JP2016172920A - 可燃性燃料並びにその製造装置及び製造方法 - Google Patents

可燃性燃料並びにその製造装置及び製造方法 Download PDF

Info

Publication number
JP2016172920A
JP2016172920A JP2015219240A JP2015219240A JP2016172920A JP 2016172920 A JP2016172920 A JP 2016172920A JP 2015219240 A JP2015219240 A JP 2015219240A JP 2015219240 A JP2015219240 A JP 2015219240A JP 2016172920 A JP2016172920 A JP 2016172920A
Authority
JP
Japan
Prior art keywords
plate
plates
neutral
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015219240A
Other languages
English (en)
Inventor
ジェイ.ベスレム ゲイリー
J Bethurem Gray
ジェイ.ベスレム ゲイリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Comb Tech Inc
Advanced Combustion Technologies Inc
Original Assignee
Advanced Comb Tech Inc
Advanced Combustion Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Comb Tech Inc, Advanced Combustion Technologies Inc filed Critical Advanced Comb Tech Inc
Publication of JP2016172920A publication Critical patent/JP2016172920A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/036Bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/75Assemblies comprising two or more cells of the filter-press type having bipolar electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/10Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
    • F02M25/12Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone the apparatus having means for generating such gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】燃焼燃料の生成反応を開始又は持続する印加電界を用いる液体反応器の実現。
【解決手段】液体反応器500は、電界発生装置100を含む。電界発生装置は、一連の中間のニュートラルプレート104b,104d-g,104iを含む一連の平行な導電性プレート104a-104jを含む。中間のニュートラルプレートは、アノードおよびカソードの間に、インターリーブされた組の状態で配置される。液体反応器は、密閉された反応容器604、流体循環マニホルド、電力モジュレータ602、真空ポート、および、隔膜を含んでもよい。電界発生装置の使用方法は、水素気体および酸素気体を生成するための、電解質への浸漬、並びに、外部電圧および真空の適用を含む。反応器および関連する構成要素は、気体燃料または液体燃料を生成するよう配置することができる。一つの用途においては、炭素系物質と液体炭化水素の混合物が加えられる。好ましい炭素系物質は微粉炭である。
【選択図】図9

Description

本技術は、可燃性燃料、並びに、効率的かつよりクリーンな可燃性燃料を生産するために必要な方法および装置、の分野に関する。
様々な形態の装置を用いた、印加電界の下での、水素と酸素を生成するための水の電気分解は周知である。また、電気分解を利用して、水をその構成部分へと変容させるが、しかし、一度放出された水素と酸素を分離しない、酸水素ガス(HHO)発生装置も知られている。炭化水素を水素ガス及び水素強化ガスに改質することもまた知られている。しかし、そのような燃料を生産するための、より実用的な方法が必要とされている。
本技術は、クリーンな燃焼燃料が生成される反応を開始又は持続するため印加電界を用いる液体反応器(aqueous reactor)の態様及び使用を対象とする。
本技術の第1の独立した態様において、電界発生装置が、液体反応器における使用のために提供される。電界発生装置は、アレイとなった、導電性の平行な相隔たる一連のプレートを備える。アレイの一つまたは複数の第1のプレートは、アレイの第1の端部に位置し、第1の極性(正または負など)の印加電力源に接続される。アレイの一つまたは複数の第2のプレートは、第1の端部とは反対のアレイの端部に位置し、第1の極性とは逆の第2の極性の印加電力源に接続されている。アレイの第3のプレートの組は、好ましくは、一つまたは複数の第1のプレート(ここでは、「カソードプレート」と呼ぶ)、および、一つまたは複数の第2のプレート(ここでは、「アノードプレート」と呼ぶ)の間に介在されている。第3のプレートは、好ましくは、ニュートラル電極として機能するために、どの印加電力源とも接続されない。第3のプレートは、それぞれがアレイの少なくとも三つのプレートからなるサブセットとして配列することができる。各サブセット内の全てのプレートは、互いに電気的に相互接続することができる。
前述の技術は更に、液体反応器内の電界を通したものを除いた他のサブセット、カソードプレート、およびアノードプレートに接続されていないサブセットを含んでもよい。サブセットは好ましくは、各サブセットが、隣接するサブセットの二つのプレート、カソードプレートの二つのプレート、または、アノードプレートの二つのプレート、の間に挿入された少なくとも一つのプレートを含み、また、別の隣接するサブセットの一つのプレート、カソードプレートの一つのプレート、または、アノードプレートの一つのプレート、の周囲に配置された(すなわち、それらを間に挿入した)少なくとも二つのプレートを含むように配置される。プレートサブセットのこのような配置は、以下「インターリービング(interleaving)」または、「インターリーブド(interleaved)」と呼ばれる。三つのプレートからなるサブセットは、以下「トリプレット(triplet)」と呼ばれる。
前述の技術は更に、電力モジュレータの反対の極に接続されたアノードプレートおよびカソードプレートを含んでもよい。電力モジュレータは、100%デューティサイクルで、電界発生装置にステップ変調直流波形(step modulated direct current waveform)またはラダースイッチド直流波形(ladder switched direct current waveform)を供給してもよい。例えば、電力モジュレータは、ステップ変調直流波形を50%デューティサイクルで供給してもよい。波形は、比較的低いピーク電圧、例えばおよそ14ボルトから24ボルトの範囲のピーク電圧を有すること、および、ゼロと当該ピーク電圧の間を行き交うことにより、特徴づけられていてもよい。しかしながら、本技術はこの範囲のピーク電圧に限られない。
前述の技術は、電界発生装置、反応容器および/または上述の他の態様に加えられるHHOのような水素気体および酸素気体を生成する、水性の作動流体を含んでもよい。電界発生装置は好ましくは作動流体に浸漬され、上述したように電界発生装置の反対側の極に電力が加えられる。水性の作動流体は好ましくは、純粋な蒸留水と、例えば水酸化カリウム(KOH)などの水酸化物塩、の溶液からなる。水酸化物塩は電解質として機能し、消費されない。蒸留水は、好ましくは約46.1℃(華氏約115度)と約54.4℃(華氏約130度)の間で、水素と酸素に電気分解される。一定の水レベルを維持するために、水が消費されるのに伴って、補給水を加えてもよい。蒸留されていない水を好ましく使用することはできるが、装置の腐食または腐敗の増加の原因となり得る。
前述の技術はさらに、アノードとカソードの間で液面の上に伸長した、非導電性かつ実質的に気体不透過の隔膜、例えば、ポリマのフィルム素材またはシート素材、を含んでもよい。当該膜は、アノードおよびカソードから発生した気体が混合してしまうのを防ぐための障壁を形成する。
水素気体と酸素気体の混合物は、真空ポンプを用いて、反応容器の外へ取り出してもよい。反応器の出力は、作動中の容器内部において維持される圧力および温度によって、変化し得る。このように、流体の再循環を利用して、作動流体の温度を、好ましくは46.1℃(華氏115度)と54.4℃(華氏130度)の間の特定の範囲内に維持する一方で、反応容器中の真空を約0.2気圧から約0.9気圧、より好ましくは約0.2気圧から約0.5気圧の範囲に維持することは有利である。工程中に、水が沸騰したり、または、相当量の水が蒸発する点に水が到達したりするのを防ぐために、真空および温度の平衡が保たれる。
前述の技術は、あるいは、炭素系物質を含む溶液から液体炭化水素燃料を生成するための、電界発生装置、反応容器および/または上述の他の態様に加えられる、水性の作動流体を含むよう用いられてもよい。好ましくは炭素または石炭粉のような炭素系物質は、ここに上述したように、水性の作動流体内に浮遊状態で分散される。水性の作動流体は、好ましくは、ケロシン、ディーゼル、または、ガソリンの分子量に至るまでの、そしてガソリンの分子量を含んだ、他のそのような燃料からなる、炭化水素燃料であって、当該炭素系物質が懸濁状態に維持された、初充填を含む。
上で論じたように、反応器の出力は、作動中の容器内部において維持される圧力および温度によって変化し得る。作動流体の温度は、圧力なしで流体の再循環を利用して、再び沸騰または相当量の水蒸気の発生を防ぐために、82.2℃(華氏180度)から93.3℃(華氏200度)の間の特定の範囲内に維持される。圧力下では、温度の上端は適宜上げることができる。
炭素系物質から炭化水素燃料を形成する際に、減少した平均分子量を有する製造過程の炭化水素燃料の減少を確実なものにするために、条件を経験的に調整してもよい。例えば、ほとんどの炭化水素は、8個またはそれより少ない炭素原子を有する炭化水素に再構成される。記述された態様は好ましくは、ともに係属中の、本件出願人による米国の特許出願第12/885,617号に記載された工程にしたがって用いられる。当該出願の全体は、ここに参考として組み込まれている。
本技術のさらなる別の態様においては、アノードプレートおよびカソードプレートは、プレートの占領領域より広いオープン領域を提供するために、実質的にプレート全体に渡って伸長するホールのパターンを含む。アノードプレートおよびカソードプレートの公称寸法は、ニュートラルプレートのサイズと同様である。全てのプレートは好ましくは、温度を下げ、よい導電率を確実なものとするため、銅−タングステンのような、高導電性の金属からなる。プレートはまた、電気分解の工程において相互作用する、ニッケルのような触媒により、めっきされる。
前述の技術は、さらに前述の態様のどれでも含むことができ、よりよい結果をもたらすよう組み合わせることもできる。
したがって、本技術の目的は、例えば、水から水素気体および酸素気体を生成したり、炭素または有機化合物を水酸化/水素化したりするような化学反応または反応器内のプラズマの生成を開始または持続するために、印加電界を利用する液体反応器の作動を促進するための、新規な特徴および組み合わせを提供すること、そのような特徴および組み合わせを用いたそのような技術および方法による燃料の出力、を含んでもよい。
電界発生装置に関連した本技術の一つの実施例を示した模式図である。 電界発生装置の一実施例に係る、ニュートラルサブセット、カソードプレート、および、アノードプレートの配置を示したブロック図である。 電界発生装置内で用いるプレートの例を示した平面図である。 電界発生装置内のプレートの他の構成を示した模式図である。 電界発生装置内のプレートの他の構成を示した模式図である。 電界発生装置を組み込んだ液体反応器の透視断面図である。 水性の作動流体から水素および酸素を生成するための液体反応器を含む装置の模式的なブロック図である。 気体を分離するためのニュートラルの障壁を含む液体反応器の他の構成の細部の概要を示す図である。 水性の作動流体から水素および酸素を生成するための液体反応器の動作方法の例を示すフローチャートである。 図7で示された方法によって使用することのできる追加の動作を示したフローチャートである。 本技術の他の実施例に係る構成を示した模式図である。 一実施例に係るアノードプレートまたはカソードプレートの平面図である。
図1において、液体反応器において使用するための電界発生装置100は、好ましくは、非導電性のフレームワークまたは部材106によって支持された、導電性の平行な相隔たるプレート104a−104jのアレイ102を備える。プレートのアレイ102は、アレイの第1の端部においては、一つまたは複数のカソードプレート104a、104c(集合的に、108)を、第1の端部とは反対のアレイ102の第2の端部においては、一つまたは複数のアノードプレート104h、104j(集合的に、110)を、含んでもよい。プレートのアレイはさらに、カソードプレート108及びアノードプレート110の間に挿入された、複数のニュートラルプレート104b、104d−g、104iを含んでもよい。ニュートラルプレート104b、104d−g、104iは、少なくとも3つの電気的に接続されたプレートからなる、インターリーブされたニュートラルサブセット112,114の中に配置してもよい。上述したように、ニュートラルサブセットのインターリービングは、各サブセット112、114が、隣接するサブセットの二つのプレート、カソードプレートの二つのプレート、または、アノードプレートの二つのプレート、の間にはさまれた少なくとも一つのプレート(例えば、104b、104f、104i)を含み、また、隣接する別のサブセットの一つのプレート、カソードプレートの一つのプレート、または、アノードプレートの一つのプレート、の周囲に配置された少なくとも二つのプレート(例えば、サブセット112の104d及び104f、または、サブセット114の104e及び104g)もまた含むということを意味する。ニュートラルサブセット112、114のそれぞれは、他のニュートラルサブセットから、カソードプレートから、および、アノードプレートから、電気的に絶縁されていてもよい。例えば、ニュートラルサブセット112、114のそれぞれは、他の全てのニュートラルサブセットから電気的に絶縁されていてもよい。
低電力モードでは、カソードプレート108は、水素を生成するための、印加電力の陰極源との接続のために構成してもよい。アノードプレート110は、酸素を生成するための印加電力の正極源との接続のために構成してもよい。ニュートラルサブセットはいずれの電力源とも接続されない。
プレート104a−jは好ましくは、銅-タングステンまたは他の高導電性素材である。炭化水素ベースの燃料の製造のために、高導電性素材は、ニッケルめっきにより与えられるような触媒面を含む。導電性プレートのニッケルめっき表面処理は、液体反応器の作動に触媒効果をもたらすことが観察されている。
プレート104a−jは好ましくは、実質的に平面状であり、実質的に均一の厚さYからなる。反応器の作動中は耐久性を有し硬質であるように、プレートを十分に厚くするのが理想的であると考えられ、また、最適な厚さはそれゆえ、選択されるプレートの素材及びプレートの実装の細部に依存し得る。銅-タングステンが使用される場合、軟質の素材が偶然屈曲するのを防ぐために、プレートは有利に0.318cm(0.125インチ)とされる。アレイにおけるプレートは、好ましくは、実質的に均一な約0.318cm(0.125インチ)の範囲の距離「d」だけ互いに隔てられる。電界発生装置の「プレート」のさらなる態様を、以下に図3及び図10と関連して述べる。
非導電性のフレームワークまたは部材106は、プレートの外面の周りに一定の間隔があけられたエッジ支持部からなる。エッジ支持部は、作動中、確実に各プレートが定まった場所に留まるようにするために、有利であると考えられる。支持部材は好ましくは他の特徴、例えば、ここに論じられるように、再循環マニホルドのためのノズル106を含む。一実施例においては、プレートのエッジは、ポリマ素材のブロック状に形成されたスロットにより支持され、アレイをプレートのエッジの外面の周りに支持する。しかしながら、任意の適切な支持構造を用いることができる。
電界発生装置は、特定の個数のプレート104a−jには制限されないものの、一実施例においては、当該装置は好ましくは、9個以上、48個以下のニュートラルプレートを備える。ここに記載されるような特徴を有するアレイは効果的であり、2個のカソードプレート202、2個のアノードプレート204、および、7個のトリプレット206a−gに分けられる21個のニュートラルプレートからなる合計25個のプレートを有する場合、恐らくは最も効果的であると考えられる。そのようなアレイ200は、図2において高度に模式的に図示されている。当該図は、縮尺通りではなく、主に、電界発生装置200のインターリーブされたプレートの形態の例を示すために描かれている。トリプレット、アノードおよびカソードにおける接続プレートが図示されている態様は高度に模式的であり、図示および説明された形態の態様から離れて、実際の物理的な構成を図示または示唆したものと理解されるべきではない。
ニュートラルサブセット206a−gのそれぞれは好ましくは、奇数個、例えば3個または5個のプレートからなる。図1及び図2に明確に描写されているように、3かそれ以上の任意の奇数でもニュートラルサブセットのインターリービングは可能であるが、ニュートラルサブセット(すなわち、トリプレット)当たり3個のプレートが有利であると考えられる。水の電気分解やその他の反応のための電界発生装置の作動にとって、少なくとも、ここで記述されるような印加電力波形を伴う使用にとって、インターリービングは有利であると考えられる。図2に示されるインターリーブされた実施例において、カソードプレート202は第1のニュートラルトリプレット206aとインターリーブされ、そして、アノードプレート204は最後のニュートラルトリプレット206gとインターリーブされる。第1および最後のトリプレット206a、206gは、それらに隣接するトリプレット206b、206fそれぞれとインターリーブされる。ニュートラルトリプレット206b−fは、それぞれ、隣接するトリプレットとインターリーブされる。図1は同様の配置を示している。
アレイ200は、トリプレット206a−gのような、奇数個または偶数個のニュートラルサブセットを備えてもよい。奇数個のニュートラルサブセットは、少なくとも、ここで記述されるような印加電力波形を伴う使用にとって、有利であると考えられる。
図3は、ここに記述されるような電界発生装置を構成するために使用されるプレート300の例の平面図および寸法を示している。図示されたプレート300は、図1、図10のニュートラルプレート104b、104d−g、104iに用いられる。例えば、銅、ニッケルめっき銅、ニッケル、白金もしくはパラジウムめっき金属、またはグラファイトのような、高導電性の素材が適しているであろう。他の金属もまた使用されてきた。被覆されるか、または、使用中の液体反応器の作動流体によって感知できるほどには腐食しないような、どのような構造の導電性素材でも使用することができる。選択されたどのような表面素材も、電界発生装置の作動に影響を及ぼし得る。電気分解過程においてニッケルめっきがプレート104a−jを覆うとき、触媒効果の存在が観察されるようである。さらに、ニッケル、パラジウム、白金または他の触媒の存在は、低温において所望の反応を促進するのに、有益である可能性がある。未処理の316Lステンレス鋼を使用した場合でさえも、水酸化カリウム溶液中で活発な水の加水分解が観察されたが、様々な表面処理が、電界発生装置の作動を促進し得る。
プレート300は、全体的に平行な第1の表面を対置することにより特徴づけられてもよい。これら表面302のうちの一つが、図3の平面図に示されている。プレート300の反対側の表面は、第2の表面からなる。この特徴により、図1及び図2に関連して説明したような電界発生装置の構成が可能となる。これら第1の表面は必ずしも平らで平面的ではなく、その最も近く隣接するプレートの隣接した表面に対して全体的に平行な方向付けを維持する限り、曲線をつけられてもよい。
図3に示された寸法と形状は、限定ではなく、単に例として示されたものである。図示された寸法と形状は、電界発生装置の構成にとって、重大ではないが、有益であると考えられる。プレート300は、電界発生装置のプレートを支持するために用いられる非導電性の支持部材を収容するため、中央のホール304を含む。プレート300は好ましくは、任意の数のホールまたは切り抜きを含むことができ、そして、様々な形状で形成してもよい。プレート300は、隣接するプレート、外部の電力源、またはその両方への電気コネクタとして用いられるタブ306を含んでもよい。ここで使用されるように、「プレート」とは、全体的に平面状の構成要素、または、板材からなる構成要素に限定されるものではない。代わりに、「プレート」は好ましくは、任意の数の貫通孔を備え、全体的に平らか、曲線がつけられたものか、あるいは、折りたたまれたものであって、任意の適切な素材により形成されると理解されるべきである。例えば、グリッドまたはワイヤメッシュ素材は、作動中にその形状を維持するのに十分に堅いものである限り、ここで記述されるような電界発生装置における「プレート」として設計することができる。
プレート300に関して上述した実質的に全てのことは、アノードプレート104h、104jおよびカソードプレート104a、104cに適用される。記述されるある工程においては、アノードプレート104h、104jおよびカソードプレート104a、104cにおいて、これらのプレートにホールを用いるとさらに効率が良くなることが見いだされた。これは、特に炭化水素及び炭素が変化する工程においてよく当てはまる。そのようなアノードプレートおよびカソードプレートは、図10において模式的に図示されている。代表のプレート310は、ホール312のパターンを含んでいる。これはしかし、適用され得るホールのほぼ無限のパターンの一つである。目的は、ホール312によってプレート310を有意にカバーすることである。このタイプのプレートをアノードおよびカソードに採用することで、電力需要がカットされ、気体の生産が増加されることが見いだされた。この特定の実施例において、ニッケルによりめっきされた銅−タングステンのプレートであって、公称の高さ/幅/奥行きが15cm(6インチ)×15cm(6インチ)×0.32cm(8分の1インチ)のプレートにおいて、めっきする前に、約2cm2(16分の5平方インチ)のホールが均等に開けられる。やや幅の広い構造上の境界314が、プレート310の外面の周囲に伸長している。
プレート300,310は、全体的に平らで平面状であってもよいが、電界発生装置は、平らなプレート要素の使用に限られない。例えば、隣接するプレートとの全体的に平行な関係が維持しつつ、曲線をつけること、または、折りたたむことが、プレートの表面積を増すために用いられてもよい。図4Aは、構造400における二つの隣接する曲線をつけられたプレート402、404の上面図を示している。プレート402、404のそれぞれは、曲線をつけられた表面406、408をそれぞれ備え、実質的にそれらの全ての空間それぞれについて共線状の(または略共線状の)の法線(normal)を維持している。この構成の欠点は、等しい面積のプレートからなるアレイにおいて、各プレートの曲線を個別につくらないと、隣接するプレート間の正確な平行(parallelism)を維持することはできないという点である。これは、図4Bに示される代わりの構造450を用いることにより、回避することができる。図4Bでは、折りたたまれた隣接するプレート452、456が、実質的に平行な事実上の表面456、458を定める複数の折りたたみを示している。隣接するプレート452、456は、それゆえ、隣接するプレートの平行(parallelism)の態様を依然提供しつつ、実質的に同一または等しい曲線形状を共有している。代わりとなる構造400、450は、今のところ試験されておらず、結局は、平らなプレートに比して有利ではないかもしれない。平らなプレートの利点は、製造が簡素化され、コストが低廉になり、平行(parallelism)が簡単に達成され、そして、隣接するプレート間の流量への抵抗が少なく、という点を含む。
図5は、液体反応器500内に組み立てられた電界発生装置502の例を示している。反応器500は、実質的に閉じられた容器または容器504を含み、電界発生装置502を浸すための液体作動流体を保持するよう構成される。電界発生装置502は、例えば、図3に示されるようなニュートラルプレート300などのプレートのアレイや、図10に示されるアノード/カソードプレート310を含み、非導電性のフレームワーク506により支持されてもよい。プレートを支持フレームワークに固定するよう、円柱状の非導電性支持部材(示されていない)が、プレートの中央のホール507を通過してもよい。
プレートは、発生装置502の上端の選択された接続タブを横切って置かれたコネクタ(示されていない)を用いて、ここに記述されるような、カソードプレートの組、アノードプレートの組、および、ニュートラルの組を提供するよう接続されてもよい。作動中、容器504内の液体の高さは、プレートの接続タブ、例えば、電界発生装置502に電力を供給する電気ケーブル510に接続されたタブ508の高さより低く維持されてもよい。この視野においては見えないが、補完的な電気ケーブルが、同様に、アレイ502の反対の端部に位置する反対の極性のプレートに接続されてもよい。
ケーブル510またはその補完物が、密閉を維持するよう設計されたフィードスルー512を利用して、容器504の壁を通過してもよい。流動を分配するために溶液内にパワーストラップ(power strap)が用いられる場合、熱の蓄積を減らし、より大きい触媒表面積を与えるために、それらもまたニッケル被覆がなされ、高導電性素材からなってもよい。容器504は、制御インレットポート(control inlet port)及び制御アウトレットポート(control outlet port)を除いて、実質的に密閉される。これらの例が、下記で論じられる。図示された装置500において、O−リングシール514が基部516の周囲に配置されている。しかしながら、任意の適切なシールを用いてもよい。
基部516における液体インレット518及び液体アウトレット520が、ポンプ、熱交換器、および、接続ラインからなる再循環システムとの接続のために提供されてもよい。とりわけ、当該再循環システムは、基部516のノズルのアレイを通して作動流体を循環させることができる。当該ノズルは好ましくは、作動流体を、電界発生装置502における個別のプレートの間に注入する。プレート間の流体の注入は、プレート間における流体の動き、熱の拡散および混合を促進するのに効果的であり、蓄積した気泡をプレート表面から取り除くのを助けると考えられる。上側のポートは、作動流体成分の追加および構成のための一つまたは複数の液体追加ポート524および526、そして固形物入口/点検ポート528を含む。
上述の液体反応器は、電界中で水性の作動流体を反応させるための装置600内で用いられてもよく、そのさらなる態様が図6Aに図示されている。装置600は、好ましくは、前述したように、液体反応器601のカソードプレートおよびアノードプレートに接続された印加電力源602を含む。電力源602は、好ましくは、波形発生装置とも呼ばれる、パルス幅変調器604からなる。これは、好ましくは、プログラマブル論理制御装置(PLC)または電子制御装置(ECU)611を含む。好ましくは、波形発生装置604は、三相交流機610の界磁巻線608に、直流(DC)駆動信号606を供給することができる。直流駆動信号は好ましくは、約10%〜90%の範囲のデューティサイクル、約1〜32kHzの範囲の周波数、および、約5〜50Vの範囲のピーク電圧を有する。より好ましくは、DC駆動信号606は、電界発生装置603のサイズによって、約50%のデューティサイクルおよび約14〜24Vのピーク電圧を有する。ステップが切り替わり、そして、パルスが切り替わったとき、当該50%のデューティサイクルが、電力源604における25%の電流引き込みにより、電界発生装置への駆動信号を与える。
例えば好ましくは、PLCまたは他の電力源611は、ソリッドステートリレーのようなスイッチング装置613を駆動させるため、第1の周波数および第1のデューティサイクルの駆動信号605を発生させる。電力源611は好ましくは、第2の周波数および第2のデューティサイクルのパルス幅変調(PWM)電力信号を、スイッチング装置613の入力部に与える。一実施例においては、第1及び第2のデューティサイクルは、好ましくは、50%または約50%に、等しく、また、設定することができ、そして、第2の周波数は、第1の周波数よりも極めて高く、例えば少なくとも10倍以上大きくてよい。例えば、一実施例においては、1kHzの第1周波数が、50%のデューティサイクルで24Vの駆動信号605に用いられてもよく、そして、60kHz、12V、50%のデューティサイクルの第2周波数がPWM電力信号607に用いられてよい。それゆえスイッチング装置は、第1周波数および第1デューティサイクルに等しい周波数とデューティサイクルを有するDC駆動信号606を発生させる。キャパシタ609は好ましくは、スイッチング装置613の入力端子および出力端子にまたがって接続され、第2の高周波数を除去し、電力源611からの電流引き込みを減らす。ピーク電圧および駆動信号606の強さは、電力信号607により決定されるが、この例においては12Vである。
駆動信号606を三相交流機610の界磁巻線608に与えることで、ジャンクションスイッチ(junction switching)の代わりに、磁界を発生および消失させることによりオン/オフスイッチを達成することができる。このように、電力源602は、好ましくは金属酸化膜半導体電界効果トランジスタ(MOSFET)または他の精密なスイッチング装置の使用を必要とすることなく、強固で、信頼性のある電力を液体反応器に供給する。好ましくは、三相交流機610からの交流(AC)信号は、三相全波整流器612を用いて整流され、電界発生装置603の電極へのDC駆動出力を提供する。好ましくは、例えばファンおよび冷却塔などの、交流機610の冷却のための冷却器615が、駆動出力と交わるように、または、別の電力源に、接続される。
装置600は好ましくは、さらに、反応器601の格納容器の内部へと流体連通する注入口を有する真空ポンプ614を含む。例えば、電界発生装置601を横切るヘッドスペース616から吸引する。真空計618は、反応器601内の圧力を測定するために用いることができる。水の電気分解については、水の運転温度を得るために、沸騰または水蒸気の大量生成を誘発するのよりも低い圧力を有するヘッドスペース616内の真空を維持するのが望ましいということが発見されている。ある真空は、一例としては約0.5気圧の真空で作動するが、より活発な電気分解反応を開始または維持するよう作用し、また、より低温の気体を生成する。真空ポンプ614は好ましくは、反応器601から放出される気体を取り除くためにも用いられる。電界発生装置603を浸した、純水に水酸化物塩を加えた電解質溶液からなる水性の作動流体を用いて、分離されていないヘッドスペース616内の発生した気体は、約60%の水素分子、約30%の酸素分子、および、残りは水蒸気または他の不純物からなると考えられる。好ましくは、保存または最終使用のための排出の前に気体を冷却および乾燥するために、発生した気体は熱交換器622または冷却器を通過させられる。流量は、任意の適切な流量計624を用いて測定することができる。
水素と酸素の混合物の用途は、燃焼の状態や排出を変えるために、従来の炭化水素燃焼エンジンにおいて他の燃料と混合することや、純水を含むがこれに限られない製品を生産する化学工程の原料として供給することを含んでもよい。水素が酸素から分離される場合は、分離された水素と酸素を、モバイル用や固定用の、電力を生産するプロトン交換膜(PEM)燃料電池に提供してもよい。さらに、電力や動力を生産するために、水素燃焼機関やガスタービン内で水素を燃焼してもよい。例えば、水素を、太陽エネルギー、風力エネルギー、または、波エネルギーのような、様々なデューティサイクルを有する再生可能資源を用いて生産し、そして、要求に適合した目的のために、水素エンジンやガスタービンにおける燃焼のために保存してもよい。本技術は、反応器601から発生する気体についての、どのような特定の最終使用にも限定されない。
図6Bに示された、代わりとなる液体反応器650の実施例において、一つまたは複数の非導電性の障壁となる膜652または隔膜を、アノードプレートおよびカソードプレートの間の電界発生装置654の少なくとも二つのプレートの間に配置して、ヘッドスペース658を二つ以上の区画660、662に分けてもよい。当該障壁は、流体の高さの下、電界発生装置654のプレートアレイの中へと伸長するべきであるが、完全に流体の高さの下を通過して、アレイの底まで伸長するべきではない。当該障壁は、おおまかにアレイの中央、または、他のニュートラルの位置、例えば、25個のプレートからなるアレイにおいて、12番目と13番目のプレートの間、つまり、13番目と14番目のプレートの間に配置してもよい。アレイのニュートラルサブセット内のプレートを接続するジャンパーまたは電気接続664が、障壁652を通過するのを可能にするため、当該障壁の中にスロットまたは他の切り抜きを設けてもよい。ヘッドスペースの分離された各部分660、662は、分離した流れの中に退避させてもよい。水素はカソードを含んだ区画660内に集め、また、酸素はアノードを含んだ区画662内に集めるのがよい。
これら代わりの実施例においては、水素と酸素の分離が行われない実施例と比較して、駆動信号のピーク電圧を減少させることが有利となる。例えば、ここに記述されるように単一の障壁652を有して構成された反応器650の例については、水素と酸素のより良い分離を達成するために、駆動信号の電圧を、約6〜8Vの範囲内のいずれかに減少させることが有益であろう。そのような実施例においては、アノードプレートまたはカソードプレートの付近に位置するプレート上に気泡が形成されるのが典型的に観察されるが、障壁652の付近の中間プレート上では観察されない。二つ以上の障壁(示されていない)を用いて、アノードもカソードも含まないニュートラルの区画が与えられた場合、それは水素と酸素の混合物を含んでおり、当該混合物は分離して退避してもよい。
再び図6Aを参照する。装置600は好ましくは、さらに、反応器620内の再循環マニホルドと連結されたアウトレットを備える液体ポンプ626を含む。再循環マニホルドは、上記図1および図5と関連して説明されている。当該再循環マニホルドは、再循環した作動流体の一つまたは複数の噴流を、電界発生装置603のプレートアレイ内のプレートの間に指向するように配置してもよい。ポンプ626はまた、作動流体の温度制御のために、再循環した作動流体を駆動して、熱交換器628または他の装置を通してもよい。様々な反応について、制御された加熱または冷却工程を利用して、作動流体620の温度を設定温度に制御することは有利であろう。例えば、ここに記述されるように水の電気分解工程において、周囲温度または他の要素に従って、温度設定点を維持するために、作動流体を冷却または加熱するのが有利であることが確認されている。電解質を高濃度にすることを、持続する低温の機能として採用してもよい。
装置600は好ましくは、液体反応器601の作動中における作動流体620を一定量に維持するための反応容器への補給水の供給のため、蒸留水の水槽630、および、コントロールバルブ632、をさらに含む。作動流体を調製するために蒸留水が用いられたが、本技術は蒸留水の使用には限定されない。例えば、濾過した井戸水、または海水から、使用可能な作動流体を調製することも可能であろう。作動流体に海水を用いると、燃焼熱が分離して用いられ、発生した水素および酸素を燃焼して純水を得ることにより、水の蒸溜および精製の工程において液体反応器を運転することが可能であろう。
前述に従って、水から水素と酸素を分離する工程700が図7に描かれている。工程700は、好ましくは、ここに記述されるように、水性の作動流体への電界発生装置の浸漬702を含む。水性の作動流体は、純粋な蒸留水または脱イオン水に水酸化物塩を加えた溶液を含むか、または、それから構成されたものであってよい。
方法700は好ましくは、さらに、ここに記述されたような導電性の平行な相隔たるプレートのアレイからなる電界発生装置の反対側の端部にある一つまたは複数のカソードプレートおよび一つまたは複数のアノードプレートへの電力の供給704を含む。プレートのアレイは好ましくは、ここに記述されたタイプのカソードプレートとアノードプレートの間に置かれた複数のニュートラルプレートを含む。ニュートラルプレートは好ましくは、それぞれが少なくとも三つの電気的に接続されたプレートを含むインターリーブされたニュートラルサブセット内に配置される。ニュートラルサブセットのそれぞれは、他のニュートラルサブセット、カソードプレート、および、アノードプレートから、電気的に絶縁されていてもよい。例えば、ニュートラルサブセットのそれぞれは、他の全てのニュートラルサブセットから電気的に絶縁されていてもよい。
方法700は好ましくは、さらに、電力を供給する一方で、気相の水素および酸素を放出するための、プレートのアレイの周囲の水を含んだ流体の分離706を含む。
さらに、図8は、方法700を実行する装置における使用のために実装してもよい、さらなる選択的な操作800を示している。操作800は、どのような操作順序で実行することができる。つまり、同時に、部分的に、または全体的に、特定の時間的な実行順序を要求することなしに、実行することができる。操作は、独立に実行され、相互に排他的なものではない。したがって、そのような操作のうちのいずれをも、別の下流または上流の操作が実行されるか否かにかかわらず、実行することができる。例えば、方法700が図8の少なくとも一つの操作を含む場合、方法700は、必ずしも、その後何らかの図示されたような下流の操作を含むことなく、当該少なくとも一つの操作の後に終了してもよい。
操作800は、10%〜90%の範囲のデューティサイクル、1〜32kHzの範囲の周波数、および、5V〜50Vの範囲のピーク電圧を有する直流波の供給802による電力の供給を含んでもよい。例えば、50%のデューティサイクルは理想的と考えられる。周波数は、液体反応器の与えられた構造に対する生産を最大化するよう調整することができ、定まった範囲に限定されない。同様に、ピーク電圧は、動作状態のもとでの反応器のサイズおよびインピーダンスによることができる。
操作800は、純粋な蒸留水の水酸化物塩混合溶液からなる作動流体の配合の維持804を含んでもよい。一実施例においては、作動流体の最初の量を用意するために、120グラムから220グラム、例えば約120グラムの水酸化カリウム塩を、1.5ガロンの蒸留水に溶かしてもよい。当該配合は、気体の発生の間、反応容器内の一定量の作動流体を維持するために、水を加えることによって維持してもよい。作動流体における水酸化カリウム(または他の水酸化物塩)の濃度を定まった範囲よりも下へ大幅に減少させることで、電界発生装置を通る電流フローを減少させ、発生する気体の量を減少させることができる。
操作800は、例えば上述したように、再循環マニホルドおよびポンプを用いて、流体の少なくとも一つの噴流をアレイ内のプレートの間へ指向すること806を含んでもよい。操作800は、実質的に密閉された反応容器内の電界発生装置を構成するプレートのアレイの維持808を含んでもよい。さらに、操作800は、実質的に密閉された反応容器内において、大気圧より低い気圧にプレートのアレイを維持すること810を含んでもよい。例えば、真空圧力の維持には、実質的に密閉された反応容器の内部圧力を、約0.3から0.8気圧の範囲の圧力まで低くすることを含んでもよい。さらなる例としては、約0.5気圧の真空は、電界発生装置から発生する気体の活発な生成の開始および持続を促進するであろう。
操作800は、流体を分離する間、流体の温度を設定した点に維持すること812を含んでもよい。一実施例においては、流体は、初め運転の前には作動流体の凝固点より高く作動流体の沸点より低い周辺温度であり、そして液体反応器の作動中は48.9℃(華氏約120度)の定点またはその付近に、維持してよい。
操作800は、ポンプを用いて反応容器から水素および酸素の混合物を取り除くこと814を含んでもよい。低電力の実施例においては、これは、カソードプレートに近くアノードプレートからは末端に位置する第1の反応容器部分からの水素を主に含む第1の流出を除去することを含んでもよい。そのような実施例においては、除去はまた、アノードプレートに近くカソードプレートからは末端に位置する第2の反応容器部分からの酸素を主に含む第2の流出の除去を含んでもよい。これは、反応容器内の水の上のヘッドスペースの第1および第2の部分が、アレイの少なくとも二つのプレートの間に置かれた非導電性隔膜によって隔てられることを想定している。これらおよび他の実施例においては、水素および酸素の混合物は、結合したヘッドスペースから合わせて取り出してもよい。
HHOを生成するために炭素系物質なしで水が使用されるときは、上に述べたように、液体反応器内の温度は典型的には46.1℃(華氏115度)と54.4℃(華氏130度)の間で観察される。液体反応器900内の真空は、1.5気圧まで変化することが観察されており、典型的に観察される大きさは、工程の最初でおよそ0.67気圧から0.8気圧の真空、そして、工程が46.1℃(華氏115度)から54.4℃(華氏130度)の間で運転しているときにおよそ0.33気圧から0.5気圧である。安定した状態では、電界を発生させる電力は、適切な温度の設定点を達成するために、変化し得る。運転中は、液体反応器内の電界に、1〜25アンペアの間で12〜24ボルトの間の電力を供給されているのが観察される。反応器900における電力の引き出しは、12〜14ボルトでおよそ6〜6.5アンペアであることが観察されている。同様の燃料の生産量は、4個の反応器900を一連に電気的に接続し、12ボルトで6.5アンペアの電力を与えられた1個の反応器900を用いて生産されるように、反応器900に12ボルトで2.4アンペアを供給することにより達成することができる。従来のエンジンへの応用における使用については、必要な電力を、それぞれ周知の従来設計を有した二つの交流機および二つのブリッジ増幅整流器塔(bridge amplifying rectifier towers)から供給することにより、4個の反応器900がそのように配置されたセルから、十分な生産量の燃料をつくりだすことが可能であろう。
本技術の代わりの態様が、図9に図示されている。この構成においては、本技術は、上で述べたようなタイプの、一連の電極プレートセット902aおよび902bそして水性の作動流体を含んだ、液体反応器900を利用する。この工程におけるアノードプレートおよびカソードプレートは好ましくは、上述し、図10で図示したように、代表的なプレート30であり、また、触媒めっきされたプレートを使用することができる。作動流体は好ましくは、上述したように、流体タンク904から反応器900に供給され、そして好ましくは脱イオン化水を使用する。水性の作動流体はまた、炭化水素成分を含むが、当該成分は好ましくは、炭化水素燃料タンク906から供給される。好ましくは、作動流体は、石炭粉のような炭素系物質を、一種またはそれ以上の液体炭化水素と必要量の水に混合した懸濁液である。当該液体炭化水素は、好ましくはケロシン、ディーゼル、または、分子量においてガソリンに至るまでの、そして、ガソリンを含んだ、何か他の液体炭化水素であって、より急速に石炭の分解を促進するために提供される。
本技術が炭素系物質を利用する場合、炭化水素燃料ミキサ908もまた、液体および炭素系物質の混合物を作動中の液体反応器に供給するために与えられる。炭化水素燃料タンク906は好ましくは、炭化水素燃料タンク906内の流体における炭素系物質の懸濁を維持するための攪拌機908を含む。好ましい実施例においては、炭素系物質は、粒径の中央値が2μmと50μmの間、そして好ましくは、5μmから10μmの間の微粉にまで挽かれた石炭であろう。タービンの回転する工程、または、電荷をもった細かい炭素微粒子を生じさせる工程を通して炭素粉が生産される場合、本技術の改良された結果が存することが発見された。炭化水素燃料タンク906は、液体中の炭素系物質の懸濁を維持するのに必要な攪拌機908を操作する駆動モータ909を含む。
好ましくは、工程が開始すると、液体反応器はおよそ約7.6リットル(2ガロン)の水、約230グラム(8オンス)の石炭のような細かい炭素系物質、および、約110〜170グラム(4〜6オンス)の液体炭化水素を含み得る。ケロシン、ディーゼル、または、分子量においてガソリンに至るまでの他の液体炭化水素が、工程において機能することが示されている。液体炭化水素は、液体反応器への導入の前に、炭素素材と混合される。反応器においては、この範囲の混合物は、印加電界の存在下で、分離された水素および酸素とともによりよく改質するものと思われる。液体炭化水素および炭素系物質の両方とも、電気分解の分離された要素の存在下で、消費される。液体反応器におけるこれらの比率の成分は、コントローラ910の命令により、水タンク904から追加の水を供給するか、あるいは、炭化水素燃料タンク(hydro fuel tank)906から炭化水素および懸濁した炭素系物質の追加の液体混合物を供給することにより調整される。好ましい実施例においては、上述したように、コントローラは好ましくは、三菱(Mitsubishi)のGT1055ユーザインターフェース911を通してインターフェース接続する三菱(Mitsubishi)のFX3PLCである。コントローラ910はまた、炭化水素燃料タンク(hydro tank)906の懸濁の状態を監視し、それを維持するのに必要な駆動モータ909を運転する。
液体反応器は好ましくは、上述したデューティサイクルを通じた電界下で作動し、液体反応器900を通る流体の流れが、上述し、また図9で図示したような態様で、コントローラ911によってまた制御される循環ポンプ912の使用を通して、好ましく促進される。液体反応器の燃料の生産物は、反応器900から真空ポンプ920によって気体アウトレット914a、914bを通して退避される。
本技術の好ましい実施例においては、反応器900から取り除かれた燃料の生産物を、乾燥機916に通して気体から液体を全て取り除き、フラッシュサプレッサ918に通して反応器900からの揮発性燃料の出力によって生じる潜在的な危険性を最小限度にする。本技術はまた、好ましくは、爆発の際にバーストするよう設計されたバースト室922や、任意の発火源が液体反応器900に到達するのを防ぐ一連のチェックバルブ928a、928b、928cのような、他の安全装置を含む。
反応器900の燃料の生産物は、気体の状態あるいは液化された状態で、使用することができる。燃料を気体の状態で使用する場合は、燃料気体は、熱交換器924により加熱され、下降フィルタ926に通される。その後、燃料気体は、燃焼室に供給され、気体燃料として機能する。代わりに、燃料気体が液化燃料として用いられる場合には、当該燃料気体は冷却器925によって冷却される。いずれの場合も、圧力を制御するために、ニードル弁(または適切な事前に選択された圧力定格の逆止め弁)930が、バースト室と冷却器925/熱交換器924の間に置かれる。真空ポンプ920および冷却器925または熱交換器924もまた、主制御機910により制御される。
上で概説したように図9に図示された技術を用いて、炭素系物質および炭化水素燃料が液体反応器900内の作動流体に加えられるとき、実験結果は、当該システムは0.5気圧の真空において作動することができることを示す。当該運転システムにおいて、液体反応器900に適用される真空または圧力はない。液体反応器工程の開始時には、実験結果は、12ボルトでおよそ3.8アンペアの電力が、反応器セルにおける反応を開始するのに適切であることを示している。反応器内部の流体の温度が一旦、およそ82.2℃(華氏180度)と93.3℃(華氏200度)の間に到達すると、所要電力は12ボルトでおよそ2.8アンペアにまで減少することが観察されている。電気入力が停止された後でさえも、プラズマが消えるまでの時間、気体出力を生成し続けるプラズマが、液体反応器内部に形成されると考えられる。これらの生産レベルにおいては、図9で図示された技術は、一時間あたりおよそ約230グラム(8オンス)の石炭を消費することが、観察されている。
図9で図示された技術の出力の変化は、水酸化カリウムのレベルおよび内容および/または選択された炭素系物質燃料の量のみならず、液体反応器内部の温度および圧力を制御することにより、制御することができる。例えば、反応容器中の水酸化カリウムのレベルの増加は、追加の電力をシステムへ引き込むが、しかし、出力の生産性を低くしてしまう可能性がある。作動流体の温度は、水蒸気または沸騰を相当量生成するのを防ぐために、圧力なしで流体の再循環を利用して、82.2℃(華氏180度)から93.3℃(華氏200度)の間の特定の範囲内に維持される。圧力下で、温度の上端を適宜上げることができ、生産性が増加すると考えられる。
商業的に生産的な単位については、およそ2気圧(2バール)および149℃(華氏300度)において作動する液体反応器900を、図9に図示された技術を用いて、商業的な量の燃料を生産するように構成することができると考えられている。
他のパラメータ、例えば圧力を制御することにより、燃料出力の特性の他の変種を調整することができる。高い圧力が図9で図示された技術による気体の生産を促進することが観察されている。高い圧力で生産された気体は、より多くの水素分子を有する傾向がある。しかしながら、より軽い燃料は、反応容器内部の圧力を減少させることにより、生産することができる。図9に図示された技術は、温度、圧力、電界電圧および/またはアンペア数のどのような特定の組み合わせにも限定されず、また、選択される炭素系物質の、どのような濃度、大きさ、または、選択によっても限定されない。
<実験例1>
それぞれが図3に示されたようなステンレス製のプレートを有する、25個のプレートからなる2個の電界発生装置が、密閉された反応容器内において図2に示された形態に従って構成され、そして、電力源に平行に接続された。真空ポンプが、各容器から発生する気体を取り出すために配置された。120グラムの水酸化カリウム(KOH)塩に約5.7リットル(約1.5ガロン)の純粋な蒸留水を加えてなる作動流体が調製され、各反応容器に供給され、電界発生装置を浸した。障壁の隔膜は存在しなかった。真空ポンプが、各液体反応器内のヘッドスペースを、大気圧より約18cm(7インチ)(水銀)低く(すなわち、18cm(7インチ)の真空)するため用いられ、120ボルトで約600ワットを引き出した。作動流体の温度は、説明したように、再循環ポンプを用いて220ボルトで約400ワットを引き出し、作動流体を冷却器に通し、そして、電界発生装置下の再循環マニホルドへ放出して、82.2℃(華氏約180度)に維持された。方形波で50%デューティサイクルの直流入力が電界発生装置に供給され、最大の観察された気体発生は約15ボルトピークで、約7.3アンペアを引き出す結果となった。純粋な蒸溜された補給水が、気体発生中に、反応容器内の液体の高さを維持するために、液体反応器に加えられた。非常に活発な気体発生が、電界発生装置内の全てのプレートにおいて一様に生じるのが、観察された。発生した気体は、真空ポンプを用いてヘッドスペースから取り出され、反応容器内の約178mmHg(7インチ水銀)(Hg)の一定の真空を維持した。真空ポンプから排出されたものは、ボールフロートの流量計に通され、そして、大気へ放出された。排出されたもののサンプルは、実験室の気体試料袋に取り込まれ、ガスクロマトグラフィを用いて分析された。約60%の水素、約30%の酸素、という試料結果が得られた。標準温度と標準気圧(STP)における約100L/minの総流量が、液体反応器の合同した排出から観察されたが、これは約60L/minの水素つまり一時間当たり約1/3kgの水素に相当する。排出内に存在すると考えられるいくらかの水蒸気または凝縮水を仮定した場合に予想されたように、一時間あたり3kgより少し多い水が装置によって消費された。
<実験例2>
図6Bで示されたように、アノードプレートとカソードプレートを隔てる単一の気体障壁を用いた代わりの構成が、先の段落に説明されるような他の条件によって、テストされた。しかしながら、直流入力電圧は、6〜8ボルトの範囲内に調節された。これらの条件下、約40L/minの流量の気体が障壁のカソード側から得られ、約20L/minの流量の気体がアノード側から得られた。カソード側から得られた気体は、空気中で可燃性だが、爆発性ではないことが観察された。アノード側から得られた気体は可燃性ではなかった。これらの観察結果は、障壁の反対側からの分離された水素気体および酸素気体の生成物と整合がとれている。
白金、パラジウム、またはニッケルのような触媒は、プラズマの生成のための温度を減少させ、それによって炭化水素の燃料への改質の温度を減少させるために用いてもよい。
このように、液体反応器、および、反応器の様々な用途が、開示された。本技術の実施例および応用が図示され説明されたが、当業者にとっては、ここにおける発明思想から離れずに、さらに多くの変更が可能であることは明白であろう。したがって、本発明は、追加請求項の意図におけるものを除いて、限定されるものではない。

Claims (16)

  1. 電界を発生させる装置であって、
    プレートからなる一つまたは複数のアレイであって、第1のアレイは非導電性のフレームワークにより支持された導電性の平行な相隔たるプレートを含む、アレイを備え、
    プレートからなる前記第1のアレイは、アレイ第1端部において一つまたは複数のカソードとなりうるプレートと、前記アレイ第1端部とは反対側のアレイ第2端部において一つまたは複数のアノードとなりうるプレートと、前記カソードとなりうるプレートと前記アノードとなりうるプレートの間に挟まれた一つまたは複数のニュートラルプレートと、を含み、
    前記ニュートラルプレートは、インターリーブされたニュートラルサブセットの状態で配置され、
    第1のニュートラルサブセットは、前記カソードとなりうるプレートと、前記アノードとなりうるプレートと、他の任意のニュートラルサブセットと、からは電気的に絶縁され、ともに電気的に接続された、少なくとも三つのニュートラルプレートを含む装置。
  2. 各サブセットの前記プレートは他の前記サブセットの前記プレートの間に挟まれている、請求項1に記載の装置。
  3. 前記プレートは、実質的に、電気分解において相互作用的な触媒によりめっきされた高導電性の素材からなる、請求項1に記載の装置。
  4. 前記相互作用的な触媒はニッケルである、請求項1に記載の装置。
  5. アノードプレートおよびカソードプレートは貫通するホールのパターンを有し、
    前記アノードプレートおよび前記カソードプレートの公称寸法は相似しており、そして、
    前記アノードプレートおよび前記カソードプレートそれぞれの前記ホールのパターンの領域は、前記アノードプレートおよび前記カソードプレートそれぞれの残りの固体領域より広い、請求項1から4のいずれか一項に記載の装置。
  6. 前記カソードプレートおよび前記アノードプレートに接続され、波形発生器を含む、印加電力源をさらに備え、
    前記波形発生器は、10%から90%の範囲のデューティサイクル、1kHzから32kHzの範囲の周波数、および、5ボルトから50ボルトの範囲のピーク電圧、を有する直流波を発生させる、請求項1に記載の装置。
  7. アノードおよびカソードの間に配置され、水の上で気体が混合するのを防ぐように伸長した、非導電性の隔膜をさらに備える、請求項1に記載の装置。
  8. 反応容器内の水から水素および酸素を分離する方法であって、
    導電性の平行な相隔たるプレートからなる一つまたは複数のアレイの反対側の端部にある一つまたは複数のカソードプレートおよび一つまたは複数のアノードプレートへ電力を供給するステップであって、前記のプレートのアレイは、前記カソードプレートおよび前記アノードプレートの間に置かれた複数のニュートラルプレートからなり、インターリーブされたニュートラルサブセットの状態で配置された前記ニュートラルプレートは、それぞれ少なくとも三つの電気的に接続されたプレートを備え、また、それぞれ他の前記ニュートラルサブセット、前記カソードプレート、および、前記アノードプレートからは電気的に絶縁されているステップと、
    電力の供給の間に、気体状態の水素および酸素を発生させるために、プレートの前記アレイの周囲に置かれた電解質を含む水を分離するステップと、を含む方法。
  9. 前記電力の供給はさらに、10%から90%の範囲のデューティサイクル、1kHzから32kHzの範囲の周波数、および、5ボルトから50ボルトの範囲のピーク電圧、を有する直流波を供給するステップを含む、請求項8に記載の方法。
  10. さらに、水の温度を、約46.1℃(華氏約115度)と約54.4℃(華氏約130度)の範囲に維持し、また、水を分離している間は、真空の下で、水の沸点より低く維持するステップを含む、請求項8に記載の方法。
  11. 電解質を含む水に炭素系物質を加えた懸濁液を含む液体燃料原液を維持するステップと、
    気体状態の出力を生成するために前記液体燃料原液に電流を与えるステップと、
    前記気体状態の出力を抽出するステップと、を有する、可燃性流体を調製する方法。
  12. 前記炭素系物質は、水の中に懸濁させる前に、電荷を有する、請求項11に記載の方法。
  13. 前記炭素系物質は、およそ10μm以下の中央粒径を有する石炭を含む、請求項11に記載の方法。
  14. 前記液体燃料原液は、前記電界の印加中は、およそ82.2℃(華氏180度)以上の温度に維持され、また、水を分離している間は、前記液体燃料の原液を水の沸点以下に維持するのに十分な圧力より低い圧力に維持される、請求項11に記載の方法。
  15. 前記液体燃料原液はさらに液体炭化水素燃料を含む、請求項11に記載の方法。
  16. 炭化水素液:炭素系物質の容積比が、約0.75:1から約1:1である、請求項15に記載の方法。
JP2015219240A 2011-05-23 2015-11-09 可燃性燃料並びにその製造装置及び製造方法 Pending JP2016172920A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161489059P 2011-05-23 2011-05-23
US61/489,059 2011-05-23
US201161566554P 2011-12-02 2011-12-02
US61/566,554 2011-12-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014512086A Division JP2014517877A (ja) 2011-05-23 2012-05-23 可燃性燃料並びにその製造装置及び製造方法

Publications (1)

Publication Number Publication Date
JP2016172920A true JP2016172920A (ja) 2016-09-29

Family

ID=47218061

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014512086A Pending JP2014517877A (ja) 2011-05-23 2012-05-23 可燃性燃料並びにその製造装置及び製造方法
JP2015219240A Pending JP2016172920A (ja) 2011-05-23 2015-11-09 可燃性燃料並びにその製造装置及び製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014512086A Pending JP2014517877A (ja) 2011-05-23 2012-05-23 可燃性燃料並びにその製造装置及び製造方法

Country Status (11)

Country Link
US (2) US10066304B2 (ja)
EP (1) EP2714966A4 (ja)
JP (2) JP2014517877A (ja)
KR (1) KR20140030268A (ja)
CN (1) CN103917695A (ja)
BR (1) BR112013030156A2 (ja)
CA (1) CA2837189A1 (ja)
EA (1) EA201391748A1 (ja)
IL (1) IL229589A0 (ja)
MX (1) MX2013013723A (ja)
WO (1) WO2012162434A2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10066304B2 (en) 2011-05-23 2018-09-04 Advanced Combustion Technologies, Inc. Combustible fuel and apparatus and process for creating the same
US10676830B2 (en) 2011-05-23 2020-06-09 Advanced Combustion Technologies, Inc. Combustible fuel and apparatus and process for creating the same
US9267428B2 (en) * 2012-02-27 2016-02-23 Deec, Inc. Oxygen-rich plasma generators for boosting internal combustion engines
WO2014153249A2 (en) 2013-03-14 2014-09-25 Kilo, Inc. Underwater oxyhydrogen power generation systems, methods, and components
WO2014145955A2 (en) 2013-03-15 2014-09-18 Kilo, Inc. Low-compression oxyhydrogen combustion engine systems, methods, and components
GB201309753D0 (en) 2013-05-31 2013-07-17 Water Fuel Engineering Ltd Electrolysis cell and electrode
US9157159B2 (en) * 2013-11-17 2015-10-13 Don Lee Hansen System and method for generating hydrogen and oxygen gases
JP6400986B2 (ja) * 2014-08-28 2018-10-03 公立大学法人 富山県立大学 有機ハイドライド製造装置及び有機ハイドライド製造方法
CN104329191B (zh) * 2014-09-10 2016-06-08 北京工业大学 一种基于车载制氢机的制氢速率控制装置
PT107973B (pt) * 2014-10-20 2018-03-29 Ultimate Cell Lda Método para aumentar a eficiência de motores de combustão
WO2016120882A1 (en) * 2015-01-28 2016-08-04 Rajah Vijay Kumar Hydro disambiguative catalytic donor recombination, process and apparatus
WO2017029724A1 (ja) * 2015-08-19 2017-02-23 谷電機工業株式会社 Hhoガス発生装置
US10605162B2 (en) * 2016-03-07 2020-03-31 HyTech Power, Inc. Method of generating and distributing a second fuel for an internal combustion engine
CN105734602B (zh) * 2016-04-19 2018-08-10 徐大海 用于制备次氯酸水的设备
CN105734603B (zh) * 2016-04-19 2018-04-13 徐大海 一种制备次氯酸的电解装置及电解方法
TWI639765B (zh) * 2017-01-24 2018-11-01 黃柏瑜 複合式綠能淨化機
US20190234348A1 (en) 2018-01-29 2019-08-01 Hytech Power, Llc Ultra Low HHO Injection
US10947134B2 (en) * 2018-08-30 2021-03-16 Osvaldo Gaona Solis Hydrogen generator
FR3091711B1 (fr) * 2019-01-11 2020-12-18 Commissariat Energie Atomique Electrolyseur d’eau portatif configuré pour limiter les risques de concentration de dihydrogène
CA3149575A1 (en) * 2019-09-03 2021-03-11 Ron CAMPEANU Electrolysis system and method
DE102022203691A1 (de) * 2022-04-12 2023-10-12 Siemens Energy Global GmbH & Co. KG Verfahren zum Betrieb einer Elektrolyseanlage und Elektrolyseanlage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192869A (ja) * 1992-12-25 1994-07-12 Chlorine Eng Corp Ltd 電解槽
JPH09504053A (ja) * 1993-09-06 1997-04-22 ハイドロジェン・テクノロジー・リミテッド 電解システムの改良
JPH11172483A (ja) * 1996-12-17 1999-06-29 Tosoh Corp 低水素過電圧陰極とその製造方法
JP2009522453A (ja) * 2006-01-10 2009-06-11 ハイドロクス ホールディングス リミテッド 可燃性流体を生成するための方法および装置
JP2011506767A (ja) * 2007-12-10 2011-03-03 プリンター リボン インカーズ ピー.アール.アイ. リミテッド 水素発生装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3262872A (en) 1961-05-05 1966-07-26 Henes Mfg Co Apparatus for the electrolytic production of hydrogen and oxygen for the safe consumption thereof
US3310483A (en) 1963-11-22 1967-03-21 William A Rhodes Multicell oxyhydrogen generator
GB1300556A (en) * 1969-04-02 1972-12-20 John Edward Jenkins Improvements in cycloconverters
US4081656A (en) 1973-07-20 1978-03-28 Yull Brown Arc-assisted oxy/hydrogen welding
US4014777A (en) 1973-07-20 1977-03-29 Yull Brown Welding
US4277416A (en) * 1977-02-17 1981-07-07 Aminoil, Usa, Inc. Process for producing methanol
US4211631A (en) * 1978-07-03 1980-07-08 Gulf Research And Development Company Coal liquefaction process employing multiple recycle streams
US4643809A (en) * 1985-10-25 1987-02-17 The United States Of America As Represented By The United States Department Of Energy Process for electrochemically gasifying coal using electromagnetism
US5231954A (en) * 1992-08-05 1993-08-03 J. C. Conner Hydrogen/oxygen fuel cell
JP2595465B2 (ja) * 1994-04-13 1997-04-02 英司 池田 水・石炭混合燃料
CA2349508C (en) * 2001-06-04 2004-06-29 Global Tech Environmental Products Inc. Electrolysis cell and internal combustion engine kit comprising the same
WO2006028190A1 (ja) * 2004-09-09 2006-03-16 Asahi Kasei Chemicals Corporation 固体高分子電解質膜およびその製造方法
US8021526B2 (en) * 2005-04-05 2011-09-20 G.B.D. Corp Household appliances which utilize an electrolyzer and electrolyzer that may be used therein
US20070089997A1 (en) * 2005-10-20 2007-04-26 Depalo Robert J Method and apparatus for the production of hydrogen and oxygen
US7793621B2 (en) * 2007-10-05 2010-09-14 Realm Industries Alternative fuel engine
WO2009065352A1 (en) * 2007-11-16 2009-05-28 Accelergy Shanghai R & D Center Co., Ltd. Integrated coal-to-liquids process
US8303798B2 (en) * 2009-05-11 2012-11-06 April R. Saldivar, legal representative Hydrogen generator designed for use with gas and diesel engines
US20100089676A1 (en) * 2008-10-14 2010-04-15 Toli Papachristopoulos Hydrogen generator system for internal combustion engine
CN101445940B (zh) * 2008-12-15 2011-05-04 李绅洋有限公司 一种产生氢氧助燃气体的节能装置及方法
CN201545915U (zh) * 2009-10-27 2010-08-11 吴峻 气液自流循环式氢气电解装置
US10066304B2 (en) 2011-05-23 2018-09-04 Advanced Combustion Technologies, Inc. Combustible fuel and apparatus and process for creating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192869A (ja) * 1992-12-25 1994-07-12 Chlorine Eng Corp Ltd 電解槽
JPH09504053A (ja) * 1993-09-06 1997-04-22 ハイドロジェン・テクノロジー・リミテッド 電解システムの改良
JPH11172483A (ja) * 1996-12-17 1999-06-29 Tosoh Corp 低水素過電圧陰極とその製造方法
JP2009522453A (ja) * 2006-01-10 2009-06-11 ハイドロクス ホールディングス リミテッド 可燃性流体を生成するための方法および装置
JP2011506767A (ja) * 2007-12-10 2011-03-03 プリンター リボン インカーズ ピー.アール.アイ. リミテッド 水素発生装置

Also Published As

Publication number Publication date
MX2013013723A (es) 2015-03-20
EP2714966A4 (en) 2015-04-22
EP2714966A2 (en) 2014-04-09
CN103917695A (zh) 2014-07-09
JP2014517877A (ja) 2014-07-24
WO2012162434A3 (en) 2013-01-24
US20140090986A1 (en) 2014-04-03
IL229589A0 (en) 2014-01-30
WO2012162434A2 (en) 2012-11-29
EA201391748A1 (ru) 2014-06-30
KR20140030268A (ko) 2014-03-11
US20190062930A1 (en) 2019-02-28
US10590547B2 (en) 2020-03-17
CA2837189A1 (en) 2012-11-29
US10066304B2 (en) 2018-09-04
BR112013030156A2 (pt) 2019-09-24

Similar Documents

Publication Publication Date Title
US10590547B2 (en) Combustible fuel and apparatus and process for creating the same
RU2484182C2 (ru) Электролитическая ячейка и способ ее применения
RU2489523C2 (ru) Устройство и способ регулирования зародышеобразования во время электролиза
KR101263593B1 (ko) 전기분해 중에 가스 포집을 위한 장치 및 방법
US7615138B2 (en) Electrolysis apparatus with pulsed, dual voltage, multi-composition electrode assembly
KR20150142020A (ko) 물의 전기 분해(hte) 또는 동일 챔버 내에서 h2o / co2의 공동 전기 분해로부터 가연성 가스를 생성하는 방법 및 관련 촉매 반응기 및 시스템
US20100089746A1 (en) Hydragen-oxygen electrolyzing device and carbon paper electrodes thereof with material-changed outer surfaces
US20090205971A1 (en) Method and apparatus for producing combustible fluid
JP2009203456A (ja) 水電解ガス混合燃料の生成装置及び生成方法
US20110147204A1 (en) Apparatus for on demand production of hydrogen by electrolysis of water
US10676830B2 (en) Combustible fuel and apparatus and process for creating the same
US8043485B2 (en) Multi-pulse protocol for use with a dual voltage electrolysis apparatus
JP2011506767A5 (ja)
JP3171237U (ja) 水電解ガス混合燃料の生成装置
US8157980B2 (en) Multi-cell dual voltage electrolysis apparatus and method of using same
CN203307438U (zh) 内燃机用氢氧发生装置
ITFI20090155A1 (it) Apparato per arricchire d'idrogeno l'alimentazione di motori a combustione interna alimentati ad ammoniaca durante la fase di avviamento e durante la marcia.
US20080296169A1 (en) Multi-cell single voltage electrolysis apparatus and method of using same
CN211436164U (zh) 一种同时制备富氢合成气与碳纳米颗粒的装置
AU2012258798A1 (en) Combustible fuel and apparatus and process for creating same
CN101425581B (zh) 一种双效氧电极催化剂的制备方法
WO2008010107A2 (en) Dual voltage, multi-composition electrode assembly for an electrolysis apparatus and method of using same
WO2022176511A1 (ja) 有機ハイドライド製造装置および有機ハイドライド製造方法
WO2010065403A1 (en) Hydrogen rich gas generator
TWM629693U (zh) 電催化放電反應器及製氫系統

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170516