒子のみが放熱路となるため、放熱性が悪い。   However, since the heat conductivity of the cured product of the conventional anisotropic conductive adhesive is about 0.2 W / (m · K), the heat generated from the LED element cannot be sufficiently released to the substrate side. Further, in flip chip mounting using an anisotropic conductive adhesive, only the conductive particles in the electrical connection portion serve as a heat dissipation path, so that the heat dissipation is poor.

また、異方性導電接着剤のバインダー中に高放熱フィラーを高充填し、熱伝導率を向上させることが考えられるが、バインダーの粘度が増加してしまい、ハンドリング性が悪くなる。また、フィラー量が増加するのに伴い、樹脂成分が減少するため、クラックや接着力の低下が生じてしまう。   In addition, it is conceivable to increase the thermal conductivity by filling the binder of the anisotropic conductive adhesive with a high heat dissipation filler, but the viscosity of the binder increases, resulting in poor handling properties. Moreover, since the resin component decreases as the filler amount increases, cracks and a decrease in adhesive strength occur.

本発明は、このような従来の実情に鑑みて提案されたものであり、高い放熱性が得られる異方性導電接着剤を提供する。   The present invention has been proposed in view of such conventional circumstances, and provides an anisotropic conductive adhesive capable of obtaining high heat dissipation.

本件発明者は、鋭意検討を行った結果、ダイヤモンド粒子を配合することにより、上述の目的を達成できることを見出し、本発明を完成させるに至った。   As a result of intensive studies, the present inventor has found that the above object can be achieved by blending diamond particles, and has completed the present invention.

すなわち、本発明に係る異方性導電接着剤は、導電性粒子と、前記導電性粒子よりも平均粒径が小さいダイヤモンド粒子とがバインダーに分散されてなることを特徴としている。   That is, the anisotropic conductive adhesive according to the present invention is characterized in that conductive particles and diamond particles having an average particle size smaller than that of the conductive particles are dispersed in a binder.

また、本発明に係る接続構造体は、第1の電子部品の端子と、第2の電子部品の端子とが導電性粒子を介して電気的に接続され、第1の電子部品の端子と第2の電子部品の端子との間にダイヤモンド粒子が捕捉されてなることを特徴としている。   In the connection structure according to the present invention, the terminal of the first electronic component and the terminal of the second electronic component are electrically connected via the conductive particles, and the terminal of the first electronic component and the second electronic component are electrically connected. It is characterized in that diamond particles are captured between the terminals of the two electronic components.

本発明によれば、熱圧着時に導電性粒子が潰れ、対向する端子間にダイヤモンド粒子が捕捉されるため、高い放熱性を得ることができる。   According to the present invention, the conductive particles are crushed during thermocompression bonding, and the diamond particles are captured between the opposing terminals, so that high heat dissipation can be obtained.

本発明の一実施の形態に係るLED実装体の一例を示す断面図である。It is sectional drawing which shows an example of the LED mounting body which concerns on one embodiment of this invention. 本発明の他の一実施の形態に係るLED実装体の一例を示す断面図である。It is sectional drawing which shows an example of the LED mounting body which concerns on other one Embodiment of this invention. ワイヤーボンド工法によるLED実装体の一例を示す断面図である。It is sectional drawing which shows an example of the LED mounting body by a wire bond construction method. 導電性ペーストを用いたLED実装体の一例を示す断面図である。It is sectional drawing which shows an example of the LED mounting body using an electrically conductive paste. 異方性導電接着剤を用いたLED実装体の一例を示す断面図である。It is sectional drawing which shows an example of the LED mounting body using an anisotropic conductive adhesive. FC実装用LEDを金スズ共晶接合により実装したLED実装体の一例を示す断面図である。It is sectional drawing which shows an example of the LED mounting body which mounted LED for FC mounting by gold tin eutectic bonding. FC実装用LEDを導電性ペーストにより実装したLED実装体の一例を示す断面図である。It is sectional drawing which shows an example of the LED mounting body which mounted LED for FC mounting with the electrically conductive paste. FC実装用LEDを異方性導電接着剤により実装したLED実装体の一例を示す断面図である。It is sectional drawing which shows an example of the LED mounting body which mounted LED for FC mounting by anisotropic conductive adhesive.

以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.異方性導電接着剤及びその製造方法
2.接続構造体及びその製造方法
3.実施例
Hereinafter, embodiments of the present invention will be described in detail in the following order with reference to the drawings.
1. 1. Anisotropic conductive adhesive and method for producing the same 2. Connection structure and manufacturing method thereof Example

<1.異方性導電接着剤及びその製造方法>
本実施の形態における異方性導電接着剤は、導電性粒子と、導電性粒子よりも平均粒径が小さいダイヤモンド粒子とがバインダーに分散されたものであり、その形状は、ペースト、フィルムなどであり、目的に応じて適宜選択することができる。
<1. Anisotropic conductive adhesive and method for producing the same>
The anisotropic conductive adhesive in the present embodiment is obtained by dispersing conductive particles and diamond particles having an average particle size smaller than the conductive particles in a binder, and the shape thereof is a paste, a film, or the like. Yes, it can be selected appropriately according to the purpose.

導電性粒子は、例えば、金粒子、銀粒子、ニッケル粒子等の金属粒子、ベンゾグアナミン樹脂やスチレン樹脂等の樹脂粒子の表面を金、ニッケル、亜鉛等の金属で被覆した金属被覆樹脂粒子を使用することができる。金属被覆樹脂粒子は、圧縮時に潰れやすく、変形し易いため、接続パターンとの接触面積を大きくでき、また、接続パターンの高さのバラツキを吸収することが可能となる。   As the conductive particles, for example, metal particles such as gold particles, silver particles and nickel particles, and metal-coated resin particles obtained by coating the surface of resin particles such as benzoguanamine resin and styrene resin with a metal such as gold, nickel and zinc are used. be able to. Since the metal-coated resin particles are easily crushed and easily deformed during compression, the contact area with the connection pattern can be increased, and variations in the height of the connection pattern can be absorbed.

また、導電性粒子の平均粒径は、1〜10μmであることが好ましく、より好ましくは2〜6μmである。また、導電性粒子の配合量は、接続信頼性及び絶縁信頼性の観点から、バインダー100質量部に対して1〜100質量部であることが好ましい。   Moreover, it is preferable that the average particle diameter of electroconductive particle is 1-10 micrometers, More preferably, it is 2-6 micrometers. Moreover, it is preferable that the compounding quantity of electroconductive particle is 1-100 mass parts with respect to 100 mass parts of binders from a viewpoint of connection reliability and insulation reliability.

ダイヤモンド粒子は、銀、銅、金などの金属粒子に比べて熱伝導率が非常に高く、熱伝導性粒子として機能する。ダイヤモンド粒子の平均粒径(D50)は、導電性粒子の平均粒径の5〜80%であることが好ましい。ダイヤモンド粒子が導電性粒子に対して小さすぎると、圧着時にダイヤモンド粒子が対向する端子間に捕捉されず、優れた放熱性を得ることができない。一方、ダイヤモンド粒子が導電性粒子に対して大きすぎると、ダイヤモンド粒子を高充填することができず、異方性導電接着剤の硬化物の熱伝導率を向上させることができない。   Diamond particles have a very high thermal conductivity compared to metal particles such as silver, copper, and gold, and function as thermally conductive particles. The average particle diameter (D50) of the diamond particles is preferably 5 to 80% of the average particle diameter of the conductive particles. If the diamond particles are too small with respect to the conductive particles, the diamond particles are not captured between the terminals facing each other at the time of pressure bonding, and excellent heat dissipation cannot be obtained. On the other hand, if the diamond particles are too large relative to the conductive particles, the diamond particles cannot be highly filled, and the thermal conductivity of the cured product of the anisotropic conductive adhesive cannot be improved.

また、ダイヤモンド粒子の配合量は、異方性導電接着剤に対して8〜50体積%であることが好ましい。ダイヤモンド粒子の配合量が少なすぎると高い放熱性が得られなくなり、配合量が多すぎると導電性粒子の電気的接続を阻害してしまう。   Moreover, it is preferable that the compounding quantity of a diamond particle is 8-50 volume% with respect to an anisotropic conductive adhesive. When the blending amount of the diamond particles is too small, high heat dissipation cannot be obtained, and when the blending amount is too large, the electrical connection of the conductive particles is hindered.

また、ダイヤモンド粒子は、白又は灰色の無彩色であることが好ましい。これにより、ダイヤモンド粒子が光反射粒子として機能するため、LED素子に用いた場合、高い輝度を得ることができる。   The diamond particles are preferably white or gray achromatic. Thereby, since a diamond particle functions as a light reflection particle, when it uses for an LED element, high brightness | luminance can be obtained.

バインダーとしては、従来の異方性導電接着剤や異方性導電フィルムにおいて使用されている接着剤組成物を利用することができる。接着剤組成物としては、脂環式エポキシ化合物や複素環系エポキシ化合物や水素添加エポキシ化合物等を主成分としたエポキシ硬化系接着剤が好ましく挙げられる。   As a binder, the adhesive composition currently used in the conventional anisotropic conductive adhesive and anisotropic conductive film can be utilized. Preferred examples of the adhesive composition include an epoxy curable adhesive mainly composed of an alicyclic epoxy compound, a heterocyclic epoxy compound, a hydrogenated epoxy compound, or the like.

脂環式エポキシ化合物としては、分子内に2つ以上のエポキシ基を有するものが好ましく挙げられる。これらは、液状であっても固体状であってもよい。具体的には、グリシジルヘキサヒドロビスフェノールA、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート等を挙げることができる。中でも、硬化物にLED素子の実装等に適した光透過性を確保でき、速硬化性にも優れている点から、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレートを好ましく使用することができる。   Preferred examples of the alicyclic epoxy compound include those having two or more epoxy groups in the molecule. These may be liquid or solid. Specific examples include glycidyl hexahydrobisphenol A, 3,4-epoxycyclohexenylmethyl-3 ', 4'-epoxycyclohexene carboxylate, and the like. Among these, 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate is preferred because it can ensure light transmission suitable for mounting LED elements on the cured product and is excellent in rapid curing. Can be preferably used.

複素環状エポキシ化合物としては、トリアジン環を有するエポキシ化合物を挙げることができ、特に好ましくは1,3,5−トリス(2,3−エポキシプロピル)−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオンを挙げることができる。   Examples of the heterocyclic epoxy compound include an epoxy compound having a triazine ring, and 1,3,5-tris (2,3-epoxypropyl) -1,3,5-triazine-2,4 is particularly preferable. 6- (1H, 3H, 5H) -trione can be mentioned.

水添加エポキシ化合物としては、先述の脂環式エポキシ化合物や複素環系エポキシ化合物の水素添加物や、その他公知の水素添加エポキシ樹脂を使用することができる。   As the water-added epoxy compound, hydrogenated products of the above-described alicyclic epoxy compounds and heterocyclic epoxy compounds, and other known hydrogenated epoxy resins can be used.

脂環式エポキシ化合物や複素環系エポキシ化合物や水素添加エポキシ化合物は、単独で使用してもよいが、2種以上を併用することができる。また、これらのエポキシ化合物に加えて本発明の効果を損なわない限り、他のエポキシ化合物を併用してもよい。例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、テトラメチルビスフェノールA、ジアリールビスフェノールA、ハイドロキノン、カテコール、レゾルシン、クレゾール、テトラブロモビスフェノールA、トリヒドロキシビフェニル、ベンゾフェノン、ビスレゾルシノール、ビスフェノールヘキサフルオロアセトン、テトラメチルビスフェノールA、テトラメチルビスフェノールF、トリス(ヒドロキシフェニル)メタン、ビキシレノール、フェノールノボラック、クレゾールノボラック等の多価フェノールとエピクロルヒドリンとを反応させて得られるグリシジルエーテル;グリセリン、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、ヘキシレングリコール、ポリエチレングリコール、ポリプロピレングリコール等の脂肪族多価アルコールとエピクロルヒドリンとを反応させて得られるポリグリシジルエーテル;p−オキシ安息香酸、β−オキシナフトエ酸のようなヒドロキシカルボン酸とエピクロルヒドリンとを反応させて得られるグリシジルエーテルエステル;フタル酸、メチルフタル酸、イソフタル酸、テレフタル酸、テトラハイドロフタル酸、エンドメチレンテトラハイドロフタル酸、エンドメチレンヘキサハイドロフタル酸、トリメット酸、重合脂肪酸のようなポリカルボン酸から得られるポリグリシジルエステル;アミノフェノール、アミノアルキルフェノールから得られるグリシジルアミノグリシジルエーテル;アミノ安息香酸から得られるグリシジルアミノグリシジルエステル;アニリン、トルイジン、トリブロムアニリン、キシリレンジアミン、ジアミノシクロヘキサン、ビスアミノメチルシクロヘキサン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルホン等から得られるグリシジルアミン;エポキシ化ポリオレフィン等の公知のエポキシ樹脂類が挙げられる。   Although an alicyclic epoxy compound, a heterocyclic epoxy compound, and a hydrogenated epoxy compound may be used independently, 2 or more types can be used together. In addition to these epoxy compounds, other epoxy compounds may be used in combination as long as the effects of the present invention are not impaired. For example, bisphenol A, bisphenol F, bisphenol S, tetramethylbisphenol A, diarylbisphenol A, hydroquinone, catechol, resorcin, cresol, tetrabromobisphenol A, trihydroxybiphenyl, benzophenone, bisresorcinol, bisphenol hexafluoroacetone, tetramethylbisphenol A, glycidyl ether obtained by reacting polychlorophenol such as tetramethylbisphenol F, tris (hydroxyphenyl) methane, bixylenol, phenol novolak, cresol novolak and epichlorohydrin; glycerin, neopentyl glycol, ethylene glycol, propylene glycol , Hexylene glycol, polyethylene glycol, polyp Polyglycidyl ether obtained by reacting an aliphatic polyhydric alcohol such as pyrene glycol with epichlorohydrin; a glycidyl ether obtained by reacting a hydroxycarboxylic acid such as p-oxybenzoic acid or β-oxynaphthoic acid with epichlorohydrin Esters: polyglycidyl esters obtained from polycarboxylic acids such as phthalic acid, methylphthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, endomethylenetetrahydrophthalic acid, endomethylenehexahydrophthalic acid, trimet acid, polymerized fatty acid Glycidylaminoglycidyl ether obtained from aminophenol, aminoalkylphenol; glycidylaminoglycidyl ester obtained from aminobenzoic acid; aniline, toluidine, tribromourea Glycidylamine obtained from nilin, xylylenediamine, diaminocyclohexane, bisaminomethylcyclohexane, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, and the like; and known epoxy resins such as epoxidized polyolefin .

硬化剤としては、酸無水物、イミダゾール化合物、ジシアン等を挙げることができる。中でも、硬化物を変色させ難い酸無水物、特に脂環式酸無水物系硬化剤を好ましく使用できる。具体的には、メチルヘキサヒドロフタル酸無水物等を好ましく挙げることができる。   Examples of the curing agent include acid anhydrides, imidazole compounds, and dicyan. Among these, acid anhydrides that are difficult to discolor the cured product, particularly alicyclic acid anhydride-based curing agents, can be preferably used. Specifically, methylhexahydrophthalic anhydride etc. can be mentioned preferably.

接着剤組成物において、脂環式エポキシ化合物と脂環式酸無水物系硬化剤とを使用する場合、それぞれの使用量は、脂環式酸無水物系硬化剤が少なすぎると未硬化エポキシ化合物が多くなり、多すぎると余剰の硬化剤の影響で被着体材料の腐食が促進される傾向があるので、脂環式エポキシ化合物100質量部に対し、脂環式酸無水物系硬化剤を、好ましくは80〜120質量部、より好ましくは95〜105質量部の割合で使用する。   In the adhesive composition, when an alicyclic epoxy compound and an alicyclic acid anhydride curing agent are used, the amount of each used is an uncured epoxy compound if there is too little alicyclic acid anhydride curing agent. If the amount is too large, corrosion of the adherend material tends to be accelerated due to the influence of the excess curing agent. Therefore, the alicyclic acid anhydride curing agent is added to 100 parts by mass of the alicyclic epoxy compound. The ratio is preferably 80 to 120 parts by mass, more preferably 95 to 105 parts by mass.

このような構成からなる異方性導電接着剤は、圧着時に導電性粒子が潰れ、電気的な接続状態を維持するとともに、ダイヤモンド粒子が対向する端子間に捕捉されるため、高い放熱性及び高い接続信頼性を得ることができる。   The anisotropic conductive adhesive having such a configuration is such that the conductive particles are crushed at the time of pressure bonding, and the electrical connection state is maintained, and the diamond particles are captured between the terminals facing each other. Connection reliability can be obtained.

また、本実施の形態における異方性導電接着剤は、接着剤組成物と、導電性粒子と、ダイヤモンド粒子とを均一に混合することにより製造することができる。   Moreover, the anisotropic conductive adhesive in this Embodiment can be manufactured by mixing an adhesive composition, electroconductive particle, and a diamond particle uniformly.

<2.接続構造体及びその製造方法>
次に、前述した異方性導電接着剤を用いた接続構造体について説明する。本実施の形態における接続構造体は、第1の電子部品の端子と、第2の電子部品の端子とが導電性粒子を介して電気的に接続され、第1の電子部品の端子と第2の電子部品の端子との間にダイヤモンド粒子が捕捉されている。
<2. Connection structure and manufacturing method thereof>
Next, a connection structure using the above-described anisotropic conductive adhesive will be described. In the connection structure in the present embodiment, the terminal of the first electronic component and the terminal of the second electronic component are electrically connected via the conductive particles, and the terminal of the first electronic component and the second electronic component are connected to each other. Diamond particles are trapped between the terminals of the electronic component.

本実施の形態における電子部品としては、熱を発するドライバーIC(Integrated Circuit)、LED(Light Emitting Diode)等のチップ(素子)が好適である。   As the electronic component in the present embodiment, a chip (element) such as a driver IC (Integrated Circuit) that emits heat or an LED (Light Emitting Diode) is suitable.

図1は、LED実装体の構成例を示す断面図である。このLED実装体は、LED素子と基板とを、前述した導電性粒子と、導電性粒子よりも平均粒径が小さいダイヤモンド粒子とが接着剤成分中に分散された異方性導電接着剤を用いて接続したものである。   FIG. 1 is a cross-sectional view illustrating a configuration example of an LED mounting body. This LED mounting body uses an anisotropic conductive adhesive in which the above-mentioned conductive particles and diamond particles having an average particle size smaller than the conductive particles are dispersed in an adhesive component for the LED element and the substrate. Connected.

LED素子は、例えばサファイヤからなる素子基板11上に、例えばn−GaNからなる第1導電型クラッド層12と、例えばInAlGa1−x−yN層からなる活性層13と、例えばp−GaNからなる第2導電型クラッド層14とを備え、いわゆるダブルヘテロ構造を有する。また、第1導電型クラッド層12上の一部に第1導電型電極12aを備え、第2導電型クラッド層14上の一部に第2導電型電極14aを備える。LED素子の第1導電型電極12aと第2導電型電極14aとの間に電圧を印加すると、活性層13にキャリアが集中し、再結合することにより発光が生じる。 The LED element includes, for example, a first conductive clad layer 12 made of, for example, n-GaN, an active layer 13 made of, for example, an In x Al y Ga 1-xy N layer, on an element substrate 11 made of, for example, sapphire, and a second conductivity type cladding layer 14 made of p-GaN, and has a so-called double heterostructure. Further, a first conductivity type electrode 12 a is provided on a part of the first conductivity type cladding layer 12, and a second conductivity type electrode 14 a is provided on a part of the second conductivity type cladding layer 14. When a voltage is applied between the first conductivity type electrode 12a and the second conductivity type electrode 14a of the LED element, carriers are concentrated on the active layer 13 and recombination causes light emission.

基板は、基材21上に第1導電型用回路パターン22と、第2導電型用回路パターン23とを備え、LED素子の第1導電型電極12a及び第2導電型電極14aに対応する位置にそれぞれ電極22a及び電極23aを有する。   The substrate includes a circuit pattern 22 for the first conductivity type and a circuit pattern 23 for the second conductivity type on the base material 21, and positions corresponding to the first conductivity type electrode 12a and the second conductivity type electrode 14a of the LED element. Each have an electrode 22a and an electrode 23a.

異方性導電接着剤は、前述と同様、導電性粒子31と、導電性粒子31よりも平均粒径が小さいダイヤモンド粒子32とがバインダー33に分散されている。   In the anisotropic conductive adhesive, conductive particles 31 and diamond particles 32 having an average particle size smaller than that of the conductive particles 31 are dispersed in the binder 33 as described above.

図1に示すように、LED実装体は、LED素子の端子(電極12a、14a)と、基板の端子(電極22a、23a)とが導電性粒子31を介して電気的に接続され、LED素子の端子と基板の端子との間にダイヤモンド粒子32が捕捉されている。   As shown in FIG. 1, the LED mounting body includes a LED element terminal (electrodes 12 a and 14 a) and a board terminal (electrodes 22 a and 23 a) electrically connected via conductive particles 31. The diamond particles 32 are captured between the terminal of the substrate and the terminal of the substrate.

これにより、LED素子の活性層13で発生した熱を効率良く基板側に逃がし、発光効率の低下を防ぎ、LED実装体を長寿命化させることができる。また、ダイヤモンド粒子32が、白又は灰色の無彩色であることにより、活性層13からの光を反射し、高い輝度を得ることができる。   Thereby, the heat generated in the active layer 13 of the LED element can be efficiently released to the substrate side, the light emission efficiency can be prevented from being lowered, and the life of the LED mounting body can be extended. In addition, since the diamond particles 32 are white or gray achromatic, the light from the active layer 13 is reflected and high luminance can be obtained.

また、フリップチップ実装するためのLED素子は、図2に示すように、パッシベーション105により、LED素子の端子(電極12a、14a)が大きく設計されているため、LED素子の端子(電極12a、14a)と基板の端子(回路パターン22、23)との間に導電性粒子31及び熱伝導粒子32がより多く捕捉される。これにより、LED素子の活性層13で発生した熱をさらに効率良く基板側に逃がすことができる。   Further, as shown in FIG. 2, the LED element for flip chip mounting is designed such that the terminals (electrodes 12a, 14a) of the LED element are large due to the passivation 105, so the terminals (electrodes 12a, 14a) of the LED element are designed. ) And the substrate terminals (circuit patterns 22 and 23), more conductive particles 31 and heat conductive particles 32 are captured. Thereby, the heat generated in the active layer 13 of the LED element can be released to the substrate side more efficiently.

次に、上述した接続構造体の製造方法について説明する。本実施の形態における実装体の製造方法は、前述した導電性粒子と、導電性粒子よりも平均粒径が小さいダイヤモンド粒子とが接着剤成分中に分散された異方性導電接着剤を、第1の電子部品の端子と第2の電子部品の端子との間に挟み、第1の電子部品と第2の電子部品とを熱圧着する。   Next, the manufacturing method of the connection structure mentioned above is demonstrated. The manufacturing method of the mounting body in the present embodiment includes the anisotropic conductive adhesive in which the conductive particles described above and diamond particles having an average particle size smaller than the conductive particles are dispersed in the adhesive component. The first electronic component and the second electronic component are thermocompression-bonded between the terminals of the first electronic component and the second electronic component.

これにより、第1の電子部品の端子と、第2の電子部品の端子とが導電性粒子を介して電気的に接続され、第1の電子部品の端子と第2の電子部品の端子との間にダイヤモンド粒子が捕捉されてなる接続構造体を得ることができる。   Thereby, the terminal of the first electronic component and the terminal of the second electronic component are electrically connected via the conductive particles, and the terminal of the first electronic component and the terminal of the second electronic component are connected. A connection structure in which diamond particles are trapped therebetween can be obtained.

本実施の形態における接続構造体の製造方法は、熱圧着時に導電性粒子が潰れ、対向する端子間にダイヤモンド粒子が捕捉されるため、高い放熱性及び高い接続信頼性を得ることができる。   In the manufacturing method of the connection structure in the present embodiment, the conductive particles are crushed during thermocompression bonding, and the diamond particles are captured between the opposing terminals, so that high heat dissipation and high connection reliability can be obtained.

<3.実施例>
以下、本発明の実施例について詳細に説明する。なお、本発明はこれらの実施例に限定されるものではない。
<3. Example>
Examples of the present invention will be described in detail below. The present invention is not limited to these examples.

<3.1 ダイヤモンド粒子の含有量について>
本実験では、異方性導電接着剤(ACP)を作製し、LED実装体を作製し、ダイヤモンド粒子の含有量について検討した。異方性導電接着剤の作製、LED実装体の作製、LED実装体の放熱性の評価、電気特性の評価、及び導電性粒子の潰れ具合を評価は、次のように行った。
<3.1 Content of Diamond Particles>
In this experiment, an anisotropic conductive adhesive (ACP) was produced, an LED package was produced, and the content of diamond particles was examined. The production of the anisotropic conductive adhesive, the production of the LED mounting body, the evaluation of the heat dissipation of the LED mounting body, the evaluation of the electric characteristics, and the evaluation of the collapse state of the conductive particles were performed as follows.

[異方性導電接着剤の作製]
エポキシ硬化系接着剤(エポキシ樹脂(商品名:CEL2021P、(株)ダイセル化学製)及び酸無水物(MeHHPA、商品名:MH700、新日本理化(株)製)を主成分としたバインダー)中に、樹脂粒子の表面にAuが被覆された平均粒径5μmの導電性粒子(品名:AUL705、積水化学工業社製)を10質量%配合した。この樹脂組成物にダイヤモンド粒子を配合し、熱伝導性を有する異方性導電接着剤を作製した。
[Production of anisotropic conductive adhesive]
In an epoxy curing adhesive (epoxy resin (trade name: CEL2021P, manufactured by Daicel Chemical Industries, Ltd.) and acid anhydride (MeHHPA, trade name: MH700, manufactured by Shin Nippon Rika Co., Ltd.)) In addition, 10% by mass of conductive particles (product name: AUL705, manufactured by Sekisui Chemical Co., Ltd.) having an average particle diameter of 5 μm, the surface of which is coated with Au, was blended. Diamond particles were blended with this resin composition to produce an anisotropic conductive adhesive having thermal conductivity.

[LED実装体の作製]
異方性導電接着剤を用いてLEDチップ(青色LED、Vf=3.2V(If=20mA))をAu電極基板に搭載した。異方性導電接着剤をAu電極基板に塗布した後、LEDチップをアライメントして搭載し、200℃−20秒−1kg/chipの条件で加熱圧着を行った。Au電極基板は、バンプボンダーにてAuバンプを形成した後、フラットニング処理を行ったものを使用した(ガラスエポキシ基板、導体スペース=100μmP、Ni/Auメッキ=5.0/0.3μm、金バンプ=15μmt)。
[Production of LED mounting body]
An LED chip (blue LED, Vf = 3.2 V (If = 20 mA)) was mounted on an Au electrode substrate using an anisotropic conductive adhesive. After an anisotropic conductive adhesive was applied to the Au electrode substrate, the LED chip was aligned and mounted, and thermocompression bonding was performed under the conditions of 200 ° C.-20 seconds-1 kg / chip. As the Au electrode substrate, an Au bump formed by a bump bonder and then flattened was used (glass epoxy substrate, conductor space = 100 μm P, Ni / Au plating = 5.0 / 0.3 μm, gold Bump = 15 μmt).

[放熱性の評価]
過渡熱抵抗測定装置(CATS電子設計社製)を用いて、LED実装体の熱抵抗値(℃/W)を測定した。測定条件はIf=200mA(定電流制御)で行った。
[Evaluation of heat dissipation]
The thermal resistance value (° C./W) of the LED mounting body was measured using a transient thermal resistance measuring device (manufactured by CATS Electronics Design Co., Ltd.). The measurement conditions were If = 200 mA (constant current control).

[電気特性の評価]
初期Vf値として、If=20mA時のVf値を測定した。また、85℃、85%RH環境下でLED実装体をIf=20mAで500時間点灯させ(高温高湿試験)、If=20mA時のVf値を測定した。接続信頼性の評価は、導通の破断(OPEN)を確認した場合を×、ショート(初期Vf値よりも5%以上低下)を確認した場合を△、それ以外を○と評価した。
[Evaluation of electrical characteristics]
As an initial Vf value, a Vf value at If = 20 mA was measured. Further, the LED mounted body was lit at If = 20 mA for 500 hours in an environment of 85 ° C. and 85% RH (high temperature and high humidity test), and the Vf value at If = 20 mA was measured. The connection reliability was evaluated as x when the rupture of conduction (OPEN) was confirmed, △ when the short (lower than the initial Vf value by 5% or more) was confirmed, and ◯ otherwise.

[導電性粒子の潰れ具合の評価]
ボンディング後のLED実装体のLEDチップを剥離し、バンプ上に捕捉されている導電性粒子の状態を金属顕微鏡で観察した。目視により、最適な潰れ具合(導電性粒子が半分ほど潰れている状態)を良、導電性粒子が潰れきっていない状態(導電性粒子の潰れ具合が半分以下の状態)を不足と評価した。
[Evaluation of crushing state of conductive particles]
The LED chip of the LED mounting body after bonding was peeled off, and the state of the conductive particles captured on the bumps was observed with a metal microscope. By visual inspection, the optimal crushing state (state in which the conductive particles were crushed by about half) was good, and the state in which the conductive particles were not crushed (state in which the crushing state of the conductive particles was less than half) was evaluated as insufficient.

[実施例1]
熱伝導フィラーとして、平均粒径(D50)が2.0μmのダイヤモンド粒子(商品名:IRM、トーメイダイヤ社製)を8体積%配合して異方性導電接着剤を作製し、LED実装体を作製した。
[Example 1]
An anisotropic conductive adhesive was prepared by blending 8% by volume of diamond particles (trade name: IRM, manufactured by Tomei Dia Co., Ltd.) having an average particle diameter (D50) of 2.0 μm as a heat conductive filler, Produced.

このLED実装体の熱抵抗の測定結果は、173℃/Wであった。また、導通信頼性の評価は、初期で○、高温高湿試験後で○であった。また、導電性粒子の潰れ具合の評価は良であった。   The measurement result of the thermal resistance of this LED mounting body was 173 ° C./W. In addition, the evaluation of the conduction reliability was ○ at the initial stage and ○ after the high temperature and high humidity test. Moreover, evaluation of the crushing state of electroconductive particle was favorable.

[実施例2]
熱伝導フィラーとして、ダイヤモンド粒子(商品名:IRM、トーメイダイヤ社製)を12体積%配合して異方性導電接着剤を作製し、LED実装体を作製した。
[Example 2]
An anisotropic conductive adhesive was prepared by blending 12% by volume of diamond particles (trade name: IRM, manufactured by Tomei Diamond Co., Ltd.) as a heat conductive filler, and an LED package was prepared.

このLED実装体の熱抵抗の測定結果は、160℃/Wであった。また、導通信頼性の評価は、初期で○、高温高湿試験後で○であった。また、導電性粒子の潰れ具合の評価は良であった。   The measurement result of the thermal resistance of this LED mounting body was 160 ° C./W. In addition, the evaluation of the conduction reliability was ○ at the initial stage and ○ after the high temperature and high humidity test. Moreover, evaluation of the crushing state of electroconductive particle was favorable.

[実施例3]
熱伝導フィラーとして、ダイヤモンド粒子(商品名:IRM、トーメイダイヤ社製)を20体積%配合して異方性導電接着剤を作製し、LED実装体を作製した。
[Example 3]
An anisotropic conductive adhesive was prepared by blending 20% by volume of diamond particles (trade name: IRM, manufactured by Tomei Diamond Co., Ltd.) as a heat conductive filler, and an LED package was prepared.

このLED実装体の熱抵抗の測定結果は、138℃/Wであった。また、導通信頼性の評価は、初期で○、高温高湿試験後で○であった。また、導電性粒子の潰れ具合の評価は良であった。   The measurement result of the thermal resistance of this LED mounting body was 138 ° C./W. In addition, the evaluation of the conduction reliability was ○ at the initial stage and ○ after the high temperature and high humidity test. Moreover, evaluation of the crushing state of electroconductive particle was favorable.

[実施例4]
熱伝導フィラーとして、ダイヤモンド粒子(商品名:IRM、トーメイダイヤ社製)を50体積%配合して異方性導電接着剤を作製し、LED実装体を作製した。
[Example 4]
An anisotropic conductive adhesive was prepared by blending 50% by volume of diamond particles (trade name: IRM, manufactured by Tomei Diamond Co., Ltd.) as a heat conductive filler, to prepare an LED mounting body.

このLED実装体の熱抵抗の測定結果は、123℃/Wであった。また、導通信頼性の評価は、初期で○、高温高湿試験後で○であった。また、導電性粒子の潰れ具合の評価は良であった。   The measurement result of the thermal resistance of this LED mounting body was 123 ° C./W. In addition, the evaluation of the conduction reliability was ○ at the initial stage and ○ after the high temperature and high humidity test. Moreover, evaluation of the crushing state of electroconductive particle was favorable.

[実施例5]
熱伝導フィラーとして、ダイヤモンド粒子(商品名:IRM、トーメイダイヤ社製)を60体積%配合して異方性導電接着剤を作製し、LED実装体を作製した。
[Example 5]
An anisotropic conductive adhesive was prepared by blending 60% by volume of diamond particles (trade name: IRM, manufactured by Tomei Diamond Co., Ltd.) as a heat conductive filler, and an LED package was manufactured.

このLED実装体の熱抵抗の測定結果は、128℃/Wであった。また、導通信頼性の評価は、初期で○、高温高湿試験後で×であった。また、導電性粒子の潰れ具合の評価は不足であった。   The measurement result of the thermal resistance of this LED mounting body was 128 ° C./W. In addition, the evaluation of the conduction reliability was ○ in the initial stage and × after the high temperature and high humidity test. Moreover, evaluation of the crushing state of electroconductive particle was inadequate.

[比較例1]
ダイヤモンド粒子を配合せずに異方性導電接着剤を作製し、LED実装体を作製した。
[Comparative Example 1]
An anisotropic conductive adhesive was prepared without blending diamond particles, and an LED package was manufactured.

このLED実装体の熱抵抗の測定結果は、200℃/Wであった。また、導通信頼性の評価は、初期で○、高温高湿試験後で○であった。また、導電性粒子の潰れ具合の評価は良であった。   The measurement result of the thermal resistance of this LED mounting body was 200 ° C./W. In addition, the evaluation of the conduction reliability was ○ at the initial stage and ○ after the high temperature and high humidity test. Moreover, evaluation of the crushing state of electroconductive particle was favorable.

[比較例2]
熱伝導フィラーとして、平均粒径(D50)が20μmのダイヤモンド粒子(商品名:IRM、トーメイダイヤ社製)を20体積%配合して異方性導電接着剤を作製し、LED実装体を得た。
[Comparative Example 2]
An anisotropic conductive adhesive was prepared by blending 20% by volume of diamond particles (trade name: IRM, manufactured by Tomei Diamond Co., Ltd.) having an average particle diameter (D50) of 20 μm as a heat conductive filler to obtain an LED mounting body. .

このLED実装体の熱抵抗は、初期の導通信頼性評価において破断を確認したため、測定できなかった。また、導通信頼性の評価は、初期で△、高温高湿試験後で×であった。また、導電性粒子の潰れ具合の評価は不足であった。   The thermal resistance of this LED mounting body could not be measured because fracture was confirmed in the initial conduction reliability evaluation. In addition, the evaluation of conduction reliability was Δ in the initial stage and x after the high-temperature and high-humidity test. Moreover, evaluation of the crushing state of electroconductive particle was inadequate.

表1及び表2に、実施例1〜5及び比較例1、2の評価結果を示す。   Tables 1 and 2 show the evaluation results of Examples 1 to 5 and Comparative Examples 1 and 2.

Figure 2014065765
Figure 2014065765

Figure 2014065765
Figure 2014065765

比較例1のように、ダイヤモンド粒子添加していないACPを用いた場合、LED実装体は、熱抵抗値が200(℃/W)であった。このLED実装サンプルを85℃85%RH環境下での点灯保存試験では試験500hにおいて電気接続信頼性も良好であった。また、導電粒子の潰れ具合は最適であった。   When ACP not added with diamond particles was used as in Comparative Example 1, the LED mounted body had a thermal resistance value of 200 (° C./W). In the lighting storage test of this LED mounting sample in an environment of 85 ° C. and 85% RH, the electrical connection reliability was good in the test 500 h. Further, the degree of collapse of the conductive particles was optimal.

実施例1のように、ダイヤモンド粒子(2μm)をバインダーに対して8体積%添加したACPを用いたLED実装体は、熱抵抗値が173(℃/W)であり、比較例1よりも熱抵抗値を下げることができ、LEDパッケージの放熱特性を向上させることができた。さらに、LED実装サンプルを85℃85%RH環境下で500h点灯させた点灯保存試験でも、接続信頼性が艮好であった。また、導電粒子の潰れ具合も最適であった。   As in Example 1, the LED package using ACP added with 8% by volume of diamond particles (2 μm) with respect to the binder has a thermal resistance value of 173 (° C./W), which is higher than that of Comparative Example 1. The resistance value could be lowered, and the heat dissipation characteristics of the LED package could be improved. Further, in the lighting storage test in which the LED mounting sample was lit for 500 hours in an 85 ° C. and 85% RH environment, the connection reliability was favorable. Moreover, the degree of collapse of the conductive particles was also optimal.

実施例2のように、ダイヤモンド粒子(2μm)をバインダーに対して12体積%添加したACPを用いたLED実装体は、熱抵抗値が160(℃/W)であり、比較例1よりも熱抵抗値を下げることができ、LEDパッケージの放熱特性を向上させることができた。さらに、LED実装体を85℃85%RH環境下で500h点灯させた点灯保存試験でも、接続信頼性が艮好であった。また、導電粒子の潰れ具合も最適であった。   As in Example 2, the LED package using ACP added with 12% by volume of diamond particles (2 μm) with respect to the binder has a heat resistance value of 160 (° C./W), which is higher than that of Comparative Example 1. The resistance value could be lowered, and the heat dissipation characteristics of the LED package could be improved. Further, in the lighting storage test in which the LED mounting body was lit for 500 hours in an environment of 85 ° C. and 85% RH, the connection reliability was favorable. Moreover, the degree of collapse of the conductive particles was also optimal.

実施例3のように、ダイヤモンド粒子(2μm)をバインダーに対して20体積%添加したACPを用いたLED実装体は、熱抵抗値が138(℃/W)であり、比較例1よりも熱抵抗値を下げることができ、LEDパッケージの放熱特性を向上させることができた。さらに、LED実装体を85℃85%RH環境下で500h点灯させた点灯保存試験でも、接続信頼性が艮好であった。また、導電粒子の潰れ具合も最適であった。   As in Example 3, the LED mounted body using ACP in which 20% by volume of diamond particles (2 μm) are added to the binder has a thermal resistance value of 138 (° C./W), which is higher than that of Comparative Example 1. The resistance value could be lowered, and the heat dissipation characteristics of the LED package could be improved. Further, in the lighting storage test in which the LED mounting body was lit for 500 hours in an environment of 85 ° C. and 85% RH, the connection reliability was favorable. Moreover, the degree of collapse of the conductive particles was also optimal.

実施例4のように、ダイヤモンド粒子(2μm)をバインダーに対して50体積%添加したACPを用いたLED実装体は、熱抵抗値が123(℃/W)であり、比較例1よりも熱抵抗値を下げることができ、LEDパッケージの放熱特性を向上させることができた。さらに、LED実装体を85℃85%RH環境下で500h点灯させた点灯保存試験でも、接続信頼性が艮好であった。また、導電粒子の潰れ具合も最適であった。   As in Example 4, the LED mounting body using ACP in which 50% by volume of diamond particles (2 μm) is added to the binder has a thermal resistance value of 123 (° C./W), which is higher than that of Comparative Example 1. The resistance value could be lowered, and the heat dissipation characteristics of the LED package could be improved. Further, in the lighting storage test in which the LED mounting body was lit for 500 hours in an environment of 85 ° C. and 85% RH, the connection reliability was favorable. Moreover, the degree of collapse of the conductive particles was also optimal.

実施例5のように、ダイヤモンド粒子(2μm)をバインダーに対して60体積%添加したACPを用いたLED実装体は、熱抵抗値が128(℃/W)であり、比較例1よりも熱抵抗値を下げることができ、LEDパッケージの放熱特性を向上させることができた。しかしながら、LED実装体を85℃85%RH環境下で500h点灯させた点灯保存試験では、初期Vf値よりも5%以上の低下が見られた。また、導電性粒子の潰れ具合を確認したところ、過剰量のダイヤモンド粒子がバンプ上でスペーサーの役割をしており、導電性粒子の潰れ具合が不十分であった。   As in Example 5, the LED mounted body using ACP in which 60% by volume of diamond particles (2 μm) are added to the binder has a thermal resistance value of 128 (° C./W), which is higher than that of Comparative Example 1. The resistance value could be lowered, and the heat dissipation characteristics of the LED package could be improved. However, in the lighting storage test in which the LED mounting body was lit for 500 hours in an environment of 85 ° C. and 85% RH, a decrease of 5% or more from the initial Vf value was observed. Further, when the degree of crushing of the conductive particles was confirmed, an excessive amount of diamond particles served as a spacer on the bump, and the degree of crushing of the conductive particles was insufficient.

比較例2のように、ダイヤモンド粒子(20μm)をバインダーに対して20体積%添加したACPを用いたLED実装体は、初期Vf値の測定で導通の破断を確認した。また、導電性粒子の潰れ具合を確認したところ、粒径の大きいダイヤモンド粒子がバンプ上でスペーサーの役割をし、導電性粒子が満足に潰れていなかった。さらに、大きな粒子がチヅブに食い込み、LED素子のチップ破壌を起こしていた。   As in Comparative Example 2, the LED mounted body using ACP in which 20% by volume of diamond particles (20 μm) was added to the binder confirmed the conduction breakage by the measurement of the initial Vf value. Further, when the degree of crushing of the conductive particles was confirmed, the diamond particles having a large particle diameter acted as a spacer on the bump, and the conductive particles were not crushed satisfactorily. In addition, large particles bite into the chip, causing chip breakage of the LED elements.

以上のように、異方性導電接着剤にダイヤモンド粒子を添加することにより、LEDパッケージの熱抵抗値を下げることができ、LED素子からでた熱を効率よく基板側へ放熱することができた。また、ダイヤモンド粒子を異方性導電接着剤に対して8〜50体積%配合することにより、高い接続信頼性を得ることができた。   As described above, by adding diamond particles to the anisotropic conductive adhesive, the thermal resistance value of the LED package can be lowered, and the heat generated from the LED element can be efficiently radiated to the substrate side. . Moreover, high connection reliability could be obtained by blending diamond particles in an amount of 8 to 50% by volume with respect to the anisotropic conductive adhesive.

<3.2 ダイヤモンド粒子以外の熱伝導性粒子について>
本実験では、ダイヤモンド粒子以外の熱伝導性粒子を用いた異方性導電接着剤(ACP)を作製し、LED実装体を作製した。異方性導電接着剤の作製、LED実装体の作製、電気特性の評価、及び導電性粒子の潰れ具合を評価は、前述の<3.1 ダイヤモンド粒子の配合量について>と同様に行い、ACP硬化物の熱伝導率の測定は、次のように行った。
<3.2 Thermally conductive particles other than diamond particles>
In this experiment, an anisotropic conductive adhesive (ACP) using thermally conductive particles other than diamond particles was produced to produce an LED package. The production of the anisotropic conductive adhesive, the production of the LED mounting body, the evaluation of the electrical characteristics, and the evaluation of the state of crushing of the conductive particles were performed in the same manner as in <3.1 Compounding amount of diamond particles> described above. The measurement of the thermal conductivity of the cured product was performed as follows.

<ACP硬化物の熱伝導率測定>
異方性導電接着剤をガラス板で挟み込み、これを150℃、1時間の条件で硬化し、厚み1mmtの硬化物を得た。そして、レーザーフラッシュ法による測定装置(キセノンフラッシュアナライザーLFA447、NETZSCH製)を用いて、硬化物の熱伝導率の測定を行った。
<Measurement of thermal conductivity of ACP cured product>
An anisotropic conductive adhesive was sandwiched between glass plates and cured at 150 ° C. for 1 hour to obtain a cured product having a thickness of 1 mmt. And the thermal conductivity of the hardened | cured material was measured using the measuring apparatus (Xenon flash analyzer LFA447, the product made from NETZSCH) by the laser flash method.

[比較例3]
熱伝導フィラーとして、平均粒径(D50)が0.7μmのアルミナ粒子(外観:透明/白色、屈折率:1.76、電気抵抗率:1×1015Ω・cm、熱伝導率:38W/(m・K)を23体積%配合して異方性導電接着剤を作製し、LED実装体を作製した。
[Comparative Example 3]
As heat conductive filler, alumina particles having an average particle diameter (D50) of 0.7 μm (appearance: transparent / white, refractive index: 1.76, electrical resistivity: 1 × 10 15 Ω · cm, thermal conductivity: 38 W / An anisotropic conductive adhesive was prepared by blending 23% by volume of (m · K) to prepare an LED mounting body.

ACP硬化物の熱伝導率は0.54W/(m・K)であり、LED実装体の熱抵抗は181℃/Wであった。また、導通信頼性の評価は、初期で○、高温高湿試験後で○であった。また、導電性粒子の潰れ具合の評価は良であった。   The thermal conductivity of the ACP cured product was 0.54 W / (m · K), and the thermal resistance of the LED mounted body was 181 ° C./W. In addition, the evaluation of the conduction reliability was ○ at the initial stage and ○ after the high temperature and high humidity test. Moreover, evaluation of the crushing state of electroconductive particle was favorable.

[比較例4]
平均粒径(D50)が1.1μmの窒化アルミ粒子(外観:灰色、電気抵抗率:0.1×1015Ω・cm、熱伝導率:200W/(m・K))を20体積%配合して異方性導電接着剤を作製し、LED実装体を作製した。
[Comparative Example 4]
20% by volume of aluminum nitride particles having an average particle diameter (D50) of 1.1 μm (appearance: gray, electrical resistivity: 0.1 × 10 15 Ω · cm, thermal conductivity: 200 W / (m · K)) Then, an anisotropic conductive adhesive was produced, and an LED mounting body was produced.

ACP硬化物の熱伝導率は0.58W/(m・K)であり、LED実装体の熱抵抗は170℃/Wであった。また、導通信頼性の評価は、初期で○、高温高湿試験後で○であった。また、導電性粒子の潰れ具合の評価は良であった。   The thermal conductivity of the ACP cured product was 0.58 W / (m · K), and the thermal resistance of the LED mounted body was 170 ° C./W. In addition, the evaluation of the conduction reliability was ○ at the initial stage and ○ after the high temperature and high humidity test. Moreover, evaluation of the crushing state of electroconductive particle was favorable.

[比較例5]
平均粒径(D50)が1.5μmの銀粒子(外観:銀光沢/灰色、電気抵抗率:1.6×10−6Ω・cm、熱伝導率:420W/(m・K))を12体積%配合して異方性導電接着剤を作製し、LED実装体を作製した。
[Comparative Example 5]
12 silver particles having an average particle diameter (D50) of 1.5 μm (appearance: silver luster / gray, electrical resistivity: 1.6 × 10 −6 Ω · cm, thermal conductivity: 420 W / (m · K)) An anisotropic conductive adhesive was prepared by blending by volume% to prepare an LED mounting body.

ACP硬化物の熱伝導率は0.37W/(m・K)であり、LED実装体の熱抵抗は133℃/Wであった。また、導通信頼性の評価は、初期で○、高温高湿試験後で△であった。また、導電性粒子の潰れ具合の評価は良であった。   The thermal conductivity of the ACP cured product was 0.37 W / (m · K), and the thermal resistance of the LED mounted body was 133 ° C./W. In addition, the evaluation of conduction reliability was ◯ at the initial stage and △ after the high temperature and high humidity test. Moreover, evaluation of the crushing state of electroconductive particle was favorable.

表3に、実施例3、比較例3〜5の評価結果を示す。   In Table 3, the evaluation result of Example 3 and Comparative Examples 3-5 is shown.

Figure 2014065765
Figure 2014065765

比較例3のように、アルミナ粒子をバインダーに対して23%添加したACPを用いたLED実装体は、熱抵抗値が181℃/Wであり、同様な熱伝導フィラー配合量である実施例3よりも熱抵抗が高く、高い放熱特性が得られなかった。   As in Comparative Example 3, the LED mounting body using ACP in which 23% of alumina particles are added to the binder has a thermal resistance value of 181 ° C./W, and has a similar thermal conductive filler content. The heat resistance was higher than that, and high heat dissipation characteristics could not be obtained.

比較例4のように、窒化アルミ粒子をバインダーに対して20%添加したACPを用いたLED実装体は、熱抵抗値が170℃/Wであり、同様な熱伝導フィラー配合量である実施例3よりも熱抵抗が高く、高い放熱特性が得られなかった。   As in Comparative Example 4, the LED mounted body using ACP in which 20% of aluminum nitride particles are added to the binder has a thermal resistance value of 170 ° C./W, and has the same heat conductive filler content. Thermal resistance was higher than 3, and high heat dissipation characteristics could not be obtained.

比較例5のように、窒化アルミ粒子をバインダーに対して12%添加したACPを用いたLED実装体は、熱抵抗値が133℃/Wであり、同様な熱伝導フィラー配合量である実施例3と同等の高い放熱特性が得られた。しかしながら、LED実装体を85℃85%RH環境下で500h点灯させた点灯保存試験では、初期Vf値よりも5%以上の低下が見られた。   As in Comparative Example 5, the LED mounting body using ACP in which aluminum nitride particles are added to the binder at 12% has a thermal resistance value of 133 ° C./W, and has the same heat conductive filler content. High heat dissipation characteristics equivalent to 3 were obtained. However, in the lighting storage test in which the LED mounting body was lit for 500 hours in an environment of 85 ° C. and 85% RH, a decrease of 5% or more from the initial Vf value was observed.

11 素子基板、12 第1導電型クラッド層、13 活性層、14 第2導電型クラッド層、15 パッシベーション、21 基材、22 第1導電型用回路パターン、23 第2導電型用回路パターン、31 導電性粒子、32 ダイヤモンド粒子、33 バインダー、101 素子基板、102 第1導電型クラッド層、103 活性層、104 第2導電型クラッド層、105 パッシベーション、201 基材、202 第1導電型用回路パターン、203 第2導電型用回路パターン、301 ワイヤーボンド、302 ダイボンド材、303 導電性ペースト、304 封止樹脂、305 バインダー、306 導電性粒子、307 金スズ合金   DESCRIPTION OF SYMBOLS 11 Element substrate, 12 1st conductivity type clad layer, 13 Active layer, 14 2nd conductivity type clad layer, 15 Passivation, 21 Base material, 22 Circuit pattern for 1st conductivity type, 23 Circuit pattern for 2nd conductivity type, 31 Conductive particles, 32 diamond particles, 33 binder, 101 element substrate, 102 first conductivity type cladding layer, 103 active layer, 104 second conductivity type cladding layer, 105 passivation, 201 base material, 202 circuit pattern for first conductivity type , 203 second conductive type circuit pattern, 301 wire bond, 302 die bond material, 303 conductive paste, 304 sealing resin, 305 binder, 306 conductive particles, 307 gold-tin alloy

Claims (7)

導電性粒子と、前記導電性粒子よりも平均粒径が小さいダイヤモンド粒子とがバインダーに分散されてなる異方性導電接着剤。   An anisotropic conductive adhesive comprising conductive particles and diamond particles having an average particle size smaller than that of the conductive particles dispersed in a binder. 前記ダイヤモンド粒子の含有量が、8〜50体積%である請求項1記載の異方性導電接着剤。   The anisotropic conductive adhesive according to claim 1, wherein the content of the diamond particles is 8 to 50% by volume. 前記ダイヤモンド粒子が、白又は灰色の無彩色である請求項1又は2記載の異方性導電接着剤。   The anisotropic conductive adhesive according to claim 1 or 2, wherein the diamond particles have a white or gray achromatic color. 熱抵抗値が200℃/W未満である請求項1乃至3のいずれか1項に記載の異方性導電接着剤。   The anisotropic conductive adhesive according to any one of claims 1 to 3, wherein the thermal resistance value is less than 200 ° C / W. 第1の電子部品の端子と、第2の電子部品の端子とが導電性粒子を介して電気的に接続され、第1の電子部品の端子と第2の電子部品の端子との間にダイヤモンド粒子が捕捉されてなる接続構造体。   The terminal of the first electronic component and the terminal of the second electronic component are electrically connected via conductive particles, and diamond is provided between the terminal of the first electronic component and the terminal of the second electronic component. A connection structure in which particles are captured. 第1の電子部品が、LED素子であり、
第2の電子部品が、基板である請求項5記載の接続構造体。
The first electronic component is an LED element;
The connection structure according to claim 5, wherein the second electronic component is a substrate.
前記ダイヤモンド粒子が、白又は灰色の無彩色である請求項6記載の接続構造体。   The connection structure according to claim 6, wherein the diamond particles have a white or gray achromatic color.
JP2012210222A 2012-09-24 2012-09-24 Anisotropic conductive adhesive Pending JP2014065765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012210222A JP2014065765A (en) 2012-09-24 2012-09-24 Anisotropic conductive adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012210222A JP2014065765A (en) 2012-09-24 2012-09-24 Anisotropic conductive adhesive

Publications (1)

Publication Number Publication Date
JP2014065765A true JP2014065765A (en) 2014-04-17

Family

ID=50742477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012210222A Pending JP2014065765A (en) 2012-09-24 2012-09-24 Anisotropic conductive adhesive

Country Status (1)

Country Link
JP (1) JP2014065765A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220137966A (en) 2020-03-10 2022-10-12 데쿠세리아루즈 가부시키가이샤 Repair parts having micro LED chip and manufacturing method thereof, repair method, light emitting device manufacturing method and light emitting device
US11923333B2 (en) 2014-11-17 2024-03-05 Dexerials Corporation Anisotropic electrically conductive film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923333B2 (en) 2014-11-17 2024-03-05 Dexerials Corporation Anisotropic electrically conductive film
KR20220137966A (en) 2020-03-10 2022-10-12 데쿠세리아루즈 가부시키가이샤 Repair parts having micro LED chip and manufacturing method thereof, repair method, light emitting device manufacturing method and light emitting device

Similar Documents

Publication Publication Date Title
JP6066643B2 (en) Anisotropic conductive adhesive
WO2014046093A1 (en) Anisotropic conductive adhesive
JP6347635B2 (en) Anisotropic conductive adhesive
JP6176910B2 (en) Method for manufacturing connection structure
JP5985414B2 (en) Anisotropic conductive adhesive, light emitting device, and method of manufacturing anisotropic conductive adhesive
WO2015046326A1 (en) Light emitting device, anisotropic conductive adhesive and method for manufacturing light emitting device
WO2015056754A1 (en) Anisotropic conductive adhesive and connection structure
WO2013157552A1 (en) Anisotropic conductive adhesive, method for manufacturing same, light emitting device, and method for manufacturing same
WO2015141342A1 (en) Anisotropic conductive adhesive agent
WO2015178482A1 (en) Adhesive agent and connection structure
JP6430148B2 (en) Adhesive and connection structure
JP2014065765A (en) Anisotropic conductive adhesive