JP2016175106A - 連続鋳造鋳型内の偏流検知方法及び偏流制御方法、湯面変動検知方法及び湯面変動制御方法、装置並びにプログラム - Google Patents

連続鋳造鋳型内の偏流検知方法及び偏流制御方法、湯面変動検知方法及び湯面変動制御方法、装置並びにプログラム Download PDF

Info

Publication number
JP2016175106A
JP2016175106A JP2015057605A JP2015057605A JP2016175106A JP 2016175106 A JP2016175106 A JP 2016175106A JP 2015057605 A JP2015057605 A JP 2015057605A JP 2015057605 A JP2015057605 A JP 2015057605A JP 2016175106 A JP2016175106 A JP 2016175106A
Authority
JP
Japan
Prior art keywords
molten metal
metal surface
mold
continuous casting
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015057605A
Other languages
English (en)
Other versions
JP6428418B2 (ja
Inventor
平本 祐二
Yuji Hiramoto
祐二 平本
中川 淳一
Junichi Nakagawa
淳一 中川
福永 新一
Shinichi Fukunaga
新一 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015057605A priority Critical patent/JP6428418B2/ja
Publication of JP2016175106A publication Critical patent/JP2016175106A/ja
Application granted granted Critical
Publication of JP6428418B2 publication Critical patent/JP6428418B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】湯面位置における熱移動の影響を捉えて湯面レベルを検出することにより湯面レベルの検出精度を高め、鋳型内の偏流の検知精度、湯面変動の検知精度向上を図り、鋳片品質の安定化を実現する。【解決手段】入力部101は、鋳型短辺2a、2bの鋳造方向に配置、埋設された複数の熱電対6の計測値を入力する。計算部102は、入力部101で入力した熱電対6の計測値を用いて伝熱逆問題を解き、稼動面における熱流束の鋳造方向のベクトル成分値、換言すれば稼動面における熱流束の湯面に垂直な方向のベクトル成分値を計算する。湯面レベル差解析部103は、計算部102で計算した稼動面における熱流束の鋳造方向と逆向きとなる湯面の法線方向のベクトル成分値が最大となる位置を湯面レベルと判定し、偏流の指標として、鋳型短辺2a、2bの稼動面における湯面レベル差ΔYを求める。【選択図】図4

Description

本発明は、連続鋳造鋳型(モールド)内の偏流検知方法及び偏流制御方法、湯面変動検知方法及び湯面変動制御方法、装置並びにプログラムに関する。
連続鋳造操業において、鋳片品質の高位安定化及び鋳片品質の変動を把握する上で、連続鋳造鋳型内の偏流検知や湯面変動検知は極めて重要である。
まず、偏流や湯面変動といった現象の発生原因及び鋳片品質に与える影響について説明する。
(偏流について)
例えばスラブの連続鋳造において、浸漬ノズルの左右の吐出孔から吐出した溶鋼流が鋳型短辺に衝突して上昇流と下降流を形成する。この左右の吐出流は、浸漬ノズル直胴部における流動のばらつきや直胴部内壁への介在物付着等によって左右に吐出される吐出流の強さにばらつきが生じ(以下、偏流ともいう)、鋳型短辺に衝突する流速に差異が生じる。この偏流が生じると、浸漬ノズルを挟んだ湯面の左右で流速に違いが生じ、溶鋼流速が速い側では湯面付近で表面に浮遊する溶融パウダーを巻き込んだり、鋳型短辺衝突後に生じる下降流流速が増大し、溶鋼中の非金属介在物をストランド深くまで侵入させたりして、鋳片内部品質を悪化させる。結果、製品工程でヘゲ疵やスリバー疵の増大を招き、より深く侵入した介在物はユーザでのプレス加工時等に介在物を起点とした割れの原因となる。
(湯面変動について)
連続鋳造における浸漬ノズル内壁に付着した主にA123系介在物の剥離により溶鋼流の流動抵抗が変化し、吐出流が脈動することが従来から知られている。付着の進行による流動抵抗の漸増に対応して、スライディングノズル或いはストッパー等の流量制御系は開度を開いてきているため、介在物剥離直後の流動抵抗の急激な減少に対応できず、連続鋳造鋳型内に流入する溶鋼流量が一時的に増大し、溶鋼吐出流速が増大する。結果、湯面付近で表面に浮遊する溶融パウダーを巻き込んだり、鋳型短辺衝突後に生じる下降流流速が増大し、溶鋼中の非金属介在物をストランド深くまで侵入させたりして、鋳片内部品質を悪化させる。結果、製品工程でヘゲ疵やスリバー疵の増大を招き、より深く侵入した介在物はユーザでのプレス加工時等に介在物を起点とした割れの原因となる。
例えば特許文献1には、鋳型壁の高さ方向に沿って等間隔に複数個の測温素子を埋設し、任意周期毎に各素子の点における温度の時間変化率値を演算し、該時間変化率の最大値を示す素子(n)を検出し、該素子(n)とその前後の素子(n−1)、(n+1)の各時間変化率値を結ぶ二次曲線の最大値を示す位置を求め、該位置を湯面レベルとする技術が開示されている。
特許文献2には、鋳造方向に間隔をおいて鋳型の複数箇所に埋設した温度計測手段で鋳型温度を計測し、鋳型温度計測値に基づいて各計測点における鋳型内面での熱流束を伝熱逆問題手法を用いてそれぞれ推定する技術が開示されている。
特許文献3には、鋳型短辺側に向いた溶鋼の吐出孔を有する浸漬ノズルを鋳型中央に配して鋳造を行う連続鋳造に際し、前記浸漬ノズルを境とする左右両側の鋳型銅板の各長辺および短辺内にそれぞれ溶鋼表面から深さ方向に少なくとも2本以上、更に銅板表面から深さ方向に少なくとも2本以上の熱電対を埋設し、上記熱電対で検出される前記浸漬ノズルを境とする左右両側対称位置の熱電対から測定される温度差あるいはその温度差から求められる熱流束差とある一定値に対する偏差を求め、この偏差をもとに鋳型内溶鋼吐出流の偏流を検出する技術が開示されている。
特許文献4には、鋳型両短辺にそれぞれ埋設した温度計または浸漬ノズルとその両側の鋳型両短辺との間に配設したレベル計により、鋳型両短辺近傍に生じる溶鋼湯面の隆起量を測定することによって鋳型内における溶鋼偏流を検知する技術が開示されている。
特許文献5には、鋳型銅板幅方向に複数の熱電対を配置して鋳型銅板温度を測定し、各測定温度の特定の周波数成分の変動量から鋳型内幅方向各位置の湯面変動量を推定する技術が開示されている。
特開昭53−26230号公報 特開2001−239353号公報 特開平1−262050号公報 特開平4−84650号公報 特開平11−90600号公報
しかしながら、特許文献1に代表される既存の手法は、鋳型の鋳造方向の温度が最大となる位置が湯面近傍にあり、湯面位置とある相関があるという経験則に基づくものである。このように経験則に基づく場合、湯面レベルの検出精度が低いものとなってしまう懸念がある。具体的には、鋳型に埋設された熱電対の温度変化率は溶鋼温度や、湯面変化速度によって左右され、溶鋼温度が高いほど温度変化率が大きくなり、また湯面変化速度が大きいと鋳型の温度上昇の時間遅れにより湯面位置の検出遅れが大きくなるという問題がある。また、特許文献1には、偏流検知に関する記述はなく、湯面変動検知に関しては、「溶鋼レベルの上昇或いは下降傾向を判別することが可能」との記述のみで、どの程度の湯面検知精度が得られるのかの具体的な記述はない。
特許文献2の手法は、熱流束を伝熱逆問題を用いて推定する方法であるが、熱流束と湯面レベル、湯面変動検知、偏流検知の関係についての記述はない。
特許文献3の手法は、熱電対を埋設した部位に溶鋼流が流れ、かつ壁面に沿って流動した場合には偏流検知が可能である。しかしながら、本発明者らの流動実験によると、溶鋼流は吐出孔から吐出した後、徐々に広がりながら鋳型短辺に向かって流れるため、長辺の凝固シェル壁面に溶鋼流が到達するには、一定の流動距離(幅)が必要であること、本発明者らの研究によれば、浸漬ノズル直胴部における流速分布の影響を受けて、吐出した流れが鋳型短辺にまっすぐ向かう流れとはならない場合が多く(長辺に流れが到達しない場合が多い)、長辺での温度差の左右での温度差あるいは熱流束差があったとしても、左右の偏流に起因するとは限らないため、偏流が過検知ぎみとなることが避けられない。また、鋳型短辺に埋設した熱電対の左右の温度差あるいは熱流束差から偏流を検知する場合、左右の吐出流が非対称な流れとなり、上述したように吐出した流れが短辺にまっすぐ向かう流れとはならない場合が多いために、左右対称の熱電対位置であっても、片側の熱電対位置のみ吐出流が強く衝突する場合がある。そのために、温度差あるいは熱流束差が偏流に起因したものとはならず、偏流が過検知ぎみとなることが避けられない。
特許文献4の手法は、短辺の溶鋼隆起の両短辺の差が10mm以下となる制御を行うとしているが、熱電対の出力で10mmの差を検出しようとした場合、鋳型壁面高さ方向に数mmでの非常に細かいピッチで熱電対を埋設する必要があり、熱電対取り付けや保守管理等、煩雑な手間が生じることは避けられず、実用性に乏しい。また、浸漬ノズルと両短辺の間に配設したレベル計で隆起を計測する場合、センサーの計測範囲の大きさにもよるが、鋳型壁面に近接しすぎると鋳型壁面の影響で正確な湯面の計測ができなくなるため、鋳型壁面からセンサーを一定距離以上離す必要がある。しかしながら、距離が離れると湯面の隆起は小さくなるため、正確な偏流検知精度が得られなくなる問題がある。
特許文献5の手法は、鋳型銅板幅方向に配置した複数の熱電対の特定周波数の変動量と、各位置の湯面変動量との間に相関関係があるとの経験則に基づくものであるが、湯面変動の中で湯面の上昇、下降が把握可能かは明示されていない。 連続鋳造の操業においては、湯面変動量以外に湯面の急上昇や低下による品質悪化要因の検出も重要であり、特許文献5の手段では、十分な対応が困難である。
本発明は上記のような点に鑑みてなされたものであり、湯面位置における熱移動の影響を捉えて湯面レベルを検出することにより湯面レベルの検出精度を高め、鋳型内の偏流の検知精度、湯面変動の検知精度向上を図り、鋳片品質の安定化を実現することを目的とする。
上記課題を解決するための、本発明は以下のとおりである。
[1] 連続鋳造鋳型内の偏流検知方法であって、
浸漬ノズルを挟んで対向する一対の鋳型辺の鋳造方向に配置、埋設された複数の温度検出手段の計測値を取得する取得ステップと、
前記取得ステップで取得した前記温度検出手段の計測値を用いて伝熱逆問題を解き、稼動面における熱流束の鋳造方向の成分値を計算する計算ステップと、
前記計算ステップで計算した稼動面における熱流束の鋳造方向の成分値に基づいて、湯面レベルを判定し、前記一対の鋳型辺の稼動面における湯面レベル差を求める湯面レベル差解析ステップとを有することを特徴とする連続鋳造鋳型内の偏流検知方法。
[2] 前記湯面レベル差解析ステップでは、前記計算ステップで計算した稼動面における熱流束の鋳造方向と逆向きとなる湯面の法線方向の成分値が最大となる位置を湯面レベルと判定することを特徴とする[1]に記載の連続鋳造鋳型内の偏流検知方法。
[3] [1]又は[2]に記載の連続鋳造鋳型内の偏流検知方法により求めた湯面レベル差が所定の値を超えたとき、鋳造速度を減少させることを特徴とする連続鋳造鋳型内の偏流制御方法。
[4] 湯面レベル差が10mmを超えたとき、鋳造速度を10%以上減少させることを特徴とする[3]に記載の連続鋳造鋳型内の偏流制御方法。
[5] 連続鋳造鋳型内の湯面変動検知方法であって、
前記連続鋳造鋳型の鋳造方向に配置、埋設された複数の温度検出手段の計測値を取得する取得ステップと、
前記取得ステップで取得した前記温度検出手段の計測値を用いて伝熱逆問題を解き、稼動面における熱流束の鋳造方向の成分値を計算する計算ステップと、
前記計算ステップで計算した稼動面における熱流束の鋳造方向の成分値に基づいて、湯面レベルを判定し、湯面変動速度を求める湯面変動解析ステップとを有することを特徴とする連続鋳造鋳型内の湯面変動検知方法。
[6] 前記湯面変動解析ステップでは、前記計算ステップで計算した稼動面における熱流束の鋳造方向と逆向きとなる湯面の法線方向の成分値が最大となる位置を湯面レベルと判定することを特徴とする[5]に記載の連続鋳造鋳型内の湯面変動検知方法。
[7] 浸漬ノズルの中心から左右鋳型短辺までの鋳型長辺幅方向距離をそれぞれW/2とした場合に、鋳型長辺において、前記浸漬ノズルの中心から3W/8以内に前記温度検出手段を配置、埋設することを特徴とする[5]又は[6]に記載の連続鋳造鋳型内の湯面変動検知方法。
[8] [5]乃至[7]のいずれかに記載の連続鋳造鋳型内の湯面変動検知方法により求めた湯面変動速度が所定の値以上となったとき、鋳造速度を減少させることを特徴とする連続鋳造鋳型内の湯面変動制御方法。
[9] 湯面変動速度が10mm/30秒以上となったとき、鋳造速度を10%以上減少させることを特徴とする[8]に記載の連続鋳造鋳型内の湯面変動制御方法。
[10] 連続鋳造鋳型内の偏流検知装置であって、
浸漬ノズルを挟んで対向する一対の鋳型辺の鋳造方向に配置、埋設された複数の温度検出手段の計測値を入力する入力手段と、
前記入力手段で入力した前記温度検出手段の計測値を用いて伝熱逆問題を解き、稼動面における熱流束の鋳造方向の成分値を計算する計算手段と、
前記計算手段で計算した稼動面における熱流束の鋳造方向の成分値に基づいて、湯面レベルを判定し、前記一対の鋳型辺の稼動面における湯面レベル差を求める湯面レベル差解析手段とを備えたことを特徴とする連続鋳造鋳型内の偏流検知装置。
[11] 連続鋳造鋳型内の湯面変動検知装置であって、
前記連続鋳造鋳型の鋳造方向に配置、埋設された複数の温度検出手段の計測値を入力する入力手段と、
前記入力手段で入力した前記温度検出手段の計測値を用いて伝熱逆問題を解き、稼動面における熱流束の鋳造方向の成分値を計算する計算手段と、
前記計算手段で計算した稼動面における熱流束の鋳造方向の成分値に基づいて、湯面レベルを判定し、湯面変動速度を求める湯面変動解析手段とを備えたことを特徴とする連続鋳造鋳型内の湯面変動検知装置。
[12] 連続鋳造鋳型内の偏流検知を行うためのプログラムであって、
浸漬ノズルを挟んで対向する一対の鋳型辺の鋳造方向に配置、埋設された複数の温度検出手段の計測値を入力する処理と、
前記入力した前記温度検出手段の計測値を用いて伝熱逆問題を解き、稼動面における熱流束の鋳造方向の成分値を計算する処理と、
前記計算した稼動面における熱流束の鋳造方向の成分値に基づいて、湯面レベルを判定し、前記一対の鋳型辺の稼動面における湯面レベル差を求める処理とをコンピュータに実行させるためのプログラム。
[13] 連続鋳造鋳型内の湯面変動検知を行うためのプログラムであって、
前記連続鋳造鋳型の鋳造方向に配置、埋設された複数の温度検出手段の計測値を入力する処理と、
前記入力した前記温度検出手段の計測値を用いて伝熱逆問題を解き、稼動面における熱流束の鋳造方向の成分値を計算する処理と、
前記計算した稼動面における熱流束の鋳造方向の成分値に基づいて、湯面レベルを判定し、湯面変動速度を求める処理とをコンピュータに実行させるためのプログラム。
本発明によれば、湯面位置における熱移動の影響を捉えて湯面レベルを検出することにより湯面レベルの検出精度を高め、鋳型内の偏流の検知精度、湯面変動の検知精度向上を図り、鋳片品質の安定化を実現することができる。
第1の実施形態における連続鋳造鋳型の概要を模式的に示す図である。 第1の実施形態における熱電対の配置を示す図である。 第1の実施形態における連続鋳造鋳型内の偏流検知の概要を説明するための図である。 第1の実施形態に係る連続鋳造鋳型内の偏流制御装置の機能構成を示す図である。 伝熱逆問題の座標系を示す図である。 湯面レベルの検出の概要を説明するための図である。 湯面レベルを実測するための装置構成例を示す図である。 本発明の手法で検出した湯面レベルと、既存の手法で検出した湯面レベルと、実測の湯面レベルとを示す特性図である。 第1の実施形態において制御部が実行する制御処理を示すフローチャートである。 第1の実施形態において鋳造速度を減少させた場合に制御部が実行する制御処理を示すフローチャートである。 第2の実施形態における連続鋳造鋳型の概要を模式的に示す図である。 第2の実施形態における熱電対の配置を示す図である。 第2の実施形態における連続鋳造鋳型内の湯面変動検知の概要を説明するための図である。 第2の実施形態に係る連続鋳造鋳型内の湯面変動制御装置の機能構成を示す図である。 第2の実施形態において制御部が実行する制御処理を示すフローチャートである。 第2の実施形態において鋳造速度を減少させた場合に制御部が実行する制御処理を示すフローチャートである。
以下、添付図面を参照して、本発明の好適な実施形態について説明する。
[第1の実施形態]
第1の実施形態として、連続鋳造鋳型(以下、単に鋳型と呼ぶ)内の偏流を検知し、必要に応じて偏流を抑制するように鋳造速度を制御する例を説明する。
図1に、鋳型1の概要を模式的に示す。鋳型1は、互いに対向する一対の鋳型短辺2a、2bと、互いに対向する一対の鋳型長辺3a、3bとにより構成される。鋳型1の内面を稼動面、外面を水冷面と呼ぶ。即ち、鋳型1の各面のうち、溶湯に接する面が稼動面である(ただし、潤滑パウダーを用いる場合は該潤滑パウダーを通して溶湯に接する)。
鋳型1の中央には浸漬ノズル4が配置されており、浸漬ノズル4の左右の吐出孔4a、4bから左右の鋳型短辺2a、2bへ向かって溶鋼が吐出される。符号5は、湯面を示す。なお、図1は左右一対の吐出孔4a、4bを有する例を示すが、吐出孔は左右複数対あってもよい。
一対の鋳型短辺2a、2bには、鋳造方向に複数の熱電対6が配置、埋設される。図2に、鋳型短辺2a(2b)の熱電対6の配置例を示す。
本実施形態では、図3に示すように、偏流の指標として、一方の鋳型短辺2aの稼動面における湯面レベルと、他方の鋳型短辺2bの稼動面における湯面レベルとの差(以下、湯面レベル差と呼ぶ)ΔYを求める。
図4に、連続鋳造鋳型内の偏流制御装置100の機能構成を示す。なお、本実施形態では、偏流制御装置100が本発明を適用した連続鋳造鋳型内の偏流検知装置としても機能する。
101は入力部であり、鋳型短辺2a、2bの鋳造方向に配置、埋設された複数の熱電対6の計測値を入力する。
102は計算部であり、詳細は後述するが、入力部101で入力した熱電対6の計測値を用いて伝熱逆問題を解き、稼動面における熱流束の鋳造方向のベクトル成分値、換言すれば稼動面における熱流束の湯面に垂直な方向のベクトル成分値を計算する。
103は湯面レベル差解析部であり、計算部102で計算した稼動面における熱流束の鋳造方向と逆向きとなる湯面の法線方向のベクトル成分値が最大となる位置を湯面レベルと判定し、鋳型短辺2a、2bの稼動面における湯面レベル差ΔYを求める。
104は制御部であり、詳細は後述するが、湯面レベル差解析部103で求めた湯面レベル差ΔYに基づいて、偏流を抑制するように鋳造速度を制御する。
入力部101、計算部102、湯面レベル差解析部103、及び制御部104は、例えば一定周期で、熱電対6の計測値の入力、ベクトル成分値の計算、湯面レベル差ΔYの計算、及び湯面レベル差ΔYに応じた制御を実行する。
(湯面レベルの検出について)
連続鋳造操業においては、鋳型1内にパウダーを添加して、溶鋼の保温及び酸化防止、溶鋼中の介在物の吸収、凝固シェルの潤滑性の確保、抜熱の調整をする。これにより、鋳型内メニスカスでの凝固シェルを均一に生成して表面割れを防止し、鋳型と凝固シェルの焼き付きを防止する。
このように鋳型1内の湯面上にはパウダーが供給されることから、本発明では「パウダーによる抜熱の影響で湯面に垂直で上向きの熱流束値は、鋳型の他の部位と比べて最も大きくなる。」という推論に基づき、湯面レベルを検出する。
以下、鋳型1に埋設された複数の熱電対6の計測データに基づいて、稼働面の熱流束ベクトルを推定する伝熱逆問題を説明する。
温度推定のための内外挿温度関数u*を、鋳型1に埋設された複数の熱電対6の時系列データセットに基づいて、鋳型1の鋳造方向−抜熱方向の2次元断面温度分布の時間変化を予測する数式を作成する。同式に基づいて、稼働面における熱流束ベクトル(大きさと向き)を求め、湯面レベル判定のための基本物理量とする。
図5に、伝熱逆問題の座標系を示す。空間x軸は稼働面をx=0とする抜熱方向、空間y軸は鋳型1の上端をy=0とする鋳造方向であり、これらに時間軸tを加えた時空間3次元座標を考える。
図5のプロットは、あるyにおける空間x−時間tの2次元断面図上の計算に使用する情報量の定義点を示す。x軸の熱電対位置の情報量は熱電対6の計測データを使う。一方、水冷面の位置には熱電対が無いので、水冷熱伝達係数と水温を既知として決まる熱流束値を情報量に使い、上述した熱電対位置と併せ、測温データ採取点の領域と定義する。この領域をy軸方向にある熱電対位置に拡張し、空間x−空間y−時間tの3次元測温データ採取点の領域とする。
上述した3次元測温データ採取点の領域の情報量に基づいて作成した内外挿温度関数u*(x,y,t)を使って、稼働面における熱流束ベクトルを推定する。
以下に、内外挿温度関数u*(x,y,t)を構成するための数学手続きを述べる。
式(1)の非定常熱伝導方程式を考える。ここで、aは鋳型1の熱拡散係数の平方根の物理量である。位置座標x,yは[0,1]で規格化した。
Figure 2016175106
冷却面の境界条件を式(2)で表す。ここで、g(t)=uwγとし、水温uwと熱伝達係数γの積として定義した。βは鋳型1の熱伝導率である。
Figure 2016175106
鋳型1の熱電対温度情報を式(3)で記述する。x*,y*は熱電対位置を表し、[0,1]で規格化している。
Figure 2016175106
内外挿温度関数u*(x,y,t)は後述する基底関数φを使い、式(4)で記述する。
Figure 2016175106
係数λjは、行列方程式(5)を解いて決定する。ここで、Aは(m+l)×(m+l)行列、bは(m+l)ベクトルである。xk,xs,tk,tsは上述の測温データ採取点の領域にある情報量の定義点である。一方、xj,tjは中心点と呼ばれる時空間座標上での基準点の座標であり、通常は、情報量の定義点と同一点を採用しておけばよい。
Figure 2016175106
次に、基底関数φを、式(1)式を満足する基本解の形式を使い、式(6)、(7)のように定義する。
Figure 2016175106
ここで、Tは基本解の拡散プロフィールを調整するパラメータであり、H(t)はヘビサイド関数である。稼働面における熱流束のy方向成分qyは、式(8)で計算することができる。kは鋳型材料の熱伝導率である。
Figure 2016175106
実機において、本発明の手法で湯面レベルを検出し、既存の手法で検出した湯面レベル及び実測の湯面レベルと比較した。図2に示すように、鋳型短辺2a、2bに熱電対6を埋設している。
本発明の手法では、図6(c)、(d)に示すように、稼動面における熱流束の鋳造方向のベクトル成分値を計算し、それが最大となる位置を湯面レベルと判定する。図6(c)には、鋳型1内の温度分布(ドットが濃いほど高温であることを示す)と、稼動面における熱流束とを示す。図6(d)には、稼動面における熱流束の鋳造方向のベクトル成分値を示す。
一方、既存の手法では、図6(b)に示すように、鋳型1内の温度分布を計算し、経験則に基づいて、最高温度×0.65となる位置を湯面レベルと判定する。
また、図7に示すように、湯面にフロート501を浮かべ、フロート501にロッド502を設けている。また、オッシレーション測定治具503を設定している。そして、ロッド502の先端、オッシレーション測定金物先端の動きをビデオカメラ504で撮影し、画像処理により垂直方向の変位をデジタル化し記録することにより、湯面レベルを実測した。
図8に、本発明の手法で検出した湯面レベルと、既存の手法で検出した湯面レベルと、実測の湯面レベルとを示す。横軸は時間を、縦軸は湯面レベルを示す。
既存の手法では、実測の湯面レベルが高くなると検出精度が極端に低下し、実測値に追従できなくなっている。
それに対して、本発明の手法では、広範囲に亘り実測値を追従できているのがわかる。湯面レベルの実測精度が5−10mm程度のバラツキがあることを勘案すると、本発明の手法により検出した湯面レベルは実測の湯面レベルと良い対応関係にあるといえる。
以上述べたように、パウダーによる抜熱という湯面位置における熱移動の影響を捉えて湯面レベルを検出するので、湯面レベルの検出精度を高めることができる。
(制御部104の処理について)
図9に、制御部104が実行する制御処理を示す。
ステップS901で、制御部104は、湯面レベル差解析部103から湯面レベル差ΔYを取得する。
ステップS902で、制御部104は、ステップS901で取得した湯面レベル差ΔYが所定の値、本例では10mmを超えているか否かを判定する。10mmを超えていれば、偏流が発生しているとして、ステップS903に進む。10mm以下であれば、偏流は発生していないとして、本処理を抜ける。
ステップS903で、制御部104は、鋳造速度を減少させる。本実施形態では、鋳造速度を、現在の鋳造速度よりも10%以上減少させる。鋳造速度を減少させることにより、鋳型1内での溶鋼の流動を抑え、浸漬ノズル4の左右での溶鋼の偏流を抑えることができる。
図10は、図9のステップS903で鋳造速度を減少させた場合に制御部104が実行する制御処理を示す。
ステップS1001で、制御部104は、湯面レベル差解析部103から湯面レベル差ΔYを取得する。
ステップS1002で、制御部104は、ステップS1001で取得した湯面レベル差ΔYが所定の値、本例では10mm以下であるか否かを判定する。10mm以下であれば、偏流は抑えられたとして、ステップS1003に進む。10mmを超えていれば、偏流が発生しているとして、本処理を抜ける。
ステップS1003で、制御部104は、現在の鋳造速度を、ステップS903で減少させる前の鋳造速度に復帰させる。
ここで、本実施形態では、偏流の指標となる湯面レベル差ΔYの閾値を10mm、鋳造速度の減少率を10%以上としたが、これは実績から得られた知見に基づくものである。
表1に、偏流に起因する欠陥(ヘゲ疵やスリバー疵)の発生率を示す。縦軸は湯面レベル差ΔYを、横軸は鋳造速度を示す。ここでは、欠陥の発生率が0.7%以上となる範囲が、許容できない範囲であるとする(図中の白抜きの範囲)。
通常時の鋳造速度が1.40mpmであるとする。鋳造速度が1.40mpmの場合、湯面レベル差ΔYが10mmを超えると、許容できない欠陥が発生する。この場合に、鋳造速度を1.35mpmに減少させても(3.6%の減少)、鋳造速度を1.30mpmに減少させても(7.1%の減少)、許容できない欠陥が発生するが、鋳造速度を1.25mpmに減少させると(10.7%の減少)、欠陥の発生率は許容範囲に収まることがわかる。
Figure 2016175106
以上述べたように、湯面位置における熱移動の影響を捉えて湯面レベルを検出することにより湯面レベルの検出精度を高め、鋳型内の偏流の検知精度向上を図り、鋳片品質の安定化を実現することができる。
なお、本実施形態では、湯面レベル差ΔYが所定の値を超えたとき、鋳造速度を減少させる制御を実行する例を説明したが、それに限定されるものではない。例えば湯面レベル差ΔYが所定の値を超えた状態で鋳型1を通過した鋳片については、一級品への充当を取りやめる、すなわち二級品に充当するといった取り扱いとしてもよい。
また、本実施形態では、浸漬ノズル4の吐出方向に位置する鋳型短辺2a、2bに熱電対6を埋設したが、鋳型長辺3a、3bに熱電対6を埋設してもよい。ただし、偏流を捉えるためには、一定の流動距離を確保するとともに、浸漬ノズル4の吐出流が衝突する鋳型短辺2a、2b付近での湯面レベルを捉える必要があることから、鋳型長辺3a、3bのうち鋳型短辺2a、2bに近い位置に熱電対6を配置、埋設するのが好ましい。具体的には、浸漬ノズル4の中心から左右鋳型短辺2a、2bまでの鋳型長辺幅方向距離をそれぞれW/2とした場合に、鋳型長辺3a、3bにおいて、浸漬ノズル4の中心から3W/8より遠くに熱電対6を配置、埋設する。
[第2の実施形態]
第2の実施形態として、鋳型内の湯面変動を検知し、必要に応じて湯面変動を抑制するように鋳造速度を制御する例を説明する。なお、第1の実施形態で説明したものについての説明は省略し、第1の実施形態との相違を中心に説明する。
一対の鋳型長辺3a、3bには、鋳造方向に複数の熱電対6が配置、埋設される。図12に示すように、本実施形態では、鋳型長辺3a、3bに、それぞれ2列で熱電対6を配置、埋設する。鋳型1内に流入する溶鋼流量に起因する湯面変動を捉えることから、偏流の影響をさけるために、浸漬ノズル4の吐出流が衝突する鋳型短辺2a、2bから離れた位置での湯面レベルを捉えるのが好ましい。そこで、浸漬ノズル4の中心から左右鋳型短辺2a、2bまでの鋳型長辺幅方向距離をそれぞれW/2とした場合に、鋳型長辺3a、3bにおいて、浸漬ノズル4の中心から3W/8以内に熱電対6を配置、埋設する。
本実施形態では、図13に示すように、湯面変動の指標として、湯面変動速度VYを求める。
なお、本実施形態では、複数列で熱電対6を配置する例を説明した。このように複数列で熱電対6を配置する場合、例えば、列ごとに熱電対6の計測値を用いて湯面レベルを推定し、これら湯面レベルの平均値を現在の湯面レベルとして取り扱い、湯面変動速度VYを求めるようにすればよい。また、一の鋳型長辺の1列だけに熱電対6を配置、埋設するようにしてもよい。
図14に、連続鋳造鋳型内の湯面変動制御装置200の機能構成を示す。なお、本実施形態では、湯面変動制御装置200が本発明を適用した連続鋳造鋳型内の湯面変動検知装置としても機能する。
201は入力部であり、鋳型長辺3a、3bの鋳造方向に配置、埋設された複数の熱電対6の計測値を入力する。
202は計算部であり、第1の実施形態で説明した計算部102と同様、入力部201で入力した熱電対6の計測値を用いて伝熱逆問題を解き、稼動面における熱流束の鋳造方向のベクトル成分値、換言すれば稼動面における熱流束の湯面に垂直な方向のベクトル成分値を計算する。
203は湯面変動解析部であり、計算部202で計算した稼動面における熱流束の鋳造方向と逆向きとなる湯面の法線方向のベクトル成分値が最大となる位置を湯面レベルと判定し、湯面変動速度VYを求める。
204は制御部であり、詳細は後述するが、湯面変動解析部203で求めた湯面変動速度VYに基づいて、湯面変動を抑制するように鋳造速度を制御する。
入力部201、計算部202、湯面変動解析部203、及び制御部204は、例えば一定周期で、熱電対6の計測値の入力、ベクトル成分値の計算、湯面変動速度VYの計算、及び湯面変動速度VYに応じた制御を実行する。
(制御部204の処理について)
図15に、制御部204が実行する制御処理を示す。本実施形態では、計算部202において、湯面変動速度VYとして、30秒単位での湯面変動量(mm)を求めるものとする。
ステップS1501で、制御部204は、湯面変動解析部203から湯面変動速度VYを取得する。
ステップS1502で、制御部204は、ステップS1501で取得した湯面変動速度VYが所定の値、本例では10mm毎30秒以上となっているか否かを判定する。10mm毎30秒以上であれば、急激な湯面変動が発生しているとして、ステップS1503に進む。10mm毎30秒を下回っていれば、急激な湯面変動は発生していないとして、本処理を抜ける。
ステップS1503で、制御部204は、鋳造速度を減少させる。本実施形態では、鋳造速度を、現在の鋳造速度よりも10%以上減少させる。鋳造速度を減少させることにより、急激な湯面変動を抑えることができる。
図16は、図15のステップS1503で鋳造速度を減少させた場合に制御部204が実行する制御処理を示す。
ステップS1601で、制御部204は、湯面変動解析部203から湯面変動速度VYを取得する。
ステップS1602で、制御部204は、ステップS1601で取得した湯面変動速度VYが所定の値、本例では10mm毎30秒を下回っているか否かを判定する。10mm毎30秒を下回っていれば、急激な湯面変動は抑えられたとして、ステップS1603に進む。10mm毎30秒以上であれば、急激な湯面変動が発生しているとして、本処理を抜ける。
ステップS1603で、制御部204は、現在の鋳造速度を、ステップS1503で減少させる前の鋳造速度に復帰させる。
ここで、本実施形態では、湯面変動の指標となる湯面変動速度VYの閾値を10mm毎30秒、鋳造速度の減少率を10%以上としたが、これは実績から得られた知見に基づくものである。
表2に、湯面変動に起因する欠陥(ヘゲ疵やスリバー疵)の発生率を示す。縦軸は湯面変動速度VYを、横軸は鋳造速度を示す。ここでは、欠陥の発生率が0.7%以上となる範囲が、許容できない範囲であるとする(図中の白抜きの範囲)。
通常時の鋳造速度が1.40mpmであるとする。鋳造速度が1.40mpmの場合、湯面変動速度VYが10mm毎30秒以上となると、許容できない欠陥が発生する。この場合に、鋳造速度を1.35mpmに減少させても(3.6%の減少)、鋳造速度を1.30mpmに減少させても(7.1%の減少)、許容できない欠陥が発生するが、鋳造速度を1.25mpmに減少させると(10.7%の減少)、欠陥の発生率は許容範囲に収まることがわかる。
Figure 2016175106
以上述べたように、湯面位置における熱移動の影響を捉えて湯面レベルを検出することにより湯面レベルの検出精度を高め、鋳型内の湯面変動の検知精度向上を図り、鋳片品質の安定化を実現することができる。
以上、本発明を種々の実施形態と共に説明したが、本発明はこれらの実施形態にのみ限定されるものではなく、本発明の範囲内で変更等が可能である。
本発明を適用した連続鋳造鋳型内の偏流検知装置、偏流制御装置、湯面変動検知装置、湯面変動制御装置は、例えばCPU、ROM、RAM等を備えたコンピュータ装置により実現することが可能である。
また、本発明は、連続鋳造鋳型内の偏流検知機能、偏流制御機能、湯面変動検知機能、湯面変動制御機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータがプログラムを読み出して実行することによっても実現可能である。
1:連続鋳造鋳型、2a、2b:鋳型短辺、3a、3b:鋳型長辺、4:浸漬ノズル、5:湯面、6:熱電対、100:連続鋳造鋳型内の偏流制御装置、101:入力部、102:計算部、103:湯面レベル差解析部、104:制御部、200:連続鋳造鋳型内の湯面変動制御装置、201:入力部、202:計算部、203:湯面変動解析部、204:制御部

Claims (13)

  1. 連続鋳造鋳型内の偏流検知方法であって、
    浸漬ノズルを挟んで対向する一対の鋳型辺の鋳造方向に配置、埋設された複数の温度検出手段の計測値を取得する取得ステップと、
    前記取得ステップで取得した前記温度検出手段の計測値を用いて伝熱逆問題を解き、稼動面における熱流束の鋳造方向の成分値を計算する計算ステップと、
    前記計算ステップで計算した稼動面における熱流束の鋳造方向の成分値に基づいて、湯面レベルを判定し、前記一対の鋳型辺の稼動面における湯面レベル差を求める湯面レベル差解析ステップとを有することを特徴とする連続鋳造鋳型内の偏流検知方法。
  2. 前記湯面レベル差解析ステップでは、前記計算ステップで計算した稼動面における熱流束の鋳造方向と逆向きとなる湯面の法線方向の成分値が最大となる位置を湯面レベルと判定することを特徴とする請求項1に記載の連続鋳造鋳型内の偏流検知方法。
  3. 請求項1又は2に記載の連続鋳造鋳型内の偏流検知方法により求めた湯面レベル差が所定の値を超えたとき、鋳造速度を減少させることを特徴とする連続鋳造鋳型内の偏流制御方法。
  4. 湯面レベル差が10mmを超えたとき、鋳造速度を10%以上減少させることを特徴とする請求項3に記載の連続鋳造鋳型内の偏流制御方法。
  5. 連続鋳造鋳型内の湯面変動検知方法であって、
    前記連続鋳造鋳型の鋳造方向に配置、埋設された複数の温度検出手段の計測値を取得する取得ステップと、
    前記取得ステップで取得した前記温度検出手段の計測値を用いて伝熱逆問題を解き、稼動面における熱流束の鋳造方向の成分値を計算する計算ステップと、
    前記計算ステップで計算した稼動面における熱流束の鋳造方向の成分値に基づいて、湯面レベルを判定し、湯面変動速度を求める湯面変動解析ステップとを有することを特徴とする連続鋳造鋳型内の湯面変動検知方法。
  6. 前記湯面変動解析ステップでは、前記計算ステップで計算した稼動面における熱流束の鋳造方向と逆向きとなる湯面の法線方向の成分値が最大となる位置を湯面レベルと判定することを特徴とする請求項5に記載の連続鋳造鋳型内の湯面変動検知方法。
  7. 浸漬ノズルの中心から左右鋳型短辺までの鋳型長辺幅方向距離をそれぞれW/2とした場合に、鋳型長辺において、前記浸漬ノズルの中心から3W/8以内に前記温度検出手段を配置、埋設することを特徴とする請求項5又は6に記載の連続鋳造鋳型内の湯面変動検知方法。
  8. 請求項5乃至7のいずれか1項に記載の連続鋳造鋳型内の湯面変動検知方法により求めた湯面変動速度が所定の値以上となったとき、鋳造速度を減少させることを特徴とする連続鋳造鋳型内の湯面変動制御方法。
  9. 湯面変動速度が10mm毎30秒以上となったとき、鋳造速度を10%以上減少させることを特徴とする請求項8に記載の連続鋳造鋳型内の湯面変動制御方法。
  10. 連続鋳造鋳型内の偏流検知装置であって、
    浸漬ノズルを挟んで対向する一対の鋳型辺の鋳造方向に配置、埋設された複数の温度検出手段の計測値を入力する入力手段と、
    前記入力手段で入力した前記温度検出手段の計測値を用いて伝熱逆問題を解き、稼動面における熱流束の鋳造方向の成分値を計算する計算手段と、
    前記計算手段で計算した稼動面における熱流束の鋳造方向の成分値に基づいて、湯面レベルを判定し、前記一対の鋳型辺の稼動面における湯面レベル差を求める湯面レベル差解析手段とを備えたことを特徴とする連続鋳造鋳型内の偏流検知装置。
  11. 連続鋳造鋳型内の湯面変動検知装置であって、
    前記連続鋳造鋳型の鋳造方向に配置、埋設された複数の温度検出手段の計測値を入力する入力手段と、
    前記入力手段で入力した前記温度検出手段の計測値を用いて伝熱逆問題を解き、稼動面における熱流束の鋳造方向の成分値を計算する計算手段と、
    前記計算手段で計算した稼動面における熱流束の鋳造方向の成分値に基づいて、湯面レベルを判定し、湯面変動速度を求める湯面変動解析手段とを備えたことを特徴とする連続鋳造鋳型内の湯面変動検知装置。
  12. 連続鋳造鋳型内の偏流検知を行うためのプログラムであって、
    浸漬ノズルを挟んで対向する一対の鋳型辺の鋳造方向に配置、埋設された複数の温度検出手段の計測値を入力する処理と、
    前記入力した前記温度検出手段の計測値を用いて伝熱逆問題を解き、稼動面における熱流束の鋳造方向の成分値を計算する処理と、
    前記計算した稼動面における熱流束の鋳造方向の成分値に基づいて、湯面レベルを判定し、前記一対の鋳型辺の稼動面における湯面レベル差を求める処理とをコンピュータに実行させるためのプログラム。
  13. 連続鋳造鋳型内の湯面変動検知を行うためのプログラムであって、
    前記連続鋳造鋳型の鋳造方向に配置、埋設された複数の温度検出手段の計測値を入力する処理と、
    前記入力した前記温度検出手段の計測値を用いて伝熱逆問題を解き、稼動面における熱流束の鋳造方向の成分値を計算する処理と、
    前記計算した稼動面における熱流束の鋳造方向の成分値に基づいて、湯面レベルを判定し、湯面変動速度を求める処理とをコンピュータに実行させるためのプログラム。
JP2015057605A 2015-03-20 2015-03-20 連続鋳造鋳型内の偏流検知方法及び偏流制御方法、湯面変動検知方法及び湯面変動制御方法、偏流検知装置及び湯面変動検知装置、並びにプログラム Active JP6428418B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015057605A JP6428418B2 (ja) 2015-03-20 2015-03-20 連続鋳造鋳型内の偏流検知方法及び偏流制御方法、湯面変動検知方法及び湯面変動制御方法、偏流検知装置及び湯面変動検知装置、並びにプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015057605A JP6428418B2 (ja) 2015-03-20 2015-03-20 連続鋳造鋳型内の偏流検知方法及び偏流制御方法、湯面変動検知方法及び湯面変動制御方法、偏流検知装置及び湯面変動検知装置、並びにプログラム

Publications (2)

Publication Number Publication Date
JP2016175106A true JP2016175106A (ja) 2016-10-06
JP6428418B2 JP6428418B2 (ja) 2018-11-28

Family

ID=57069977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015057605A Active JP6428418B2 (ja) 2015-03-20 2015-03-20 連続鋳造鋳型内の偏流検知方法及び偏流制御方法、湯面変動検知方法及び湯面変動制御方法、偏流検知装置及び湯面変動検知装置、並びにプログラム

Country Status (1)

Country Link
JP (1) JP6428418B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114918394A (zh) * 2022-04-22 2022-08-19 首钢集团有限公司 一种结晶器流场偏流的控制方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151256A (ja) * 1985-12-25 1987-07-06 Nippon Steel Corp 表面性状及び皮下品質の優れた鋼材の製造方法
JPS62197258A (ja) * 1986-02-20 1987-08-31 Kawasaki Steel Corp スラブ用湾曲型連鋳機の連続鋳造方法
JPH01262050A (ja) * 1988-04-12 1989-10-18 Kawasaki Steel Corp 鋼の連続鋳造方法
JPH02137655A (ja) * 1988-11-15 1990-05-25 Sumitomo Metal Ind Ltd 溶鋼湯面変動の測定方法及びその制御方法
JPH11300455A (ja) * 1998-04-21 1999-11-02 Nippon Steel Corp 連続鋳造における鋳型内液面レベルの検出方法及び装置
JP2001239353A (ja) * 2000-02-28 2001-09-04 Nippon Steel Corp 連続鋳造における鋳型内鋳造異常検出方法
JP2003181609A (ja) * 1999-03-02 2003-07-02 Jfe Engineering Kk 連続鋳造における溶鋼の流動パターン推定・制御方法およびそのための装置
JP2004025202A (ja) * 2002-06-21 2004-01-29 Nippon Steel Corp 湯面位置検知方法、装置、コンピュータプログラム、及びコンピュータ読み取り可能な記憶媒体
JP2011251308A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
WO2014017714A1 (ko) * 2012-07-24 2014-01-30 주식회사 포스코 주편 품질 예측 장치 및 그 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151256A (ja) * 1985-12-25 1987-07-06 Nippon Steel Corp 表面性状及び皮下品質の優れた鋼材の製造方法
JPS62197258A (ja) * 1986-02-20 1987-08-31 Kawasaki Steel Corp スラブ用湾曲型連鋳機の連続鋳造方法
JPH01262050A (ja) * 1988-04-12 1989-10-18 Kawasaki Steel Corp 鋼の連続鋳造方法
JPH02137655A (ja) * 1988-11-15 1990-05-25 Sumitomo Metal Ind Ltd 溶鋼湯面変動の測定方法及びその制御方法
JPH11300455A (ja) * 1998-04-21 1999-11-02 Nippon Steel Corp 連続鋳造における鋳型内液面レベルの検出方法及び装置
JP2003181609A (ja) * 1999-03-02 2003-07-02 Jfe Engineering Kk 連続鋳造における溶鋼の流動パターン推定・制御方法およびそのための装置
JP2001239353A (ja) * 2000-02-28 2001-09-04 Nippon Steel Corp 連続鋳造における鋳型内鋳造異常検出方法
JP2004025202A (ja) * 2002-06-21 2004-01-29 Nippon Steel Corp 湯面位置検知方法、装置、コンピュータプログラム、及びコンピュータ読み取り可能な記憶媒体
JP2011251308A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
WO2014017714A1 (ko) * 2012-07-24 2014-01-30 주식회사 포스코 주편 품질 예측 장치 및 그 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114918394A (zh) * 2022-04-22 2022-08-19 首钢集团有限公司 一种结晶器流场偏流的控制方法及装置

Also Published As

Publication number Publication date
JP6428418B2 (ja) 2018-11-28

Similar Documents

Publication Publication Date Title
KR102619305B1 (ko) 주형 내 응고 쉘 두께 추정 장치 및 주형 내 응고 쉘 두께 추정 방법
JP6354850B2 (ja) 連続鋳造鋳型内の湯面レベル検出装置、方法およびプログラム
JP6428418B2 (ja) 連続鋳造鋳型内の偏流検知方法及び偏流制御方法、湯面変動検知方法及び湯面変動制御方法、偏流検知装置及び湯面変動検知装置、並びにプログラム
JP3978090B2 (ja) 湯面位置検知方法、コンピュータプログラム、及びコンピュータ読み取り可能な記憶媒体
JP4681127B2 (ja) 湯面高さ検知装置、方法、及びコンピュータ読み取り可能な記憶媒体
JP6428424B2 (ja) 連続鋳造鋳型内の湯面プロフィール計測方法、装置及びプログラム、並びに連続鋳造の制御方法
JP5387507B2 (ja) 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP6428419B2 (ja) 連続鋳造鋳型内の溶鋼流量制御方法、装置及びプログラム
JP5747726B2 (ja) 温度推定方法および温度推定装置
JP6825760B1 (ja) 鋳型内凝固シェル厚推定装置、鋳型内凝固シェル厚推定方法、及び鋼の連続鋳造方法
RU2796256C1 (ru) Устройство и способ для оценки толщины затвердевшей оболочки в кристаллизаторе и способ непрерывной разливки стали
RU2787109C1 (ru) Устройство для оценки толщины затвердевшей корочки в кристаллизаторе и способ оценки толщины затвердевшей корочки в кристаллизаторе
JP2007275938A (ja) スラグ流出検知方法、溶融金属の注入制御方法、スラグ流出検知装置、溶融金属の注入制御装置、プログラム及びコンピュータ読み取り可能な記録媒体
WO2021065342A1 (ja) 鋳型内凝固シェル厚推定装置、鋳型内凝固シェル厚推定方法、及び鋼の連続鋳造方法
JP2013078796A (ja) ビームブランク鋳造鋳片連続鋳造用鋳型の設計方法
CN113423521A (zh) 连续铸造机的控制方法、连续铸造机的控制装置及铸片的制造方法
JP2020175407A (ja) 連続鋳造における鋳造鋳片のクレータエンド位置の推定方法およびその装置
JP2019098388A (ja) 温度推定方法および温度推定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181015

R151 Written notification of patent or utility model registration

Ref document number: 6428418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350