JP2016171307A - 基板接合方法 - Google Patents
基板接合方法 Download PDFInfo
- Publication number
- JP2016171307A JP2016171307A JP2016014852A JP2016014852A JP2016171307A JP 2016171307 A JP2016171307 A JP 2016171307A JP 2016014852 A JP2016014852 A JP 2016014852A JP 2016014852 A JP2016014852 A JP 2016014852A JP 2016171307 A JP2016171307 A JP 2016171307A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- silicon oxide
- oxide film
- bonding
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/06—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/0008—Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/14—Semiconductor wafers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Thermal Sciences (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
【課題】シリコン酸化膜同士が向き合うように接合する方法であって、高温で加熱することなく接合強度の低下を抑制可能な基板接合方法を提供する。【解決手段】基板加熱方法は、準備工程と、貼り合わせ工程と、加熱工程と、を備えている。準備工程において、膜厚が50nm以上の第1シリコン酸化膜12が表面10aに形成された第1基板10と、第2シリコン酸化膜22が表面20aに形成された第2基板20と、を準備する。貼り合わせ工程では、第1シリコン酸化膜12と第2シリコン酸化膜22とが向き合うようにして、第1基板10及び第2基板20を貼り合わせる。加熱工程では、第1基板10及び第2基板20を加熱して接合する。準備工程において、第2シリコン酸化膜22の膜厚が2.5nm以下の第2基板20を準備する。加熱工程において、200度以上800度以下の温度で第1基板10及び第2基板20を加熱する。【選択図】図11
Description
本発明は、第1シリコン酸化膜が表面に形成された第1基板、及び、第2シリコン酸化膜が表面に形成された第2基板を互いに接合する基板接合方法に関する。
従来、特許文献1に記載のように、2つのシリコンウェーハ同士を貼り合わせてなるSOIウェーハの製造方法が知られている。先ず、シリコンウェーハの両方に酸化膜を形成する。そして、酸化膜を介してシリコンウェーハ同士を貼り合わせる。シリコンウェーハ同士を貼り合わせた後、加熱する。加熱温度は、貼り合わせ強度を確保するために、1200℃以上とされている。以上により、SOIウェーハを製造することができる。
上記方法では、加熱により、シリコンウェーハ同士の貼り合わせ界面に水が発生する虞がある。界面に水が発生すると、貼り合わせ強度が低下する虞がある。これに対し、貼り合わせ強度の低下を抑制するため、一方のシリコンウェーハにおける酸化膜の膜厚を50nm以上とすることが知られている。酸化膜の膜厚を厚くすることで、加熱により発生した水が酸化膜に吸収され、貼り合わせ強度の低下を抑制することができる。
しかしながら、この方法においても、接合強度を確保するため、高温でシリコンウェーハを加熱する必要がある。シリコンウェーハにアルミニウム等からなる配線、不純物拡散層が形成されているため、シリコンウェーハの加熱可能な最高温度は、配線の耐熱温度、及び、不純物拡散層が拡散する温度により決定される。これによれば、一般的に、シリコンウェーハの加熱可能な温度は、800度以下とされている。よって、上記した高温で加熱する方法では、SOIウェーハを製造することができなかった。
これに対し、シリコンウェーハの一方に酸化膜を形成し、他方に酸化膜を形成しない方法を用いて、SOIウェーハを製造することが考えられる。詳しくは、Si−SiO2接合によりシリコンウェーハ同士を接合し、SOIウェーハを製造する。この接合方法では、加熱温度を低温としつつ、接合強度を確保することができる。しかしながら、この接合方法では、シリコンウェーハ同士を貼り合わせる際、両方のシリコンウェーハ表面に酸化膜を形成することができない。
ところで、シリコンウェーハ表面に対し、酸化膜を形成することで、アウトディフュージョンを抑制し、且つ、界面準位を低減できることが知られている。これに対し、上記構成では、両方のシリコンウェーハ表面に酸化膜を形成することができないため、アウトディフュージョンが発生する虞があり、且つ、界面準位が大きくなる虞がある。これによれば、SOIウェーハにおいて、リーク電流が発生する虞がある。また、両方のシリコンウェーハ表面に酸化膜を形成することができない上記構成では、SOIウェーハにおける設計の自由度が低下する虞がある。
そこで、本発明は、上記問題点に鑑み、シリコン酸化膜同士が向き合うように接合する方法において、高温で加熱することなく接合強度の低下を抑制可能な基板接合方法を提供することを目的とする。
ここに開示される発明は、上記目的を達成するために以下の技術的手段を採用する。なお、特許請求の範囲及びこの項に記載した括弧内の符号は、ひとつの態様として下記の実施形態に記載の具体的手段との対応関係を示すものであって、発明の技術的範囲を限定するものではない。
開示された発明のひとつは、膜厚が50nm以上の第1シリコン酸化膜(12)が表面(10a)に形成された第1基板(10)と、第2シリコン酸化膜(22)が表面(20a)に形成された第2基板(20)と、を準備する準備工程と、準備工程実施後、第1シリコン酸化膜と第2シリコン酸化膜とが向き合うようにして、第1基板及び第2基板を貼り合わせる貼り合わせ工程と、貼り合わせ工程実施後、第1基板及び第2基板を加熱して接合する加熱工程と、を備える基板接合方法であって、準備工程において、第2シリコン酸化膜の膜厚が2.5nm以下の第2基板を準備し、加熱工程において、200度以上800度以下の温度で第1基板及び第2基板を加熱することを特徴とする。
上記方法では、第1シリコン酸化膜の膜厚が50nm以上とされている。そのため、加熱により第1基板と第2基板との界面に水が発生しても、第1シリコン酸化膜により発生した水を吸収することができるため、第1基板及び第2基板の接合強度の低下を抑制することができる。
また、上記方法では、第2シリコン酸化膜の膜厚が2.5nm以下とされている。これによれば、加熱工程において、接合強度を確保するために必要な加熱温度を、従来の温度よりも低温の800度以下とすることができる。すなわち、高温で加熱することなく、接合強度の低下を抑制することができる。
以上により、シリコン酸化膜同士が向き合うようにして第1基板及び第2基板を接合する接合方法において、高温で加熱することなく接合強度の低下を抑制することができる。
以下、本発明の実施形態を、図面を参照して説明する。なお、以下に示す各実施形態において、共通乃至関連する要素には同一の符号を付与するものとする。第1基板の厚さ方向をZ方向、Z方向に直交する特定の方向をX方向、Z方向及びX方向に直交する方向をY方向と示す。X方向及びY方向により規定される平面に沿う形状を平面形状と示す
(第1実施形態)
先ず、図1に基づき、SOI基板100の概略構成について説明する。
(第1実施形態)
先ず、図1に基づき、SOI基板100の概略構成について説明する。
SOI基板100は、第1基板10及び第2基板20を互いに接合して形成されている。SOI基板100の製造方法、すなわち第1基板10及び第2基板20の接合方法については、下記で詳細に説明する。SOI基板100には、図示しない配線、及び、図示しない不純物拡散層が形成されている。配線は、アルミニウム等の金属材料を用いて形成されている。不純物拡散層は、例えばイオン注入により形成される。不純物拡散層は、MOSトランジスタを構成している。
次に、図2〜図10に基づき、第1基板10及び第2基板20の接合方法について説明する。
先ず、図2に示すように、第1基板10及び第2基板20を準備する準備工程を実施する。本実施形態では、第1基板10として、シリコン基板を用いる。第1基板10は、Z方向と直交する表面10aと、表面10aと反対の裏面10bと、Z方向と平行な側面10cと、を有している。
表面10aには、第1シリコン酸化膜12が形成されている。さらに、裏面10b及び側面10cにおいても、第1シリコン酸化膜12が形成されている。以下、表面10aに形成された第1シリコン酸化膜12の膜厚を膜厚Th1と示す。膜厚Th1は、50nm以上とされている。本実施形態では、膜厚Th1が1.0μmとされている。なお、第1基板10には、図示しない配線及び不純物拡散層が形成されている。
本実施形態では、第2基板20として、シリコン基板を用いる。第2基板20は、厚さ方向と直交する表面20aと、表面20aと反対の裏面20bと、厚さ方向と平行な側面20cと、を有している。
表面20aには、第2シリコン酸化膜22が形成されている。さらに、裏面20b及び側面10cにおいても、第2シリコン酸化膜22が形成されている。以下、表面20aに形成された第2シリコン酸化膜22の膜厚を膜厚Th2と示す。膜厚Th2は、2.5nm以下とされている。言い換えると、0nm<膜厚Th2≦2.5nmを満たすように、第2シリコン酸化膜22が形成されている。また、第2基板20には、第1基板10と同様に、図示しない配線及び不純物拡散層が形成されている。なお、第2基板20の平面形状は、第1基板10の平面形状とほぼ同じ形状とされている。以下、第1シリコン酸化膜12及び第2シリコン酸化膜22を、シリコン酸化膜12,22と称する。
準備工程では、第2基板20を水溶液に浸すことで、第2シリコン酸化膜22を形成することができる。この方法では、水溶液として、RCA洗浄に用いる水溶液、硫酸加水、及び、オゾン水を採用する。なお、この方法では、第2シリコン酸化膜22を形成するために第2基板20を加熱しない。第1シリコン酸化膜12の形成方法は、第2シリコン酸化膜22の形成方法と異なっていても、同じであってもよい。
また、第2シリコン酸化膜22を形成する方法として、第2基板20を加熱してもよい。すなわち、熱酸化により第2シリコン酸化膜22を形成してもよい。言い換えると、第2シリコン酸化膜22は熱酸化膜であってもよい。この方法では、先ず、第2基板20を洗浄する。洗浄の方法としては、硫酸加水やフッ酸を用いて洗浄する方法や、RCA洗浄を採用することができる。洗浄により、汚染物等を除去することができる。そして、洗浄した第2基板20を加熱することで、第2基板20に第2シリコン酸化膜22を形成する。
加熱する方法では、例えば炉やRTP装置を用いる。本実施形態では、炉を用いて第1基板10及び第2基板20を加熱し、シリコン酸化膜12,22を形成する。本実施形態では、炉で加熱する条件として、加熱温度が600度、加熱時間1時間を採用する。
また、デポやプラズマにより第2シリコン酸化膜22を形成してもよい。プラズマを用いる方法では、例えば、TEOSを用いてCVD法を行ったり、O2アッシングを行うことで第2シリコン酸化膜22を形成する。TEOSは、テトラエキシシランである。TEOSを用いて形成した第2シリコン酸化膜22は、TEOS膜と称することもできる。CVDは、Chemical Vapor Depositionの略称である。デポする方法としては、SOGを第2基板20に塗布することで第2シリコン酸化膜22を形成する。SOGは、Spin On Glassの略称である。
シリコン酸化膜12,22は、シリコン酸化物として、SiO2とサブオキサイドとを有している。シリコン原子は、4つの結合手を有している。図3に示すように、SiO2を構成するシリコン原子は、各結合手に酸素原子が結びついており、4つの酸素原子と結合している。SiO2を構成するシリコン原子は、Si4+とも称することができる。
図4に示すように、サブオキサイドとは、SiO2と化学的に構造の異なるシリコン酸化物である。シリコン酸化膜12,22は、化学的に構造の異なる3種類のサブオキサイドを有している。サブオキサイドを構成するシリコン原子としては、Si3+、Si2+、及びSi+が存在する。
Si3+は、3つの各結合手に酸素原子が結びついており、1つの結合手にシリコン原子が結びついている。Si2+は、2つの各結合手に酸素原子が結びついており、他の2つの各結合手にシリコン原子が結びついている。Si+は、1つの結合手に酸素原子が結びついており、3つの各結合手にシリコン原子が結びついている。
シリコン酸化膜12,22は、水酸基を含んでいる。シリコン酸化膜12,22中において、サブオキサイドの数が多いほど、水酸基が多くなることが知られている。また、シリコン酸化膜12,22の膜厚が薄いほど、SiO2の数に対するサブオキサイドの数の割合が多くなることが知られている。すなわち、シリコン酸化膜12,22では、膜厚が薄いほど、水酸基の密度が高い。
準備工程実施後、図5及び図6に示すように、シリコン酸化膜12,22に水酸基を付与する活性化工程を実施する。本実施形態では、チャンバ200、電極210、及び高周波電源220を用いて活性化工程を実施する。チャンバ200は、排気口202と吸気口204とを有している。電極210は、アノード212とカソード214とを有している。アノード212及びカソード214は、チャンバ200内において、互いに所定の距離を有して対向配置されている。アノード212及びカソード214は、高周波電源220と接続されている。
活性化工程では、先ず、第1基板10と第2基板20とをカソード214に配置する。詳しくは、表面10a及び表面20aがアノード212と対向するように、第1基板10と第2基板20とを配置する。
本実施形態では、プラズマにより、第1基板10及び第2基板20を活性化する。プラズマによる活性化の方法としては、チャンバ200内を大気圧にしてプラズマを発生させる方法と、真空にしてプラズマを発生させる方法を採用することができる。チャンバ200内を大気圧にする方法では、シリコン酸化膜12,22に対して、より効果的に水酸基を付与することができる。そのため、本実施形態では、チャンバ200内を大気圧にする方法を採用する。
本実施形態では、チャンバ200に対して、排気口202により排気しつつ、プラズマを発生させるためのガスを吸気口204により導入する。このガスとしては、例えばO2、N2、Ar、H2O、空気における少なくとも1種類のガスを採用することができる。すなわち、単体のガス、及び、混合ガスの両方を採用することができる。本実施形態では、O2、N2、H2Oの混合ガスを採用する。この混合ガスを用いることにより、シリコン酸化膜12,22に対して、より効果的に水酸基を付与することができる。図5の白矢印は、ガスを排気する方向、及び、吸気する方向を示している。
次に、高周波電源220により電極210間に電力を印加する。これにより、プラズマが発生する。表面10aに形成された第1シリコン酸化膜12、及び、表面20aに形成された第2シリコン酸化膜22が、プラズマに晒される。
図6に示すように、第1シリコン酸化膜12には、プラズマにより、水酸基が付与される。第2シリコン酸化膜22においても、第1シリコン酸化膜12と同様に、水酸基が付与される。表面10a及び表面20aに位置するシリコン原子が、水酸基と結合する。水酸基は、OH基、又は、ヒドロキシル基とも称することができる。
活性化工程実施後、図7及び図8に示すように、第1基板10及び第2基板20を互いに貼り合わせる貼り合わせ工程を実施する。図7に示すように、表面10aと表面20aとが向き合うようにして、第1基板10及び第2基板20を貼り合わせる。貼り合わせ工程は、室温で実施する。この貼り合わせにより、第1シリコン酸化膜12と第2シリコン酸化膜22とが互いに接触し、結合する。図8に示すように、シリコン酸化膜12,22同士が、水素結合する。詳しくは、第1シリコン酸化膜12の水酸基と、第2シリコン酸化膜22の水酸基と、が水素結合する。図8では、水素結合を破線で示している。
貼り合わせ工程実施後、図9及び図10に示すように、第1基板10及び第2基板20を加熱して接合する加熱工程を実施する。本実施形態では、チャンバ300及びヒータ310を用いて加熱工程を実施する。チャンバ300は、排気口302を有している。ヒータ310は、チャンバ300内に配置されている。
加熱工程では、先ず、図9に示すように、第1基板10及び第2基板20をチャンバ300内に配置する。そして、チャンバ300内のガスを排気口302により排気しつつ、ヒータ310により加熱する。図9の白矢印は、排気する方向を示している。加熱により、シリコン酸化膜12,22同士の水素結合から水が抜ける。これにより、図10に示すように、シリコン酸化膜12,22同士の結合が、水素結合から共有結合に変わる。詳しくは、第1シリコン酸化膜12のシリコン原子及び第2シリコン酸化膜22のシリコン原子が、酸素原子を介して互いに結合する。
加熱工程において、加熱温度を200度以上800度以下とする。加熱温度を200度以上とすることで、シリコン酸化膜12,22同士の結合を、水素結合から共有結合に変えることができる。
最高加熱温度である800度は、第1基板10及び第2基板20に形成された配線の耐熱温度よりも低い。さらに、加熱温度を800度以下とすることで、第1基板10及び第2基板20に形成された不純物拡散層が拡散することを抑制することができる。本実施形態では、加熱温度を750度とする。また、加熱温度を300度としてもよい。
以上により、第1基板10及び第2基板20を接合することができる。SOI基板100を製造するために、加熱工程実施後、第1基板10及び第2基板20の一部を除去する除去工程を実施する。接合した第1基板10及び第2基板20において、裏面10b、裏面20b、側面10c、及び側面20cを研磨、エッチングする。これにより、裏面10b、裏面20b、側面10c、及び側面20cに形成されたシリコン酸化膜12,22が除去される。以上により、図1に示すSOI基板100を製造することができる。
次に、図11に基づき、第1基板10及び第2基板20の接合強度について説明する。
図11は、上記方法で製造したSOI基板100について、第1基板10及び第2基板20の接合強度を示す図である。なお、図11に示す接合強度の値は、熱酸化によりシリコン酸化膜12,22を形成した第1基板10及び第2基板20の接合強度を示している。
以下、第1基板10及び第2基板20の接合強度を単に接合強度と示す。接合強度は、膜厚Th2の異なる複数のSOI基板100について測定した。なお、比較のために、膜厚Th2が2.5nmより厚いSOI基板100、及び、膜厚Th2がほぼ0nmのSOI基板100についても、上記方法で製造し、接合強度を測定した。接合強度を測定した全てのSOI基板100において、膜厚Th1を1.0μm、加熱工程における加熱温度を750度とした。
図11では、膜厚Th2をほぼ0nmとしたときの接合強度を1.0とした場合における接合強度の値を示している。言い換えると、図11に示す接合強度の値は、膜厚Th2を所定の厚さとした場合の接合強度を、膜厚Th2をほぼ0nmとした場合の接合強度で除算した値である。また、図11において、膜厚Th2が特定の厚さでは、接合強度が複数の値を示している。これは、膜厚Th2がほぼ同じであるSOI基板100を製造し、製造した各SOI基板100について接合強度を測定した値を示している。
図11に示すように、加熱工程の加熱温度を一定とすると、膜厚Th2が薄いほど、接合強度が高い。これは、膜厚Th2が薄いほど第2シリコン酸化膜22における水酸基の密度が高く、貼り合わせ工程においてシリコン酸化膜12,22同士の結合における水素結合の数が多いためである。水素結合の数が多いほど、加熱工程において共有結合の数が多くなるため、接合強度が高い。
2.5nmの膜厚Th2を境界として、接合強度が大きく変化している。言い換えると、膜厚Th2が2.5nmより厚いと接合強度が低く、膜厚が2.5nm以下では接合強度が高い。以下、接合強度が大きく変化する膜厚Th2を、境界膜厚と示す。膜厚Th2が2.5nmより厚いと、接合強度が0.2より小さくなっている。
また、膜厚Th2が2.0nm以下の場合、接合強度は0.8以上とされている。1.5nm以上2.0nm以下の範囲では、8個のSOI基板100について測定し、接合強度が全て0.8以上とされている。これによれば、膜厚Th2.0nm以下とすることにより、0.8以上の接合強度を確保し易い。
上記したように、膜厚Th2が薄いほど、接合強度を高くすることができる。また、加熱工程の加熱温度が高いほど、接合強度を高くすることができる。これは、加熱温度が高いほど、水素結合から共有結合に変わり易いためである。以上により、膜厚Th2を所定の厚さとして加熱工程の加熱温度を変化させた場合、加熱温度が低いほど境界膜厚が薄くなる。
次に、上記した基板接合方法の効果について説明する。
本実施形態では、膜厚Th1が50nm以上とされている。そのため、加熱により第1基板10と第2基板20との界面に水が発生しても、第1シリコン酸化膜12により発生した水を吸収することができるため、接合強度の低下を抑制することができる。
また、本実施形態では、膜厚Th2が2.5nm以下とされている。これによれば、加熱工程において、接合強度を確保するために必要な加熱温度を、従来の温度よりも低温の800度以下とすることができる。すなわち、高温で加熱することなく、接合強度の低下を抑制することができる。
以上により、シリコン酸化膜12,22同士が向き合うようにして第1基板10及び第2基板20を接合する接合方法において、高温で加熱することなく接合強度の低下を抑制することができる。
また、本実施形態では、シリコン酸化膜12,22に水酸基を付与する活性化工程を実施する。活性化工程実施により、より多くの水酸基をシリコン酸化膜12,22に付与することができる。これによれば、貼り合わせ工程において水素結合の数を増やすことができ、ひいては加熱工程において共有結合の数を増やすことができる。したがって、接合強度をより高くすることができる。
また、本実施形態では、熱酸化によりシリコン酸化膜12,22を形成している。これによれば、他の方法に較べて、緻密なシリコン酸化膜12,22を形成することができる。したがって、アウトデフュージョンを抑制することができる。
これに対し、第2基板20を水溶液に浸すことで第2シリコン酸化膜22を形成する方法では、熱酸化による形成方法に較べて、加熱する必要がなく、工程を簡略化することができる。また、熱酸化による形成方法に較べて、膜厚Th2を薄くし易い。言い換えると、膜厚Th2が2.5nm以下とされた第2基板20を作成し易い。さらに、熱酸化による形成方法に較べて、第2シリコン酸化膜22における水酸基の密度を高くすることができ、接合強度をより高くすることができる。
以上、本発明の好ましい実施形態について説明したが、本発明は上記実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
上記実施形態では、第1基板10と第2基板20とを接合し、SOI基板100を製造する例を示したが、これに限定されるものではない。図12の第1変形例に示すように、第1基板10と第2基板20とを接合し、圧力センサ400を製造してもよい。圧力センサ400は、測定媒体の圧力を検出するものである。
第1変形例では、図13に示すように、準備工程において凹部14が形成された第1基板10を準備する。凹部14は、表面10aから所定の深さを有して凹んでいる。貼り合わせ工程以降の工程は、第1実施形態と同様である。
圧力センサ400は、圧力基準室410と、ダイアフラム420と、図示しない圧力検出素子と、を有している。圧力基準室410は、凹部14及び表面20aにより囲まれる空間である。圧力基準室410は、気密封止され、内部の圧力がほぼ一定とされている。ダイアフラム420は、第1基板10における凹部14により厚さが薄くされた部分である。ダイアフラム420は、測定媒体の圧力に応じて、第1基板10の厚さ方向に変形する。圧力検出素子は、ダイアフラム420に形成され、ダイアフラム420の変形に応じて検出信号を出力する。なお、第1基板10と第2基板20とを接合し、圧力センサ400以外の半導体センサを製造する例を採用することができる。
上記実施形態では、準備工程において、膜厚Th2が2.5nm以下の第2基板20を準備する例を示したが、これに限定するものではない。準備工程において、膜厚Th2が2.0nm以下の第2基板20を準備する例を採用することもできる。これによれば、加熱工程における加熱温度を所定の温度とすると、接合強度をより高くすることができる。さらに、所定の接合強度で接合するために必要な加熱温度を、より低温にすることができる。加熱温度を低温とすることにより、第1基板10及び第2基板20に形成される配線と不純物拡散層とにおける設計の自由度を向上することができる。
上記実施形態では、活性化工程においてプラズマを発生させる例を示したが、これに限定するものではない。活性化工程として、第1基板10及び第2基板20に対して、イオンビームを照射する例を採用することもできる。また、活性化工程として、酸性溶液中に第1基板10及び第2基板20を浸す例を採用することもできる。さらに、上記実施形態では、活性化工程を実施する例を示したが、これに限定するものではない。活性化工程を実施しない例を採用することもできる。
上記実施形態では、第1基板10及び第2基板20が、シリコン基板とされた例を示したが、これに限定するものではない。第1基板10及び第2基板20が、ゲルマニウム基板、サファイアガラス、GaAs等のIII−V属半導体とされた例を採用することもできる。また、シリコン酸化膜12,22をゲルマニウムの酸化膜に置き換えた場合であっても、接合強度を確保しつつ、加熱工程における加熱温度を低温とすることができる。
また、第1基板10にシリコン窒化膜が形成され、このシリコン窒化膜上に第1シリコン酸化膜12が形成された例を採用することもできる。同様に、第2基板20にシリコン窒化膜が形成され、このシリコン窒化膜上に第2シリコン酸化膜22が形成された例を採用することもできる。
上記実施形態では、準備工程において、表面10a、裏面10b、及び側面10cに第1シリコン酸化膜12が形成された例を示したが、これに限定するものではない。第1シリコン酸化膜12が、少なくとも表面10aに形成されている構成であれば採用することができる。同様に、第2シリコン酸化膜22が、少なくとも表面20aに形成されている構成であれば採用することができる。
上記実施形態では、図11において、熱酸化によりシリコン酸化膜12,22を形成した第1基板10及び第2基板20の接合強度の測定結果を示した。しかしながら、上記したように、シリコン酸化膜12,22の形成方法は、熱酸化に限定されるものではない。
熱酸化以外の形成方法では、熱酸化による形成方法に較べて、シリコン酸化膜12,22における水酸基の密度を高くすることができる。そのため、熱酸化による形成方法に較べて、接合強度を高くすることができる。よって、熱酸化以外の形成方法では、熱酸化による形成方法と同様に、膜厚Th2を2.5nm以下にすることで接合強度が低下するのを抑制することができる。言い換えると、シリコン酸化膜12,22の形成方法にかかわらず膜厚Th2を2.5nm以下にすることで、高温で加熱することなく接合強度が低下するのを抑制することができる。
10…第1基板、10a…表面、10b…裏面、10c…側面、12…第1シリコン酸化膜、14…凹部、20…第2基板、20a…表面、20b…裏面、20c…側面、22…第2シリコン酸化膜、100…SOI基板、200…チャンバ、202…排気口、204…吸気口、210…電極、212…アノード、214…カソード、220…高周波電源、300…チャンバ、302…排気口、310…ヒータ、400…圧力センサ、410…圧力基準室、420…ダイアフラム
Claims (5)
- 膜厚が50nm以上の第1シリコン酸化膜(12)が表面(10a)に形成された第1基板(10)と、第2シリコン酸化膜(22)が表面(20a)に形成された第2基板(20)と、を準備する準備工程と、
前記準備工程実施後、前記第1シリコン酸化膜と前記第2シリコン酸化膜とが向き合うようにして、前記第1基板及び前記第2基板を貼り合わせる貼り合わせ工程と、
前記貼り合わせ工程実施後、前記第1基板及び前記第2基板を加熱して接合する加熱工程と、を備える基板接合方法であって、
前記準備工程において、前記第2シリコン酸化膜の膜厚が2.5nm以下の前記第2基板を準備し、
前記加熱工程において、200度以上800度以下の温度で前記第1基板及び前記第2基板を加熱することを特徴とする基板接合方法。 - 前記準備工程において、前記第2シリコン酸化膜の膜厚が2.0nm以下の前記第2基板を準備することを特徴とする請求項1に記載の基板接合方法。
- 前記準備工程実施後、前記第1シリコン酸化膜及び前記第2シリコン酸化膜に水酸基を付与する活性化工程をさらに備え、
前記活性化工程実施後、前記加熱工程を実施することを特徴とする請求項1又は請求項2に記載の基板接合方法。 - 前記準備工程において、水溶液に前記第2基板を浸すことにより、前記第2基板に前記第2シリコン酸化膜を形成することを特徴とする請求項1〜3のいずれか1項に記載の基板接合方法。
- 前記準備工程において、前記第2基板を加熱することにより、前記第2基板に前記第2シリコン酸化膜を形成することを特徴とする請求項1〜3のいずれか1項に記載の基板接合方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/550,062 US10622246B2 (en) | 2015-03-10 | 2016-02-25 | Substrate bonding method |
PCT/JP2016/001025 WO2016143282A1 (ja) | 2015-03-10 | 2016-02-25 | 基板接合方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015047504 | 2015-03-10 | ||
JP2015047504 | 2015-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016171307A true JP2016171307A (ja) | 2016-09-23 |
Family
ID=56984201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016014852A Pending JP2016171307A (ja) | 2015-03-10 | 2016-01-28 | 基板接合方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10622246B2 (ja) |
JP (1) | JP2016171307A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6727460B1 (ja) * | 2019-06-21 | 2020-07-22 | 三菱電機株式会社 | 複合基板の製造方法、および、複合基板 |
WO2024157663A1 (ja) * | 2023-01-27 | 2024-08-02 | 日本碍子株式会社 | 接合体の製造方法および接合方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114207781A (zh) * | 2019-09-05 | 2022-03-18 | 国立大学法人东北大学 | 化学键合法及接合结构体 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080315247A1 (en) * | 2005-08-22 | 2008-12-25 | Icemos Technology Corporation | Bonded-wafer superjunction semiconductor device |
JP2009117533A (ja) * | 2007-11-05 | 2009-05-28 | Shin Etsu Chem Co Ltd | 炭化珪素基板の製造方法 |
JP2011103409A (ja) * | 2009-11-11 | 2011-05-26 | Sumco Corp | ウェーハ貼り合わせ方法 |
JP2011114326A (ja) * | 2009-11-30 | 2011-06-09 | Sony Corp | 接合基板の製造方法、接合基板、固体撮像装置の製造方法、固体撮像装置並びにカメラ |
JP2012142385A (ja) * | 2010-12-28 | 2012-07-26 | Sumitomo Electric Ind Ltd | 半導体デバイスの製造方法 |
JP2014510391A (ja) * | 2011-01-25 | 2014-04-24 | エーファウ・グループ・エー・タルナー・ゲーエムベーハー | ウエハの永久接合方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6902987B1 (en) * | 2000-02-16 | 2005-06-07 | Ziptronix, Inc. | Method for low temperature bonding and bonded structure |
JP2010263160A (ja) | 2009-05-11 | 2010-11-18 | Sumco Corp | Soiウェーハの製造方法 |
FR2983342B1 (fr) * | 2011-11-30 | 2016-05-20 | Soitec Silicon On Insulator | Procede de fabrication d'une heterostructure limitant la formation de defauts et heterostructure ainsi obtenue |
-
2016
- 2016-01-28 JP JP2016014852A patent/JP2016171307A/ja active Pending
- 2016-02-25 US US15/550,062 patent/US10622246B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080315247A1 (en) * | 2005-08-22 | 2008-12-25 | Icemos Technology Corporation | Bonded-wafer superjunction semiconductor device |
JP2009117533A (ja) * | 2007-11-05 | 2009-05-28 | Shin Etsu Chem Co Ltd | 炭化珪素基板の製造方法 |
JP2011103409A (ja) * | 2009-11-11 | 2011-05-26 | Sumco Corp | ウェーハ貼り合わせ方法 |
JP2011114326A (ja) * | 2009-11-30 | 2011-06-09 | Sony Corp | 接合基板の製造方法、接合基板、固体撮像装置の製造方法、固体撮像装置並びにカメラ |
JP2012142385A (ja) * | 2010-12-28 | 2012-07-26 | Sumitomo Electric Ind Ltd | 半導体デバイスの製造方法 |
JP2014510391A (ja) * | 2011-01-25 | 2014-04-24 | エーファウ・グループ・エー・タルナー・ゲーエムベーハー | ウエハの永久接合方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6727460B1 (ja) * | 2019-06-21 | 2020-07-22 | 三菱電機株式会社 | 複合基板の製造方法、および、複合基板 |
WO2020255376A1 (ja) * | 2019-06-21 | 2020-12-24 | 三菱電機株式会社 | 複合基板の製造方法、および、複合基板 |
WO2024157663A1 (ja) * | 2023-01-27 | 2024-08-02 | 日本碍子株式会社 | 接合体の製造方法および接合方法 |
Also Published As
Publication number | Publication date |
---|---|
US10622246B2 (en) | 2020-04-14 |
US20180033680A1 (en) | 2018-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101057140B1 (ko) | 미세 매립 절연층을 가지는 실리콘-온-절연물 기판들 | |
JPH0391227A (ja) | 半導体基板の接着方法 | |
JP2016171307A (ja) | 基板接合方法 | |
JPH03283636A (ja) | 半導体基板の製造方法 | |
US20160351436A1 (en) | Low temperature wafer bonding | |
WO2016143282A1 (ja) | 基板接合方法 | |
US10497609B2 (en) | Method for direct bonding of substrates including thinning of the edges of at least one of the two substrates | |
WO2015111383A1 (ja) | 半導体ウェーハの洗浄槽及び貼り合わせウェーハの製造方法 | |
TWI582911B (zh) | 製造絕緣體上矽之晶圓之方法 | |
JP5518205B2 (ja) | 結晶シリコンの少なくとも一つの極薄層を含む多層膜を製造する方法 | |
JP5692099B2 (ja) | 半導体圧力センサおよびその製造方法 | |
JP4250868B2 (ja) | 半導体圧力センサの製造方法 | |
JP2858383B2 (ja) | 半導体装置の製造方法 | |
TW201715566A (zh) | 在間隙填補應用中用來消除二氧化矽膜之原子層沉積物中的裂縫之系統及方法 | |
JPH0964319A (ja) | Soi基板およびその製造方法 | |
JP2022553733A (ja) | トレンチを有する半導体本体を製造する方法、少なくとも1つのトレンチを有する半導体本体、ならびに半導体デバイス | |
JP5443833B2 (ja) | 貼り合わせsoi基板の製造方法 | |
JP5179401B2 (ja) | 貼り合わせウェーハ及びその製造方法 | |
US20140042586A1 (en) | Silicon substrate and method of fabricating the same | |
JPH10303089A (ja) | 張り合わせ基板の製造方法 | |
KR101575131B1 (ko) | 기판 처리 방법 | |
JP2012234911A (ja) | 複合基板の製造方法 | |
JP2010278120A5 (ja) | ||
WO2016132694A1 (ja) | 半導体装置の製造方法 | |
JP2599445B2 (ja) | 半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181019 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200127 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200212 |