JP2010192834A - Acf thermocompression bonding apparatus - Google Patents

Acf thermocompression bonding apparatus Download PDF

Info

Publication number
JP2010192834A
JP2010192834A JP2009038218A JP2009038218A JP2010192834A JP 2010192834 A JP2010192834 A JP 2010192834A JP 2009038218 A JP2009038218 A JP 2009038218A JP 2009038218 A JP2009038218 A JP 2009038218A JP 2010192834 A JP2010192834 A JP 2010192834A
Authority
JP
Japan
Prior art keywords
acf
thermocompression bonding
thermocouple
bonding apparatus
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009038218A
Other languages
Japanese (ja)
Inventor
Noriyuki Dairoku
範行 大録
Akihiro Matsutani
昭弘 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009038218A priority Critical patent/JP2010192834A/en
Priority to TW98142880A priority patent/TWI416827B/en
Priority to CN 201010115724 priority patent/CN101813838B/en
Publication of JP2010192834A publication Critical patent/JP2010192834A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Wire Bonding (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ACF thermocompression bonding apparatus for FPD for accurately measuring the temperature of a pressure head and having high reliability. <P>SOLUTION: The ACF thermocompression bonding apparatus for pressing an ACF by using a heated compression blade 11 and fixing the ACF on a substrate of an FPD includes: a heater block 20 for heating the compression blade by a heater; a fitting hole for a sheath-incorporated thermocouple 21, which is formed in the heater block; and the sheath-incorporated thermocouple arranged in the fitting hole: wherein, a base of the sheath-incorporated thermocouple is screwed and the screwed portion is stuck and fixed with a heat-resistant inorganic adhesive 24. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、TAB(Tape Automated Bonding)/COF(Chip on film)やCOG(Chip on glass)を加熱圧着することで、ACF(Anisotropic Conductive Film)によりそれらをFPD(Flat panel display)の基板に固定するACF熱圧着装置に関わり、特に固定部温度を正確に測定制御できる熱圧着ヘッドに関する。   In the present invention, TAB (Tape Automated Bonding) / COF (Chip on film) and COG (Chip on glass) are heat-bonded and fixed to an FPD (Flat panel display) substrate by ACF (Anisotropic Conductive Film). In particular, the present invention relates to a thermocompression bonding head that can accurately measure and control the temperature of a fixed portion.

従来、液晶基板に代表されるFPD装置のTAB/COFやCOG搭載機では、シース付き熱電対を、ACFの加圧加熱に用いる熱圧着ヘッドの側面などに(1)バネ材などで挟み込みまたはネジ止めし、(2)熱硬化性樹脂接着剤で貼り付ける、または耐熱性樹脂フィルム粘着テープで貼り付ける、方法がとられていた。   Conventionally, in TAB / COF and COG mounting machines of FPD devices typified by liquid crystal substrates, a thermocouple with a sheath is sandwiched on the side of a thermocompression bonding head used for ACF pressure heating with (1) a spring material or screw And (2) pasting with a thermosetting resin adhesive, or pasting with a heat-resistant resin film adhesive tape.

従来の他の方法として、たとえば特開2001-34187記載のように、熱電対を内蔵したTCPと同等の部材を、被接着部材である液晶パネル側に予め設け、TCPと同時に加熱加圧することで、実温度を実時間で測定しようとする方法も提案されていた。   As another conventional method, for example, as described in JP-A-2001-34187, a member equivalent to TCP with a built-in thermocouple is provided in advance on the liquid crystal panel side to be bonded, and heated and pressurized simultaneously with TCP. Also, a method for measuring the actual temperature in real time has been proposed.

特開2001−34187号公報JP 2001-34187 A

しかし、前者の従来技術の方法では、温度サイクルを繰り返しているうちに例えばネジ緩みが発生し、そのときの熱電対と熱圧着ヘッドの側面との接触状態の変動により検出温度も変動していた。近年は生産性向上のため、精密に温度制御を行うことにより最短時間でのプロセス実現が望まれており、要求される温度精度を満足できないという問題があった。また、短時間熱硬化処理の目的でヒータ温度を高める必要が生じており、熱電対固定用の有機接着剤や耐熱樹脂テープの耐熱温度を超えてしまい、長期の設備運用により熱電対が正しく保持できなくなる問題を生じていた。   However, in the former prior art method, for example, screw loosening occurred while repeating the temperature cycle, and the detected temperature also fluctuated due to fluctuations in the contact state between the thermocouple and the side surface of the thermocompression bonding head at that time. . In recent years, in order to improve productivity, it is desired to realize a process in the shortest time by precisely controlling the temperature, and there is a problem that the required temperature accuracy cannot be satisfied. In addition, it is necessary to increase the heater temperature for the purpose of short-time thermosetting treatment, which exceeds the heat resistance temperature of the organic adhesive for fixing thermocouples and heat-resistant resin tape, and the thermocouple is properly held by long-term equipment operation. There was a problem that made it impossible.

特開2001-34187記載の従来技術の方法では、前者の問題を解決できるが、接合すべきTAB/COFの極近傍にダミーの部材を設ける必要があり、製品たる液晶パネルの設計に制限を加える必要があり、現実的な解決策ではない。   In the prior art method described in Japanese Patent Laid-Open No. 2001-34187, the former problem can be solved, but it is necessary to provide a dummy member in the very vicinity of the TAB / COF to be joined, thus limiting the design of the liquid crystal panel as a product. It is necessary and not a realistic solution.

本発明の目的は、加圧ヘッド温度を正確に測定し、信頼性の高いFPD用のACF熱圧着装置を提供することにある。   An object of the present invention is to provide a highly reliable ACF thermocompression bonding apparatus for an FPD by accurately measuring the pressure head temperature.

上記目的を達成するために、本発明は、加熱された圧着刃を用いACFを加圧加熱し、前記ACFをFPD基板に固定するACF熱圧着装置において、前記圧着刃をヒータで加熱するヒータブロック、前記ヒータブロックの内部に設けたシース付熱電対の取付け穴及び前記取付け穴に設けたシース付熱電対を有し、前記シース付熱電対の基部をネジ止めするとともに、前記ネジ止め部を耐熱性無機接着剤で接着固定したことを第1の特徴とする。   In order to achieve the above object, the present invention provides a heater block that heats the crimping blade with a heater in an ACF thermocompression bonding apparatus that pressurizes and heats the ACF using a heated crimping blade and fixes the ACF to an FPD substrate. A thermocouple with a sheath provided in the heater block and a thermocouple with a sheath provided in the attachment hole, and screwing the base of the thermocouple with the sheath and heat-resistant the screw-fastened portion. The first feature is that it is bonded and fixed with a conductive inorganic adhesive.

また、上記目的を達成するために、本発明は、第1の特徴に加え、前記シース付熱電対を前記圧着刃と前記ヒータとの間に、あるいは、前記ヒータから前記圧着刃への伝熱経路を避けて設けたことを第2の特徴とする。   In order to achieve the above object, in addition to the first feature, the present invention provides a heat transfer from the thermocouple with a sheath between the crimping blade and the heater or from the heater to the crimping blade. The second feature is that the route is avoided.

さらに、上記目的を達成するために、本発明は、第1の特徴に加え、前記耐熱性無機接着剤はアルミナ、シリカ、水ガラスからなることを第3の特徴とする。   Furthermore, in order to achieve the above object, the present invention is characterized in that, in addition to the first feature, the heat-resistant inorganic adhesive is made of alumina, silica, and water glass.

また、上記目的を達成するために、本発明は、第1の特徴に加え、前記シース付熱電対の先端に応力拡散部材を設け、この応力拡散部材の先端部は、取付け穴の先端の対応する部分と類似の形状を有することを第4の特徴とする。   In order to achieve the above object, in addition to the first feature, the present invention provides a stress diffusion member at the tip of the thermocouple with sheath, and the tip of the stress diffusion member corresponds to the tip of the mounting hole. A fourth feature is that it has a shape similar to that of the portion.

さらに、上記目的を達成するために、本発明は、第4の特徴に加え、前記類似とは、前記先端部も前記対応する部分も平坦形状である、または、前記先端部は円錐台形形状であり、前記対応する部分は前記円錐と同一形状の円錐形であることを第5の特徴とする。   Furthermore, in order to achieve the above object, in addition to the fourth feature, the present invention is similar to the above-mentioned, in that both the tip portion and the corresponding portion have a flat shape, or the tip portion has a truncated cone shape. A fifth feature is that the corresponding portion is a cone having the same shape as the cone.

また、上記目的を達成するために、本発明は、第5の特徴に加え、前記円錐の頂角は鈍角であることを第6の特徴とする。   In order to achieve the above object, in addition to the fifth feature, the present invention has a sixth feature that the apex angle of the cone is an obtuse angle.

最後に、上記目的を達成するために、本発明は、第4乃至6のいずれかの特徴に加え、前記先端部と前記対応する部分との間隙に変形可能な耐熱材料を充填する、または、前記応力拡散部材にも接着剤を塗布することを第7の特徴とする。   Finally, in order to achieve the above object, in addition to any of the features of the fourth to sixth aspects, the present invention fills the gap between the tip portion and the corresponding portion with a deformable heat resistant material, or A seventh feature is that an adhesive is also applied to the stress diffusion member.

本発明によれば、圧着ヘッド温度を正確に測定し、信頼性の高いFPD用のACF熱圧着装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the crimping head temperature can be measured correctly and the ACF thermocompression bonding apparatus for FPD with high reliability can be provided.

本発明の実施形態を示すFPD用のACF熱圧着装置の概略斜視図である。It is a schematic perspective view of the ACF thermocompression bonding apparatus for FPD which shows embodiment of this invention. 図1の示すFPD用のACF熱圧着装置において熱圧着ヘッドより上部の側面図である。FIG. 2 is a side view above the thermocompression bonding head in the ACF thermocompression bonding apparatus for FPD shown in FIG. 図2に示す四角太線で囲んだ部分の詳細図で、本実施形態における熱圧着ヘッド10とヒータブロック20を示す図である。FIG. 3 is a detailed view of a portion surrounded by a thick square line shown in FIG. 図3の四角太線で囲んだ部分Bの模式図で、シール熱電対先端の応力拡散部材とシース付熱電対取付け穴の前記先端の対応する部分との形状を示した図である。It is the schematic diagram of the part B enclosed with the square bold line of FIG. 3, It is the figure which showed the shape of the stress diffusion member of a seal | sticker thermocouple front-end | tip, and the part of the said front-end | tip of a thermocouple attachment hole with a sheath. 図3の四角太線で囲んだ部分Bの模式図で、シール熱電対先端の応力拡散部材とシース付熱電対取付け穴の前記先端の対応する部分との形状の他の実施形態を示した図である。It is the schematic diagram of the part B enclosed with the square bold line of FIG. 3, and is the figure which showed other embodiment of the shape of the stress diffusion member of a seal | sticker thermocouple front-end | tip, and the corresponding part of the said front-end | tip of a thermocouple attachment hole with a sheath. is there.

図1は、本発明の実施形態を示し、TABを搭載するFPD用の熱圧着装置100を示したものである。本FPD用の熱圧着装置100は4つの処理ユニットUa、Ub、Uc及びUd(以下、単にUと略す)からなる。各処理ユニットUは、底部及び背部に設けられたレールRd、Rbにより姿勢を垂直に保ちながら、独立に矢印Aに示す左右に移動する。各処理ユニットUは、中央にあるTAB、ACF及び基板からなる処理部(図示せず)を熱圧着する熱圧着ヘッド10、熱圧着ヘッド10を加熱するヒータブロック20、熱圧着ヘッドを昇降する加圧シリンダ部30、前記処理の載置部であるバックアップ40及び前記熱圧着する前に前記載置部を所定に温度にするバックアップヒータ50を有する。なお製造されるFPDの設計仕様に合わせ、前記処理ユニットUの数は多数にすることも、1個にすることも差し支えはない。対象製品の段取り換えに備え、多数の処理ユニットUを準備しておき、必要な個数を稼動させることも可能である。   FIG. 1 shows an embodiment of the present invention and shows a thermocompression bonding apparatus 100 for FPD equipped with TAB. The FPD thermocompression bonding apparatus 100 includes four processing units Ua, Ub, Uc, and Ud (hereinafter simply referred to as U). Each processing unit U moves independently to the left and right as indicated by an arrow A while maintaining a vertical posture by rails Rd and Rb provided at the bottom and back. Each processing unit U includes a thermocompression bonding head 10 that thermocompression-bonds a processing unit (not shown) composed of TAB, ACF, and a substrate in the center, a heater block 20 that heats the thermocompression bonding head 10, and a thermocompression bonding head that moves up and down. The pressure cylinder part 30, the backup 40 which is the mounting part of the said process, and the backup heater 50 which makes the said mounting part a predetermined temperature before the said thermocompression bonding. It should be noted that the number of the processing units U may be large or one according to the design specification of the FPD to be manufactured. It is also possible to prepare a large number of processing units U and operate a necessary number in preparation for the replacement of the target product.

図2は、図1において熱圧着ヘッド10より上部の圧着ヘッド側の側面図を示した図で、図3は、図2に示す四角太線で囲んだ部分Aの詳細図で、本実施形態における熱圧着ヘッド10とヒータブロック20を示す図である。加圧シリンダ部30は、シリンダボディ31から伸び、熱圧着ヘッド10に凸状に設けたの圧着刃11を上下に昇降させるプッシャロッド32を有する。また、ヒータブロック20は、その側面にシースヒータ22をはめ込み、シースヒータ22より圧着刃11に近い下側、即ちシースヒータ22と圧着刃11との間にシース付熱電対(以下、単に熱電対と略す)21を設けてある。なお、21aは熱電対配線、22aはヒータ配線である。   2 is a side view of the pressure bonding head side above the thermocompression bonding head 10 in FIG. 1, and FIG. 3 is a detailed view of a portion A surrounded by a thick square line shown in FIG. It is a figure which shows the thermocompression-bonding head 10 and the heater block 20. FIG. The pressurizing cylinder unit 30 includes a pusher rod 32 that extends from the cylinder body 31 and moves up and down the crimping blade 11 provided in a convex shape on the thermocompression bonding head 10. The heater block 20 has a sheath heater 22 fitted on its side surface, and a thermocouple with a sheath (hereinafter simply referred to as a thermocouple) between the sheath heater 22 and the crimping blade 11 below the sheath heater 22 and closer to the crimping blade 11. 21 is provided. In addition, 21a is a thermocouple wiring and 22a is a heater wiring.

熱電対21は交換を容易とするため、シースの根元におねじ21bが切ってあり、フランジ23には六角ボルト状に加工してある。熱電対21はヒータブロック20内面のメネジ部分にねじ止めされるとともに、おねじ21bの部分をアルミナ、シリカ、水ガラスからなる耐熱性無機接着剤24でヒータブロック20に固定してあるため、熱硬化処理による温度上昇に耐え、繰り返しの熱応力でネジ緩みを生じる恐れがない。さらに耐熱性無機接着剤24はヒータブロック20に設けた穴の内部に塗布されているため、稼働中の振動や製品たるFPDとの接触により耐熱性無機接着剤24が剥落して、FPDを汚染する心配もない。   In order to facilitate replacement of the thermocouple 21, a screw 21b is cut at the base of the sheath, and the flange 23 is processed into a hexagonal bolt shape. The thermocouple 21 is fixed to the heater block 20 with a heat-resistant inorganic adhesive 24 made of alumina, silica, and water glass, while the thermocouple 21 is screwed to a female screw portion on the inner surface of the heater block 20. Withstands the temperature rise due to the curing process and there is no risk of screw loosening due to repeated thermal stress. Further, since the heat-resistant inorganic adhesive 24 is applied to the inside of the hole provided in the heater block 20, the heat-resistant inorganic adhesive 24 is peeled off due to vibration during operation or contact with the FPD as a product, thereby contaminating the FPD. There is no worry to do.

一方、熱電対の先端には厚手のステンレス板からなるシース先端部の蓋を応力拡散部材25として設けてある。このため、熱電対21のネジ締めトルクが大きくても内部の熱電対配線の破損を招く事態が生じ難い構造を有している。   On the other hand, a sheath tip cover made of a thick stainless steel plate is provided as a stress diffusion member 25 at the tip of the thermocouple. For this reason, even if the screw tightening torque of the thermocouple 21 is large, the internal thermocouple wiring is not easily damaged.

図4は、図3の四角太線で囲んだ部分Bの模式断面図で、熱電対21の応力拡散部材25とヒータブロック20に設けた熱電対取付け穴26の前記応力拡散部材に対応する部分26aの形状を示した図である。応力拡散部材25及び対応する部分26aとも平坦化してある。特に、熱電対取付け穴26は、先端部を通常のドリル仕上げではなくフライス加工により平坦化している。このような平坦化により両者は、応力を分散しつつ十分な接触面積を確保できるので、繰り返し熱応力で応力拡散部材もしくはヒータブロック内壁が塑性変形する量を軽減でき、さらに微小な変形を生じて隙間を生じても温度差を招き難い。また、熱電対21が経年変化により万一断線しても、容易に交換が出来る。   4 is a schematic cross-sectional view of a portion B surrounded by a thick square line in FIG. 3, and a portion 26a corresponding to the stress diffusion member 25 of the thermocouple 21 and the thermocouple mounting hole 26 provided in the heater block 20. It is the figure which showed the shape. The stress diffusion member 25 and the corresponding portion 26a are also flattened. In particular, the thermocouple mounting hole 26 is flattened by milling instead of the usual drill finish. Such flattening enables both to secure a sufficient contact area while dispersing stress, so that the amount of plastic deformation of the stress diffusion member or heater block inner wall due to repeated thermal stress can be reduced, and further minute deformation can occur. Even if a gap is generated, it is difficult to cause a temperature difference. Moreover, even if the thermocouple 21 is disconnected due to aging, it can be easily replaced.

さらに、熱電対先端は、圧着刃11の近傍が好ましいが、差し込み量がやや浅いほうが熱電対の穴加工により生じる内部の熱伝導率の低下による刃先温度の分布を生じ難い。即ち、シースヒータ22から圧着刃11への熱伝導を妨げる位置に熱電対21を設けないようにする。図3でヒータ下面からヒータブロック下面までの縦方向の距離よりも、圧着刃11中心面から熱電対21先端までの横方向の距離を広く取ることがのぞましい。   Further, the tip of the thermocouple is preferably in the vicinity of the crimping blade 11. However, when the insertion amount is slightly shallower, the temperature distribution of the cutting edge temperature is less likely to occur due to a decrease in internal thermal conductivity caused by drilling the thermocouple. That is, the thermocouple 21 is not provided at a position that hinders heat conduction from the sheath heater 22 to the crimping blade 11. In FIG. 3, it is preferable that the lateral distance from the center surface of the crimping blade 11 to the tip of the thermocouple 21 is larger than the vertical distance from the heater lower surface to the heater block lower surface.

図3ではヒータブロックと熱電対の差込方向が並行であり、本圧着刃の延長方向とは直交するが、対象とするTAB/COFやCOGチップの搭載ピッチが十分広く取れる場合は、ヒータを本圧着刃と並行に設置するほうが温度の均一化が容易である。   In Fig. 3, the insertion direction of the heater block and thermocouple is parallel and perpendicular to the extension direction of this crimping blade, but if the target TAB / COF or COG chip mounting pitch is wide enough, the heater should be It is easier to equalize the temperature when installed in parallel with the main crimping blade.

以上説明した実施形態では、応力拡散部材25の先端を平坦にして、熱電対取付け穴26の対応する部分26aもフライス加工により平坦に加工したが、図5に他の実施形態を示す。たとえば,図5(a)は形状を応力拡散部材25の先端が鋭角の円錐台形とし、熱電対取付け穴26の対応する部分26aもこれに勘合する円錐穴としたものである。この実施形態では、接触面積の一層の増大と、熱膨張差による隙間距離の軽減に役立ち、温度測定精度の向上が期待できる。なお、注意すべき点として、応力拡散部材25の先端を尖らせてはならない。この場合、熱電対取付け穴26の対応する部分26aを十分な精度でとがった穴に加工することは困難であり、熱電対21を正しく奥まで差し込めなくなる恐れがある。   In the embodiment described above, the tip of the stress diffusion member 25 is flattened, and the corresponding portion 26a of the thermocouple mounting hole 26 is also flattened by milling. However, another embodiment is shown in FIG. For example, in FIG. 5 (a), the shape of the stress diffusion member 25 is a truncated cone having an acute angle, and the corresponding portion 26a of the thermocouple mounting hole 26 is a conical hole that fits into this. This embodiment is useful for further increasing the contact area and reducing the gap distance due to the difference in thermal expansion, and can be expected to improve temperature measurement accuracy. It should be noted that the tip of the stress diffusion member 25 should not be sharpened. In this case, it is difficult to process the corresponding portion 26a of the thermocouple mounting hole 26 into a hole with a sufficient accuracy, and there is a possibility that the thermocouple 21 cannot be inserted correctly.

図5(a)の実施形態では、無機接着剤の安価に熱伝導率を十分高くすることは困難で有るため、応力拡散部材25自体には接着剤を塗布しないこととした。しかし、必要な温度精度に余裕がある場合、もしくは無機接着剤に熱伝導の良い貴金属粉末を混練するコスト余裕がある場合は応力拡散部材25にも接着剤もしくはセラミック粉末や金属粉末等の変形可能な耐熱材料からなる充填材27を塗布することで、図5(b)に示す構造を用いることも可能である。この場合は、熱電対取付け穴26の対応する部分26aの加工精度が悪い安価なドリル加工でも、前記耐熱材料27が充填剤としてある程度の隙間を埋めて使用可能に出来、熱電対21の取り付け施工が不十分でもプロセス誤差を生じにくくなる利点がある。   In the embodiment of FIG. 5 (a), it is difficult to sufficiently increase the thermal conductivity of the inorganic adhesive at a low cost. Therefore, no adhesive is applied to the stress diffusion member 25 itself. However, if there is a margin for the required temperature accuracy or if there is a margin for kneading the precious metal powder with good thermal conductivity in the inorganic adhesive, the stress diffusion member 25 can also be deformed with adhesive, ceramic powder, metal powder, etc. It is also possible to use the structure shown in FIG. 5B by applying the filler 27 made of a heat resistant material. In this case, the heat-resistant material 27 can be used by filling a certain gap as a filler even with an inexpensive drilling process in which the processing accuracy of the corresponding portion 26a of the thermocouple mounting hole 26 is poor. However, there is an advantage that process error is less likely to occur even if the amount is insufficient.

上記した実施形態によれば、固定ネジ部に耐熱性無機接着剤を用いてゆるみ止めとすることで、繰返し応力によりセンサネジが緩むことを防止でき、信頼性の高いFPD用のACF熱圧着装置を提供することができる。   According to the embodiment described above, by using a heat-resistant inorganic adhesive on the fixing screw portion to prevent loosening, it is possible to prevent the sensor screw from loosening due to repeated stress, and to provide a highly reliable ACF thermocompression bonding apparatus for FPD. Can be provided.

また、上記した実施形態によれば、熱電対をシースヒータ22と圧着刃11との間に設けることで、圧着刃の処理部との接触部の実温度に近い温度が測定可能であり、信頼性の高いFPD用のACF熱圧着装置を提供することができる。   Further, according to the above-described embodiment, by providing the thermocouple between the sheath heater 22 and the crimping blade 11, a temperature close to the actual temperature of the contact portion with the processing portion of the crimping blade can be measured, and the reliability It is possible to provide an ACF thermocompression bonding apparatus for a high FPD.

さらに、上記した実施形態によれば、シール付き熱電対の先端に応力拡散部材を設けることで、十分な押し当て力で熱電対をヒータブロックの内部に押し当てることが可能となる。この場合、内部熱応力による塑性変形により部材に隙間が生じる量を軽減でき圧着刃の処理部との接触部の実温度を精度良く測定可能であり、信頼性の高いFPD用のACF熱圧着装置を提供することができる。   Furthermore, according to the above-described embodiment, the thermocouple can be pressed against the inside of the heater block with a sufficient pressing force by providing the stress diffusion member at the tip of the thermocouple with a seal. In this case, the amount of gap generated in the member due to plastic deformation due to internal thermal stress can be reduced, the actual temperature of the contact portion with the processing portion of the crimping blade can be accurately measured, and the ACF thermocompression bonding apparatus for FPD with high reliability. Can be provided.

本発明は、液晶、PDP、FED、有機ELなどの比較的長尺の高精度ACF接合が必要で、高速接合による低コスト化が必須のFPD製造装置に適し、特に、高温ヘッドによる短時間ACF硬化に対応したFPD製造設備に適用可能である。   The present invention is suitable for FPD manufacturing equipment that requires relatively long high-precision ACF bonding such as liquid crystal, PDP, FED, organic EL, etc., and is indispensable for cost reduction by high-speed bonding. It can be applied to FPD manufacturing equipment that supports curing.

10:熱圧着ヘッド 11:圧着刃 20:ヒータブロック
21:シース付熱電対 22:シースヒータ 23:フランジ
24:耐熱性無機接着剤 25:応力拡散部材
26:熱電対取付け穴 26a:熱電対取付け穴の前記応力拡散部材に対応する部分
27:耐熱材料 30:加圧シリンダ部 31:シリンダボディ
32:プッシャロッド 40:バックアップ 50:バックアップヒータ
100:熱圧着装置。
10: Thermocompression bonding head 11: Crimping blade 20: Heater block 21: Thermocouple with sheath 22: Sheath heater 23: Flange 24: Heat-resistant inorganic adhesive 25: Stress diffusion member 26: Thermocouple mounting hole 26a: Thermocouple mounting hole A portion corresponding to the stress diffusion member 27: heat-resistant material 30: pressure cylinder portion 31: cylinder body 32: pusher rod 40: backup 50: backup heater 100: thermocompression bonding device.

Claims (10)

加熱された圧着刃を用いACFを加圧し、前記ACFをFPD基板に固定するACF熱圧着装置において、
前記圧着刃をヒータで加熱するヒータブロック、前記ヒータブロックの内部に設けたシース付熱電対の取付け穴及び前記取付け穴に設けたシース付熱電対を有し、前記シース付熱電対の基部をネジ止めするとともに、前記ネジ止め部を耐熱性無機接着剤で接着固定したことを特徴とするACF熱圧着装置。
In an ACF thermocompression bonding apparatus that pressurizes ACF using a heated crimping blade and fixes the ACF to an FPD substrate.
A heater block that heats the crimp blade with a heater, a mounting hole for a thermocouple with a sheath provided inside the heater block, and a thermocouple with a sheath provided in the mounting hole, and the base of the thermocouple with a sheath is screwed An ACF thermocompression bonding apparatus characterized in that the screw fixing part is bonded and fixed with a heat-resistant inorganic adhesive.
前記シース付熱電対を前記圧着刃と前記ヒータとの間に設けたことを特徴とする請求項1に記載のACF熱圧着装置。   The ACF thermocompression bonding apparatus according to claim 1, wherein the thermocouple with a sheath is provided between the crimping blade and the heater. 前記シース付熱電対を前記ヒータから前記圧着刃への伝熱経路を避けて設けたことを特徴とする請求項1に記載のACF熱圧着装置。   The ACF thermocompression bonding apparatus according to claim 1, wherein the sheathed thermocouple is provided so as to avoid a heat transfer path from the heater to the crimping blade. 前記耐熱性無機接着剤はアルミナ、シリカ、水ガラスからなることを特徴とする請求項1に記載のACF熱圧着装置。   The ACF thermocompression bonding apparatus according to claim 1, wherein the heat-resistant inorganic adhesive is made of alumina, silica, or water glass. 前記シース付熱電対の先端に応力拡散部材を設け、この応力拡散部材の先端部は、取付け穴の先端の対応する部分と類似の形状を有することを特徴とする請求項1に記載のACF熱圧着装置。   2. The ACF heat according to claim 1, wherein a stress diffusion member is provided at a distal end of the sheathed thermocouple, and a distal end portion of the stress diffusion member has a shape similar to a corresponding portion of the distal end of the mounting hole. Crimping device. 前記類似とは、前記先端部も前記対応する部分も平坦形状であることを特徴とした請求項5に記載のACF熱圧着装置。   6. The ACF thermocompression bonding apparatus according to claim 5, wherein the similarity means that both the tip portion and the corresponding portion have a flat shape. 前記類似とは、前記先端部は円錐台形形状であり、前記対応する部分は前記円錐と同一形状の円錐形であることを特徴とする請求項5に記載のACF熱圧着装置。   6. The ACF thermocompression bonding apparatus according to claim 5, wherein the tip portion has a truncated cone shape and the corresponding portion has a cone shape having the same shape as the cone. 前記円錐の頂角は鈍角であることを特徴とする請求項7に記載のACF熱圧着装置。   The ACF thermocompression bonding apparatus according to claim 7, wherein an apex angle of the cone is an obtuse angle. 前記先端部と前記対応する部分との間隙に変形可能な耐熱材料を充填することを特徴とする請求項5乃至8のいずれかに記載のACF熱圧着装置。   The ACF thermocompression bonding apparatus according to any one of claims 5 to 8, wherein a deformable heat-resistant material is filled in a gap between the tip portion and the corresponding portion. 前記応力拡散部材にも接着剤もしくは充填材を塗布することを特徴とする請求項5乃至8のいずれかに記載のACF熱圧着装置。   The ACF thermocompression bonding apparatus according to claim 5, wherein an adhesive or a filler is applied also to the stress diffusion member.
JP2009038218A 2009-02-20 2009-02-20 Acf thermocompression bonding apparatus Pending JP2010192834A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009038218A JP2010192834A (en) 2009-02-20 2009-02-20 Acf thermocompression bonding apparatus
TW98142880A TWI416827B (en) 2009-02-20 2009-12-15 ACF thermocompression bonding device
CN 201010115724 CN101813838B (en) 2009-02-20 2010-02-11 ACF thermo-compression bonding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009038218A JP2010192834A (en) 2009-02-20 2009-02-20 Acf thermocompression bonding apparatus

Publications (1)

Publication Number Publication Date
JP2010192834A true JP2010192834A (en) 2010-09-02

Family

ID=42621133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009038218A Pending JP2010192834A (en) 2009-02-20 2009-02-20 Acf thermocompression bonding apparatus

Country Status (3)

Country Link
JP (1) JP2010192834A (en)
CN (1) CN101813838B (en)
TW (1) TWI416827B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101385995B1 (en) * 2012-09-10 2014-04-16 주식회사 에이에스티젯텍 apparatus for bonding

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101870241B1 (en) * 2012-05-14 2018-06-25 삼성디스플레이 주식회사 Bonding apparatus and method for display device
CN103592785B (en) * 2012-08-13 2016-07-06 北京京东方光电科技有限公司 A kind of COG binding method and Temperature-controlled appliance
CN104185414A (en) * 2014-08-15 2014-12-03 无锡宇宁光电科技有限公司 Bonding machine pressing head capable of improving hot-press yield
CN106556467B (en) * 2016-10-21 2020-02-25 芜湖赋兴光电有限公司 ACF pressure welding temperature detection method
JP2018088498A (en) * 2016-11-29 2018-06-07 デクセリアルズ株式会社 Anisotropic Conductive Adhesive
CN110299310A (en) * 2019-06-14 2019-10-01 武汉华星光电半导体显示技术有限公司 Crystal grain soft mode encapsulation engagement thermometric jig and its setting method
CN113471791B (en) * 2021-05-25 2023-05-30 南通大学 Secondary press-connection device and method for wire harness processing copper terminal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992435A (en) * 1995-09-26 1997-04-04 Ngk Spark Plug Co Ltd Temperature-measuring spark plug for internal combustion engine
JP2000277893A (en) * 1999-03-23 2000-10-06 Seiko Epson Corp Head for thermocompression bonding, and thermocompression bonding apparatus provided with the same
JP2005238265A (en) * 2004-02-25 2005-09-08 Kyocera Corp Stoke and low pressure casting machine using the stoke

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100603484B1 (en) * 1996-10-08 2006-07-24 히다치 가세고교 가부시끼가이샤 Semiconductor device, semiconductor chip mounting substrate, methods of manufacturing the device and substrate, adhesive, and adhesive double coated film
JPH10341076A (en) * 1997-06-06 1998-12-22 Sharp Corp Mechanism for adjusting planar parallelism of thermocompression bonding tool
EP1088206A1 (en) * 1998-06-26 2001-04-04 Texaco Development Corporation Thermocouple for use in gasification process
JP2001034187A (en) * 1999-07-22 2001-02-09 Nec Corp Thermocompression bonding device and thermo- compression bonding method
US6962437B1 (en) * 1999-12-16 2005-11-08 Lsi Logic Corporation Method and apparatus for thermal profiling of flip-chip packages
TWM290214U (en) * 2005-11-29 2006-05-01 Inventec Corp Thermocouple clamping device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992435A (en) * 1995-09-26 1997-04-04 Ngk Spark Plug Co Ltd Temperature-measuring spark plug for internal combustion engine
JP2000277893A (en) * 1999-03-23 2000-10-06 Seiko Epson Corp Head for thermocompression bonding, and thermocompression bonding apparatus provided with the same
JP2005238265A (en) * 2004-02-25 2005-09-08 Kyocera Corp Stoke and low pressure casting machine using the stoke

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101385995B1 (en) * 2012-09-10 2014-04-16 주식회사 에이에스티젯텍 apparatus for bonding

Also Published As

Publication number Publication date
TWI416827B (en) 2013-11-21
CN101813838A (en) 2010-08-25
CN101813838B (en) 2013-04-10
TW201032425A (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP2010192834A (en) Acf thermocompression bonding apparatus
TWI411053B (en) Mounting method using thermal contact bonding head
CN102768419B (en) COG (chip on grass) bonding technique
TWI589885B (en) Resistance measuring apparatus for inspecting compression quality and measuring method using the same
TW201421661A (en) Display panel and bonding apparatus for manufacturing the same
KR20170065470A (en) Thermocompression bonding apparatus
KR20160127807A (en) Crimp head, and mounting device and mounting method using same
JP2008286856A (en) Pressure welding equipment
US9753332B2 (en) Display device and manufacturing method thereof
TW200808525A (en) Bonding apparatus and method using the same
KR101679953B1 (en) FOG Bonding device and methode the same
JP2009260379A (en) Bonding apparatus and bonding method using the same
KR100897891B1 (en) Thermo-compression bonding tool and thermo-compression bonding device
JP2006245554A (en) Mounting method of electric components
KR101708317B1 (en) Strain inspection device and attaching method thereof
TWI420995B (en) Mounting method for electric components
JP5406974B2 (en) Thermocompression bonding apparatus and electrical component mounting method
JP2009032845A (en) Thermocompression bonding device and packaging method for electrical component
JP5319234B2 (en) Thermocompression bonding apparatus and electronic component manufacturing method
JP6472127B2 (en) Tip and heat storage tool
CN101222821A (en) Method and device for fixing element on substrate
JP5011993B2 (en) Thermocompression head load measuring device and method
JP2007115892A (en) Manufacturing method and production device for display device
TWI387415B (en) Method of reducing warpage of circuit board assembly
KR101552157B1 (en) Strain inspection device for pcb and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110824

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A02 Decision of refusal

Effective date: 20120925

Free format text: JAPANESE INTERMEDIATE CODE: A02